251
|
Bizimungu C, De Neve N, Burny A, Bach S, Bontemps F, Portetelle D, Vandenbol M. Expression in a RabGAP yeast mutant of two human homologues, one of which is an oncogene. Biochem Biophys Res Commun 2003; 310:498-504. [PMID: 14521938 DOI: 10.1016/j.bbrc.2003.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The yeast proteins Msb3p and Msb4p are two Ypt/Rab-specific GTPase-activating proteins (GAPs) involved in cell growth polarization. Both proteins share with a wide variety of other proteins the highly conserved TBC domain forming the catalytically active RabGAP domain. In particular, Msb3p and Msb4p are similar to the human proteins oncTre210p (the 786-amino-acid product of the human Tre2 oncogene, implicated in Ewing's sarcoma) and RN-tre (a Rab5-GAP controlling endocytosis of the EGFR). To further understand the biochemical function of Tre2 oncogene, we expressed its cDNA and, as a control, the RN-tre cDNA, in an msb3 msb4 double mutant yeast strain. Complementation data show that RN-tre can, unlike Tre2, replace the function of the MSB3 and MSB4 genes. As two highly conserved amino acids, including the catalytic arginine, are mutated in the oncTre210p TBC domain, we restored these two amino acids and expressed the modified Tre2 cDNA in the yeast mutant.
Collapse
Affiliation(s)
- Christelle Bizimungu
- Animal and Microbial Biology Unit, Gembloux Agricultural University, B-5030 Gembloux, Belgium.
| | | | | | | | | | | | | |
Collapse
|
252
|
Mizuno K, Kitamura A, Sasaki T. Rabring7, a novel Rab7 target protein with a RING finger motif. Mol Biol Cell 2003; 14:3741-52. [PMID: 12972561 PMCID: PMC196564 DOI: 10.1091/mbc.e02-08-0495] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab7, a member of the Rab family small G proteins, has been shown to regulate intracellular vesicle traffic to late endosome/lysosome and lysosome biogenesis, but the exact roles of Rab7 are still undetermined. Accumulating evidence suggests that each Rab protein has multiple target proteins that function in the exocytic/endocytic pathway. We have isolated a new Rab7 target protein, Rabring7 (Rab7-interacting RING finger protein), using a CytoTrap system. It contains an H2 type RING finger motif at the C termini. Rabring7 shows no homology with RILP, which has been reported as another Rab7 target protein. GST pull-down and coimmunoprecipitation assays demonstrate that Rabring7 specifically binds the GTP-bound form of Rab7 at the N-terminal portion. Rabring7 is found mainly in the cytosol and is recruited efficiently to late endosomes/lysosomes by the GTP-bound form of Rab7 in BHK cells. Overexpression of Rabring7 not only affects epidermal growth factor degradation but also causes the perinuclear aggregation of lysosomes, in which the accumulation of the acidotropic probe LysoTracker is remarkably enhanced. These results suggest that Rabring7 plays crucial roles as a Rab7 target protein in vesicle traffic to late endosome/lysosome and lysosome biogenesis.
Collapse
Affiliation(s)
- Kouichi Mizuno
- Department of Biochemistry, The University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan
| | | | | |
Collapse
|
253
|
van Vliet C, Thomas EC, Merino-Trigo A, Teasdale RD, Gleeson PA. Intracellular sorting and transport of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:1-45. [PMID: 12757749 DOI: 10.1016/s0079-6107(03)00019-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, integrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations.
Collapse
Affiliation(s)
- Catherine van Vliet
- The Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Melbourne, Australia
| | | | | | | | | |
Collapse
|
254
|
Arudchelvan Y, Nishimura Y, Tokuda N, Sawada T, Ueyama Y, Fukumoto T. Identification and characterization of major histocompatibility complex class II compartments in cortical thymic epithelial cells. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 274:798-806. [PMID: 12923890 DOI: 10.1002/ar.a.10081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have concentrated on elucidating the subcellular localization of major histocompatibility (MHC) class II molecules mainly in B cells, macrophages, and dendritic cells. Despite very rich cell-surface expression of MHC class II molecules by cortical thymic epithelial cells (cTECs), little is known regarding the expression of these molecules by cTECs at the subcellular level. In the present study we focused on the identification and characterization of MHC class II compartments (MIICs) in cTECs in situ by immunogold electron microscopy (IEM). We found that MHC class II molecules were located exclusively in the cytoplasmic vacuoles, and we identified these MHC class II molecule-containing cytoplasmic vacuoles as MIICs in cTECs. These MIICs were immunopositive for early endosomal, late endosomal, and lysosomal markers. Moreover, in these MIICs, MHC class II molecules were colocalized with cathepsin L, H2-DM, class II-associated invariant chain (Ii), and class II-associated invariant chain peptide (CLIP). Similarly, Ii molecules were colocalized with endosomal and lysosomal markers, cathepsin L, and H2-DM in the vacuoles. Taken together, these results suggest that MIICs in cTECs represent conventional endocytic compartments. The colocalization of MHC class II molecule or Ii with cathepsin L and H2-DM in the MIICs suggests that MIICs in cTECs may be sites of Ii degradation and peptide loading.
Collapse
Affiliation(s)
- Yamini Arudchelvan
- Department of Oral and Maxillofacial Surgery, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | | | | | | | |
Collapse
|
255
|
Jones C, Hammer RE, Li WP, Cohen JC, Hobbs HH, Herz J. Normal sorting but defective endocytosis of the low density lipoprotein receptor in mice with autosomal recessive hypercholesterolemia. J Biol Chem 2003; 278:29024-30. [PMID: 12746448 DOI: 10.1074/jbc.m304855200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive hypercholesterolemia (ARH) is a genetic form of hypercholesterolemia that clinically resembles familial hypercholesterolemia (FH). As in FH, the rate of clearance of circulating low density lipoprotein (LDL) by the LDL receptor (LDLR) in the liver is markedly reduced in ARH. Unlike FH, LDL uptake in cultured fibroblasts from ARH patients is normal or only slightly impaired. The gene defective in ARH encodes a putative adaptor protein that has been implicated in linking the LDLR to the endocytic machinery. To determine the role of ARH in the liver, ARH-deficient mice were developed. Plasma levels of LDL-cholesterol were elevated in the chow-fed Arh-/- mice (83 +/- 8 mg/dl versus 68 +/- 8 mg/dl) but were lower than those of mice expressing no LDLR (Ldlr-/-) (197 +/- 8 mg/dl). Cholesterol feeding elevated plasma cholesterol levels in both strains. The fractional clearance rate of radiolabeled LDL was reduced to similar levels in the Arh-/- and Ldlr-/- mice, whereas the rate of removal of alpha2-macroglobulin by the LDLR-related protein, which also interacts with ARH, was unchanged. Immunolocalization studies revealed that a much greater proportion of immunodetectable LDLR, but not LDLR-related protein, was present on the sinusoidal surface of hepatocytes in the Arh-/- mice. Taken together, these results are consistent with ARH playing a critical and specific role in LDLR endocytosis in the liver.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Centrifugation, Density Gradient
- Cholesterol/blood
- Cholesterol, Dietary/administration & dosage
- Cholesterol, LDL/blood
- Endocytosis/genetics
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hyperlipoproteinemia Type II/genetics
- Iodine Radioisotopes
- Lipoproteins, LDL/blood
- Liver/chemistry
- Liver/metabolism
- Liver/ultrastructure
- Metabolic Clearance Rate
- Mice
- Mice, Knockout
- Receptors, LDL/analysis
- Receptors, LDL/genetics
- Receptors, LDL/physiology
Collapse
Affiliation(s)
- Christopher Jones
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | | | | | | | |
Collapse
|
256
|
Huang SN, Phelps MA, Swaan PW. Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin. J Pharmacol Exp Ther 2003; 306:681-7. [PMID: 12721324 DOI: 10.1124/jpet.103.051581] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies by our laboratory have suggested the potential role of receptor-mediated endocytosis components in the cellular translocation of riboflavin (vitamin B2). To delineate the intracellular compartments and events involved in the internalization of riboflavin, we synthesized a rhodamine-labeled riboflavin conjugate to monitor its movement via fluorescent microscopy. Cellular uptake studies in BeWo cells show that rhodamine-riboflavin conjugate exhibits similar ligand affinity toward the putative riboflavin transport system as [3H]riboflavin, whereas rhodamine does not significantly interfere with its internalization mechanism. Microscope analysis reveals rapid internalization of the rhodamine-riboflavin conjugate via a riboflavin-specific process into acidic vesicular compartments throughout the cells. The intracellular punctate distribution is comparable with that of fluorescein isothiocyanate (FITC)-transferrin, a well characterized receptor-mediated endocytosis substrate. Double-labeling fluorescence microscopy studies further confirm that with 10 min of internalization, rhodamine-riboflavin conjugate substantially concentrates within vesicular structures associated with clathrin, rab5, FITC-transferrin, and the acidotropic marker LysoTracker Blue. In summary, our studies provide, for the first time, direct morphological evidence of the involvement of endocytosis machinery in the intracellular trafficking of riboflavin. The subcellular localization of rhodamine-riboflavin conjugate suggests that, under the experimental conditions in this study, the internalization of riboflavin follows a classical receptor-mediated endocytosis pathway.
