251
|
Cadena-Iñiguez J, Arévalo-Galarza MDL, Santiago-Osorio E, Aguiñiga-Sánchez I, Cadena-Zamudio JD, Soto-Hernández M, Ramírez-Rodas YC, Ruiz-Posadas LDM, Salazar-Aguilar S, Cisneros-Solano VM. Genotypes of Sechium spp. as a Source of Natural Products with Biological Activity. Life (Basel) 2024; 15:15. [PMID: 39859955 PMCID: PMC11766598 DOI: 10.3390/life15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The genus Sechium P. Br. (Cucurbitaceae) includes ten species, two of which are edible. The inedible genotypes are in a fragile ecological niche, since they are not used by rural inhabitants. A rescue and genetic crossing program was designed to identify uses that favor their conservation due to their content of bioactive secondary metabolites (Sm) for health. Fruits of S. compositum (wild type), hybrid H-D Victor (inedible), and S. edule var. nigrum spinosum (edible) were evaluated by extraction methods such as juice and oven drying to determine the yields of Sm, with in vivo evaluations of liver damage. The dried biomass (40 °C) extracted with ethanolic and methanolic procedures showed lower Sm content than the juice (fresh biomass). More than 90% of phenolic acids and cucurbitacins in the extracts were degraded, possibly due to the drying time (oven). Biological activity showed that nigrum spinosum and HD-Victor have fewer toxic metabolites than S. compositum. The hybrid H-D Victor is of reduced cytotoxicity, showing the advantages of hybridization with wild types. Phytochemical and biological activity characterization may contribute to the conservation of genotypes and become a source of bioactive natural products.
Collapse
Affiliation(s)
- Jorge Cadena-Iñiguez
- Colegio de Postgraduados, Campus San Luis Potosí, San Luis Potosí 78620, San Luis Potosí, Mexico
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
| | - Ma. de Lourdes Arévalo-Galarza
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Programa de Botánica y Fisiología, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico
| | - Edelmiro Santiago-Osorio
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Universidad Nacional and Autónoma de México, FES Zaragoza, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Department of Biomedical Sciences, School of Medicine, Universidad Nacional Autónoma de México, FES Zaragoza, Mexico City 09230, Mexico
| | - Jorge David Cadena-Zamudio
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Recursos Genéticos, Blvd. de la Biodiversidad #400 Rancho las Cruces, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Marcos Soto-Hernández
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Programa de Botánica y Fisiología, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico
| | - Yeimy C. Ramírez-Rodas
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Valles Centrales, C. Melchor Ocampo 7, Sto. Domingo Barrio Bajo, Etla, Oaxaca 68200, Oaxaca, Mexico
| | - Lucero del Mar Ruiz-Posadas
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Programa de Botánica y Fisiología, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico
| | - Sandra Salazar-Aguilar
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Universidad Nacional and Autónoma de México, FES Zaragoza, Mexico City 09230, Mexico
| | - Víctor Manuel Cisneros-Solano
- Interdisciplinary Research Group at Sechium edule in Mexico, A.C., Agustin Melgar 10, Col. Niños Héroes, Texcoco 56160, Estado de México, Mexico
- Centro Regional Universitario Oriente, Universidad Autónoma Chapingo, Huatusco 94100, Veracruz, Mexico
| |
Collapse
|
252
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
253
|
ALNadhari S, Alsakkaf WAA, Albarakat FA. Biochemical and In Silico Aspects of Active Compounds From Nyctanthes arbor-tristis Flower As Antidiabetic Agent. Biotechnol Appl Biochem 2024. [PMID: 39715656 DOI: 10.1002/bab.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
Targeting alpha-glucosidase (maltase-glucoamylase [MGAM] and sucrase-isomaltase [SI]) under diabetes conditions is important to overcome hyperglycemia. Moreover, it is necessary to mitigate hyperglycemia-mediated oxidative stress to evade the progression of diabetes-associated secondary complications. Hence, in the present study, under-explored Nyctanthes arbor-tristis flowers (NAFs) were studied for inhibition of alpha-glucosidase activities. The NAF methanolic extract (NAFME) was prepared. Through liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) analysis, various phytocompounds belonging to different classes-flavonoids, iridoid glycosides, proanthocyanidin, anthocyanin, polyphenol, phenolic acid, fatty acid ester, and carotenoid-were identified. NAFME showed in vitro antioxidant activity. NAFME inhibited maltase, sucrase, glucoamylase, and isomaltase in mixed mode with Ki values of 179.93, 176.38, 126.03, and 201.56 µg/mL, respectively. In silico screening of phytocompounds identified in NAFME indicated that hinokiflavone (HKF), pelargonidin-3-O-glucoside (PG), isorhamnetin-3-glucoside-7-rhamnoside (IGR), and petunidin-3-rutinoside (PR) showed better interactions with different subunits of human alpha-glucosidase, namely, N-terminal (Nt-MGAM and Nt-SI) and C-terminal (Ct-MGAM and Ct-SI). Molecular dynamics (MD) simulation, binding free energy study (molecular mechanics-generalized Born surface area [MM/GBSA]), and post-MD simulation studies (principal component analysis [PCA] and dynamic cross-correlation matrix [DCCM]) provided an in-depth understanding of these ligands' interactions with proteins. The overall efficacy of NAFME against oxidative stress and alpha-glucosidase in vitro is understood. Moreover, in silico analysis has shown the possible potential of HKF, PG, IGR, and PR to act as alpha-glucosidase inhibitors. Further studies on the antidiabetic potential of NAFME, HKF, PG, IGR, and PR in in vivo conditions are required to fully unveil the applicability of NAFME in the management of T2DM as a complementary medicine.
Collapse
Affiliation(s)
- Saleh ALNadhari
- Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waleed A A Alsakkaf
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
254
|
Birsa ML, Sarbu LG. Novel Dithiocarbamic Flavanones with Antioxidant Properties-A Structure-Activity Relationship Study. Int J Mol Sci 2024; 25:13698. [PMID: 39769459 PMCID: PMC11728272 DOI: 10.3390/ijms252413698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
The antioxidant properties of some 3-dithiocarbamic flavanones were investigated. Based on a previous study, we selected three frameworks that proved to be the most active ones. By varying the nature of the substituent at the para-position of flavanone ring B, a structure-activity relationship study on radical scavenging activities was performed. The influence of these substituents (H, F, Cl, Br and I) was evaluated in relation to DPPH, ABTS and FRAP. The results indicated that the presence of the halogen substituent induced better antioxidant properties than ascorbic acid and BHT. The radical scavenging activities were found to decrease in the following order: F > Cl > Br > I > H. This is correlated with the decrease in electronegativity and withdrawing inductive effect of these substituents, which make the C(2)-H bond of the benzopyran ring prone to hydrogen radical transfer.
Collapse
Affiliation(s)
- Mihail Lucian Birsa
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| | - Laura Gabriela Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
255
|
Dong JX, Jiang LL, Liu YP, Zheng AX. Association between composite dietary antioxidant index and metabolic dysfunction-associated fatty liver disease: a cross-sectional study from NHANES. BMC Gastroenterol 2024; 24:465. [PMID: 39702023 DOI: 10.1186/s12876-024-03556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a typical hepatic steatosis with metabolic dysfunction. The composite dietary antioxidant index (CDAI) measures individual antioxidant capacity, and the relationship with MAFLD has received little attention. Our goal is to explore the association of CDAI with MAFLD. METHODS Participants were selected from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2020. CDAI was calculated basing on six dietary antioxidants, including zinc, selenium, carotenoids, and vitamins A, C, and E. Univariate regression and multivariable logistic regression analysis were conducted to evaluate the correlation between CDAI and MAFLD. We performed subgroup analysis to study the correlation in various populations. RESULTS A total of 18,163 participants, including 13,969 MAFLD and 4,194 non-MAFLD, were included. CDAI was significantly negatively correlated with MAFLD. After adjusting for all confounders (including age, gender, race, marital status, poverty ratio, education level, drinking status, smoking status, and physical activity), individuals in the highest quartile of CDAI exhibited a 27% lower likelihood of developing MAFLD than those in the lowest quartile (OR = 0.73; 95% CI [0.66, 0.81], p < 0.001). Physical activity subgroup analysis showed that this negative association was significant in the moderate-intensity physical exercise population (Model 3 in Q4, OR = 0.72; 95% CI [0.58-0.89], p < 0.001). Additionally, the changes in vitamins C were independently associated with MAFLD (Model 3, OR = 0.90; 95% CI [0.86-0.93], p < 0.001). CONCLUSIONS We found a negative relationship between higher CDAI scores and MAFLD. This study provided a new reference for exploring dietary interventions that affect MAFLD to reduce its incidence.
Collapse
Affiliation(s)
- Jia-Xin Dong
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Li-Li Jiang
- Department of Internal Medicine, The Fourth People's Hospital of Zibo City, No. 139 Haidaidadao Road, Economic Development Zone, Zibo, 255036, P.R. China
| | - Yan-Peng Liu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Ai-Xi Zheng
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China.
| |
Collapse
|
256
|
Seetharaman J, Priya RA, Philip RR, Muthuraj M, Sankari D. Evaluation of Tridax procumbens Secondary Metabolites Anti-Tuberculosis Activity by In Vitro and In Silico Methods. Curr Microbiol 2024; 82:50. [PMID: 39702691 DOI: 10.1007/s00284-024-04033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Mycobacterium tuberculosis is a human pathogen that causes Tuberculosis (TB) disease. Researchers have reported the activity of traditional medicinal plants against human pathogens. However, antimycobacterial studies of medicinal plants against M. tuberculosis remain limited. Thus, the purpose of this study is to characterize the phytochemical profile, antibacterial and antimycobacterial activity of Tridax procumbens towards H37Rv. The antibacterial activity was elucidated by the inhibitory zone formed around the disc by performing disk diffusion method. Tridax antimycobacterial activity measured by Microplate Alamar Blue Assay (MABA) infers the sample is sensitive to H37Rv at MIC (minimum inhibitory concentration) 600 µg/mL. BACTEC MGIT 960 DST identifies the sample is susceptible to H37Rv and Rifampicin resistant (RR). Antiproliferative, functional group determination and mechanism of action of secondary metabolites were performed by MTT, Fourier transform infrared spectroscopy (FTIR) and Gas Chromatography-mass spectrometry (GC-MS). The phytocompounds antimycobacterial efficacy is further supported by molecular docking data. The binding interactions of ligands with gyrA gene revealed (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol molecule as a prominent phytocompound with a binding affinity of -6.6 kcal/mol.
Collapse
Affiliation(s)
- Jayashri Seetharaman
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - R Akshaya Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Reya Rene Philip
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - M Muthuraj
- Department of Microbiology, Intermediate Reference Laboratory, State TB Training and Demonstration Centre, Government Hospital for Chest Diseases, Gorimedu, Puducherry, 605006, India
| | - D Sankari
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India.
| |
Collapse
|
257
|
Villafan-Bernal JR, Barajas-Olmos F, Guzmán-Guzmán IP, Martínez-Hernández A, Contreras-Cubas C, García-Ortiz H, Morales-Rivera MI, Martínez-Portilla RJ, Orozco L. Relevant Serum Endoplasmic Reticulum Stress Biomarkers in Type 2 Diabetes and Its Complications: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:1564. [PMID: 39765892 PMCID: PMC11673038 DOI: 10.3390/antiox13121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) is activated in all cells by stressors such as hyperglycemia. However, it remains unclear which specific serum biomarkers of ERS are consistently altered in type 2 diabetes (T2D). We aimed to identify serum ERS biomarkers that are consistently altered in T2D and its complications, and their correlation with metabolic and anthropometric variables. We performed a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-Analyses and Systematic Reviews of Observational Studies (MOOSE). The risk of bias was assessed using the Newcastle-Ottawa scale. Random-effects models weighted by the inverse variance were employed to estimate the standardized mean difference and correlations as effect size measures. Indicators of heterogeneity and meta-regressions were evaluated. Of the 1206 identified studies, 22 were finally included, representing 11,953 subjects (2224 with T2D and 9992 non-diabetic controls). Most studies were of high quality. Compared with controls, subjects with T2D had higher circulating levels of heat shock protein 70 (HSP70; SMD: 2.30, 95% CI 1.13-3.46; p < 0.001) and secretagogin (SMD: 0.60, 95%CI 0.19-1.01; p < 0.001). They also had higher serum levels of peroxiredoxin-1, -2, -4, and -6. Secretagogin inversely correlated with HOMA-IR, yet positively correlated with HOMA-B, HbA1c, and FPG. PRX4 negatively correlated with HbA1c and FPG, while HSP70 positively correlated with HbA1c. In conclusion, six ERS biomarkers are consistently elevated in human T2D and correlate with glycemic control, insulin resistance, and β-cell function. Emerging evidence links serum ERS biomarkers to diabetes complications, but further research should evaluate their prognostic implications.
Collapse
Affiliation(s)
- José Rafael Villafan-Bernal
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
- Investigador por México, Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
- Iberoamerican Research Network in Translational, Molecular and Maternal-Fetal Medicine, Mexico City 01010, Mexico;
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Iris Paola Guzmán-Guzmán
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo 39086, Guerrero, Mexico;
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Monserrat I. Morales-Rivera
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
- Postdoctoral Researcher, Consejo Nacional de Humanidades Ciencias y Tecnologías, Mexico City 03940, Mexico
| | | | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| |
Collapse
|
258
|
Zheng Y, Huang X. Identification of pyroptosis-associated miRNAs in the immunoscape and prognosis of hepatocellular carcinoma. BMC Cancer 2024; 24:1513. [PMID: 39695414 PMCID: PMC11657507 DOI: 10.1186/s12885-024-13276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most prevalent types of liver malignancy and poses a severe threat to global health. Despite recent improvements in therapeutic approaches, treatment options for patients with advanced or recurrent HCC are still limited. MATERIALS AND METHODS Our study analyzed miRNA differential expression using data from hepatocellular carcinoma patients in the Cancer Genome Atlas. Pyroptosis-related genes were identified from gene cards. Differential expression of miRNAs was analyzed using DESeq2 and visualized using ggplot2 and pheatmap. A prognostic risk model for pyroptosis-associated miRNAs was constructed using LASSO regression and validated by principal component analysis, Kaplan-Meier survival and ROC curve analysis. We also performed gene and pathway enrichment analysis. Immune cell infiltration and function in HCC were assessed using single-sample genomic enrichment analysis, and correlations with immune cells and function were explored. Also, CCK-8 assay as well as migration and invasion assays were performed after knockdown of miR-6844. RESULTS We have established and validated a prognostic risk model based on ten DEmiRNAs, which is important for the survival of HCC patients. Significant changes in immune cell infiltration and immune function were also found in high-risk patients. It also demonstrated that knockdown of miR-6844 inhibited HCC cell proliferation, migration and invasion, highlighting its role in HCC progression. CONCLUSION Our study reveals the implications of pyroptosis-associated differential miRNAs on the prognosis of patients with hepatocellular carcinoma and provides a foundation for novel HCC therapies, especially immunotherapy.
Collapse
Affiliation(s)
- Yuting Zheng
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xing Huang
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
259
|
Shabnam, Bhat R. Flavones Suppress Aggregation and Amyloid Fibril Formation of Human Lysozyme under Macromolecular Crowding Conditions. Biochemistry 2024; 63:3194-3212. [PMID: 39385522 DOI: 10.1021/acs.biochem.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The crowded milieu of a biological cell significantly impacts protein aggregation and interactions. Understanding the effects of macromolecular crowding on the aggregation and fibrillation of amyloidogenic proteins is crucial for the treatment of many amyloid-related disorders. Most in vitro studies of protein amyloid formation and its inhibition by small molecules are conducted in dilute buffers, which do not mimic the complexity of the cellular environment. In this study, we used PEGs to simulate macromolecular crowding and examined the inhibitory effects of flavones DHF, baicalein, and luteolin on human lysozyme (HuL) aggregation at pH 2. Naturally occurring flavones have been effective inhibitors of amyloid formation in some proteins. Our findings indicate that while flavones inhibit HuL aggregation and fibrillation in dilute buffer solutions, complete inhibition is observed with a combination of flavones and PEGs, as shown by ThT fluorescence, light scattering, TEM, and AFM studies. The species formed in the presence of PEG 8000 and flavones were less hydrophobic, less toxic, and α-helix-rich compared to control samples, which were hydrophobic and β-sheet-rich, as demonstrated by ANS hydrophobicity, MTT assay, and CD spectroscopy. Fluorescence titration studies of flavones with HuL showed a significant increase in binding constant values under crowding conditions. These findings highlight the importance of macromolecular crowding in modulating protein aggregation and amyloid inhibition. Further studies using disease-causing mutants of HuL and other amyloidogenic proteins are needed to explore the role of macromolecular crowding in small-molecule-mediated modulation and inhibition of protein aggregation and amyloid formation.
Collapse
Affiliation(s)
- Shabnam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 100067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 100067, India
| |
Collapse
|
260
|
Phonglo A, Dowerah D, Sarma S, Ahmed N, Dutta P, Basumutary M, Deka RC. Essential oil constituents of regional ethnomedicinal plants as potential inhibitors of SARS-CoV-2 M pro: an integrated molecular docking, molecular dynamics and QM/MM study. J Biomol Struct Dyn 2024:1-23. [PMID: 39688925 DOI: 10.1080/07391102.2024.2440148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/04/2024] [Indexed: 12/19/2024]
Abstract
The scientific community has achieved a remarkable milestone by creating efficacious vaccines against the SARS-CoV-2 virus. The treatment alternatives are still restricted, though. The bioactive ingredients present in natural plants are known to exhibit diverse pharmacological effects against many diseases. Using computational techniques such as molecular docking, drug-likeness, ADMET study, MD simulation, and our own N-layered Integrated molecular Orbital and Molecular mechanics (ONIOM) calculations, this study aimed to investigate essential oil constituents of Lindera neesiana, Litsea cubeba and Zanthoxylum armatum DC plants as a potential natural inhibitor of SARS-CoV-2 main protease (Mpro). To determine their binding affinity, 107 phytochemical substances in total were docked inside the binding pocket of Mpro. Copaene showed the highest binding affinity among the 107 compounds, with an energy of -7.90 kcal/mol. Furthermore, physiochemical and ADMET properties were evaluated for the top five phytocompounds. The studied phytocompounds showed good physiochemical and pharmacokinetic behaviour with no associated toxicity. MD simulation further provided evidence for stable interaction of phytocompounds within the binding pocket of Mpro. Subsequently, ONIOM calculation was done on the best-hit complex, wherein the hydrogen bonding interactions were retained with appreciable negative energy. These in silico results indicate that the specific phytocompounds present in essential oils of L. neesiana, L. cubeba, and Z. armatum DC have significant inhibitor ability against SARS-CoV-2 main protease and could be explored for future therapeutic investigations.
Collapse
Affiliation(s)
- Ambalika Phonglo
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
- Department of Chemistry, Anandaram Dhekial Phookan College, Nagaon, Assam, India
| | - Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Srutishree Sarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Najima Ahmed
- Center for Multidisciplinary Research, Tezpur University, Sonitpur, Assam, India
| | - Priyanka Dutta
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Moumita Basumutary
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Ramesh Ch Deka
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
- Center for Multidisciplinary Research, Tezpur University, Sonitpur, Assam, India
| |
Collapse
|
261
|
Calsolaro F, Garello F, Cavallari E, Magnacca G, Trukhan MV, Valsania MC, Cravotto G, Terreno E, Martina K. Amphoteric β-cyclodextrin coated iron oxide magnetic nanoparticles: new insights into synthesis and application in MRI. NANOSCALE ADVANCES 2024; 7:155-168. [PMID: 39569331 PMCID: PMC11575534 DOI: 10.1039/d4na00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
This work presents a group of high-quality hydrophilic and negatively charged coated, iron oxide magnetic nanoparticles (MNPs) that have been prepared using a microwave-ultrasound-assisted protocol, and demonstrates the great impact that the synthetic strategy has on the resulting MNPs. The different coatings tested, including citric acid, carboxymethyl dextran and β-cyclodextrin (βCD)/citric acid have been compared and have shown good dispersibility and stability. The ability of βCD to maintain the inclusive properties of the coated MNPs has been proven as well as their cytocompatibility. An amino citrate-modified βCD is proposed and its capabilities as a flexible amphoteric adsorbing device have been studied. The NMR relaxometric properties of the coated MNPs have been investigated using field-cycling nuclear magnetic relaxation dispersion profiles. For the amino citrate-modified βCD system, the order of magnitude of the Néel relaxation time is in the typical range for superparamagnetic systems' reversal times, i.e., 10-10-10-7 s. The r d value corresponds to the physical radius of the magnetic core, suggesting that, in this particular case, the coating does not prevent the diffusive motion of water molecules, which provide the basis for potential future magnetic resonance imaging (MRI) applications.
Collapse
Affiliation(s)
- Federica Calsolaro
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Giuliana Magnacca
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Mikhail V Trukhan
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Maria Carmen Valsania
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Katia Martina
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| |
Collapse
|
262
|
Lee SB, Lee SE, Lee H, Kim JS, Choi H, Lee S, Kim BG. Engineering Nicotiana benthamiana for chrysoeriol production using synthetic biology approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1458916. [PMID: 39741678 PMCID: PMC11685227 DOI: 10.3389/fpls.2024.1458916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
Flavonoids are prevalent plant secondary metabolites with a broad range of biological activities. Their antioxidant, anti-inflammatory, and anti-cancer activities make flavonoids widely useful in a variety of industries, including the pharmaceutical and health food industries. However, many flavonoids occur at only low concentrations in plants, and they are difficult to synthesize chemically due to their structural complexity. To address these difficulties, new technologies have been employed to enhance the production of flavonoids in vivo. In this study, we used synthetic biology techniques to produce the methylated flavone chrysoeriol in Nicotiana benthamiana leaves. The chrysoeriol biosynthetic pathway consists of eight catalytic steps. However, using an Agrobacterium-mediated transient expression assay to examine the in planta activities of genes of interest, we shortened this pathway to four steps catalyzed by five enzymes. Co-expression of these five enzymes in N. benthamiana leaves resulted in de novo chrysoeriol production. Chrysoeriol production was unaffected by the Agrobacterium cell density used for agroinfiltration and increased over time, peaking at 10 days after infiltration. Chrysoeriol accumulation in agroinfiltrated N. benthamiana leaves was associated with increased antioxidant activity, a typical property of flavones. Taken together, our results demonstrate that synthetic biology represents a practical method for engineering plants to produce substantial amounts of flavonoids and flavonoid derivatives without the need for exogenous substrates.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Science, Rural Development Administration, JeonJu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
263
|
Fan M, Song S, Chu T, Li R, Yue M, Li X, Yang J. Association of oxidative balance score with cardiovascular disease and all-cause and cardiovascular mortality in American adults with type 2 diabetes: data from the National Health and Nutrition examination survey 1999-2018. Front Endocrinol (Lausanne) 2024; 15:1458039. [PMID: 39736858 PMCID: PMC11682987 DOI: 10.3389/fendo.2024.1458039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Background Oxidative stress has an important role in type 2 diabetes (T2D). Oxidative balance score (OBS) is an emerging assessment of dietary and lifestyle oxidative balance. We aimed to explore the association of OBS with cardiovascular disease (CVD) and all-cause and CVD mortality in the T2D population through NHANES 1999-2018. Methods OBS integrated 16 dietary components and 4 lifestyle components. T2D was diagnosed according to the American Diabetes Association criteria. Multivariate logistic regression and multivariate Cox proportional hazards regression analyses were used to explore the association of OBS with CVD and mortality in T2D, respectively. Results 3801 adult T2D participants were included. In fully adjusted models, OBS, dietary OBS, and lifestyle OBS were all negatively associated with the prevalence of CVD (odds ratios of 0.98, 0.98, and 0.85, respectively). Higher OBS and lifestyle OBS (p for trend 0.016 and <0.001, respectively) rather than dietary OBS (p for trend = 0.06) were associated with significantly lower odds of CVD. Higher OBS, dietary OBS, and lifestyle OBS were all negatively associated with all-cause mortality (hazard ratios [HR] of 0.98, 0.98, and 0.92, respectively; p for trend of 0.002, 0.009, and 0.035, respectively). Higher OBS and dietary OBS were negatively associated with CVD mortality (HR 0.96 and 0.95, respectively; p for trend both <0.001), whereas lifestyle OBS was not. Restricted cubic spline analysis suggested that most associations were linear. Stratified analyses showed that these associations were influenced by some demographic variables and disease status. Conclusions Adherence to higher OBS was associated with reduced CVD prevalence and mortality risk in T2D. Antioxidant diet and lifestyle had more significant associations with mortality and CVD prevalence, respectively. However, as these findings are merely associations and do not allow causal inferences to be drawn, future validation in high-quality randomized controlled trials is needed.
Collapse
Affiliation(s)
- Meilin Fan
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Linfen City People’s Hospital, Linfen, China
| | - Shina Song
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Chu
- Department of Cardiology, Linfen City People’s Hospital, Linfen, China
| | - Ronghong Li
- Department of Endocrinology, Linfen City People’s Hospital, Linfen, China
| | - Miao Yue
- Department of Endocrinology, Linfen City People’s Hospital, Linfen, China
| | - Xiaofeng Li
- Department of General Medicine, Linfen City People’s Hospital, Linfen, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
264
|
Vassalli QA, Fasano G, Nittoli V, Gagliardi E, Sepe RM, Donizetti A, Aniello F, Sordino P, Kelsh R, Locascio A. The Zebrafish Retina and the Evolution of the Onecut-Mediated Pathway in Cell Type Differentiation. Cells 2024; 13:2071. [PMID: 39768162 PMCID: PMC11675081 DOI: 10.3390/cells13242071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Onecut/Hnf6 (Oc) genes play an important role in the proper formation of retinal cells in vertebrates, in particular horizontal, retinal ganglion and amacrine cells. However, it is not fully known how the unique and combined action of multiple Oc gene copies leads to the induction and differentiation of specific retinal cell types. To gain new insights on how Oc genes influence retina formation, we have examined the developmental role of oc1, oc2 and oc-like genes during eye formation in the non-mammalian vertebrate zebrafish Danio rerio. By using single and multiple morpholino knockdown of three zebrafish Oc genes we provide evidence for the independent and redundant role of each gene in the formation of photoreceptors and other retinal tissues. Through comparison of Oc genetic pathways in photoreceptor differentiation among chordates we demonstrate their mechanism of action through a series of conserved target genes involved in neural transmission.
Collapse
Affiliation(s)
- Quirino Attilio Vassalli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (Q.A.V.); (G.F.); (V.N.); (E.G.); (R.M.S.)
| | - Giulia Fasano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (Q.A.V.); (G.F.); (V.N.); (E.G.); (R.M.S.)
| | - Valeria Nittoli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (Q.A.V.); (G.F.); (V.N.); (E.G.); (R.M.S.)
| | - Eleonora Gagliardi
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (Q.A.V.); (G.F.); (V.N.); (E.G.); (R.M.S.)
| | - Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (Q.A.V.); (G.F.); (V.N.); (E.G.); (R.M.S.)
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (F.A.)
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (F.A.)
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Sicily Marine Centre, Stazione Zoologica Anton Dohrn, 98167 Messina, Italy;
| | - Robert Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (Q.A.V.); (G.F.); (V.N.); (E.G.); (R.M.S.)
| |
Collapse
|
265
|
Marafie SK, Alshawaf E, Al-Mulla F, Abubaker J, Mohammad A. Targeting mTOR Kinase with Natural Compounds: Potent ATP-Competitive Inhibition Through Enhanced Binding Mechanisms. Pharmaceuticals (Basel) 2024; 17:1677. [PMID: 39770519 PMCID: PMC11677242 DOI: 10.3390/ph17121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The mammalian target of the rapamycin (mTOR) signaling pathway is a central regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling contributes to many human diseases, including cancer, diabetes, and obesity. Therefore, inhibitors against mTOR's catalytic kinase domain (KD) have been developed and have shown significant antitumor activities, making it a promising therapeutic target. The ATP-KD interaction is particularly important for mTOR to exert its cellular functions, and such inhibitors have demonstrated efficient attenuation of overall mTOR activity. Methods: In this study, we screened the Traditional Chinese Medicine (TCM) database, which enlists natural products that capture the relationships between drugs targets and diseases. Our aim was to identify potential ATP-competitive agonists that target the mTOR-KD and compete with ATP to bind the mTOR-KD serving as potential potent mTOR inhibitors. Results: We identified two compounds that demonstrated interatomic interactions similar to those of ATP-mTOR. The conformational stability and dynamic features of the mTOR-KD bound to the selected compounds were tested by subjecting each complex to 200 ns molecular dynamic (MD) simulations and molecular mechanics/generalized Born surface area (MM/GBSA) to extract free binding energies. We show the effectiveness of both compounds in forming stable complexes with the mTOR-KD, which is more effective than the mTOR-KD-ATP complex with more robust binding affinities. Conclusions: This study implies that both compounds could serve as potential therapeutic inhibitors of mTOR, regulating its function and, therefore, mitigating human disease progression.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Eman Alshawaf
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Anwar Mohammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| |
Collapse
|
266
|
Domain A, Bao X, Rodriguez J, Bonne D. Enantioselective Synthesis of Benzodihydrofurans Bearing Axial and Central Stereogenic Elements. Chemistry 2024; 30:e202403374. [PMID: 39329420 DOI: 10.1002/chem.202403374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
The enantioselective synthesis of chiral compounds containing multiple stereogenic elements via a single catalytic step is a challenging process. In the presence of α-chloronitrostyrenes and a chiral squaramide catalyst, C-C or C-N pro-axially chiral 2-naphthol substrates, featuring low barriers to enantiomerization, underwent a remote diastereo- and enantioselective domino Michael/O-alkylation. It provided the desired benzodihydrofurans bearing two stereogenic carbon atoms and a configurationally stable C-C or a C-N bond, thanks to a high increase of the barrier to rotation upon dihydrofurannulation.
Collapse
Affiliation(s)
- Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| |
Collapse
|
267
|
Eoh G, Kim C, Bae J, Park J. Evaluation of Sodium Chloride Concentrations on Growth and Phytochemical Production of Mesembryanthemum crystallinum L. in a Hydroponic System. HORTICULTURAE 2024; 10:1304. [DOI: 10.3390/horticulturae10121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Mesembryanthemum crystallinum L., commonly known as the ice plant, is a halophyte recognized for its exceptional salinity tolerance. This study aimed to determine the optimal NaCl concentration for promoting plant growth, D-pinitol, and other phytochemicals in M. crystallinum cultivated in a hydroponics system. Seedlings of M. crystallinum were transplanted into a hydroponic system and subjected to different NaCl concentrations (0, 100, 200, 300, 400, and 500 mM) in the nutrient solution. To evaluate the plant’s response to salinity stress, measurements were conducted on growth parameters, chlorophyll and carotenoid levels, total flavonoid and polyphenol contents, and DPPH scavenging activity. The optimal NaCl concentration for growth was found to be 200 mM, at which the shoot fresh and dry weights were highest. Additionally, total chlorophyll and carotenoid contents were maximized at 200 mM NaCl, with a subsequent decrease at higher concentrations. The highest DPPH scavenging activity was observed in the 200 mM NaCl treatment, which correlated with increased levels of total flavonoids and polyphenols. These results indicated that optimizing NaCl concentration can enhance the antioxidant activity of Mesembryanthemum crystallinum L. The D-pinitol content also peaked at 200 mM NaCl treatment, further supporting its role osmotic adjustment under salinity stress. M. crystallinum exhibited enhanced antioxidant production and cellular protective functions at 200 mM NaCl, which optimized its biochemical defense mechanisms and helped maintain physiological functions under salinity stress. These findings provide valuable insights for agricultural and biological applications, particularly in cultivating M. crystallinum for its bioactive compounds.
Collapse
Affiliation(s)
- Giju Eoh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chulhyun Kim
- GCL Farm Co., Ltd., Research Center, Hwaseong-si 18517, Republic of Korea
| | - Jiwon Bae
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongseok Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
268
|
Aboutaleb AS, Allam A, Zaky HS, Harras MF, Farag FSAA, Abdel-Sattar SA, El-Said NT, Ahmed HI, Abd El-Mordy FM. Novel insights into the molecular mechanisms underlying anti-nociceptive effect of myricitrin against reserpine-induced fibromyalgia model in rats: Implication of SIRT1 and miRNAs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118623. [PMID: 39059685 DOI: 10.1016/j.jep.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Manilkara zapota (L.) P. Royen, also termed sapodilla or chikoo, is a significant plant in ethnomedicine because of its long history of traditional medical applications. In diverse cultures, sapodilla is believed to protect against oxidative stress, inflammation, and some chronic diseases because of its high antioxidant content. The naturally occurring antioxidant myricitrin (MYR) flavonoid is primarily found in the leaves and other plant parts of sapodilla and it is well-known for having therapeutic qualities and possible health advantages. AIM OF THE STUDY To appraise the possible impact of MYR on a rat model of reserpine-induced fibromyalgia (FM) and explore its mechanism of action. MATERIALS AND METHODS Isolation and identification of MYR with more than 99% purity from Manilkara zapota leaves were primarily done and confirmed through chromatographic and spectrophotometric techniques. To develop FM model, reserpine (RSP) was injected daily (1 mg/kg, s.c.) for three successive days. Then, MYR (10 mg/kg, i.p.) and pregabalin (PGB, 30 mg/kg, p.o.) were given daily for another five days. Behavioral changes were assessed through open field test (OFT), hot plate test, and forced swimming test (FST). Further analyses of different brain parameters and signaling pathways were performed to assess monoamines levels, oxidative stress, inflammatory response, apoptotic changes as well as silent information regulator 1 (SIRT1) and micro RNAs (miRNAs) expressions. RESULTS From High-Performance Liquid Chromatography (HPLC) analysis, the methanol extract of sapodilla leaves contains 166.17 μg/ml of MYR. Results of behavioral tests showed a significant improvement in RSP-induced nociceptive stimulation, reduced locomotion and exploration and depressive-like behavior by MYR. Biochemical analyses showed that MYR significantly ameliorated the RSP-induced imbalance in brain monoamine neurotransmitters. In addition, MYR significantly attenuated oxidative stress elicited by RSP via up-regulating nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, enhancing superoxide dismutase (SOD) and catalase (CAT) activities, and reducing malondialdehyde (MDA) content in brain. The RSP-provoked inflammatory response was also diminished by MYR treatment as shown by a significant decreased NOD-like receptor protein 3 (NLRP3) inflammasome expression along with reduced levels of interleukin 1 beta (IL-1β) and nuclear factor-κB (NF-κB). Furthermore, the anti-apoptotic activity of MYR was demonstrated by a marked rise in Bcl-2-associated X protein (BAX)/B cell lymphoma-2 (Bcl-2) ratio by lowering Bcl-2 while increasing BAX levels. In addition, MYR treatment significantly boosted the expression of SIRT1 deacetylase in RSP-treated animals. Interestingly, molecular docking showed the ability of MYR to form a stable complex in the binding site of SIRT1. Regarding miRNAs, MYR effectively ameliorated RSP-induced changes in miR-320 and miR-107 gene expressions. CONCLUSION Our findings afford new insights into the anti-nociceptive profile of MYR in the RSP-induced FM model in rats. The underlying mechanisms involved direct binding and activation of SIRT1 to influence different signaling cascades, including Nrf2 and NF-κB/NLRP3 together with modulation of miRNAs. However, more in-depth studies are needed before proposing MYR as a new clinically relevant drug in the management of FM.
Collapse
Affiliation(s)
- Amany S Aboutaleb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Sayed Abdel-Aal Farag
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
269
|
Islam R, Deb A, Ghosh AJ, Dutta D, Ray A, Dutta A, Ghosh S, Sarkar S, Bahadur M, Kumar A, Saha T. Toxicological profiling of methanolic seed extract of Abutilon indicum (L.) Sweet: in-vitro and in-vivo analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118655. [PMID: 39097211 DOI: 10.1016/j.jep.2024.118655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abutilon indicum, a shrub of the Malvaceae family, is found abundantly in tropical countries like India. A. indicum is widely used for its high medicinal properties. Traditionally, A. indicum seed powder is consumed to treat piles, constipation, chronic cystitis, gonorrhea, gleet, and pregnancy-related problems. Despite having numerous medicinal properties and widespread traditional use of A. indicum seeds, scientific validation, and toxicity studies have yet to be documented. AIMS OF THE STUDY The primary objective of this study is to conduct a comprehensive study on phytochemical profiling, in-vitro cytotoxicity, mutagenicity, and in-vivo acute and sub-acute toxicity, and genotoxicity on animal models of methanolic extract of A. indicum seed (MAS). MATERIALS AND METHODS The qualitative analysis of MAS was explored through FTIR and HR LC-MS. For in-vitro cytotoxicity, the HEK-293 cell line was used, and the TA100 (Staphylococcus typhimurium) bacterial strain was used for the Ames mutagenicity test. A single oral dose of 250, 500, 1000, or 2000 mg/kg body weight of MAS was given to each male and female rat for acute toxicity study and observed for 14 days for any toxicity signs. In the sub-acute toxicity study, 250, 500, or 1000 mg/kg body weight of MAS was administered orally to each rat for 28 days. The experimental animals were weighed weekly, and general behavior was monitored regularly. After 28 days of the experiment, the rats were sacrificed, and different serum biochemical, hematological, and histological analyses were performed. The blood samples of different doses of MAS were used for genotoxicity study through comet assay. RESULTS FTIR analysis found different functional groups, which indicated the presence of phenolics, flavonoids, and alkaloids. HR LC-MS analysis depicts several components with different biological functions. The cell cytotoxicity and Ames mutagenicity results showed minimal toxicity and mutagenicity up to a certain dose. The acute toxicity study conducted in Wistar albino rats demonstrated zero mortality among the animals, and the LD50 value for seed extract was determined to be 2000 mg/kg body weight. Sub-acute toxicity assessments indicated that the administration of seed extract resulted in no adverse effects at dosages of 250 and 500 mg/kg body weight. However, at higher doses, specifically 1000 mg/kg body weight, the liver of the experimental rats exhibited some toxic effects. In the genotoxicity study, minimal DNA damage was found in 250 and 500 mg/kg doses, respectively, but slightly greater DNA damage was found in 1000 mg/kg doses in both male and female rats. CONCLUSIONS The consumption of A. indicum seed powder is deemed safe; however, doses exceeding 500 mg/kg body weight may raise concerns regarding use. These findings pave the path for the creation of innovative medicines with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Rejuan Islam
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Arijit Deb
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Amlan Jyoti Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Debojit Dutta
- Genetics and Moleular Biology Labratoty, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Arpita Ray
- Genetics and Moleular Biology Labratoty, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory, Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Supriyo Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Sagar Sarkar
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India; Department of Zoology, Siliguri College, Darjeeling, West Bengal, 734001, India
| | - Min Bahadur
- Genetics and Moleular Biology Labratoty, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory, Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Tilak Saha
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
270
|
Toy VE, Sabancı A. Resonance frequency analysis of dental implants in patients with vitamin D deficiency. Clin Oral Investig 2024; 28:682. [PMID: 39630320 DOI: 10.1007/s00784-024-06085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES Vitamin D deficiency may influence dental implant osseointegration unfavourably. The aim of this study was to compare dental implant stabilities of patients with different levels of vitamin D and investigate the effects of vitamin D supplementation. MATERIALS AND METHODS One hundred and twenty-nine patients who underwent dental implantation were grouped regarding vitamin D levels and supplement use: Group A; vitamin D deficiency and supplement usage, Group B; insufficiency with supplement usage, Group C; insufficiency without supplements and Group D; vitamin D sufficiency. Resonance frequency analysis (RFA) measurements were performed at baseline and 3 months. Patients with vitamin D deficiency (Group A) and insufficiency (Group B) were prescribed supplements by specialists. Pearson correlation analysis was used to examine an association between vitamin D levels and implant stability. RESULTS Primary stability of Group D (76.34 ± 6.55) was significantly higher than Groups A, B and C at baseline (p < 0.05). At 3 months, Group C scored significantly lower than the other groups (p < 0.05). The results revealed a correlation between serum levels of vitamin D and RFA measurements at 3 months (p < 0.05). CONCLUSION It was observed that high vitamin D levels influenced implant stabilities positively, as evidenced by higher Implant Stability Quotient values. Low levels of vitamin D may be associated with a decrease in implant stability. STATEMENT OF CLINICAL RELEVANCE Vitamin D, concerning its impact on bone metabolism, is currently of particular interest in implant dentistry. The lower stability scores in patients with vitamin D deficiency reinforce the recommendation of Vitamin D supplementation when treating those patients with dental implants.
Collapse
Affiliation(s)
- Vesile Elif Toy
- Department of Periodontology, Faculty of Dentistry, Inonu University, 44280, Malatya, Turkey.
| | - Arife Sabancı
- Department of Periodontology, Faculty of Dentistry, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
271
|
Ma J, Zhen J, Yang N, Meng C, Lian Y. Expression and clinical significance of Numb and Notch-1 proteins between tissue of colon cancer and regional lymph node metastases. Front Oncol 2024; 14:1467517. [PMID: 39691600 PMCID: PMC11649626 DOI: 10.3389/fonc.2024.1467517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024] Open
Abstract
Objective To investigate the expression and clinical significance of Notch-1 and Numb protein in colon cancer tissues and regional lymph node metastases. Methods Immunohistochemical method was used to detect the expression of Notch-1 protein and Numb protein in 110 cases of colon cancer tissues, along with tumor adjacent tissues and 56 cases of MLN tissues, and to analyze its role in colon cancer and MLN tissue. Results Comparing colon cancer tissue or lymph node metastases with tumor adjacent tissue, the positive expression rate of Numb was significantly decreased, while the positive expression of Notch-1 was significantly increased in colon cancer tissue or lymph node metastases (both p<0.05). The expression of Notch-1 and Numb was correlated with the lymph node metastasis, TNM stage, and degree of differentiation (p<0.05). The expression between Numb and Notch-1 showed negative correlation in colon cancer tissues (r=-0.261, p<0.05). There was no relationship between the expression of Numb and Notch-1 protein in colon cancer and metastatic lymph node tissue (p>0.05). Conclusion Numb expression is decreased and Notch-1 expression is increased in colon cancer tissue and metastatic lymph node tissue, suggesting that the interaction between the two proteins may play a promote role in the development, invasion, and metastasis of colon cancer. There was no relationship between the expression of Numb and Notch-1 protein in colon cancer and metastatic lymph node tissue, suggesting that there is no obvious enhancement of the cancer cells; in the process of lymph node metastasis, the degree of malignant biological behavior remains relatively stable.
Collapse
Affiliation(s)
| | | | | | | | - Yanjun Lian
- The Gastrointestinal Surgery of Xingtai Central Hospital,
Xingtai, Hebei, China
| |
Collapse
|
272
|
Zhou Y, Chen X, Zu X. ZBTB7A as a therapeutic target for cancer. Biochem Biophys Res Commun 2024; 736:150888. [PMID: 39490153 DOI: 10.1016/j.bbrc.2024.150888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ZBTB7A, alternatively referred to Pokemon, FBI-1, LRF, and OCZF, is classified as a member of POK/ZBTB protein family of transcriptional repressors. ZBTB7A binds to targeted DNA via C-terminal zinc fingers and recruits co-compression complexes through N-terminal BTB ⁄ POZ domain to impede transcription. ZBTB7A regulates a range of fundamental biological processes such as cell proliferation, differentiation and apoptosis, B- and T-lymphocyte fate determination and thymic insulin expression and self-tolerance. Accumulating evidence has demonstrated an important role of ZBTB7A in the initiation and advancement of tumors, thus making ZBTB7A emerge as an appealing target. This review examines the functions and regulatory mechanisms of ZBTB7A in a range of common solid tumors, including hepatocellular carcinoma, breast cancer, prostate cancer and lung cancer, as well as hematological malignancies. Notably, the review concludes with a summary of the recent applications of targeting ZBTB7A in clinical treatments through gene silencing, immunotherapy and chemotherapeutic approaches to halt or slow tumor progression. We focus on the functional role and regulatory mechanisms of ZBTB7A in cancer with the goal of providing new insights for the development of more effective cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ying Zhou
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xisha Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, China.
| |
Collapse
|
273
|
Piao W, Wu L, Xiong Y, Zapas GC, Paluskievicz CM, Oakes RS, Pettit SM, Sleeth ML, Hippen KL, Schmitz J, Ivanyi P, Shetty AC, Song Y, Kong D, Lee Y, Li L, Shirkey MW, Kensiski A, Alvi A, Ho K, Saxena V, Bräsen JH, Jewell CM, Blazar BR, Abdi R, Bromberg JS. Regulatory T cells crosstalk with tumor cells and endothelium through lymphotoxin signaling. Nat Commun 2024; 15:10468. [PMID: 39622857 PMCID: PMC11612289 DOI: 10.1038/s41467-024-54874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Regulatory T cells (Tregs) with multifaceted functions suppress anti-tumor immunity by signaling surrounding cells. Here we report Tregs use the surface lymphotoxin (LT)α1β2 to preferentially stimulate LT beta receptor (LTβR) nonclassical NFκB signaling on both tumor cells and lymphatic endothelial cells (LECs) to accelerate tumor growth and metastasis. Selectively targeting LTβR nonclassical NFκB pathway inhibits tumor growth and migration in vitro. Leveraging in vivo Treg LTα1β2 interactions with LTβR on tumor cells and LECs, transfer of wild type but not LTα-/- Tregs promotes B16F10 melanoma growth and tumor cell-derived chemokines in LTβR-/- mice; and increases SOX18 and FLRT2 in lymphatic vessels of LTβR-/- melanoma. Blocking the nonclassical pathway suppresses tumor growth and lymphatic metastasis by reducing chemokine production, restricting Treg recruitment to tumors, and retaining intratumoral IFNγ+ CD8 T cells. Our data reveals that Treg LTα1β2 promotes LTβR nonclassical NFκB signaling in tumor cells and LECs providing a rational strategy to prevent Treg promoted tumor growth and metastasis.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gregory C Zapas
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sarah M Pettit
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret L Sleeth
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Keli L Hippen
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jessica Schmitz
- Institute for Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dejun Kong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Young Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina W Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aamna Alvi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin Ho
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jan H Bräsen
- Institute for Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
274
|
Makanyane DM, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Anti-Amyloid Aggregation and Anti-Hyperglycemic Activities of Novel Ruthenium Uracil Schiff Base Compounds. ChemMedChem 2024; 19:e202400477. [PMID: 39136611 DOI: 10.1002/cmdc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Indexed: 11/10/2024]
Abstract
The formation and characterization of new diamagnetic ruthenium uracil mono-imine compounds: [(η6-p-cymene)RuII(L)Cl][BF4] (L=H2urpda=5-((pyridin-2-yl)methyleneamino)-6-aminouracil) for 1, urdpy=6-amino-1,3-dimethyl-5-((pyridin-2-ylmethylene)amino)uracil) for 2 or urqda=5-((quinolin-2-yl)methyleneamino)-6-aminouracil) for 3); cis-[Ru(bipy)2(urpy)](BF4)2 (4) (urpy=5-((pyridin-2-yl)methyleneamino)uracil) and cis-[Ru(bipy)2(dapd)] (5) (H2dadp=5,6-diaminouracil) are described. A ruthenium(IV) uracil Schiff base compound, trans-[Ru(urpda)(PPh3)Cl2] (6) was also formed. Various physicochemical techniques were utilized to characterize the novel ruthenium compounds. Similarly, the stabilities of 1-3 and 6 monitored in chloro-containing and the non-coordinating solvent, dichloromethane show that they are kinetically inert, whereas, in a high nucleophilic environment, the chloride co-ligands of these ruthenium complexes were rapidly substituted by DMSO. In contrast, the substitution of the labile co-ligands for these ruthenium complexes by DMSO molecules in a high chloride content was suppressed. Solution chemical reactivities of the different ruthenium complexes were rationalized by density functional theory computations. Furthermore, the binding affinities and strengths between BSA and the respective ruthenium complexes were monitored using fluorescence spectroscopy. In addition, the in vitro anti-diabetic activities of the novel metal complexes were assessed in selected skeletal muscle and liver cell lines.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
275
|
Chatterjee B, Bose S, Singh R, Dixit AK, Puia L, Srivastava AK. MiRNA-3163 limits ovarian cancer stem-like cells via targeting SOX-2 transcription factor. Noncoding RNA Res 2024; 9:1308-1314. [PMID: 39050795 PMCID: PMC11268165 DOI: 10.1016/j.ncrna.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer stem cells (CSCs) are pivotal in both cancer progression and the acquisition of drug resistance. MicroRNAs (miRNAs) play a crucial role in modulating CSC properties and are being explored as potential targets for therapeutic interventions. MiR-3163 is primarily known for its tumor suppressive properties in various human malignancies, with lower expression reported across different cancer types. However, its role in regulating the ovarian CSC phenotype and the underlying mechanism remain largely unknown. Here, we report a remarkable downregulation of miR-3163 in ovarian cancer stem-like cells (CSLCs). Enforced expression of miR-3163 in ovarian adherent and CSLCs, significantly disrupts the stemness phenotype. Moreover, downregulation of miR-3163 expression in ovarian cancer cells (OV2008 and OVCAR-3) inhibits the stem-like cells characterized by CD44+CD117+ expression. Sphere formation assay results reveal that overexpression of miR-3163 in ovarian cancer cells significantly inhibits spheroid formation ability, confirming the regulatory properties of miR-3163 on ovarian CSLCs. Mechanistic investigation reveals that miR-3163 depletes ovarian CSLCs via targeting SOX-2. Furthermore, we establish SOX-2 as a direct target of miR-3163 through dual-luciferase assay. Taken together, our study demonstrates that overexpression of miR-3163 could be a promising strategy for efficiently eradicating the CSC population to prevent chemoresistance and tumor relapse in ovarian cancer patients.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institution of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Subhankar Bose
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institution of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Richa Singh
- Department of Biotechnology, Khwaja Moinuddin Chishti language University, Lucknow, Uttar Pradesh, India
| | - Amit Kumar Dixit
- CCRAS-Central Ayurveda Research Institute, Kolkata, West Bengal, India
| | - Lalrin Puia
- CCRAS-Central Ayurveda Research Institute, Kolkata, West Bengal, India
| | - Amit Kumar Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institution of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
276
|
Shakour N, Mahdinezhad MR, Asgharzadeh F, Khazaei M, Simental-Mendía LE, Roshan NM, Sahebkar A, Hadizadeh F. Antioxidant effects of a novel pioglitazone analogue (PA9) in a rat model of diabetes: Modulation of redox homeostasis and preservation of tissue architecture. J Diabetes Complications 2024; 38:108897. [PMID: 39489911 DOI: 10.1016/j.jdiacomp.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Oxygen-free radicals have been implicated in the initiation of diabetic complications. Thiazolidinediones (TZDs), known for their antidiabetic properties, also demonstrate notable antioxidant and anti-inflammatory effects. Although a recently developed imidazolyl analogue of pioglitazone (PA9) has exhibited superior glucose-lowering efficacy compared to pioglitazone, its antioxidant effects remain unexplored. Thus, the objective of this study is to evaluate the antioxidant properties of PA9 in animal models with diabetes. Rats were randomly separated into the following four groups: control, diabetic, and two groups treated orally with pioglitazone as a standard drug and PA9 for ten days. Upon completion of the experiment, tissues from the liver, heart, brain, pancreas, spleen, and kidneys were collected to assess oxidant/antioxidant markers and histological alterations. The administration of PA9 resulted in a noteworthy reduction in malondialdehyde (MDA) levels compared to the diabetic group (p < 0.05). The group receiving PA9 displayed elevated levels of three antioxidant markers, catalase (CAT), superoxide dismutase (SOD), and total thiol, in pancreatic tissue compared to diabetic rats (p < 0.05). Furthermore, increased content of CAT was evident in the heart (p < 0.05), spleen (p < 0.001), brain, and kidney tissues in the PA9-treated group, along with augmented thiol content in the spleen compared to the diabetic group. Remarkably, no significant histological changes were observed in the liver, pancreas, heart, brain, spleen, and kidneys of the PA9-treated groups relative to diabetic rats. PA9 effectively mitigates oxidative stress, modulates redox homeostasis, and shows promise in preventing diabetic complications. The proven safety profile of this analogue underscores its potential, warranting comprehensive clinical evaluation to thoroughly understand its therapeutic scope and efficacy in the management of diabetes.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nema Mohamadian Roshan
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
277
|
Costa Cerqueira M, Silva A, Martins Sousa S, Pinto-Ribeiro F, Baltazar F, Afonso J, Freitas Costa M. Chromene-based compounds as drug candidates for renal and bladder cancer therapy - A systematic review. Bioorg Chem 2024; 153:107865. [PMID: 39393199 DOI: 10.1016/j.bioorg.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Renal (RC) and bladder cancers (BC) are common urological malignancies prevalent in the male population. Incidence and mortality rates are expected to increase in the near future. Drug toxicity and development of drug resistance in both diseases are major obstacles to achieve successful treatments. Chromenes are heterocyclic compounds constituted by a benzene ring fused to a pyran nucleus. Natural and synthetic chromene-based compounds have proven to be promising anticancer agents. Additionally, re-sensitization of cancer cells to classical treatments has also been demonstrated. Thus, the aim of this systematic review is to assess the potential of chromene-based compounds in the treatment of RC and BC. Study collection was performed in six different databases, to compile existing information on preclinical (in vitro and in vivo) and clinical studies developed to date. Overall, multiple chromene-based compounds showed potent anticancer effects, affecting several biological features such as reduction in cell viability, proliferation, migration and invasion in vitro, and induction of cell cycle arrest and cell death. Tumor volume and weight were generally decreased in vivo upon chromene-based treatment. Modest results have been obtained in two clinical trials, with reports of a partial response and two objective responses in RC patients. Thus, the chromene family can be considered an attractive chemical scaffold, harboring promising drug candidates for RC and BC therapeutics.
Collapse
Affiliation(s)
- Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia Martins Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
278
|
Kaur H, Singh A, Kaur K, Kumar A, Attri S, Rashid F, Singh S, Bedi N, Tuli HS, Haque S, Alkuwaity K, Tashkandi HM, Harakeh S, Arora S. 4-methylthiobutyl isothiocyanate synergize the antiproliferative and pro-apoptotic effects of paclitaxel in human breast cancer cells. Biotechnol Genet Eng Rev 2024; 40:3780-3804. [PMID: 36683273 DOI: 10.1080/02648725.2022.2162232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
Multidrug resistance (MDR) is considered as a major obstacle in achieving an effective treatment of breast cancer. Paclitaxel has been used to treat cancers of the cervical, breast, ovarian and brain but MDR limits its therapeutic potential. Phytochemicals have received much interest in recent decades especially in combination approaches to tackle MDR due to their negligible harm to healthy cells and synergistic potential. Considering this notion, the present study aimed at investigating the synergistic activity of 4-MTBITC and PTX against a panel of breast cancer cells. Our results revealed that the combination had a significant antiproliferative activity against T-47D cells. Mechanistic studies revealed that 4-MTBITC and PTX also promoted the production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential. In the presence of 4-MTBITC- PTX, T-47D cells were found to be arrested in the G2/M phase which also confirmed the enhancement of late apoptotic cell population in the flow cytometer analysis. In western blot experiment, the combination had a significant decrease in Bcl-xl protein level, whereas a higher level of p53, cleaved caspase-3, and cleaved caspase-9 proteins compared to individual treatment in T-47D cells. The RT-qPCR analysis also showed that the combination had significant upregulation in the gene expression of p53, cytochrome-c, Apaf-1 and downregulation in the expression of Bcl-2 gene in T-47D cells. Hence, all the results showed that a combination of 4-MTBITC-PTX significantly enhanced the apoptosis pathway in the T-47D cell line which indicates its clinical application for the treatment of breast cancer.Abbreviations: Apaf-1: Apoptotic protease activating factor 1; AO/EB: Acridine orange/ethidium bromide; Bcl-2: B-cell lymphoma 2; CI: Combination Index; Cyt-c: Cytochrome c; CO2: Carbon dioxide; DCFH-DA 2,7-Dichloroflourescein diacetate; DMEM: Dulbecco's modified Eagle's medium; ELISA: Enzyme-linked immunosorbent assay; EA: Early apoptosis; EDTA: Ethylenediaminetetraacetic acid; L929: Normal mouse fibroblast cells; LA: Late apoptosis; L: Live; 4-MTBITC: 4-methylthiobutyl isothiocyanate; MCF-7: Human breast cancer cells; MDA-MB-231: Human triple negative breast cancer cells; MMP: Mitochondria membrane potential; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide; NCCS: National Centre for Cell Science; N: Necrotic; PTX Paclitaxel; PVDF: Polyvinylidene fluoride; PAGE: Polyacrylamide gel electrophoresis; PBS: Phosphate-buffered saline; RPMI-1640: Roswell Park Memorial Institute Medium- 1640; RT-qPCR: Quantitative real-time polymerase chain reaction; ROS: Reactive oxygen species; Rh-123: Rhodamine123; g Relative centrifugal force; SDS: Sodium dodecyl sulphate; SEM: Scanning electron microscopy; T-47D: Human estrogen positive breast cancer cells; WB: Western blotting.
Collapse
Affiliation(s)
- Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Khalil Alkuwaity
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
279
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
280
|
Shandhi SP, Richi FT, Alam S, Ahamed KU, Emon NU, Ahmed N, Shao C, Wang S, Geng P, Al Mamun A. Isolation, Structure Elucidation, and Bioactivity Evaluation of Two Alkaloids From Piper chaba H. Stem: A Traditional Medicinal Spice and Its Chemico-Pharmacological Aspects. Food Sci Nutr 2024; 12:10680-10698. [PMID: 39723026 PMCID: PMC11666819 DOI: 10.1002/fsn3.4585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 12/28/2024] Open
Abstract
Bangladesh is endowed with an abundance of excellent medicinal plant resources. A well-known traditional medicinal plant Piper chaba H. from the Piperaceae family is rich in bioactive phytochemicals that have antidiarrheal, antimicrobial, analgesic, antioxidant, anticancer, and cytotoxic effects. This plant is locally known as "Chuijhal," and the stem is used as spices. In the current research program, the stems of the P. chaba plant were selected and its chemical and biological investigations such as antidiarrheal, antimicrobial, and analgesic effects were performed. Moreover, docking models were accomplished by exploiting PyRx-Virtual Screening software and implied that isolated compounds of P. chaba exert different pharmacological activity by inhibiting their targeted receptors. Phytochemical investigations revealed the isolation of Chingchengenamide A, a relatively rare alkaloid from the stems of P. chaba. Another alkaloid Chabamide I which is a piperine dimer was also isolated. Their structures were confirmed by comparing these compounds' spectral data (1H and 13C NMR) with their previously published spectral data. Antidiarrheal activity shows a percent reduction of diarrhea by 46.67% and 40%, respectively, for Chabamide I and Chingchengenamide A (at 20 mg/kg b.w.) compared with an 80% reduction by standard loperamide. Similarly, the percent reduction of writhing was 53.06% and 42.86%, respectively, for Chabamide I and Chingchengenamide A at similar doses compared with an 80% reduction by diclofenac sodium considered as standard. Both the alkaloids showed auspicious outcomes against test microorganisms during disk diffusion antimicrobial assay. Molecular docking and ADME/T analysis of the alkaloids also validate a potent pharmacological basis for the traditional utilization of P. chaba in treating diarrhea, pain, and microbial infection. These results emphasize the need to investigate P. chaba as a potential source of natural therapies for common health issues, laying the foundation for future research.
Collapse
Affiliation(s)
- Shabiba Parvin Shandhi
- Fiber and Polymer Research Division, BCSIR Dhaka LaboratoriesBangladesh Council of Scientific and Industrial Research (BCSIR)DhakaBangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
- Chemical Research Division, BCSIR Dhaka LaboratoriesBangladesh Council of Scientific and Industrial Research (BCSIR)DhakaBangladesh
| | - Kutub Uddin Ahamed
- Pharmaceutical Sciences Research Division, BCSIR Dhaka LaboratoriesBangladesh Council of Scientific and Industrial Research (BCSIR)DhakaBangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Najneen Ahmed
- Department of PharmacyEast West UniversityDhakaBangladesh
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of The Lishui Hospital of Wenzhou Medical UniversityThe First Affiliated Hospital of Lishui University, Lishui People's HospitalLishuiZhejiangChina
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of The Lishui Hospital of Wenzhou Medical UniversityThe First Affiliated Hospital of Lishui University, Lishui People's HospitalLishuiZhejiangChina
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of The Lishui Hospital of Wenzhou Medical UniversityThe First Affiliated Hospital of Lishui University, Lishui People's HospitalLishuiZhejiangChina
| | - Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of The Lishui Hospital of Wenzhou Medical UniversityThe First Affiliated Hospital of Lishui University, Lishui People's HospitalLishuiZhejiangChina
| |
Collapse
|
281
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
282
|
Salaria P, Niharika DG, N SRN, Ganapati PL, M AR. Deciphering the 4',7-Dihydroxy-3'-Methylflavone from Boerhavia, Agonist/Antagonist Interactions Against 5-HT 2 Receptors using Homology Modeling, Molecular Docking, and Dynamic Simulation Studies. Chem Biodivers 2024; 21:e202401559. [PMID: 39194300 DOI: 10.1002/cbdv.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Seizures, depression, and anxiety are neurological disorders that affected innumerable people worldwide. Recent research has revealed that targeting 5-hydroxytryptamine 2 (5-HT2) receptors can help suppress these conditions. An in-depth literature study has identified that phytocompounds from the Boerhavia genus could reduce seizures. Therefore, homology models of 5-HT2 receptors were generated and validated using techniques such as the alignment of amino acid sequences and the Ramachandran plot. Later, a comparison of modeled structures was made with a non-redundant set of PDB structures. The pharmacokinetics, drug-likeness, blood-brain barrier (BBB) permeability, and Lipinski's rule of five shed light on 22 phytocompounds, which are the potential candidates for molecular docking among 127 Boerhavia's bioactive. Notably, molecular docking analysis revealed 4',7-dihydroxy-3'-methylflavone as the most potent lead compound, which has a strong binding affinity to all modeled receptors. Additionally, with a remarkably high docking score of -9.1 kcal/mol, 4',7-dihydroxy-3'-methylflavone showed promising interactions, particularly with 5-HT2A receptor, as seen from the RMSD, SASA, Rg, and number of hydrogen bonds during 100 ns molecular dynamic (MD) simulation. Principal component analysis (PCA) and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) further confirmed that 4',7-dihydroxy-3'-methylflavone is the best novel phytocompound in Boerhavia genus for 5-HT2 receptor as agonist/antagonist activity against seizures.
Collapse
Affiliation(s)
- Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Desu Gayathri Niharika
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Subrahmanyeswara Rao N N
- Chemical Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh, India
| | - P Lakshmi Ganapati
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Amarendar Reddy M
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| |
Collapse
|
283
|
Parate SS, Upadhyay SS, S A, Karthikkeyan G, Pervaje R, Abhinand CS, Modi PK, Prasad TSK. Comparative Metabolomics and Network Pharmacology Analysis Reveal Shared Neuroprotective Mechanisms of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. Mol Neurobiol 2024; 61:10956-10978. [PMID: 38814535 DOI: 10.1007/s12035-024-04223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., two nootropics, are recognized in Indian Ayurvedic texts. Studies have attempted to understand their action as memory enhancers and neuroprotectants, but many molecular aspects remain unknown. We propose that Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. share common neuroprotective mechanisms. Mass spectrometry-based untargeted metabolomics and network pharmacology approach were used to identify potential protein targets for the metabolites from each extract. Phytochemical analyses and cell culture validation studies were also used to assess apoptosis and ROS activity using aqueous extracts prepared from both herbal powders. Further, docking studies were also performed using the LibDock protocol. Untargeted metabolomics and network pharmacology approach unveiled 2751 shared metabolites and 3439 and 2928 non-redundant metabolites from Bacopa monnieri and Centella asiatica extracts, respectively, suggesting a potential common neuroprotective mechanism among these extracts. Protein-target prediction highlighted 92.4% similarity among the proteins interacting with metabolites for these extracts. Among them, kinases mapped to MAPK, mTOR, and PI3K-AKT signaling pathways represented a predominant population. Our results highlight a significant similarity in the metabolome of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., and their potential protein targets may be attributed to their common neuroprotective functions.
Collapse
Affiliation(s)
- Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amrutha S
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | | |
Collapse
|
284
|
Mazumdar R, Thakur D. Antibacterial activity and biosynthetic potential of Streptomyces sp. PBR19, isolated from forest rhizosphere soil of Assam. Braz J Microbiol 2024; 55:3335-3352. [PMID: 38985434 PMCID: PMC11711432 DOI: 10.1007/s42770-024-01454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
An Actinomycetia isolate, designated as PBR19, was derived from the rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate, identified as Streptomyces sp., shares a sequence similarity of 93.96% with its nearest type strain, Streptomyces atrovirens. This finding indicates the potential classification of PBR19 as a new taxon within the Actinomycetota phylum. PBR19 displayed notable antibacterial action against some ESKAPE pathogens. The ethyl acetate extract of PBR19 (EtAc-PBR19) showed the lowest minimum inhibitory concentration (MIC) of ≥ 0.195 µg/mL against Acinetobacter baumannii ATCC BAA-1705. A lower MIC indicates higher potency against the tested pathogen. Scanning electron microscope (SEM) findings revealed significant changes in the cytoplasmic membrane structure of the pathogen. This suggests that the antibacterial activity may be linked to the disruption of the microbial membrane. The predominant chemical compound detected in the EtAc-PBR19 was identified as phenol, 3,5-bis(1,1-dimethylethyl), comprising 48.59% of the area percentage. Additionally, PBR19 was found to contain the type II polyketide synthases (PKS type II) gene associated with antibiotic synthesis. The predicted gene product of PKSII was identified as the macrolide antibiotic Megalomicin A. The taxonomic distinctiveness, potent antibacterial effects, and the presence of a gene associated with antibiotic synthesis suggest that PBR19 could be a valuable candidate for further exploration in drug development and synthetic biology. The study contributes to the broader understanding of microbial diversity and the potential for discovering bioactive compounds in less-explored environments.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India.
| |
Collapse
|
285
|
Fakhar M, Najafi Ghobadi K, Barati N, Zafari S, Hosseini SA, Soleymani E, Motavallihaghi S. Prevalence of Toxoplasma gondii infection in COVID-19 patients: A systematic review and meta-analysis. Microb Pathog 2024; 197:107064. [PMID: 39442817 DOI: 10.1016/j.micpath.2024.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Toxoplasma gondii is a parasite that affects over one billion people worldwide. COVID-19, caused by the SARS-CoV-2 virus, has resulted in over 4.8 million deaths worldwide. Both diseases activate the innate immune response via the same pathway. Studies have suggested that toxoplasmosis may either protect against or worsen the severity of COVID-19. This meta-analysis investigated the relationship between toxoplasmosis prevalence and COVID-19. The selection of studies was based on a systematic search using specific keywords in Scopus, Web of Science, PubMed, and Google Scholar databases between 2019 and 2023. The study findings were analyzed using STATA software version 17.0, and the prevalence of toxoplasmosis in people with COVID-19 and its confidence interval were extracted from the selected studies. The study's heterogeneity was assessed using the I2 test, and publication bias was evaluated using a funnel plot and Egger's test. A p value of 0.05 was considered significant. The meta-analysis included nine studies with a total of 1745 COVID-19-positive individuals, and the results showed a significant association between toxoplasmosis and COVID-19 severity. The I2 statistic was almost 99 %, indicating large heterogeneity among the studies. The Egger's test showed no publication bias. The pooled prevalence of toxoplasmosis in COVID-19-positive individuals was 0.48 (95 % CI: 0.30-0.66), which was significantly different from that of 0 % (P < 0.001). The meta-analysis found that the prevalence oftoxoplasmosis was significantly higher in individuals with COVID-19 than in the general population, indicating a possible association between the two infections. However, the significant heterogeneity among the studies underscores the need for further research to understand the underlying mechanisms and clinical implications of this association.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis (INRCL) and Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Microbiology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Khadijeh Najafi Ghobadi
- Department of Biostatistics, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Nastaran Barati
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Zafari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Eissa Soleymani
- Department of Parasitology, Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedmousa Motavallihaghi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
286
|
AbouSamra MM. Liposomal nano-carriers mediated targeting of liver disorders: mechanisms and applications. J Liposome Res 2024; 34:728-743. [PMID: 38988127 DOI: 10.1080/08982104.2024.2377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
287
|
Lin T, Zhang Y, Wei Q, Huang Z. GLP-1 receptor agonist liraglutide alleviates kidney injury by regulating nuclear translocation of NRF2 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2024; 51:e70003. [PMID: 39477212 DOI: 10.1111/1440-1681.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Yuze Zhang
- Department of Cardiovascular Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Qifeng Wei
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Zugui Huang
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
288
|
Yehmed J, Tlahig S, Mohamed A, Yahia H, Lachiheb B, Yahia LB, Loumerem M. Nutritional and Phytochemical Profiling of Vicia faba L. var. Minor Seeds: a Multifaceted Exploration of Natural Antioxidants and Functional Food Potential. Appl Biochem Biotechnol 2024; 196:8471-8492. [PMID: 38878163 DOI: 10.1007/s12010-024-04993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 01/04/2025]
Abstract
This study explores the nutritional and phytochemical profiling of twenty-three genotypes of Vicia faba L. var. minor seeds cultivated in the experimental field of the Arid Lands Institute of Medenine. Our comprehensive analysis encompasses fatty acid composition, sugar content, phytochemical composition, and antioxidant potential, providing a nuanced understanding of the seeds' nutritive quality. The investigation revealed substantial variations among genotypes, showcasing the potential for targeted nutritional enhancement. Quantification of total polyphenols, flavonoids, condensed tannins, and radical scavenging activities revealed average values of 16.46 mg GAE/g DW, 6.27 mg CTE/g DW, 0.47 mg CE/g DW, and 0.146 mM TEAC, respectively. Notably, the seeds exhibited a low tannin content, a desirable trait for animal feed applications. