251
|
Sauerzweig S, Munsch T, Lessmann V, Reymann KG, Braun H. A population of serum deprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells. Exp Cell Res 2008; 315:50-66. [PMID: 18992240 DOI: 10.1016/j.yexcr.2008.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 12/27/2022]
Abstract
The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures.
Collapse
Affiliation(s)
- Steven Sauerzweig
- Leibniz Institute for Neurobiology (IfN), Projectgroup Neuropharmacology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
252
|
Khoo ML, Shen B, Tao H, Ma DD. Long-Term Serial Passage and Neuronal Differentiation Capability of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2008; 17:883-96. [DOI: 10.1089/scd.2007.0185] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Melissa L.M. Khoo
- Department of Haematology and Bone Marrow Stem Cell Transplantation, St. Vincent’s Hospital Sydney and The University of New South Wales, Sydney, New South Wales, Australia
| | - Bojiang Shen
- Department of Haematology and Bone Marrow Stem Cell Transplantation, St. Vincent’s Hospital Sydney and The University of New South Wales, Sydney, New South Wales, Australia
| | - Helen Tao
- Department of Haematology and Bone Marrow Stem Cell Transplantation, St. Vincent’s Hospital Sydney and The University of New South Wales, Sydney, New South Wales, Australia
| | - David D.F. Ma
- Department of Haematology and Bone Marrow Stem Cell Transplantation, St. Vincent’s Hospital Sydney and The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
253
|
Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res 2008; 86:2168-78. [PMID: 18438930 DOI: 10.1002/jnr.21669] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the differentiation, development, and survival of neural stem cells. In this study, we analyzed its effects on the stimulation of human umbilical cord blood-derived mesenchymal stem cells in terms of their potential to differentiate into neuron-like cells, their survival characteristics, and the molecular mechanisms involved. The treatment of cells with neural induction medium (NIM) and BDNF generated more cells that were neuron-like and produced stronger expression of neural-lineage markers than cells treated with NIM and without BDNF. Raf-1 and ERK phosphorylation and p35 expression levels increased significantly in cells treated with both NIM and BDNF. This treatment also effectively blocked cell death following neural induction and increased Akt phosphorylation and Bcl2 expression compared with cells treated with NIM without BDNF. Inhibition of ERKs inhibited the BDNF-stimulated up-regulation of p35 and Bcl2. In addition, the inhibition of PI3K abrogated Akt phosphorylation and Bcl2 expression, but not p35 expression. Thus, MAPK/ERK-dependent p35 up-regulation and MAPK/ERK-dependent and PI3K/Akt-dependent Bcl2 up-regulation contribute to BDNF-stimulated neural differentiation and to the survival of differentiated cells.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Neurosurgery, The Catholic University of Korea, Seoul Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Levy YS, Bahat-Stroomza M, Barzilay R, Burshtein A, Bulvik S, Barhum Y, Panet H, Melamed E, Offen D. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease. Cytotherapy 2008; 10:340-52. [PMID: 18574767 DOI: 10.1080/14653240802021330] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human bone marrow multipotent mesenchymal stromal cells (hMSC), because of their capacity of multipotency, may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hMSC to replace the midbrain dopamine neurons selectively lost in Parkinson's disease. METHODS Cells were isolated and characterized, then induced to differentiate toward the neural lineage. In vitro analysis of neural differentiation was achieved using various methods to evaluate the expression of neural and dopaminergic genes and proteins. Neural-induced cells were then transplanted into the striata of hemi-Parkinsonian rats; animals were tested for rotational behavior and, after killing, immunohistochemistry was performed. RESULTS Following differentiation, cells displayed neuronal morphology and were found to express neural genes and proteins. Furthermore, some of the cells exhibited gene and protein profiles typical of dopaminergic precursors. Finally, transplantation of neural-induced cells into the striatum of hemi-Parkinsonian rats resulted in improvement of their behavioral deficits, as determined by apomorphine-induced rotational behavior. The transplanted induced cells proved to be of superior benefit compared with the transplantation of naive hMSC. Immunohistochemical analysis of grafted brains revealed that abundant induced cells survived the grafts and some displayed dopaminergic traits. DISCUSSION Our results demonstrate that induced neural hMSC may serve as a new cell source for the treatment of neurodegenerative diseases and have potential for broad application. These results encourage further developments of the possible use of hMSC in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Y S Levy
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Barzilay R, Kan I, Ben-Zur T, Bulvik S, Melamed E, Offen D. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev 2008; 17:547-54. [PMID: 18513164 DOI: 10.1089/scd.2007.0172] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several reports have shown that human mesenchymal stem cells (MSCs) are capable of differentiating outside the mesenchymal lineage. We sought to induce MSCs to differentiate into dopamine-producing cells for potential use in autologous transplantation in patients with Parkinson's disease (PD). Following cell culture with various combinations of differentiation agents under serum-free defined conditions, different levels of up-regulation were observed in the protein expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Further analysis of selected differentiation protocols revealed that the induced cells displayed a neuron-like morphology and expressed markers suggesting neuronal differentiation. In addition, there was an increase in Nurr 1, the dopaminergic transcription factor gene, concomitant with a decrease gamma-aminobutyric acid (GABA)ergic marker expression, suggesting a specific dopaminergic direction. Moreover, the induced cells secreted dopamine in response to depolarization. These results demonstrate the great therapeutic potential of human MSCs in PD.
Collapse
Affiliation(s)
- Ran Barzilay
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Petah Tiqwa, 49100 Israel
| | | | | | | | | | | |
Collapse
|
256
|
Coles-Takabe BLK, Brain I, Purpura KA, Karpowicz P, Zandstra PW, Morshead CM, van der Kooy D. Don't look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 2008; 26:2938-44. [PMID: 18757294 DOI: 10.1634/stemcells.2008-0558] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent reports have challenged the clonality of the neurosphere assay in assessing neural stem cell (NSC) numbers quantitatively. We tested the clonality of the neurosphere assay by culturing mixtures of differently labeled neural cells, watching single neural cells proliferate using video microscopy, and encapsulating single NSCs and their progeny. The neurosphere assay gave rise to clonal colonies when using primary cells plated at 10 cells/microl or less; however, when using passaged NSCs, the spheres were clonal only if plated at 1 cell/microl. Most important, moving the plates during the growth phase (to look at cultures microscopically) greatly increased the incidence of nonclonal colonies. To ensure clonal sphere formation and investigate nonautonomous effects on clonal sphere formation frequencies, single NSCs were encapsulated in agarose and proliferated as clonal free-floating spheres. We demonstrate that clonal neurospheres can be grown by avoiding movement-induced aggregation, by single-cell tracking, and by encapsulation of single cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
257
|
Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P. A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 2008; 372:520-4. [DOI: 10.1016/j.bbrc.2008.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/22/2022]
|
258
|
HSV-1 amplicon viral vector-mediated gene transfer to human bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2008; 15:553-62. [PMID: 18535622 DOI: 10.1038/cgt.2008.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (BM-hMSCs) are nonhematopoietic stem cells that have the potential to differentiate into adipocytes, osteocytes and chondrocytes. Because of its propensity to migrate to the sites of injury and the ability to expand them rapidly, BM-hMSCs have been exploited as potential gene transfer vehicles to deliver therapeutic genes. Herein, we evaluated the feasibility of employing herpes simplex virus type I (HSV-1) amplicon viral vector as a gene delivery vector to BM-hMSCs. High transduction efficiencies were consistently observed in different isolates of BM-hMSCs following infection with HSV-1 amplicon viral vectors. Furthermore, we demonstrated that transduction with HSV-1 amplicon viral vector did not alter the intrinsic properties of the BM-hMSCs. The morphology and cellular proliferation of the transduced BM-hMSCs were not altered. Chromosomal stability, as confirmed by karyotyping and soft agar colony assays, of the transduced BM-hMSCs was not affected. Similarly, transduction with HSV-1 amplicon viral vectors has no effect on the pluripotent differentiation potential and the tumor tropism of BM-hMSCs. Taken together, these results demonstrated that BM-hMSCs could be transduced efficiently by HSV-1 amplicon viral vector in an 'inert' manner and thus enable strategies to express potential therapeutic genes in BM-hMSCs.
Collapse
|
259
|
Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008; 31:395-405. [PMID: 18586098 DOI: 10.1016/j.nbd.2008.05.016] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 05/05/2008] [Accepted: 05/22/2008] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease affecting motoneurons. In familial ALS, patients bear mutations in the superoxide dismutase gene (SOD1). We transplanted human bone marrow mesenchymal stem cells (hMSCs) into the lumbar spinal cord of asymptomatic SOD1(G93A) mice, an experimental model of ALS. hMSCs were found in the spinal cord 10 weeks after, sometimes close to motoneurons and were rarely GFAP- or MAP2-positive. In females, where progression is slower than in males, astrogliosis and microglial activation were reduced and motoneuron counts with the optical fractionator were higher following transplantation. Motor tests (Rotarod, Paw Grip Endurance, neurological examination) were significantly improved in transplanted males. Therefore hMSCs are a good candidate for ALS cell therapy: they can survive and migrate after transplantation in the lumbar spinal cord, where they prevent astrogliosis and microglial activation and delay ALS-related decrease in the number of motoneurons, thus resulting in amelioration of the motor performance.
Collapse
Affiliation(s)
- A Vercelli
- Department of Anatomy, Pharmacology and Forensic Medicine, National Institute of Neuroscience, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Xu R, Jiang X, Guo Z, Chen J, Zou Y, Ke Y, Zhang S, Li Z, Cai Y, Du M, Qin L, Tang Y, Zeng Y. Functional analysis of neuron-like cells differentiated from neural stem cells derived from bone marrow stroma cells in vitro. Cell Mol Neurobiol 2008; 28:545-58. [PMID: 17902046 PMCID: PMC11515084 DOI: 10.1007/s10571-007-9174-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 07/28/2007] [Indexed: 11/29/2022]
Abstract
The transversal differentiation of bone marrow stroma cell (BMSCs) into neural stem cells (NSCs) has attracted much attention in recent years because of their therapeutic potential. However, the problem in therapeutic application of NSCs was how to confirm whether neuron-like cells differentiated from bone marrow stroma cell-derived neural stem cells (BMSCs-D-NSCs) possess corresponding functions of neurochemistry and electrophysiology. In the present study, we tried to affirm the function of neuron-like cells differentiated from BMSCs-D-NSCs in vitro. The BMSCs were harvested by gradient centrifugation in Ficoll-Paque and cultured in "NSCs medium". Immunocytochemistry was used to detect positive expression of neuron-specific nuclear protein (NeuN) in neuron-like cells derived from the BMSCs-D-NSCs. High-pressure liquid chromatography (HPLC) was used to identify neuron-like cells by detecting excitable amino acids [aspartic acid (Asp), glutamic acid (Glu)], inhibited amino acids [glycine (Gly), gamma (gamma) -aminobutyric acid (GABA), alanine (Ala)] or monoamines [noradrenaline (NE), 5-hydroxytryptamine (5-HT), dopamine (DA)]. Electrophysiological properties of the neuron-like cells were also examined using patch clamp analysis to verify their neuron-like functions. It was found that the neuron-like cells differentiated from the BMSCs-D-NSCs could express positive NeuN, synthesize and excrete amino acids, and show some typical electrophysiological properties including the typical Na+ and K+ ion channel membrane current under the voltage patch clamp condition, the typical static electrical membrane potential under the current patch clamp condition, and the differential membrane capacitance and resistance values in series between undifferentiated BMSCs-D-NSCs and differentiated neuron-like cells under the whole-cell patch clamp condition. The neuron-like cells differentiated from BMSCs-D-NSCs exhibit both neuron-like biochemical function and some corresponding electrophysiological properties.
Collapse
Affiliation(s)
- Ruxiang Xu
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Xiaodan Jiang
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Zaiyu Guo
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Jianrong Chen
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Yuxi Zou
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Yiquan Ke
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Shizhong Zhang
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Zhanhui Li
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Yingqian Cai
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Mouxuan Du
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Lingsha Qin
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Yanping Tang
- Neuromedical Institute, Zhujiang Hospital of Southern Medical University, 253# Gongye Road, Guangzhou, 510282 P.R. China
| | - Yanjun Zeng
- Biomechanics & Medical Information Institute, Beijing University of Technology, Beijing, 100022 P.R. China
| |
Collapse
|
261
|
Vias M, Massie CE, East P, Scott H, Warren A, Zhou Z, Nikitin AY, Neal DE, Mills IG. Pro-neural transcription factors as cancer markers. BMC Med Genomics 2008; 1:17. [PMID: 18489756 PMCID: PMC2413260 DOI: 10.1186/1755-8794-1-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/19/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The aberrant transcription in cancer of genes normally associated with embryonic tissue differentiation at various organ sites may be a hallmark of tumour progression. For example, neuroendocrine differentiation is found more commonly in cancers destined to progress, including prostate and lung. We sought to identify proteins which are involved in neuroendocrine differentiation and differentially expressed in aggressive/metastatic tumours. RESULTS Expression arrays were used to identify up-regulated transcripts in a neuroendocrine (NE) transgenic mouse model of prostate cancer. Amongst these were several genes normally expressed in neural tissues, including the pro-neural transcription factors Ascl1 and Hes6. Using quantitative RT-PCR and immuno-histochemistry we showed that these same genes were highly expressed in castrate resistant, metastatic LNCaP cell-lines. Finally we performed a meta-analysis on expression array datasets from human clinical material. The expression of these pro-neural transcripts effectively segregates metastatic from localised prostate cancer and benign tissue as well as sub-clustering a variety of other human cancers. CONCLUSION By focussing on transcription factors known to drive normal tissue development and comparing expression signatures for normal and malignant mouse tissues we have identified two transcription factors, Ascl1 and Hes6, which appear effective markers for an aggressive phenotype in all prostate models and tissues examined. We suggest that the aberrant initiation of differentiation programs may confer a selective advantage on cells in all contexts and this approach to identify biomarkers therefore has the potential to uncover proteins equally applicable to pre-clinical and clinical cancer biology.
Collapse
Affiliation(s)
- Maria Vias
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charlie E Massie
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Philip East
- Bioinformatics & Biostatistics, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Helen Scott
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Anne Warren
- Department of Pathology, Addenbrookes Hospital, Cambridge, CB2 2QQ, UK
| | - Zongxiang Zhou
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - David E Neal
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ian G Mills
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
262
|
Somoza R, Conget P, Rubio FJ. Neuropotency of Human Mesenchymal Stem Cell Cultures: Clonal Studies Reveal the Contribution of Cell Plasticity and Cell Contamination. Biol Blood Marrow Transplant 2008; 14:546-55. [DOI: 10.1016/j.bbmt.2008.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/24/2008] [Indexed: 01/01/2023]
|
263
|
Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yañez AJ, Conget PA. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 2008; 14:631-40. [PMID: 18489988 DOI: 10.1016/j.bbmt.2008.01.006] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/20/2008] [Indexed: 12/18/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs), often labeled mesenchymal stem cells, contribute to tissue regeneration in injured bone and cartilage, as well as in the infarcted heart, brain, and kidney. We hypothesize that MSCs might also contribute to pancreas and kidney regeneration in diabetic individuals. Therefore, in streptozotocin (STZ)-induced type 1 diabetes C57BL/6 mice, we tested whether a single intravenous dose of MSCs led to recovery of pancreatic and renal function and structure. When hyperglycemia, glycosuria, massive beta-pancreatic islets destruction, and mild albuminuria were evident (but still without renal histopathologic changes), mice were randomly separated in 2 groups: 1 received 0.5 x 10(6) MSCs that have been ex vivo expanded (and characterized according to their mesenchymal differentiation potential), and the other group received the vehicle. Within a week, only MSC-treated diabetic mice exhibited significant reduction in their blood glucose levels, reaching nearly euglycemic values a month later. Reversion of hyperglycemia and glycosuria remained for 2 months at least. An increase in morphologically normal beta-pancreatic islets was observed only in MSC-treated diabetic mice. Furthermore, in those animals albuminuria was reduced and glomeruli were histologically normal. On the other side, untreated diabetic mice presented glomerular hyalinosis and mesangial expansion. Thus, MSC administration resulted in beta-pancreatic islets regeneration and prevented renal damage in diabetic animals. Our preclinical results suggest bone marrow-derived MSC transplantation as a cell therapy strategy to treat type 1 diabetes and prevent diabetic nephropathy, its main complication.
Collapse
Affiliation(s)
- Fernando E Ezquer
- Instituto de Ciencias, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
264
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
265
|
Bouchez G, Sensebé L, Vourc'h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S. Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease. Neurochem Int 2008; 52:1332-42. [PMID: 18372079 DOI: 10.1016/j.neuint.2008.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 11/29/2022]
Abstract
Cellular therapy with adult stem cells appears as an opportunity for treatment of Parkinson's disease. To validate this approach, we studied the effects of transplantation of rat adult bone-marrow mesenchymal stem cells in a rat model of Parkinson's disease. Animals were unilaterally lesioned in the striatum with 6-hydroxydopamine. Two weeks later, group I did not undergo grafting, group II underwent sham grafting, group III was intra-striatal grafted with cells cultured in an enriched medium and group IV was intra-striatal grafted with cells cultured in a standard medium. Rotational amphetamine-induced behavior was measured weekly until animals were killed 6 weeks later. One week after graft, the number of rotations/min was stably decreased by 50% in groups III and IV as compared with groups I and II. At 8 weeks post-lesion, the density of dopaminergic markers in the nerve terminals and cell bodies, i.e. immunoreactive tyrosine hydroxylase, membrane dopamine transporter and vesicular monoamine transporter-2 was significantly higher in group III as compared with group I. Moreover, using microdialysis studies, we observed that while the rate of pharmacologically induced release of dopamine was significantly reduced in lesioned versus intact striatum in no grafted rats, it was similar in both sides in animals transplanted with mesemchymal stem cells. These data demonstrate that graft of adult mesemchymal stem cells reduces behavioral effects induced by 6-hydroxydopamine lesion and partially restores the dopaminergic markers and vesicular striatal pool of dopamine. This cellular approach might be a restorative therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Gaëlle Bouchez
- INSERM U930, Laboratory Biophysique médicale & pharmaceutique, UFR Pharmacie, 31 avenue Monge, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, Tansey KE, Tansey MG. Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease. Exp Neurol 2008; 210:14-29. [PMID: 18061169 PMCID: PMC2394500 DOI: 10.1016/j.expneurol.2007.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/10/2007] [Accepted: 10/21/2007] [Indexed: 12/22/2022]
Abstract
Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway. In vitro-expanded naïve or differentiated ADAS cells were autologously transplanted into substantia nigra 1 week after an intrastriatal 6-hydroxydopamine injection. Neurochemical and behavioral measures demonstrated neuroprotective effects of both ADAS grafts against 6-hydroxydopamine-induced dopaminergic neuron death, suggesting that pre-transplantation differentiation of the cells does not determine their ability to survive or neuroprotect in vivo. Therefore, we investigated whether equivalent protection by naïve and neurally-induced ADAS grafts resulted from robust in situ differentiation of both graft types into dopaminergic fates. Immunohistological analyses revealed that ADAS cells did not adopt dopaminergic cell fates in situ, consistent with the limited ability of these cells to undergo terminal differentiation into electrically active neurons in vitro. Moreover, re-exposure of neurally-differentiated ADAS cells to serum-containing medium in vitro confirmed ADAS cell phenotypic instability (plasticity). Lastly, given that gene expression analyses of in vitro-expanded ADAS cells revealed that both naïve and differentiated ADAS cells express potent dopaminergic survival factors, ADAS transplants may have exerted neuroprotective effects by production of trophic factors at the lesion site. ADAS cells may be ideal for ex vivo gene transfer therapies in Parkinson's disease treatment.
Collapse
Affiliation(s)
- Melissa K. McCoy
- Department of Physiology, The University of Texas Southwestern Medical Center
| | - Terina N. Martinez
- Department of Physiology, The University of Texas Southwestern Medical Center
| | - Kelly A. Ruhn
- Department of Physiology, The University of Texas Southwestern Medical Center
| | - Philip C. Wrage
- Department of Physiology, The University of Texas Southwestern Medical Center
| | - Edward W. Keefer
- Department of Plastic Surgery, The University of Texas Southwestern Medical Center
| | - Barry R. Botterman
- Department of Cell Biology, The University of Texas Southwestern Medical Center
| | - Keith E. Tansey
- Department of Neurology, The University of Texas Southwestern Medical Center
| | - Malú G. Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center
| |
Collapse
|
267
|
Abstract
Here, the literature was reviewed to evaluate whether a population of mesenchymal stromal cells derived from Wharton's jelly cells (WJCs) is a primitive stromal population. A clear case can be made for WJCs as a stromal population since they display the characteristics of MSCs as defined by the International Society for Cellular Therapy; for example, they grow as adherent cells with mesenchymal morphology, they are self-renewing, they express cell surface markers displayed by MSCs, and they may be differentiated into bone, cartilage, adipose, muscle, and neural cells. Like other stromal cells, WJCs support the expansion of other stem cells, such as hematopoietic stem cells, are well-tolerated by the immune system, and they have the ability to home to tumors. In contrast to bone marrow MSCs, WJCs have greater expansion capability, faster growth in vitro, and may synthesize different cytokines. WJCs are therapeutic in several different pre-clinical animal models of human disease such as neurodegenerative disease, cancer, heart disease, etc. The preclinical work suggests that the WJCs are therapeutic via trophic rescue and immune modulation. In summary, WJCs meet the definition of MSCs. Since WJCs expand faster and to a greater extent than adult-derived MSCs, these findings suggest that WJCs are a primitive stromal cell population with therapeutic potential. Further work is needed to determine whether WJCs engraft long-term and display self-renewal and multipotency in vivo and, as such, demonstrate whether Wharton's jelly cells are a true stem cell population.
Collapse
Affiliation(s)
- Deryl L Troyer
- Kansas State University, Department of Anatomy and Physiology, 1600 Denison Avenue, 228 Coles Hall, Manhattan, Kansas 66506-5602, USA.
| | | |
Collapse
|
268
|
Jung KH, Chu K, Lee ST, Song EC, Sinn DI, Kim JM, Kim SJ, Kim JH, Kang KM, Park HK, Lee SH, Kim M, Lee SK, Roh JK. Identification of neuronal outgrowth cells from peripheral blood of stroke patients. Ann Neurol 2008; 63:312-22. [DOI: 10.1002/ana.21303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
269
|
Zhu R, Xu R, Jiang X, Cai Y, Zou Y, Du M, Qin L. Expression profile of cancer-related genes in human adult bone marrow-derived neural stemlike cells highlights the need for tumorigenicity study. J Neurosci Res 2008; 85:3064-70. [PMID: 17638301 DOI: 10.1002/jnr.21426] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human adult bone marrow-derived neural stemlike cells (MDNSCs) may serve as ideal seed cells for cell replacement therapy for human neurological disorders and injuries. However, the long-term safety of this cell population after transplantation must be thoroughly explored before clinical application, and tumorigenicity is a major concern. In this study, we generated MDNSCs capable of forming neurospherelike aggregates and with the potency to differentiate into neural lineage cells in vitro and investigated hundreds of cancer-related genes in MDNSCs in order to determine whether there were any characteristics that could help in the evaluation of their tumorigenic potential. According to the results of testing by PCR and DNA sequencing, there were no mutations at the frequent mutation sites of tumor-suppressor genes p53, p16, and Rb1. Of the 440 cancer-related genes covered by Oligo GEArray Human Cancer Microarray OHS-802, 63 were found to be significantly overexpressed compared with that in fresh normal human adult bone marrow depleted of red blood cells (RBCs). In particular, the overexpressed genes included those promoting cell proliferation and cell invasion and metastasis and members of several oncogenic signaling pathways. The overexpression of MYC, MMP2, Notch2, STC1, ITGA3, STAT5b, RhoC, and Wnt1 was also revealed by quantitative real-time RT-PCR. Because it has been shown that activation of some of these genes promote tumorigenesis, our findings highlight the need for further studies of long-term tumorigenicity in MDNSCs.
Collapse
Affiliation(s)
- Rusen Zhu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
270
|
Xu Y, Liu Z, Liu L, Zhao C, Xiong F, Zhou C, Li Y, Shan Y, Peng F, Zhang C. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 2008; 9:21. [PMID: 18269732 PMCID: PMC2257969 DOI: 10.1186/1471-2202-9-21] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 02/12/2008] [Indexed: 12/12/2022] Open
Abstract
Background Schwann cells (SC) which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC) into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yongfeng Xu
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China. .
| | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Lu L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM, Gu XS, Ahmed S, Dawe GS, Xiao ZC. Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells 2008; 26:580-590. [PMID: 17975227 DOI: 10.1634/stemcells.2007-0106] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, we have demonstrated that F3/contactin and NB-3 are trans-acting extracellular ligands of Notch that promote differentiation of neural stem cells and oligodendrocyte precursor cells into mature oligodendrocytes (OLs). Here, we demonstrate that human bone marrow stromal cells (hBMSCs) can be induced to differentiate into cells with myelinating glial cell characteristics in mouse retina after predifferentiation in vitro. Isolated CD90(+) hBMSCs treated with beta-mercaptoethanol for 1 day and retinoic acid for 3 days in culture changed into myelinating glia-like cells (MGLCs). More cells expressed NG2, an early OL marker, after treatment, but expression of O4, a mature OL marker, was negligible. Subsequently, the population of O4(+) cells was significantly increased after the MGLCs were predifferentiated in culture in the presence of either F3/contactin or multiple factors, including forskolin, basic fibroblast growth factor, platelet-derived growth factor, and heregulin, in vitro for another 3 days. Notably, 2 months after transplantation into mouse retina, the predifferentiated cells changed morphologically into cells resembling mature MGLCs and expressing O4 and myelin basic protein, two mature myelinating glial cell markers. The cells sent out processes to contact and wrap axons, an event that normally occurs during early stages of myelination, in the retina. The results suggest that CD90(+) hBMSCs are capable of morphological and functional differentiation into MGLCs in vivo through predifferentiation by triggering F3/Notch signaling in vitro.
Collapse
Affiliation(s)
- Li Lu
- Department of Clinical Research, Singapore General Hospital, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Li HY, Zhou XF. Potential conversion of adult clavicle-derived chondrocytes into neural lineage cells in vitro. J Cell Physiol 2008; 214:630-44. [PMID: 17786944 DOI: 10.1002/jcp.21251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural stem cells (NSC) can be isolated from a variety of adult tissues and become a valuable cell source for the repair of peripheral and central nervous diseases. However, their origin and identity remain controversial because of possible de-differentiation/trans-differentiation or contaminations by hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs). We hypothesize that the commonly used NSC culture medium can induce committed cartilage chondrocytes to de-differentiate and/or trans-differentiate into neural cell lineages. Using a biological isolation and purification method with explants culture, we here show that adult rat clavicle cartilage chondrocytes migrate out from tissue blocks, form sphere-like structures, possess the capability of self-renewal, express nestin and p75NTR, markers for neural crest progenitors, and differentiate into neurons, glia, and smooth muscle cells. Comparing with adult cartilage, the spherical-forming neural crest cell-like cells downregulate the chondrocytic marker genes, including collagen II, collagen X, and sox9, as well as neural-lineage repressors/silencers REST and coREST, but upregulate a set of well-defined genes related to neural crest cells and pro-neural potential. Nerve growth factor (NGF) and glial growth factor (GGF) increase glial and neuronal differentiation, respectively. These results suggest that chondrocytes derived from adult clavicle cartilage can become neural crest stem-like cells and acquire neuronal phenotypes in vitro. The possible de-differentiation/trans-differentiation mechanisms underlying the conversion were discussed.
Collapse
Affiliation(s)
- Hong-Yun Li
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
273
|
Song S, Song S, Zhang H, Cuevas J, Sanchez-Ramos J. Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev 2008; 16:747-56. [PMID: 17999596 DOI: 10.1089/scd.2007.0027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived stem/progenitor cells have been shown by independent investigators to give rise to neural-like cells (neurons and glia) both in vitro and in vivo. The objective of the present study was to determine whether nestin-enriched cells derived from bone marrow can differentiate into cells with the same morphological and functional characteristics as neurons derived from adult brain neurogenic zones. Cell culture methods were used for generation of adult bone marrow and brain stem/progenitor cells and for studying their differentiation into neural-like cells. The proportion of cells expressing neuronal markers was greater in cultures derived from adult hippocampal neural stem cells than in the bone marrow-derived cells, but the electrophysiological and functional characteristics of the cells were similar. Action potentials with electrical characteristics corresponding to those exhibited by adult neural stem cell-derived neurons were recorded from approximately 2.5% of patched neuron-like cells differentiated from bone marrow cells. The active uptake of tritium-labeled neurotransmitters gamma-aminobutyric acid ([(3)H]GABA) and dopamine ([(3)H]DA) was measured in both sets of cultures. [(3)H]GABA uptake, but not [(3)H]DA, was significantly increased in differentiated neurons in both neural stem cell cultures and bone marrow-derived cultures. [(3)H]GABA uptake was greater in differentiated neurons derived from brain neural stem cells. In summary, both the nestin-expressing bone marrow and the adult brain neural stem/progenitors developed into cells with morphological, immunocytochemical, and functional characteristics of neurons. Even though a smaller proportion of neuron-like cells was generated from bone marrow-derived progenitors than from brain-derived neural stem cells, these cells may be useful in the cellular therapy of neurodegenerative diseases and traumatic brain and spinal cord injury.
Collapse
Affiliation(s)
- Shijie Song
- Department of Neurology, University of South Florida, Tampa, FL 33612., James Haley VA Hospital, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
274
|
Neurotrophic Schwann-cell factors induce neural differentiation of bone marrow stromal cells. Neuroreport 2008; 18:1713-7. [PMID: 17921874 DOI: 10.1097/wnr.0b013e3282f0d3b0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neural transdifferentiation of bone marrow stromal cells has been questioned, because cell fusion could explain the development of new cell types, misinterpreted as transdifferentiated cells. We performed here cocultures of bone marrow stromal cells and Schwann cells, without possibility that both cell types can establish contact. In these conditions, bone marrow stromal cells expressed nestin 4 h after beginning cocultures, and strong expression of neuronal markers was disclosed at 72 h, increasing at 1 and 2 weeks. Our results support that neural transdifferentiation of bone marrow stromal cells is induced by soluble factors provided by glial cells, and suggest that cell fusion should not be significant when local bone marrow stromal cells administration for neural repair is considered.
Collapse
|
275
|
Song S, Sanchez-Ramos J. Preparation of neural progenitors from bone marrow and umbilical cord blood. Methods Mol Biol 2008; 438:123-134. [PMID: 18369754 DOI: 10.1007/978-1-59745-133-8_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The bone marrow is clearly much more than a reservoir of stem cells that repopulates blood cell lineages throughout life. The marrow also contains nonhematopoietic stem cells, which are much more versatile than previously appreciated. These nonhematopoietic stem/progenitor cells are found in the bone marrow stromal cell (BMSC) population. BMSCs also are known as colony-forming unit fibroblasts and mesenchymal stem cells (MSCs). MSCs also can be generated from umbilical cord blood and other tissues. MSCs have been shown to express properties of neuroectodermal cells in vitro by many researchers and in vivo after transplantation into the brain and spinal cord. Many investigators have developed variations on the original method described 6 years ago for the preparation of neural progenitors from BMSCs. We bring up to date the materials and procedures used to prepare BMSCs from bone marrow and from human umbilical cord blood for the induction of neural progenitor cells and subsequent differentiation into neurons and glia.
Collapse
Affiliation(s)
- Shijie Song
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
276
|
Gordon D, Glover CP, Merrison AM, Uney JB, Scolding NJ. Enhanced green fluorescent protein-expressing human mesenchymal stem cells retain neural marker expression. J Neuroimmunol 2008; 193:59-67. [PMID: 18061686 DOI: 10.1016/j.jneuroim.2007.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/17/2007] [Accepted: 10/12/2007] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have the potential to play a role in autologous treatment of central nervous system injury or disease. Here we transduced human MSCs with enhanced green fluorescent protein (EGFP). We compared the capacity of control and EGFP-positive cells to proliferate under normal culture conditions, as well as express neural markers following trans-differentiation. EGFP-positive cells proliferated comparably to controls, retained EGFP expression over the course of multiple passages, and retained neural marker expression at levels comparable to control MSCs. Further neurogenic capacity of EGFP-positive human MSCs was examined by growth as neural stem cell-like neurospheres. No significant difference was observed in the ability of control or EGFP-positive cells to generate primary neurospheres or to expand during passage. When examined by immunostaining for the presence of neuroectodermal markers, neurosphere-derived cells similarly expressed neural markers. We show that human MSCs expressing EGFP represent an attractive and practical source of stem cells for the study of repair and regeneration in neurological models.
Collapse
Affiliation(s)
- David Gordon
- MS Labs, Burden Centre, University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, BS16 1JB, UK.
| | | | | | | | | |
Collapse
|
277
|
Croft AP, Przyborski SA. Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells 2007; 24:1841-51. [PMID: 16868208 DOI: 10.1634/stemcells.2005-0609] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trans-differentiation is a mechanism proposed to explain how tissue-specific stem cells could generate cells of other organs, thus supporting the emerging concept of enhanced adult stem cell plasticity. Although spontaneous cell fusion rather than trans-differentiation may explain some unexpected cell fate changes in vivo, such a mechanism does not explain potential trans-differentiation events in vitro, including the generation of neural cell types from cultured bone marrow-derived stem cells. Here we present evidence that shows that cultured bone marrow-derived stem cells express neural proteins and form structures resembling neurons under defined growth conditions. We demonstrate that these changes in cell structure and neural protein expression are not consistent with typical neural development. Furthermore, the ability of bone marrow-derived stem cells to adopt a neural phenotype in vitro may occur as a result of cellular stress in response to removing cells from their niche and their growth in alternative environmental conditions. These findings suggest a potential explanation for the growth behavior of cultured bone marrow-derived stem cells and highlight the need to carefully validate the plasticity of stem cell differentiation.
Collapse
Affiliation(s)
- Adam P Croft
- School of Biological and Biomedical Science, University of Durham, South Road, Durham DH1 3LE, UK
| | | |
Collapse
|
278
|
Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2007; 2:e1272. [PMID: 18060066 PMCID: PMC2092394 DOI: 10.1371/journal.pone.0001272] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 09/04/2007] [Indexed: 12/21/2022] Open
Abstract
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and β-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.
Collapse
Affiliation(s)
- Atsushi Nagai
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Laboratory Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Woo K. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Hong J. Lee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Han S. Jeong
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Kwang S. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Seok H. Hong
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - In H. Park
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Institute for Regnerative Medicine, Gachon University Gil Hospital, Inchon, Korea
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
279
|
Janowski M, Kuzma-Kozakiewicz M, Binder D, Habisch HJ, Habich A, Lukomska B, Domanska-Janik K, Ludolph AC, Storch A. Neurotransplantation in mice: the concorde-like position ensures minimal cell leakage and widespread distribution of cells transplanted into the cisterna magna. Neurosci Lett 2007; 430:169-74. [PMID: 18068302 DOI: 10.1016/j.neulet.2007.10.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/15/2007] [Accepted: 10/30/2007] [Indexed: 11/24/2022]
Abstract
The access of transplanted cells to large areas of the CNS is of critical value for cell therapy of chronic diseases associated with widespread neurodegeneration. Intrathecal cell application can match this requirement. Here we describe an efficient method for cell injection into the cisterna magna and the assessment of the cell distribution within subarachnoidal space in mice. In order to maximize cell distribution we applied a "concord-like" position, where the cisterna magna is nearly the highest point of the animal's body. A drop of saline on the needle insertion site avoided the outflow of transplanted cells from subarachnoidal space with CSF during surgery. Twenty-four hours later the preparation of the CNS with an intact dura mater by a suitable dissection technique (described in detail) revealed approx. 80% of the injected cells (100,000 cells per animal) within the subarachnoidal space ranging from the skull base (olfactory nerve to premedullary cisterns) to the IV ventricle, and to both the ventral and dorsal surfaces of the spinal cord. Thus the "concorde-like" position proved to be very useful for intrathecal cell application leading to a widespread cell distribution within the subarachnoidal space.
Collapse
|
280
|
Pfister LA, Papaloïzos M, Merkle HP, Gander B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 2007; 12:65-82. [PMID: 17565531 DOI: 10.1111/j.1529-8027.2007.00125.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Transected peripheral nerves can be bridged by direct surgical coaptation of the two nerve stumps or by interposing autografts or biological (veins) or synthetic nerve conduits (NC). NC are tubular structures that guide the regenerating axons to the distal nerve stump. Early synthetic NC have primarily been made of silicone because of the relative flexibility and biocompatibility of this material and because medical-grade silicone tubes were readily available in various dimensions. Nowadays, NC are preferably made of biodegradable materials such as collagen, aliphatic polyesters, or polyurethanes. Although NC assist in guiding regenerating nerves, satisfactory functional restoration of severed nerves may further require exogenous growth factors. Therefore, authors have proposed NC with integrated delivery systems for growth factors or growth factor-producing cells. This article reviews the most important designs of NC with integrated delivery systems for localized release of growth factors. The various systems discussed comprise NC with growth factors being released from various types of matrices, from transplanted cells (Schwann cells or mesenchymal stem cells), or through genetic modification of cells naturally present at the site of injured tissue. Acellular delivery systems for growth factors include the NC wall itself, biodegradable microspheres seeded onto the internal surface of the NC wall, or matrices that are filled into the lumen of the NC and immobilize the growth factors through physical-chemical interactions or specific ligand-receptor interactions. A very promising and elegant system appears to be longitudinally aligned fibers inserted in the lumen of a NC that deliver the growth factors and provide additional guidance for Schwann cells and axons. This review also attempts to appreciate the most promising approaches and emphasize the importance of growth factor delivery kinetics.
Collapse
Affiliation(s)
- Lukas A Pfister
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
281
|
Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I. Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 2007; 357:917-23. [PMID: 17459343 DOI: 10.1016/j.bbrc.2007.04.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
Adult multipotent stem cells have been isolated from various non-neural tissues. Here, we report the isolation of multipotent stem cells from rat periodontal ligament (PDL) using neurosphere-forming culture system. Enzymatically dissociated PDL cells were cultured in serum-free basal medium containing EGF, bFGF, and LIF. Free-floating spheres expressing nestin, GFAP, and vimentin were formed by 7 days of the culture. In addition, spheres expressed mRNA of neural crest-associated transcription factors Twist, Slug, Sox2, and Sox9. PDL-derived spheres differentiated into multinucleated myotubes, NFM-positive neuron-like cells, GFAP-positive astrocyte-like cells and CNPase-positive oligodendrocyte-like cells. Methylcellulose colony-forming assay revealed that a single PDL cell could form a sphere at a frequency of approximately 0.01% of total cells. These data indicate that PDL-derived spheres contained multipotent adult stem cells capable of differentiating into both neural and mesodermal progeny. This is the first report of the isolation of PDL-derived stem cells with primitive neural crest stem cell features.
Collapse
Affiliation(s)
- Wanida Techawattanawisal
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
282
|
Habisch HJ, Janowski M, Binder D, Kuzma-Kozakiewicz M, Widmann A, Habich A, Schwalenstöcker B, Hermann A, Brenner R, Lukomska B, Domanska-Janik K, Ludolph AC, Storch A. Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm (Vienna) 2007; 114:1395-406. [PMID: 17510731 DOI: 10.1007/s00702-007-0748-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/13/2007] [Indexed: 12/23/2022]
Abstract
Stem and progenitor cells provide a promising therapeutic strategy for amyotrophic lateral sclerosis (ALS). To comparatively evaluate the therapeutic potentials of human bone marrow-derived mesodermal stromal cells (hMSCs) and umbilical cord blood cells (hUBCs) in ALS, we transplanted hMSCs and hUBCs and their neuroectodermal derivatives (hMSC-NSCs and hUBC-NSCs) into the ALS mouse model over-expressing the G93A mutant of the human SOD1 gene. We used a standardized protocol similar to clinical studies by performing a power calculation to estimate sample size prior to transplantation, matching the treatment groups for gender and hSOD-G93A gene content, and applying a novel method for directly injecting 100,000 cells into the CSF (the cisterna magna). Ten days after transplantation we found many cells within the subarachnoidal space ranging from frontal basal cisterns back to the cisterna magna, but only a few cells around the spinal cord. hMSCs and hMSC-NSCs were also located within the Purkinje cell layer. Intrathecal cell application did not affect survival times of mice compared to controls. Consistently, time of disease onset and first pareses, death weight, and motor neuron count in lumbar spinal cord did not vary between treatment groups. Interestingly, transplantation of hMSCs led to an increase of pre-symptomatic motor performance compared to controls in female animals. The negative outcome of the present study is most likely due to insufficient cell numbers within the affected brain regions (mainly the spinal cord). Further experiments defining the optimal cell dose, time point and route of application and particularly strategies to improve the homing of transplanted cells towards the CNS region of interest are warranted to define the therapeutic potential of mesodermal stem cells for the treatment of ALS.
Collapse
Affiliation(s)
- H-J Habisch
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Kan I, Ben-Zur T, Barhum Y, Levy YS, Burstein A, Charlow T, Bulvik S, Melamed E, Offen D. Dopaminergic differentiation of human mesenchymal stem cells--utilization of bioassay for tyrosine hydroxylase expression. Neurosci Lett 2007; 419:28-33. [PMID: 17475405 DOI: 10.1016/j.neulet.2007.03.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by a selective loss of dopaminergic neurons in the substantia nigra. In PD, the best therapeutic modalities cannot halt the degeneration. The selective hallmark pathology and the lack of effective treatment make PD an appropriate candidate for cell replacement therapy. Adult autologous bone-marrow-derived mesenchymal stem cells (MSCs) have been investigated as candidates for cell replacement strategies. Several laboratories, including ours, have induced MSCs into neuron-like cells demonstrating a variety of neuronal markers including dopaminergic characteristics, such as the expression of tyrosine hydroxylase (TH). This project aimed to induce MSCs into mature dopamine secreting cells and to generate a bioassay to evaluate the induction. For that purpose, we created a reporter vector containing a promoter of TH, the rate-limiting enzyme in the dopamine synthesis and red fluorescent protein DsRed2. Transfection of human neuroblastoma, dopamine synthesizing, SH-SY5Y cells confirmed the reliability of the constructed reporter plasmid. Following dopaminergic differentiation of the transfected human MSCs cells, TH expressing cells were identified and quantified using flow cytometry. Further study revealed that not only did the differentiated cells activate TH promoter but they also expressed TH protein and secreted dopamine. The reported results indicate that MSCs may be primed in vitro towards a dopaminergic fate offering the promise of innovative therapy for currently incurable human disorders, including PD.
Collapse
Affiliation(s)
- Inna Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, Tel Aviv University, Petah Tiqwa 49100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Zeng Z, Yuan X, Liu G, Zeng X, Zeng X, Ng H, Chen H, Jiang T, Akasaki Y, Kessey K, Black KL, Yu JS. Manipulation of proliferation and differentiation of human bone marrow-derived neural stem cells in vitro and in vivo. J Neurosci Res 2007; 85:310-20. [PMID: 17131390 DOI: 10.1002/jnr.21131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent evidence has demonstrated that neural stem cells (NSC) can be expanded from a variety of sources, including embryos, fetuses, and adult bone marrow and brain tissue. We have previously reported the generation of adult rat bone marrow-derived cellular spheres that are morphologically and phenotypically similar to neurospheres derived from brain NSC. Here we show that adult human bone marrow-derived neural stem cells (HBM-NSC) are capable of generating spheres that are similar to brain neural-derived neurospheres. Additionally, we sought to promote proliferation and differentiation of HBM-NSC through transduction with nonreplicative recombinant adenovirus encoding the cDNA sequence for Gli, rADV-Gli-1; sonic hedgehog, rADV-Shh; or Nurr1, rADV-Nurr1. Immunocytochemistry and RT-PCR analysis showed that HBM-NSC could be efficiently expanded and differentiated in vitro and that HBM-NSC transduced with rADV-Gli-1 or rADV-Shh dramatically increased NSC time-related proliferation; however, Nurr1 had no effect on proliferation. We also transplanted HBM-NSC into chicken embryos to examine their potential function in vivo. We found that transduction of HBM-NSC with rADV-Gli-1 or rADV-Shh and subsequent transplantation into chicken embryos increased HBM-NSC proliferation, whereas rADV-Nurr1 promoted migration and differentiation in vivo. Our findings suggest that HBM-NSC can be efficiently expanded and differentiated in vitro and in vivo by overexpressing Gli-1, Shh or Nurr1.
Collapse
Affiliation(s)
- Zhaohui Zeng
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Stem cells play increasingly prominent roles in tissue engineering and regenerative medicine. Pluripotent embryonic stem (ES) cells theoretically allow every cell type in the body to be regenerated. Adult stem cells have also been identified and isolated from every major tissue and organ, some possessing apparent pluripotency comparable to that of ES cells. However, a major limitation in the translation of stem cell technologies to clinical applications is the supply of cells. Advances in biomaterials engineering and scaffold fabrication enable the development of ex vivo cell expansion systems to address this limitation. Progress in biomaterial design has also allowed directed differentiation of stem cells into specific lineages. In addition to delivering biochemical cues, various technologies have been developed to introduce micro- and nano-scale features onto culture surfaces to enable the study of stem cell responses to topographical cues. Knowledge gained from these studies portends the alteration of stem cell fate in the absence of biological factors, which would be valuable in the engineering of complex organs comprising multiple cell types. Biomaterials may also play an immunoprotective role by minimizing host immunoreactivity toward transplanted cells or engineered grafts.
Collapse
Affiliation(s)
- Chou Chai
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kam W Leong
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
286
|
Maisel M, Herr A, Milosevic J, Hermann A, Habisch HJ, Schwarz S, Kirsch M, Antoniadis G, Brenner R, Hallmeyer-Elgner S, Lerche H, Schwarz J, Storch A. Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells 2007; 25:1231-40. [PMID: 17218394 DOI: 10.1634/stemcells.2006-0617] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global gene expression profiling was performed using RNA from adult human hippocampus-derived neuroprogenitor cells (NPCs) and multipotent frontal cortical fetal NPCs compared with adult human mesenchymal stem cells (hMSCs) as a multipotent adult stem cell control, and adult human hippocampal tissue, to define a gene expression pattern that is specific for human NPCs. The results were compared with data from various databases. Hierarchical cluster analysis of all neuroectodermal cell/tissue types revealed a strong relationship of adult hippocampal NPCs with various white matter tissues, whereas fetal NPCs strongly correlate with fetal brain tissue. However, adult and fetal NPCs share the expression of a variety of genes known to be related to signal transduction, cell metabolism and neuroectodermal tissue. In contrast, adult NPCs and hMSCs overlap in the expression of genes mainly involved in extracellular matrix biology. We present for the first time a detailed transcriptome analysis of human adult NPCs suggesting a relationship between hippocampal NPCs and white matter-derived precursor cells. We further provide a framework for standardized comparative gene expression analysis of human brain-derived NPCs with other stem cell populations or differentiated tissues. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Martina Maisel
- Department of Neurology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Sottile V. Bone marrow as a source of stem cells and germ cells? Perspectives for transplantation. Cell Tissue Res 2007; 328:1-5. [PMID: 17216191 DOI: 10.1007/s00441-006-0361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Recent publications have suggested the existence of germ stem cells in the mouse at postnatal stages. The mechanism of de novo oocyte formation is proposed to involve a contribution from the bone marrow to the germ cell pool, via the bloodstream. Critical examination of the data underpinning these contentious claims is under way from a reproductive biology perspective but little has been said about the nature of this elusive bone marrow population with germ cell potential. Furthermore, whereas the prospect of marrow-derived germ cells may appear propitious for fertility applications, its wider impact on transplantation medicine remains to be considered. This paper examines the evidence leading to the current debate and considers the implications of such findings for the field of bone marrow transplantation.
Collapse
Affiliation(s)
- Virginie Sottile
- Institute of Genetics, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
288
|
Liebau S, Pröpper C, Böckers T, Lehmann-Horn F, Storch A, Grissmer S, Wittekindt OH. Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 2007; 99:426-37. [PMID: 17029597 DOI: 10.1111/j.1471-4159.2006.03967.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The modulation of cell proliferation in neural progenitor cells (NPCs) is believed to play a role in neuronal regeneration. Recent studies showed that K(+) channel activity influenced cell proliferation. Therefore, we examined NPCs for K(+) channels and tested whether NPC self renewing can be modulated by synthetic K(+) channel modulators. The whole-cell K(+) current was partly K(+) dependent and showed a cumulative inactivating component. Two tetra-ethyl-ammonium ion (TEA)-sensitive K(+) currents with different voltage dependencies ( = 65 microm, E(50) = -0.3 +/- 1.3 mV and = 8 mm, E(50) = -15.2 +/- 2.8 mV) and an almost TEA-insensitive current were identified. Kaliotoxin blocked approximately 50% of the entire K(+) currents (IC(50) = 0.25 nm). These properties resembled functional characteristics of K(v)1.4, K(v)1.3 and K(v)3.1 channels. Transcripts for these channels, as well as proteins for K(v)1.3 and K(v)3.1, were identified. Immunocytochemical staining revealed K(v)1.3 and K(v)3.1 K(+) channel expression in almost all NPCs. The blockage of K(v)3.1 by low concentrations of TEA, as well as the blockage of K(v)1.3 by Psora-4, increased NPC proliferation. These findings underline the regulatory role of K(+) channels on the cell cycle and imply that K(+) channel modulators might be used therapeutically to activate endogenous NPCs.
Collapse
Affiliation(s)
- Stefan Liebau
- Department of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
289
|
Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM. Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res 2007; 67:1921-8. [PMID: 17078756 DOI: 10.2460/ajvr.67.11.1921] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate cell surface markers of bone marrow-derived canine mesenchymal stem cells (MSCs) by use of flow cytometric analysis and determine whether canine MSCs express proteins specific to neuronal and glial cells. SAMPLE POPULATION Bone marrow aspirates collected from iliac crests of 5 cadavers of young adult dogs. PROCEDURES Flow cytometric analysis was performed to evaluate cell surface markers and homogeneity of third-passage MSCs. Neural differentiation of canine MSCs was induced by use of dibutyryl cAMP and methyl-isobutylxanthine. Expressions of neuronal (beta III-tubulin) and glial (glial fibrillary acidic protein [GFAP] and myelin basic protein) proteins were evaluated by use of immunocytochemical and western blot analyses before and after neural differentiation. RESULTS Third-passage canine MSCs appeared morphologically homogeneous and shared phenotypic characteristics with human and rodent MSCs. Immunocytochemical and western blot analyses revealed that canine MSCs constitutively expressed beta III-tubulin and GFAP. After induction of neural differentiation, increased expression of GFAP was found in all samples, whereas such change was inconsistent in beta III-tubulin expression. Myelin basic protein remained undetectable on canine MSCs for these culture conditions. CONCLUSIONS AND CLINICAL RELEVANCE Canine bone marrow-derived mononuclear cells yielded an apparently homogeneous population of MSCs after expansion in culture. Expanded canine MSCs constitutively expressed neuron or astrocyte specific proteins. Furthermore, increases of intracellular cAMP concentrations induced increased expression of GFAP on canine MSCs, which suggests that these cells may have the capacity to respond to external signals. Canine MSCs may hold therapeutic potential for treatment of dogs with neurologic disorders.
Collapse
Affiliation(s)
- Hiroaki Kamishina
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
290
|
Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 2007:219-42. [PMID: 17554511 DOI: 10.1007/978-3-540-68976-8_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.
Collapse
Affiliation(s)
- I Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, 49100 Petah-Tikva, Israel
| | | | | |
Collapse
|
291
|
Jeon SJ, Oshima K, Heller S, Edge ASB. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci 2007; 34:59-68. [PMID: 17113786 PMCID: PMC3136105 DOI: 10.1016/j.mcn.2006.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/04/2006] [Accepted: 10/09/2006] [Indexed: 12/20/2022] Open
Abstract
Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell.
Collapse
Affiliation(s)
- Sang-Jun Jeon
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
292
|
Rivera FJ, Couillard-Despres S, Pedre X, Ploetz S, Caioni M, Lois C, Bogdahn U, Aigner L. Mesenchymal Stem Cells Instruct Oligodendrogenic Fate Decision on Adult Neural Stem Cells. Stem Cells 2006; 24:2209-19. [PMID: 16763198 DOI: 10.1634/stemcells.2005-0614] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adult stem cells reside in different tissues and organs of the adult organism. Among these cells are MSCs that are located in the adult bone marrow and NSCs that exist in the adult central nervous system (CNS). In transplantation experiments, MSCs demonstrated neuroprotective and neuroregenerative effects that were associated with functional improvements. The underlying mechanisms are largely unidentified. Here, we reveal that the interactions between adult MSCs and NSCs, mediated by soluble factors, induce oligodendrogenic fate decision in NSCs at the expense of astrogenesis. This was demonstrated (a) by an increase in the percentage of cells expressing the oligodendrocyte markers GalC and myelin basic protein, (b) by a reduction in the percentage of glial fibrillary acidic protein (GFAP)-expressing cells, and (c) by the expression pattern of cell fate determinants specific for oligodendrogenic differentiation. Thus, it involved enhanced expression of the oligodendrogenic transcription factors Olig1, Olig2, and Nkx2.2 and diminished expression of Id2, an inhibitor of oligodendrogenic differentiation. Results of (a) 5-bromo-2'-deoxyuridine pulse-labeling of cells, (b) cell fate analysis, and (c) cell death/survival analysis suggested an inductive mechanism and excluded a selection process. A candidate factor screen excluded a number of growth factors, cytokines, and neurotrophins that have previously been shown to influence neurogenesis and neural differentiation from the oligodendrogenic activity derived from the MSCs. This work might have major implications for the development of future transplantation strategies for the treatment of degenerative diseases in the CNS.
Collapse
Affiliation(s)
- Francisco J Rivera
- Volkswagen-Foundation Research Group, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K. Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 2006; 34:914-25. [PMID: 16797419 DOI: 10.1016/j.exphem.2006.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The exposure of human umbilical cord blood mononuclear cells devoid of hematopoietic stem cells (HUCB-MNCsCD34-) to defined culture condition promotes their conversion into neural lineage. We have asked the question if observed fate change of HUCB-MNCsCD34- results from direct conversion of hematopoietic precursors into neural-like phenotypes due to expression of overlapping genetic program or, alternatively, these neural phenotypes arise from sequential differentiation of more primitive progenitors (embryonic-like cells) preexisting in HUCB-MNCsCD34- fraction. MATERIALS AND METHODS HUCB-MNCs negatively selected for CD34 antigens were cultured in vitro up to 14 days. Changes in stem/neural cell genes and proteins were successively evaluated during this period and after evoked neuronal differentiation of cells in the presence of RA or BDNF or cocultured with neonatal rat brain astrocytes. RESULTS Freshly isolated HUCB-MNCsCD34- expressed pluripotent cell markers: Oct3/4, Sox2, and Rex1 genes. During 24 hours of culture the frequency of Oct3/4 immunopositive cells increased markedly with parallel enlargement of "side population" and CD133+ cell appearance. Concomitantly, cultured cells start to form aggregates and express pro-neural genes, i.e., enhanced Sox2, OTX1, Nestin, GFAP, and NF-200. During the next days of culture immunoreactions for beta-tubulin III, MAP2, GFAP, S100beta, Doublecortin, and GalC were induced with reciprocal lowering of stem cell gene and protein markers. At this stage cells successively adhered to the bottom, dispersed, and decreased proliferation rate (Ki67 expression). Additional treatments with neuromorphogenes or coculturing with rat brain primary culture induced further differentiation of these neural precursors toward more advanced neuronal phenotypes. CONCLUSIONS HUCB-MNCs(CD34-) fraction contains embryonic-like stem/progenitor cells which increase rapidly but transiently in culture, then differentiate spontaneously after cell aggregate adhesion toward neural lineage. Neurally promoted cells from 10-14 DIV culture acquire three main neural-like phenotypes, i.e., neurons, astrocytes, and oligodendrocytes. In this respect they are promising candidates for experimental treatment of neuronal injury; however, the final proof for conversion of HUCB cells to neural cells can be obtained through transplantation experiments.
Collapse
Affiliation(s)
- Aleksandra Habich
- NeuroRepair Department, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
294
|
Buzańska L, Jurga M, Stachowiak EK, Stachowiak MK, Domańska-Janik K. Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 2006; 15:391-406. [PMID: 16846376 DOI: 10.1089/scd.2006.15.391] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability of stem and progenitor cells to proliferate and differentiate into other lineages is widely viewed as a characteristic of stem cells. Previously, we have reported that cells from a CD34(-) (nonhematopoietic) adherent subpopulation of human cord blood can acquire a feature of multipotential neural progenitors in vitro. In the present study, using these cord blood-derived stem cells, we have established a clonal cell line termed HUCB-NSCs (human umbilical cord blood-neural stem cells) that expresses several neural antigens and has been grown in culture for more than 60 passages. During this time, HUCB-NSCs retained their growth rate, the ability to differentiate into neuronal-, astrocyte-, and oligodendrocyte-like cells and displayed a stable karyotype. DNA microarray analysis of HUCB-NSCs revealed enhanced expression of selected genes encoding putative stem and progenitor cell markers when compared to other mononuclear cells. dBcAMP-induced HUCBNSCs were further differentiated into more advanced neuronal cells. This is the first report of the establishment and characterization of a nontransformed HUCB-NSC line that can be grown continuously in a monolayer culture and induced to terminal differentiation. These cells should further our understanding of the regulatory mechanisms involved in NSC self-renewal and differentiation.
Collapse
|
295
|
Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, Tsubota K. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells 2006; 24:2714-22. [PMID: 16888282 DOI: 10.1634/stemcells.2006-0156] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the presence of neural crest-derived corneal precursors (COPs) that initiate spheres by clonal expansion from a single cell. COPs expressed the stem cell markers nestin, Notch1, Musashi-1, and ABCG2 and showed the side population cell phenotype. COPs were multipotent with the ability to differentiate into adipocytes, chondrocytes, as well as neural cells, as shown by the expression of beta-III-tubulin, glial fibrillary acidic protein, and neurofilament-M. COP spheres prepared from E/nestin-enhanced green fluorescent protein (EGFP) mice showed induction of EGFP expression that was not originally observed in the cornea, indicating activation of the neural-specific nestin second intronic enhancer in culture. COPs were Sca-1(+), CD34(+), CD45(-), and c-kit(-). Numerous GFP(+) cells were observed in the corneas of mice transplanted with whole bone marrow of transgenic mice ubiquitously expressing GFP; however, no GFP(+) COP spheres were initiated from these mice. On the other hand, COP spheres from transgenic mice encoding P0-Cre/Floxed-EGFP as well as Wnt1-Cre/Floxed-EGFP were GFP(+), indicating the neural crest origin of COPs, which was confirmed by the expression of the embryonic neural crest markers Twist, Snail, Slug, and Sox9. Taken together, these data indicate the existence of neural crest-derived, multipotent stem cells in the adult cornea.
Collapse
Affiliation(s)
- Satoru Yoshida
- Cornea Center, Tokyo Dental College, Ichikawa, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
296
|
Ho M, Yu D, Davidsion MC, Silva GA. Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation. Biomaterials 2006; 27:4333-9. [PMID: 16647114 DOI: 10.1016/j.biomaterials.2006.03.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
A critical element of any stem cell differentiation protocol is the ability to compare its effects relative to an undifferentiated population of the same cells. In an attempt to standardize pre-differentiation conditions of adult derived mesenchymal stem cells prior to neural induction experiments, we asked what is the simplest chemical surface that supports the growth and maintenance of these cells in a pre-differentiation state. Adult bone marrow-derived rat mesenchymal stem cells (BMSCs) were expanded in vitro on Permanox Lab-Tek tissue culture treated plastic (TCP), poly-D-lysine (PDL) coated glass, PDL-laminin-1 coated glass, and untreated glass. TCP provided the best surface for maintaining morphologies generally considered to be undifferentiated, while PDL coated glass and uncoated glass provided the least suitable surfaces. Expansion of BMSCs on PDL-laminin-1 coated glass resulted in expression of nestin, a marker associated with neuronal and other progenitor cells, and therefore may confound experimental results if used as a pre-differentiation surface.
Collapse
Affiliation(s)
- Mai Ho
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92037-0946, USA
| | | | | | | |
Collapse
|
297
|
Kundu AK, Putnam AJ. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 2006; 347:347-57. [PMID: 16815299 DOI: 10.1016/j.bbrc.2006.06.110] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 01/19/2023]
Abstract
The roles of various soluble factors in promoting the osteogenic differentiation of adult mesenchymal stem cells (MSCs) have been widely studied, but little is known about how the extracellular matrix (ECM) instructs the phenotypic transition between growth and differentiation. To investigate this question, we cultured MSCs on purified vitronectin or type-I collagen, motivated by our earlier tissue engineering work demonstrating that MSC adhesion to polymer scaffolds is primarily mediated by the passive adsorption of these two ECM ligands from serum. Using alkaline phosphatase activity and matrix mineralization as indicators of the early and late stages of osteogenesis, respectively, we report here that both substrates supported differentiation, but the mechanism was substrate dependent. Specifically, osteogenesis on vitronectin correlated with enhanced focal adhesion formation, the activation of focal adhesion kinase (FAK) and paxillin, and the diminished activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3 kinase (PI3K) pathways. By contrast, MSCs on type-I collagen exhibited reduced focal adhesion formation, reduced activation of FAK and paxillin, and increased activation of ERK and PI3K. Inhibition of ERK and FAK blocked mineral deposition on both substrates, suggesting that the observed differences in signaling pathways ultimately converge to the same cell fate. Understanding these mechanistic differences is essential to predictably control the osteogenic differentiation of MSCs and widen their use in regenerative medicine.
Collapse
Affiliation(s)
- Anup K Kundu
- Department of Chemical Engineering and Materials Science, University of California, Irvine, USA
| | | |
Collapse
|
298
|
Chastain SR, Kundu AK, Dhar S, Calvert JW, Putnam AJ. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A 2006; 78:73-85. [PMID: 16602124 DOI: 10.1002/jbm.a.30686] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The osteogenic potential of mesenchymal stem cells (MSCs) cultured on poly(lactide-co-glycolide) (PLGA) or poly(caprolactone) (PCL), two widely used polymeric biomaterials that have been reported to differentially support osteogenic differentiation, was compared in these studies. Here we report that MSCs cultured in 3-D PLGA scaffolds for up to 5 weeks significantly upregulate osteocalcin gene expression levels. By contrast, osteocalcin expression was markedly downregulated in 3-D PCL-based constructs over the same time course. We hypothesized that differential adsorption of extracellular matrix (ECM) proteins present in serum-containing culture medium and subsequent differences in integrin-mediated adhesion are responsible for these differences, and tested this hypothesis using thin (2-D) polymeric films. Supporting this hypothesis, significant amounts of fibronectin and vitronectin deposited onto both materials in serum-containing osteogenic media, with type-I collagen present in lower amounts. Adhesion-blocking studies revealed that MSCs adhere to PCL primarily via vitronectin, while type-I collagen mediates their attachment to PLGA. These adhesive mechanisms correlated with higher levels of alkaline phosphatase (ALP) activity after 2 weeks of monolayer culture on PLGA versus PCL. These data suggest that the initial adhesion of MSCs to PLGA via type-I collagen fosters osteogenesis while adhesion to PCL via vitronectin does not, and stress the need for an improved molecular understanding of cell-ECM interactions in stem cell-based therapies.
Collapse
Affiliation(s)
- Sara R Chastain
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, and Long Beach Venterans Affairs Healthcare System 90822, USA
| | | | | | | | | |
Collapse
|
299
|
Hermann A, Maisel M, Storch A. Epigenetic conversion of human adult bone mesodermal stromal cells into neuroectodermal cell types for replacement therapy of neurodegenerative disorders. Expert Opin Biol Ther 2006; 6:653-70. [PMID: 16805706 DOI: 10.1517/14712598.6.7.653] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tissue-specific stem cells, such as bone marrow-derived mesodermal stromal cells (MSCs), are thought to be lineage restricted and, therefore, could only be differentiated into cell types of the tissue of origin. Several recent studies, however, suggest that these types of stem cells might be able to break barriers of germ layer commitment and differentiate in vitro and/or in vivo into cells of different tissues, such as neuroectodermal cell types. Recently, protocols for high-yield generation of undifferentiated neural stem cell (NSC)-like cells from MSCs of primate and human origin were reported. Undifferentiated NSCs are commonly used and are more suitable for neurotransplantation compared with fully differentiated neural cells, as differentiated neural cells are well known to poorly survive detachment and subsequent transplantation procedures. These human MSC-derived NSC-like cells (MSC-NSCs) grow in neurosphere-like structures and express high levels of early neuroectodermal markers, but lose characteristics of MSCs. In the presence of selected growth factors, human MSC-NSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Compared with direct differentiation of human MSCs into mature neural cells, the conversion step seems to be essential to generate mature functional neuroectodermal cells. This review describes the techniques for the conversion of human MSCs into NSCs and summarises the data on epigenetic conversion of human MSCs into immature neuroectodermal cells. These cells provide a powerful tool for investigating the molecular mechanisms of neural differentiation, and might serve as an autologous cell source to treat acute and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Andreas Hermann
- Technical University of Dresden, Department of Neurology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | |
Collapse
|
300
|
Pacary E, Legros H, Valable S, Duchatelle P, Lecocq M, Petit E, Nicole O, Bernaudin M. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 2006; 119:2667-78. [PMID: 16772336 DOI: 10.1242/jcs.03004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) constitute an interesting cellular source to promote brain regeneration after neurodegenerative diseases. Recently, several studies suggested that oxygen-dependent gene expression is of crucial importance in governing the essential steps of neurogenesis such as cell proliferation, survival and differentiation. In this context, we analysed the effect of the HIF-1 (hypoxia inducible factor-1) activation-mimicking agent CoCl(2) on MSCs. CoCl(2) treatment increased the expression of the anti-proliferative gene BTG2/PC3 and decreased cyclin D1 expression. Expression of HIF-1alpha and its target genes EPO, VEGF and p21 was also upregulated. These changes were followed by inhibition of cell proliferation and morphological changes resulting in neuron-like cells, which had increased neuronal marker expression and responded to neurotransmitters. Echinomycin, a molecule inhibiting HIF-1 DNA-binding activity, blocked the CoCl(2) effect on MSCs. Additionally, by using Y-27632, we demonstrated that Rho kinase (ROCK) inhibition potentiated CoCl(2)-induced MSC differentiation in particular into dopaminergic neuron-like cells as attested by its effect on tyrosine hydroxylase expression. Altogether, these results support the ability of MSCs to differentiate into neuron-like cells in response to CoCl(2), an effect that might act, in part, through HIF-1 activation and cell-cycle arrest, and which is potentiated by inhibition of ROCK.
Collapse
Affiliation(s)
- Emilie Pacary
- UMR-CNRS 6185, Neurodegenerescence: models and therapeutic strategies, University of Caen, CYCERON, Bd Henri Becquerel, BP 5229, 14074 Caen CEDEX, France
| | | | | | | | | | | | | | | |
Collapse
|