Collapse
Affiliation(s)
- Se-Ne Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21202, USA
| | | | | |
Collapse
|
257
|
Kelley VA, Schorey JS. Mycobacterium's arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Mol Biol Cell 2003; 14:3366-77. [PMID: 12925769 PMCID: PMC181573 DOI: 10.1091/mbc.e02-12-0780] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 03/10/2003] [Accepted: 04/05/2003] [Indexed: 11/11/2022] Open
Abstract
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.
Collapse
Affiliation(s)
- Victoria A Kelley
- Department of Biological Sciences, Center of Tropical Disease Research and Training, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
258
|
Venkatesan S, Rose JJ, Lodge R, Murphy PM, Foley JF. Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. Mol Biol Cell 2003; 14:3305-24. [PMID: 12925765 PMCID: PMC181569 DOI: 10.1091/mbc.e02-11-0714] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Desensitization of the chemokine receptors, a large class of G protein-coupled receptors, is mediated in part by agonist-driven receptor endocytosis. However, the exact pathways have not been fully defined. Here we demonstrate that the rate of ligand-induced endocytosis of CCR5 in leukocytes and expression systems is significantly slower than that of CXCR4 and requires prolonged agonist treatment, suggesting that these two receptors use distinct mechanisms. We show that the C-terminal domain of CCR5 is the determinant of its slow endocytosis phenotype. When the C-tail of CXCR4 was exchanged for that of CCR5, the resulting CXCR4-CCR5 (X4-R5) chimera displayed a CCR5-like trafficking phenotype. We found that the palmitoylated cysteine residues in this domain anchor CCR5 to plasma membrane rafts. CXCR4 and a C-terminally truncated CCR5 mutant (CCR5-KRFX) lacking these cysteines are not raft associated and are endocytosed by a clathrin-dependent pathway. Genetic inhibition of clathrin-mediated endocytosis demonstrated that a significant fraction of ligand-occupied CCR5 trafficked by clathrin-independent routes into caveolin-containing vesicular structures. Thus, the palmitoylated C-tail of CCR5 is the major determinant of its raft association and endocytic itineraries, differentiating it from CXCR4 and other chemokine receptors. This novel feature of CCR5 may modulate its signaling potential and could explain its preferential use by HIV for person-to-person transmission of disease.
Collapse
Affiliation(s)
- Sundararajan Venkatesan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
259
|
Bananis E, Murray JW, Stockert RJ, Satir P, Wolkoff AW. Regulation of early endocytic vesicle motility and fission in a reconstituted system. J Cell Sci 2003; 116:2749-61. [PMID: 12759371 DOI: 10.1242/jcs.00478] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously established conditions to reconstitute kinesin-dependent early endocytic vesicle motility and fission on microtubules in vitro. The present study examined the question whether motility and fission are regulated in this system. Screening for proteins by immunofluorescence microscopy revealed that the small G protein, Rab4, was associated with 80% of hepatocyte-derived early endocytic vesicles that contain the ligand asialoorosomucoid (ASOR). By contrast, other markers for early endocytic vesicles including clathrin, Rab5 and EEA1 were present in the preparation but did not colocalize with the ASOR vesicles. Guanine nucleotides exchanged into the Rab4 present on the vesicles as shown by solubilization of Rab4 by Rab-GDI; solubilization was inhibited by incubation with GTP-gamma-S and promoted by GDP. Pre-incubation of vesicles with GDP increased the number of vesicles moving on microtubules and markedly increased vesicle fission. This increase in motility from GDP was shown to be towards the minus end of microtubules, possibly through activation of the minus-end-directed kinesin, KIFC2. Pre-incubation of vesicles with GTP-gamma-S, by contrast, repressed motility. Addition of exogenous GST-Rab4- GTP-gamma-S led to a further repression of motility and fission. Repression was not seen with addition of GST-Rab4-GDP. Treatment of vesicles with Rab4 antibody also repressed motility, and repression was not seen when vesicles were pre-incubated with GDP. Based on these results we hypothesize that endogenous Rab4-GTP suppresses motility of ASOR-containing vesicles in hepatocytes and that conversion of Rab4-GTP to Rab4-GDP serves as a molecular switch that activates minus-end kinesin-based motility, facilitating early endosome fission and consequent receptor-ligand segregation.
Collapse
Affiliation(s)
- Eustratios Bananis
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
260
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
261
|
Basyuk E, Galli T, Mougel M, Blanchard JM, Sitbon M, Bertrand E. Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev Cell 2003; 5:161-74. [PMID: 12852860 DOI: 10.1016/s1534-5807(03)00188-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The viral genomes of alpha- and gamma-retroviruses follow an outbound route through the cytoplasm before assembling with the budding particle at the plasma membrane. We show here that murine leukemia virus (MLV) RNAs are transported on lysosomes and transferrin-positive endosomes. Transport on transferrin-positive vesicles requires both Gag and Env polyproteins. In the presence of Env, Gag is rerouted from lysosomes to transferrin-positive endosomes, and virion production becomes highly sensitive to drugs poisoning vesicular and endosomal traffic. Vesicular transport of the RNA does not require prior endocytosis, indicating that it is recruited directly from the cytosol. Viral prebudding complexes containing Env, Gag, and retroviral RNAs are thus formed on endosomes, and subsequently routed to the plasma membrane. This may allow retroviruses to hijack the endosomal machinery as part of their biosynthetic pathway. More generally, tethering to vesicles may provide an efficient mechanism for directed RNA transport.
Collapse
Affiliation(s)
- Eugenia Basyuk
- IGMM-CNRS UMR5535, Université Montpellier II, IFR 24, 1919, route de Mende, 34293 Cedex 5, Montpellier, France
| | | | | | | | | | | |
Collapse
|
262
|
Zhu AJ, Zheng L, Suyama K, Scott MP. Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev 2003; 17:1240-52. [PMID: 12730121 PMCID: PMC196058 DOI: 10.1101/gad.1080803] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hedgehog (Hh) signaling is critical for many developmental events and must be restrained to prevent cancer. A transmembrane protein, Smoothened (Smo), is necessary to transcriptionally activate Hh target genes. Smo activity is blocked by the Hh transmembrane receptor Patched (Ptc). The reception of a Hh signal overcomes Ptc inhibition of Smo, activating transcription of target genes. Using Drosophila salivary gland cells in vivo and in vitro as a new assay for Hh signal transduction, we investigated the regulation of Hh-triggered Smo stabilization and relocalization. Hh causes Smo to move from internal membranes to the cell surface. Relocalization is protein synthesis-independent and occurs within 30 min of Hh treatment. Ptc and the kinesin-related protein Costal2 (Cos2) cause internalization of Smo, a process that is dependent on both actin and microtubules. Disruption of endocytosis by dominant negative dynamin or Rab5 prevents Smo internalization. Fly versions of Smo mutants associated with human tumors are constitutively present at the cell surface. Forced localization of Smo at the plasma membrane activates Hh target gene transcription. Conversely, trapping of activated Smo mutants in the ER prevents Hh target gene activation. Control of Smo localization appears to be a crucial step in Hh signaling in Drosophila.
Collapse
Affiliation(s)
- Alan Jian Zhu
- Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | | | |
Collapse
|
263
|
Roosterman D, Schmidlin F, Bunnett NW. Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am J Physiol Cell Physiol 2003; 284:C1319-29. [PMID: 12540381 DOI: 10.1152/ajpcell.00540.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the contribution of rab5a and rab11a to trafficking and signaling of protease-activated receptor 2 (PAR2), a receptor for trypsin and tryptase. Agonists stimulated internalization of PAR2 into early endosomes containing rab5a. Dominant negative rab5aS34N disrupted early endosomes and inhibited agonist-stimulated endocytosis of PAR2. Internalized PAR2 was sorted to lysosomes, and rab5a remained in early endosomes. Rab5a promoted and rab5aS34N impeded resensitization of trypsin-induced calcium mobilization. Rab11a was detected in the Golgi apparatus with PAR2, and PAR2 agonists stimulated redistribution of rab11a into vesicles containing PAR2 that migrated to the cell surface. Dominant negative rab11aS25N was mostly confined to the Golgi apparatus. Although expression of rab11aS25N caused retention of PAR2 in the Golgi apparatus, it did not abolish trafficking of PAR2 to the cell surface. However, expression of wild-type rab11a accelerated both recovery of PAR2 at the cell surface and resensitization of PAR2 signaling. Thus rab5a is required for PAR2 endocytosis and resensitization, whereas rab11a contributes to trafficking of PAR2 from the Golgi apparatus to the plasma membrane.
Collapse
Affiliation(s)
- Dirk Roosterman
- Department of Surgery, University of California, San Francisco, California 94143-0660, USA
| | | | | |
Collapse
|
264
|
Abstract
Receptor-mediated phagocytosis normally represents an important first line of immune defence. Invading microbes are internalized into phagosomes and are typically killed by exposure to a battery of microbicidal agents. To some intracellular pathogens, however, receptor-mediated phagocytosis represents an opportunity to access a protected niche within the host cell. Another type of intracellular pathogen, including Salmonella enterica serovar Typhimurium and Shigella flexneri, invade host cells in a more direct manner. These pathogens deliver effectors into the host cell via a type III secretion apparatus, initiating a ruffling response that leads to their uptake into intracellular vacuoles. Recent studies have demonstrated the importance of lipid signal transduction events in the uptake of pathogenic bacteria by both receptor-mediated phagocytosis and type III secretion-mediated invasion. In this review we highlight some of these discoveries, with a focus on phospholipid-dependent signalling events.
Collapse
Affiliation(s)
- John H Brumell
- Infection, Immunity, Injury and Repair, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | |
Collapse
|
265
|
Sieczkarski SB, Whittaker GR. Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 2003; 4:333-43. [PMID: 12713661 DOI: 10.1034/j.1600-0854.2003.00090.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern--reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry--Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Sara B Sieczkarski
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
266
|
Chen T, Han Y, Yang M, Zhang W, Li N, Wan T, Guo J, Cao X. Rab39, a novel Golgi-associated Rab GTPase from human dendritic cells involved in cellular endocytosis. Biochem Biophys Res Commun 2003; 303:1114-20. [PMID: 12684051 DOI: 10.1016/s0006-291x(03)00482-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rab GTPases are Ras-like small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. Here we report that Rab39, a novel Rab protein, is a Golgi-associated protein involved in endocytosis of HeLa cells. Full-length cDNA of Rab39 contains 1251bp with an open reading frame (ORF) of 636bp, which is predicted to encode a 211 aa protein. By blast analysis of Rab39 cDNA and protein sequence with homologues, we find that Rab39 may be a short variant of Rab34. Rab39 contains conserved motifs involved in phosphate/guanosine binding and a microbody C-terminal targeting signal. RT-PCR analysis indicates that Rab39 is mainly detected in epithelial cell lines, and Northern blot analysis shows that Rab39 is expressed ubiquitously in human tissues. By using FITC-BSA as an endocytic tracer, we show that Rab39 can facilitate endocytosis in HeLa cells when expressed either transiently or stably. Confocal microscopy examination of Rab39 subcellular localization suggests that Rab39 is associated with Golgi-associated organelles. Our findings demonstrate that Rab39 is a novel Rab GTPase involved in cellular endocytosis.
Collapse
Affiliation(s)
- Taoyong Chen
- Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Kim KJ, Elliott SJ, Di Cello F, Stins MF, Kim KS. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 2003; 5:245-52. [PMID: 12675682 DOI: 10.1046/j.1462-5822.2003.t01-1-00271.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli K1 has been shown to invade human brain microvascular endothelial cells (HBMEC) in vitro and translocate the blood-brain barrier in vivo, but it is unclear how E. coli K1 traverses HBMEC. We have previously shown that internalized E. coli K1 is localized within membrane-bound vacuole in HBMEC. The present study was carried out to understand intracellular trafficking of E. coli K1 containing vacuoles (ECVs) in HBMEC. ECVs initially acquired two early endosomal marker proteins, EEA1 and transferrin receptor. Rab7 and Lamp-1, markers for late endosome and late endosome/lysosome, respectively, were subsequently recruited on the ECVs, which was confirmed with flow cytometry analysis of ECVs. However, ECVs did not obtain cathepsin D, a lysosomal enzyme, even after 120 min incubation, suggesting that E. coli K1 avoids lysosomal fusion. In contrast, isogenic K1 capsule-deletion mutant obtained early and late endosomal markers on vacuolar membranes and allowed lysosomal fusion with subsequent degradation inside vacuoles. This observation was consistent with the decreased intracellular survival of K1 capsule-deletion mutant, even though the binding and internalization rates of the mutant were higher than those of the parent E. coli K1 strain. This is the first demonstration that E. coli K1, via the K1 capsule on the bacterial surface, modulates the maturation process of ECVs and prevents fusion with lysosomes, which is an event necessary for traversal of the blood-brain barrier as live bacteria.
Collapse
Affiliation(s)
- Kee Jun Kim
- Division of Pediatrics Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 2128, USA
| | | | | | | | | |
Collapse
|
268
|
Fan GH, Lapierre LA, Goldenring JR, Richmond A. Differential regulation of CXCR2 trafficking by Rab GTPases. Blood 2003; 101:2115-24. [PMID: 12411301 PMCID: PMC5365399 DOI: 10.1182/blood-2002-07-1965] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intracellular trafficking of chemokine receptors plays an important role in fine-tuning the functional responses of neutrophils and lymphocytes in the inflammatory process and HIV infection. Although many chemokine receptors internalize through clathrin-coated pits, regulation of the receptor trafficking is not fully understood. The present study demonstrated that CXCR2 was colocalized with transferrin and low-density lipoprotein (LDL) after agonist treatment for different periods of time, suggesting 2 intracellular trafficking pathways for this receptor. CXCR2 was colocalized with Rab5 and Rab11a, which are localized in early and recycling endosomes, respectively, in response to agonist stimulation for a short period of time, suggesting a recycling pathway for the receptor trafficking. However, overexpression of a dominant-negative Rab5-S34N mutant significantly attenuated CXCR2 sequestration. The internalized CXCR2 was recycled back to the cell surface after removal of the agonist and recovery of the cells, but receptor recycling was inhibited by overexpression of a dominant-negative Rab11a-S25N mutant. After prolonged (4-hour) agonist treatment, CXCR2 exhibited significantly increased colocalization with Rab7, which is localized in late endosomes. The colocalization of CXCR2 with LDL and LAMP-1 suggests that CXCR2 is targeted to lysosomes for degradation after prolonged ligand treatment. However, the colocalization of CXCR2 with Lamp1 was blocked by the overexpression of a dominant-negative Rab7-T22N mutant. In cells overexpressing Rab7-T22N, CXCR2 was retained in the Rab5- and Rab11a-positive endosomes after prolonged (4-hour) agonist treatment. Our data suggest that the intracellular trafficking of CXCR2 is differentially regulated by Rab proteins.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Biological Transport
- Cell Line
- Embryo, Mammalian
- Endosomes/chemistry
- Endosomes/metabolism
- Gene Expression
- Green Fluorescent Proteins
- Humans
- Kidney
- Leukemia, Basophilic, Acute
- Lipoproteins, LDL/analysis
- Luminescent Proteins/genetics
- Lysosomal-Associated Membrane Protein 1
- Lysosomal Membrane Proteins
- Lysosomes/metabolism
- Microscopy, Confocal
- Mutation
- Rats
- Receptors, Interleukin-8B/analysis
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Transfection
- Transferrin/analysis
- Tumor Cells, Cultured
- rab GTP-Binding Proteins/analysis
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/physiology
- rab5 GTP-Binding Proteins/analysis
- rab5 GTP-Binding Proteins/genetics
- rab7 GTP-Binding Proteins
Collapse
Affiliation(s)
- Guo-Huang Fan
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
269
|
Ramalho-Santos J, Schatten G, Moreno RD. Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol Reprod 2003; 67:1043-51. [PMID: 12297516 DOI: 10.1095/biolreprod67.4.1043] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.
Collapse
Affiliation(s)
- João Ramalho-Santos
- Unit of Reproduction and Development, Physiology Department, Pontifical Catholic University of Chile, 340-213 Santiago, Chile
| | | | | |
Collapse
|
270
|
Merithew E, Stone C, Eathiraj S, Lambright DG. Determinants of Rab5 interaction with the N terminus of early endosome antigen 1. J Biol Chem 2003; 278:8494-500. [PMID: 12493736 DOI: 10.1074/jbc.m211514200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Rab5 effector early endosome antigen 1 (EEA1) is a parallel coiled coil homodimer with an N-terminal C(2)H(2) Zn(2+) finger and a C-terminal FYVE domain. Rab5 binds to independent sites at the N and C terminus of EEA1. To gain further insight into the structural determinants for endosome tethering and fusion, we have characterized the interaction of Rab5C with truncation and site-specific mutants of EEA1 using quantitative binding measurements. The results demonstrate that the C(2)H(2) Zn(2+) finger is both essential and sufficient for the N-terminal interaction with Rab5. Although the heptad repeat C-terminal to the C(2)H(2) Zn(2+) finger provides the driving force for stable homodimerization, it does not influence either the affinity or stoichiometry of Rab5 binding. Hydrophobic residues predicted to cluster on a common face of the C(2)H(2) Zn(2+) finger play a critical role in the interaction with Rab5. Although the homologous C(2)H(2) Zn(2+) finger of the Rab5 effector Rabenosyn binds to Rab5 with comparable affinity, the analogous C(2)H(2) Zn(2+) finger of the yeast homologue Vac1 shows no detectable interaction with Rab5, reflecting non-conservative substitutions of critical residues. Large changes in the intrinsic tryptophan fluorescence of Rab5 accompany binding to the C(2)H(2) Zn(2+) finger of EEA1. These observations can be explained by a mode of interaction in which a partially exposed tryptophan residue located at the interface between the switch I and II regions of Rab5 lies within a hydrophobic interface with a cluster of non-polar residues in the C(2)H(2) Zn(2+) finger of EEA1.
Collapse
Affiliation(s)
- Eric Merithew
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | |
Collapse
|
271
|
Sun P, Yamamoto H, Suetsugu S, Miki H, Takenawa T, Endo T. Small GTPase Rah/Rab34 is associated with membrane ruffles and macropinosomes and promotes macropinosome formation. J Biol Chem 2003; 278:4063-71. [PMID: 12446704 DOI: 10.1074/jbc.m208699200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macropinocytosis is an efficient process for the uptake of nutrients and solute macromolecules into cells from the external environment. Macropinosomes, which are surrounded by actin, are formed from the cell surface membrane ruffles and migrate toward the cell center. We have cloned the entire coding sequence of a member of the Rab family small GTPases, Rah/Rab34. It lacked a consensus sequence for GTP-binding/GTPase domain. Although wild-type Rah exhibited extremely low GTPase activity in vitro, it exerted appreciable GTPase activity in vivo. In fibroblasts, Rah was colocalized with actin to the membrane ruffles and membranes of relatively large vesicles adjacent to the ruffles. These vesicles were identified as macropinosomes on the basis of several criteria. Rah and Rab5 coexisted in some, but not all, macropinosomes. Rah was predominantly associated with nascent macropinosomes, whereas Rab5 was present in endosomes at later stages. The number of macropinosomes in the cells overexpressing Rah increased about 2-fold. The formation of macropinosomes by the treatment of platelet-derived growth factor or phorbol ester was also facilitated by Rah but suppressed by a dominant-negative Rah. Rah-promoted macropinosome formation was retarded by dominant-negative mutants of Rac1 and WAVE2, which are essential for membrane ruffling. These results imply that Rah is required for efficient macropinosome formation from the membrane ruffles.
Collapse
Affiliation(s)
- Peng Sun
- Department of Biology, Faculty of Science, and Graduate School of Science and Technology, Chiba University, Yayoicho, Inageku, Japan
| | | | | | | | | | | |
Collapse
|
272
|
Rucks EA, Fraylick JE, Brandt LM, Vincent TS, Olson JC. Cell line differences in bacterially translocated ExoS ADP-ribosyltransferase substrate specificity. MICROBIOLOGY (READING, ENGLAND) 2003; 149:319-331. [PMID: 12624194 DOI: 10.1099/mic.0.25985-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exoenzyme S (ExoS) is an ADP-ribosyltransferase (ADPRT) directly translocated into eukaryotic cells by the type III secretory (TTS) process of Pseudomonas aeruginosa. Comparisons of the functional effects of ExoS on human epithelial and murine fibroblastic cells showed that human epithelial cells exhibited an overall increased sensitivity to the effects of bacterially translocated ExoS on cell proliferation, morphology and re-adherence. ExoS was also found to ADP-ribosylate a greater number of low-molecular-mass G (LMMG) proteins in human epithelial cells, as compared to murine fibroblasts. Examination of the cellular mechanism for differences in ExoS ADPRT substrate modification found that the more restricted pattern of substrate modification in murine fibroblasts was not linked to the efficiency of bacterial adherence nor to the efficiency of ExoS internalization by the TTS process. In exploring the cellular nature of patterns of substrate modification, more extensive substrate modification was detected in human and simian cell lines, while rodent cell lines, including rat, mouse and hamster lines, consistently exhibited the more limited pattern of LMMG protein ADP-ribosylation. Patterns of substrate modification were not altered by cellular transformation and occurred independently of cell type. These studies suggest that eukaryotic cell properties, as recognized through studies of cells of different animal origins, affect the substrate targeting of ExoS ADPRT activity, and that this in turn can influence the severity of effects of ExoS on host-cell function.
Collapse
Affiliation(s)
- Elizabeth A Rucks
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, PO Box 250908, Charleston, SC 29425, USA
| | - Jennifer E Fraylick
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, PO Box 250908, Charleston, SC 29425, USA
| | - Lisa M Brandt
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, PO Box 250908, Charleston, SC 29425, USA
| | - Timothy S Vincent
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, PO Box 250908, Charleston, SC 29425, USA
| | - Joan C Olson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, PO Box 250908, Charleston, SC 29425, USA
| |
Collapse
|
273
|
Mannová P, Forstová J. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J Virol 2003; 77:1672-81. [PMID: 12525601 PMCID: PMC140913 DOI: 10.1128/jvi.77.3.1672-1681.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse polyomavirus enters host cells internalized, similar to simian virus 40 (SV40), in smooth monopinocytic vesicles, the movement of which is associated with transient actin disorganization. The major capsid protein (VP1) of the incoming polyomavirus accumulates on membranes around the cell nucleus. Here we show that unlike SV40, mouse polyomavirus infection is not substantially inhibited by brefeldin A, and colocalization of VP1 with beta-COP during early stages of polyomavirus infection in mouse fibroblasts was observed only rarely. Thus, these viruses obviously use different traffic routes from the plasma membrane toward the cell nucleus. At approximately 3 h postinfection, a part of VP1 colocalized with the endoplasmic reticulum marker BiP, and a subpopulation of virus was found in perinuclear areas associated with Rab11 GTPase and colocalized with transferrin, a marker of recycling endosomes. Earlier postinfection, a minor subpopulation of virions was found to be associated with Rab5, known to be connected with early endosomes, but the cell entry of virus was slower than that of transferrin or cholera toxin B-fragment. Neither Rab7, a marker of late endosomes, nor LAMP-2 lysosomal glycoprotein was found to colocalize with polyomavirus. In situ hybridization with polyomavirus genome-specific fluorescent probes clearly demonstrated that, regardless of the multiplicity of infection, only a few virions delivered their genomic DNA into the cell nucleus, while the majority of viral genomes (and VP1) moved back from the proximity of the nucleus to the cytosol, apparently for their degradation.
Collapse
Affiliation(s)
- Petra Mannová
- Department of Genetics and Microbiology, Charles University in Prague, 128 44 Prague 2, Czech Republic
| | | |
Collapse
|
274
|
Zhu G, Liu J, Terzyan S, Zhai P, Li G, Zhang XC. High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. J Biol Chem 2003; 278:2452-60. [PMID: 12433916 DOI: 10.1074/jbc.m211042200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTPase domain crystal structures of Rab5a wild type and five variants with mutations in the phosphate-binding loop are reported here at resolutions up to 1.5 A. Of particular interest, the A30P mutant was crystallized in complexes with GDP, GDP+AlF(3), and authentic GTP, respectively. The other variant crystals were obtained in complexes with a non-hydrolyzable GTP analog, GppNHp. All structures were solved in the same crystal form, providing an unusual opportunity to compare structures of small GTPases with different catalytic rates. The A30P mutant exhibits dramatically reduced GTPase activity and forms a GTP-bound complex stable enough for crystallographic analysis. Importantly, the A30P structure with bound GDP plus AlF(3) has been solved in the absence of a GTPase-activating protein, and it may resemble that of a transition state intermediate. Conformational changes are observed between the GTP-bound form and the transition state intermediate, mainly in the switch II region containing the catalytic Gln(79) residue and independent of A30P mutation-induced local alterations in the P-loop. The structures suggest an important catalytic role for a P-loop backbone amide group, which is eliminated in the A30P mutant, and support the notion that the transition state of GTPase-mediated GTP hydrolysis is of considerable dissociative character.
Collapse
Affiliation(s)
- Guangyu Zhu
- Crystallography Research Program of Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | |
Collapse
|
275
|
Abstract
The endocytic pathway receives cargo from the cell surface via endocytosis, biosynthetic cargo from the late Golgi complex, and various molecules from the cytoplasm via autophagy. This review focuses on the dynamics of the endocytic pathway in relationship to these processes and covers new information about the sorting events and molecular complexes involved. The following areas are discussed: dynamics at the plasma membrane, sorting within early endosomes and recycling to the cell surface, the role of the cytoskeleton, transport to late endosomes and sorting into multivesicular bodies, anterograde and retrograde Golgi transport, as well as the autophagic pathway.
Collapse
Affiliation(s)
- Naomi E Bishop
- School of Biological Sciences, University of Manchester, Manchester, Ml 3 9PT United Kingdom
| |
Collapse
|
276
|
Brumell JH, Kujat-Choy S, Brown NF, Vallance BA, Knodler LA, Finlay BB. SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 2003; 4:36-48. [PMID: 12535274 DOI: 10.1034/j.1600-0854.2003.40106.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Salmonella typhimuriumis a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium, demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella-containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1-150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells.
Collapse
Affiliation(s)
- John H Brumell
- Biotechnology Laboratory and Departments of Biochemistry and Molecular Biology, Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T-1Z3, Canada
| | | | | | | | | | | |
Collapse
|
277
|
McColl BW, Graham DI, Weir CJ, White F, Horsburgh K. Endocytic pathway alterations in human hippocampus after global ischemia and the influence of APOE genotype. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:273-81. [PMID: 12507910 PMCID: PMC1851134 DOI: 10.1016/s0002-9440(10)63818-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein epsilon4 (apoE, protein; APOE, gene) allele is the most important genetic risk factor for development of Alzheimer's disease and is also associated with poor outcome after brain injury. Although the mechanisms underlying this susceptibility are currently unknown, recent experimental evidence suggests that APOE genotype may influence activity in the endocytic pathway of neurons. This study determined whether alterations in the endocytic pathway occurred in medial temporal lobe sections after brain injury because of cardiorespiratory arrest and whether these alterations were influenced by APOE genotype. Antibodies to two proteins involved in endocytosis, rabaptin-5 and rab4, were used as markers of endocytic pathway activity. Alterations in immunoreactivity were examined in medial temporal lobe sections in the postmortem brain of patients who experienced an episode of global ischemia and in controls. After global ischemia there was a marked increase in immunoreactivity of both endocytic markers, rabaptin-5 and rab4, in neurons, and to a lesser extent in glia compared to controls. Furthermore, possession of an APOE epsilon4 allele was associated with specific alterations in the endocytic pathway. After global ischemia, there was no influence of APOE genotype on the extent of rabaptin-5 immunoreactivity. However, there was a statistically significant influence of APOE genotype on the extent of rab4 immunoreactivity in response to global ischemia. These results indicate marked alterations in the endocytic pathway after global ischemia that are dependent on APOE genotype. This may underlie the important influence of APOE genotype on brain injury and disease.
Collapse
Affiliation(s)
- Barry W McColl
- Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories University of Glasgow, Glasgow.
| | | | | | | | | |
Collapse
|
278
|
Rutherford S, Moore I. The Arabidopsis Rab GTPase family: another enigma variation. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:518-28. [PMID: 12393015 DOI: 10.1016/s1369-5266(02)00307-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome sequence reveals that gene families such as the Rab GTPase family, which encodes key determinants of vesicle-targeting specificity, are considerably more diverse in plants and mammals than in yeast. In mammals, this diversity appears to reflect the complexity of membrane trafficking. Phylogenetic analyses indicate that, despite its large size, the Arabidopsis Rab family lacks most of the Rab subclasses found in mammals. The Arabidopsis Rab family has, however, undergone a distinct 'adaptive radiation' that has given rise to proteins that may perform plant-specific functions.
Collapse
Affiliation(s)
- Stephen Rutherford
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | | |
Collapse
|
279
|
Wang T, Hong W. Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. Mol Biol Cell 2002; 13:4317-32. [PMID: 12475955 PMCID: PMC138636 DOI: 10.1091/mbc.e02-05-0280] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We present evidence to suggest the existence of a regulatory pathway for the Golgi apparatus to modulate the spatial positioning of otherwise distantly located lysosomes. Rab34, a new member of the Rab GTPase family, is associated primarily with the Golgi apparatus. Expression of wild-type or GTP-restricted but not GDP-restricted versions of Rab34 causes spatial redistribution of lysosomes from the periphery to the peri-Golgi region. The regulation of lysosomal positioning by Rab34 depends on its association with the membrane mediated by prenylation and its direct interaction with Rab-interacting lysosomal protein (RILP). This biological activity, mediated by Rab34-RILP interaction, is dependent on Lys82 in the switch I region. Our results have uncovered a novel mechanism for the Golgi apparatus to regulate the spatial distribution of another organelle.
Collapse
Affiliation(s)
- Tuanlao Wang
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | |
Collapse
|
280
|
Clarke M, Köhler J, Heuser J, Gerisch G. Endosome fusion and microtubule-based dynamics in the early endocytic pathway of dictyostelium. Traffic 2002; 3:791-800. [PMID: 12383345 DOI: 10.1034/j.1600-0854.2002.31104.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dictyostelium amoebae, like mammalian macrophages, take up fluid by macropinocytosis. The present study used fluorescent fluid-phase markers and GFP-labeled microtubules to visualize the uptake, dynamics, and fusion of early endosomes in Dictyostelium. Consecutive labeling with two fluorescent fluid-phase markers demonstrated that within the first few minutes after uptake, new macropinosomes underwent fusion with pre-existing endosomes. The fusing endosomes, which represent the mixing compartment, displayed extreme shape changes and rapid transport about the cell in association with microtubules. The great plasticity of endosomes at this stage of maturation was also evident by electron microscopy. The constant undulatory motion of microtubules was implemental in establishing contact with endosomes. Treatment of cells with agents that selectively disrupted either actin filaments or microtubules confirmed that endosome dynamics were microtubule based. Further maturation of endosomes led to loss of pleiomorphy in favor of a spherical shape, inability to fuse with new macropinosomes, and diminished motility.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
281
|
Abstract
Ypt1p regulates vesicle tethering and fusion events from the ER to the Golgi and through the early Golgi. Genetic studies have suggested a functional relationship between Ypt1p and Ypt31p/Ypt32p. Ypt31p and Ypt32p are a pair of functionally redundant GTPases that act after Ypt1p to mediate intra-Golgi traffic or the budding of post-Golgi vesicles from the trans-Golgi. Here we report that a novel Ypt32p exchange factor is a putative effector of Ypt1p. These findings implicate small GTP-binding proteins of the Ypt/Rab family in a signal cascade that directs membrane traffic through the secretory pathway.
Collapse
Affiliation(s)
- Wei Wang
- Howard Hughes Medical Institute and the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519-1418, USA
| | | |
Collapse
|
282
|
Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K. Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 2002; 77:189-95. [PMID: 12422412 DOI: 10.1046/j.0022-7722.2002.00028.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aquaporin-2 (AQP2) is a member of water channel proteins expressed in the kidney collecting duct cells, where it is stored in the intracellular compartment. Upon stimulation of antidiuretic hormone (ADH), AQP2 is recruited to the plasma membrane, and plays a critical role in urine concentration. We immunohistochemically characterized the intracellular compartment harboring AQP2 in the rat kidney using antibodies to the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, lysosome, and endosome. Aquaporin-2 did not colocalize with calnexin, TGN38, Golgi 58K, cathepsin D or Igp-110. Small portions of AQP2-bearing vesicles were positive for early endosome antigen 1. These localization patterns were basically the same in water-loaded and ADH-treated animals. These results indicate that AQP2-bearing vesicles constitute a unique intracellular compartment distinct from the endoplasmic reticulum, Golgi apparatus, trans-Golgi network and lysosome. Partial colocalization of AQP2 with early endosomes suggests that the endosomal system might be involved in the trafficking of AQP2.
Collapse
Affiliation(s)
- Yuki Tajika
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Hattula K, Furuhjelm J, Arffman A, Peränen J. A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 2002; 13:3268-80. [PMID: 12221131 PMCID: PMC124888 DOI: 10.1091/mbc.e02-03-0143] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 05/16/2002] [Accepted: 06/28/2002] [Indexed: 01/27/2023] Open
Abstract
The mechanisms mediating polarized delivery of vesicles to cell surface domains are poorly understood in animal cells. We have previously shown that expression of Rab8 promotes the formation of new cell surface domains through reorganization of actin and microtubules. To unravel the function of Rab8, we used the yeast two-hybrid system to search for potential Rab8-specific activators. We identified a coil-coiled protein (Rabin8), homologous to the rat Rabin3 that stimulated nucleotide exchange on Rab8 but not on Rab3A and Rab5. Furthermore, we show that rat Rabin3 has exchange activity on Rab8 but not on Rab3A, supporting the view that rat Rabin3 is the rat equivalent of human Rabin8. Rabin8 localized to the cortical actin and expression of Rabin8 resulted in remodeling of actin and the formation of polarized cell surface domains. Activation of PKC by phorbol esters enhanced translocation of both Rabin8 and Rab8-specific vesicles to the outer edge of lamellipodial structures. Moreover, coexpression of Rabin8 with dominant negative Rab8 (T22N) redistributes Rabin8 from cortical actin to Rab8-specific vesicles and promotes their polarized transport to cell protrusions. The C-terminal region of Rabin8 plays an essential role in this transport. We propose that Rabin8 is a Rab8-specific activator that is connected to processes that mediate polarized membrane traffic to dynamic cell surface structures.
Collapse
Affiliation(s)
- Katarina Hattula
- Institute of Biotechnology, Program in Cellular Biotechnology, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
284
|
Abstract
Numerous virus families utilize endocytosis to infect host cells, mediating virus internalization as well as trafficking to the site of replication. Recent research has demonstrated that viruses employ the full endocytic capabilities of the cell. The endocytic pathways utilized include clathrin-mediated endocytosis, caveolae, macropinocytosis and novel non-clathrin, non-caveolae pathways. The tools to study endocytosis and, consequently, virus entry are becoming more effective and specific as the amount of information on endocytic component structure and function increases. The use of inhibitory drugs, although still quite common, often leads to non-specific disruptions in the cell. Molecular inhibitors in the form of dominant-negative proteins have surpassed the use of chemical inhibitors in terms of specificity to individual pathways. Dominant-negative molecules are derived from both structural proteins of endocytosis, such as dynamin and caveolin, and regulatory proteins, primarily small GTPases and kinases. This review focuses on the experimental approaches taken to examine virus entry and provides both classic examples and recent research on a variety of virus families.
Collapse
Affiliation(s)
- Sara B Sieczkarski
- Department of Microbiology and Immunology, Cornell University, C5 141 Veterinary Medical Center, Ithaca, NY 14853, USA1
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, C5 141 Veterinary Medical Center, Ithaca, NY 14853, USA1
| |
Collapse
|
285
|
Choudhury A, Dominguez M, Puri V, Sharma DK, Narita K, Wheatley CL, Marks DL, Pagano RE. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest 2002. [DOI: 10.1172/jci0215420] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
286
|
Abstract
During maturation, reticulocytes lose some membrane proteins that are not required on the mature red cell surface. The proteins are released into the extracellular medium associated with vesicles that are formed by budding of the endosomal membrane into the lumen of the compartment; this process results in the formation of multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in secretion of the small internal vesicles, termed exosomes. K562 cells release exosomes with similar characteristics to reticulocyte exosomes, in particular the transferrin receptor (TfR) is found associated with the vesicles. Interestingly, this cell line has been shown to possess high amounts of Rab11 compared with other Rab proteins. To assess the regulation of transferrin receptor release via exosome secretion by Rab11 in this cell type, K562 cells were stably transfected with GFP-Rab11wt or the GTP- and GDP-locked mutants. The distribution of the proteins was assessed by fluorescence microscopy. Transferrin recycling and the number of TfRs present on the surface of the transfected cells were reduced by overexpression of either Rab11wt or the mutants. The amount of released exosomes was analyzed by measuring different molecular markers present on these vesicles either biochemically or by western blot. Overexpression of the dominant-negative mutant Rab11S25N inhibited exosome release, whereas the secretion of exosomes was slightly stimulated in cells transfected with Rab11wt. Taken together, the results demonstrate that in K562 cells Rab11 modulates the exosome pathway although the exact step involved is still not known.
Collapse
Affiliation(s)
- Ariel Savina
- Laboratorio de Biología Celular y Molecular-Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendozam, 5500, Argentina
| | | | | |
Collapse
|
287
|
Croizet-Berger K, Daumerie C, Couvreur M, Courtoy PJ, van den Hove MF. The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc Natl Acad Sci U S A 2002; 99:8277-82. [PMID: 12034881 PMCID: PMC123058 DOI: 10.1073/pnas.122187699] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rab proteins are small GTPases that control distinct vesicular transport steps. Along the endocytic pathway, Rab5a is a rate-limiting catalyst of internalization, and Rab7 controls trafficking through late endosomes to lysosomes. The dependence of thyroid hormone production by thyrocytes on thyroglobulin endocytosis and intracellular processing in late endosomes/lysosomes suggests that its rate can be regulated by the expression or function of these endocytic catalysts. We compared the expression level and membrane recruitment of Rab5a and Rab7 in autonomous thyroid adenomas (where the cAMP cascade is constitutively activated) and surrounding quiescent tissues. The concentrations of Rab5a and Rab7, but not of Rab8, were coordinately increased up to 6-fold in adenomas, and correlated with a proportionate decrease in soluble thyroglobulin content (reflecting colloid depletion by accelerated endocytic uptake in hyperactive tissue). In adenomas, a higher proportion of Rab5a and Rab7 was membrane associated, and the equilibrium density of particulate Rab7 and iodine shifted toward lysosomal fractions, indicating that progression along the degradation pathway also was promoted. In cultures of polarized human thyrocytes from normal patients, thyroid-stimulating hormone or forskolin increased, to a similar extent, Rab5a and Rab7 but not Rab8 expression, apical endocytosis of thyroglobulin and lucifer yellow, and basolateral secretion of T(3) and T(4). Taken together, these in vivo and in vitro observations demonstrate that thyroid-stimulating hormone, via cAMP, coordinately enhances the expression of Rab5a and Rab7, which promote Tg endocytosis and transfer to lysosomes, respectively, resulting in accelerated thyroid hormone production.
Collapse
Affiliation(s)
- Karine Croizet-Berger
- Cell Biology Unit, Christian de Duve Institute of Cellular Pathology, Université Catholique de Louvain, 75.41-75 Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
288
|
Brumell JH, Tang P, Zaharik ML, Finlay BB. Disruption of the Salmonella-containing vacuole leads to increased replication of Salmonella enterica serovar typhimurium in the cytosol of epithelial cells. Infect Immun 2002; 70:3264-70. [PMID: 12011022 PMCID: PMC127987 DOI: 10.1128/iai.70.6.3264-3270.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Revised: 01/05/2002] [Accepted: 03/10/2002] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that inhabits a vacuolar compartment, called the Salmonella-containing vacuole (SCV), in infected host cells. Maintenance of the SCV is accomplished by SifA, and mutants of this Salmonella pathogenicity island 2 type III effector replicate more efficiently in epithelial cells. Here we demonstrate that enhanced replication of sifA mutants occurs in the cytosol of these cells. Increased replication of wild-type bacteria was also observed in cells treated with wortmannin or expressing Rab5 Q79L or Rab7 N125I, all of which caused a loss of SCV integrity. Our findings demonstrate the requirement of the host cell endosomal system for maintenance of the SCV and that loss of this compartment allows increased replication of serovar Typhimurium in the cytosol of epithelial cells.
Collapse
Affiliation(s)
- John H Brumell
- Biotechnology Laboratory and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
289
|
Abstract
Recent discoveries have revolutionized our conceptions of enzyme-substrate specificity in signal transduction pathways. Protein kinases A and C are localized to discreet subcellular regions, and this localization changes in an isozyme-specific manner upon activation, a process referred to as translocation. The mechanisms for translocation involve interactions of soluble kinases with membrane-bound anchor proteins that recognize individual kinase isoenzymes and their state of activation. Recently, modulation of kinase-anchor protein interactions has been used to specifically regulate, positively or negatively, the activity of C kinase isozymes. Also described in this review is a role for the Rab family of small G proteins in regulating subcellular protein trafficking. The pathophysiological significance of disrupted subcellular protein transport in cell signaling and the potential therapeutic utility of targeted regulation of these events are in the process of being characterized.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0542, USA.
| | | |
Collapse
|
290
|
Lindsay AJ, Hendrick AG, Cantalupo G, Senic-Matuglia F, Goud B, Bucci C, McCaffrey MW. Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein. J Biol Chem 2002; 277:12190-9. [PMID: 11786538 DOI: 10.1074/jbc.m108665200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rab4 and Rab11 are small GTPases belonging to the Ras superfamily. They both function as regulators along the receptor recycling pathway. We have identified a novel 80-kDa protein that interacts specifically with the GTP-bound conformation of Rab4, and subsequent work has shown that it also interacts strongly with Rab11. We name this protein Rab coupling protein (RCP). RCP is predominantly membrane-bound and is expressed in all cell lines and tissues tested. It colocalizes with early endosomal markers including Rab4 and Rab11 as well as with the transferrin receptor. Overexpression of the carboxyl-terminal region of RCP, which contains the Rab4- and Rab11-interacting domain, results in a dramatic tubulation of the transferrin compartment. Furthermore, expression of this mutant causes a significant reduction in endosomal recycling without affecting ligand uptake or degradation in quantitative assays. RCP is a homologue of Rip11 and therefore belongs to the recently described Rab11-FIP family.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Cell and Molecular Biology Laboratory, Department of Biochemistry, Lee Maltings, Prospect Row, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
291
|
Kauppi M, Simonsen A, Bremnes B, Vieira A, Callaghan J, Stenmark H, Olkkonen VM. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 2002; 115:899-911. [PMID: 11870209 DOI: 10.1242/jcs.115.5.899] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rab22a is a small GTPase that is expressed ubiquitously in mammalian tissues and displays the highest sequence homology to Rab5. In BHK-21 cells,overexpression of the wild-type Rab22a caused formation of abnormally large vacuole-like structures containing the early-endosomal antigen EEA1 but not Rab11, a marker of recycling endosomes or the late-endosomal/lysosomal markers LAMP-1 and lyso-bis-phosphatidic acid. In HeLa cells, overexpressed Rab22a was found on smaller EEA1-positive endosomes, but a portion of the protein was also found in the Golgi complex. Using the yeast two-hybrid system and a biochemical pull-down assay, the GTP-bound form of Rab22a was found to interact with the N-terminus of EEA1. In HeLa cells overexpressing Rab22a or its mutants affected in the GTPase cycle, no significant changes were observed in the uptake of Alexa-transferrin. However, the GTPase-deficient Rab22a Q64L mutant caused a redistribution of transferrin-positive endosomes to the leading edges of cells and a fragmentation of the Golgi complex. In BHK cells,the Q64L mutant caused the accumulation of a fluid phase marker,TRITC-dextran, and a lysosomal hydrolase, aspartylglucosaminidase, in abnormal vacuole-like structures that contained both early and late endosome markers. Both the wild-type Rab22a and the Q64L mutant were found to interfere with the degradation of EGF. These results suggest that Rab22a may regulate the dynamic interactions of endosomal compartments and it may be involved in the communication between the biosynthetic and early endocytic pathways.
Collapse
Affiliation(s)
- Maria Kauppi
- Department of Molecular Medicine, National Public Health Institute (KTL), Biomedicum, PO Box 104, FIN-00251 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
292
|
Bertram EM, Hawley RG, Watts TH. Overexpression of rab7 enhances the kinetics of antigen processing and presentation with MHC class II molecules in B cells. Int Immunol 2002; 14:309-18. [PMID: 11867567 DOI: 10.1093/intimm/14.3.309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
rab7 is an intracellular GTPase involved in early to late endosome fusion. By overexpressing rab7 in a B lymphoma we show that the rate of antigen presentation with MHC class II molecules is increased for four different peptide-MHC combinations, under conditions where levels of other components of the antigen-processing pathway remained constant. Resting B cells were shown to express significantly lower levels of rab7 when compared to adherent macrophages or to 'immature' or 'mature' dendritic cells. rab7 expression was up-regulated by stimulation of B cells with lipopolysaccharide or CD40 ligand. Other components of the endocytic pathway were also up-regulated in activated B cells, suggesting that B cell activation leads to a general enlargement of the endocytic compartment, correlating with the increased ability of activated B cells to process antigen. Taken together, our results suggest that rab7 levels regulate the rate of antigen presentation in B cells, and that rab7 and late endocytic compartments are important in MHC class II-restricted antigen presentation in B cells.
Collapse
Affiliation(s)
- Edward M Bertram
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
293
|
Saito K, Murai J, Kajiho H, Kontani K, Kurosu H, Katada T. A novel binding protein composed of homophilic tetramer exhibits unique properties for the small GTPase Rab5. J Biol Chem 2002; 277:3412-8. [PMID: 11733506 DOI: 10.1074/jbc.m106276200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab family, which cycles between GTP-bound active and GDP-bound inactive states, plays an important role in membrane trafficking. Among them, Rab5 is involved in early endocytic pathway, and several Rab5-binding proteins have been identified as regulators or effectors to coordinate the docking and fusion processes of endocytic vesicles. We describe a novel binding protein exhibiting unique biochemical properties for Rab5. The Rab5-binding protein enhances GDP-GTP exchange reaction on Rab5 but preferentially interacts with its GTP-bound form. Gel filtration and immunoprecipitation analyses indicate that the Rab5-binding protein functions as a tetramer composed of anti-parallel linkage of two parallel dimers. These results suggest that the newly identified protein may function as an upstream activator and/or downstream effector for Rab5 in endocytic pathway. Possible roles of the quaternary structure have been discussed in terms of the Rab5-mediated signaling.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
294
|
Provance DW, James TL, Mercer JA. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 2002; 3:124-32. [PMID: 11929602 PMCID: PMC1351229 DOI: 10.1034/j.1600-0854.2002.030205.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The formation of complex subcellular organelles requires the coordinated targeting of multiple components. Melanosome biogenesis in mouse melanocytes is an excellent model system for studying the coordinated function of multiple gene products in intracellular trafficking. To begin to order events in melanosome biogenesis and distribution, we employed the classical coat-color mutants ashen, dilute, and leaden, which affect melanosome distribution, but not melanin synthesis. The loci have been renamed Rab27a, Myo5a, and Mlph for their gene products. While each of the three loci has been shown to be required for melanosome distribution, the point(s) at which each acts is unknown. We have utilized primary melanocytes to examine the interdependencies between rab27a, myosin-Va, and melanophilin. The localization of rab27a to melanosomes did not require the function of either myosin-Va or melanophilin, but leaden function was required for the association of myosin-Va with melanosomes. In leaden melanocytes permeabilized before fixation, myosin-Va immunoreactivity was greatly attenuated, suggesting that myosin-Va is free in the cytoplasm. Finally, we have complemented both the leaden and ashen phenotypes by cell fusion and observed redistribution of mature melanosomes in the absence of both protein and melanin synthesis. Together, our data suggest a model for the initial assembly of the machinery required for melanosome distribution.
Collapse
|
295
|
Hammer JA, Wu XS. Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr Opin Cell Biol 2002; 14:69-75. [PMID: 11792547 DOI: 10.1016/s0955-0674(01)00296-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rab GTPases and their effectors regulate membrane traffic by determining, along with cognate SNAREs, the specificity of transport vesicle docking and fusion steps. Recent studies have also implicated Rabs in the movement of these transport vesicles from their site of formation to their site of fusion, and several Rabs have been linked to specific microtubule- or actin-based motor proteins. Analyses of Rab and motor protein mutants, coupled with advanced imaging techniques, have led to the suggestion that certain Rabs function as essential components of the vesicle receptor for specific motor proteins.
Collapse
Affiliation(s)
- John A Hammer
- Laboratory of Cell Biology, Building 50, Room 2523, National Institutes of Health, , Bethesda, MD 20892-8017, USA.
| | | |
Collapse
|
296
|
Predic J, Soskic V, Bradley D, Godovac-Zimmermann J. Monitoring of gene expression by functional proteomics: response of human lung fibroblast cells to stimulation by endothelin-1. Biochemistry 2002; 41:1070-8. [PMID: 11790131 DOI: 10.1021/bi0117854] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomic methods have been used to monitor changes in protein synthesis in the first 4 h following stimulation of human lung fibroblasts with endothelin-1. Using pulsed [(35)S]methionine labeling, about 70 proteins with altered protein synthesis could be detected, and the 35 proteins showing the largest changes were identified by mass spectrometry. The observed proteins included unexpected proteins such as Sox5, two isoforms of Rab14, Rab3A, translationally controlled tumor protein, and one protein of previously unknown function. There was a wide range of different kinetic behavior, and groups of functionally linked proteins such as Rab14, nucleophosmin,and cyclin-dependent kinase inhibitor 1B could be detected from similar kinetics. We propose that the functional proteomic methods are competitive with and have some advantages compared to expression profiling methods for monitoring gene expression.
Collapse
Affiliation(s)
- Jelena Predic
- Center for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1 6JJ, U.K
| | | | | | | |
Collapse
|
297
|
Dollar G, Struckhoff E, Michaud J, Cohen RS. Rab11 polarization of theDrosophilaoocyte: a novel link between membrane trafficking, microtubule organization, andoskarmRNA localization and translation. Development 2002; 129:517-26. [PMID: 11807042 DOI: 10.1242/dev.129.2.517] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Drosophila embryonic body plan is specified by asymmetries that arise in the oocyte during oogenesis. These asymmetries are apparent in the subcellular distribution of key mRNAs and proteins and in the organization of the microtubule cytoskeleton. We present evidence that the Drosophila oocyte also contains important asymmetries in its membrane trafficking pathways. Specifically, we show that α-adaptin and Rab11, which function critically in the endocytic pathways of all previously examined animal cells, are localized to neighboring compartments at the posterior pole of stage 8-10 oocytes. Rab11 and α-adaptin localization occurs in the absence of a polarized microtubule cytoskeleton, i.e. in grk null mutants, but is later reinforced and/or refined by Osk, the localization of which is microtubule dependent. Analyses of germline clones of a rab11 partial loss-of-function mutation reveal a requirement for Rab11 in endocytic recycling and in the organization of posterior membrane compartments. Such analyses also reveal a requirement for Rab11 in the organization of microtubule plus ends and osk mRNA localization and translation. We propose that microtubule plus ends and, possibly, translation factors for osk mRNA are anchored to posterior membrane compartments that are defined by Rab11-mediated trafficking and reinforced by Rab11-Osk interactions.
Collapse
Affiliation(s)
- Gretchen Dollar
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
298
|
Seachrist JL, Laporte SA, Dale LB, Babwah AV, Caron MG, Anborgh PH, Ferguson SSG. Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J Biol Chem 2002; 277:679-85. [PMID: 11682489 DOI: 10.1074/jbc.m109022200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the internalization of the angiotensin II type 1A receptor (AT(1A)R) may be mediated by both beta-arrestin-sensitive and -insensitive mechanisms. Therefore, we have used the AT(1A)R carboxyl-terminal tail to screen a rat brain yeast two-hybrid expression library for novel AT(1A)R-interacting proteins that might contribute to the regulation of AT(1A)R internalization. We have identified Rab5a as an AT(1A)R-binding protein that selectively associates with the AT(1A)R and not with the beta2-adrenergic receptor. A Rab5a-S34N mutant defective in GTP binding does not prevent the internalization of the AT(1A)R but does prevent the trafficking of the AT(1A)R into larger hollow cored vesicular structures. Agonist activation of the AT(1A)R promotes both the formation of Rab5a.AT(1A)R protein complexes and Rab5a GTP binding. Rab5a interactions with the AT(1A)R are mediated in part by the last 10 amino acid residues of the AT(1A)R carboxyl-terminal tail, and although a mutant receptor lacking these residues internalizes normally, it does not redistribute into larger hollow vesicles. Our data suggest that AT(1A)R activation modulates Rab5a activity leading to the homotypic fusion of endocytic vesicles. These observations suggest that vesicular cargo proteins, such as the AT(1A)R, may control their targeting between intracellular compartments by directly regulating the activity of components of the intracellular trafficking machinery such as Rab5a.
Collapse
Affiliation(s)
- Jennifer L Seachrist
- John P. Robarts Research Institute and Department of Pharmacology and Toxicology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|
299
|
Affiliation(s)
- Marta Miaczynska
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
| | | |
Collapse
|
300
|
Volpicelli LA, Lah JJ, Levey AI. Rab5-dependent trafficking of the m4 muscarinic acetylcholine receptor to the plasma membrane, early endosomes, and multivesicular bodies. J Biol Chem 2001; 276:47590-8. [PMID: 11590149 DOI: 10.1074/jbc.m106535200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The m4 subtype of muscarinic acetylcholine receptor regulates many physiological processes and is a novel therapeutic target for neurologic and psychiatric disorders. However, little is known about m4 regulation because of the lack of pharmacologically selective ligands. A crucial component of G protein-coupled receptor regulation is intracellular trafficking. We thus used subtype-specific antibodies and quantitative immunocytochemistry to characterize the intracellular trafficking of m4. We show that following carbachol stimulation, m4 co-localizes with transferrin, and the selective marker of early endosomes, EEA1. In addition, m4 intracellular localization depends on Rab5 activity. The dominant negative Rab5S34N inhibits m4 endocytosis initially following carbachol stimulation, and reduces the size of m4 containing vesicles. The constitutively active Rab5Q79L enhances m4 intracellular distribution, even in unstimulated cells. Rab5Q79L also produces strikingly enlarged vacuoles, which by electron microscopy contain internal vesicles, suggesting that they are multivesicular bodies. m4 localizes both to the perimeter and interior of these vacuoles. In contrast, transferrin localizes only to the vacuole perimeter, demonstrating divergence of m4 trafficking from the pathway followed by constitutively endocytosed transferrin. We thus suggest a novel model by which multivesicular bodies sort G protein-coupled receptors from a transferrin-positive recycling pathway to a nonrecycling, possibly degradative pathway.
Collapse
Affiliation(s)
- L A Volpicelli
- Department of Neurology, Emory University School of Medicine, Woodruff Memorial Research Building, Atlanta, GA 30322, USA
| | | | | |
Collapse
|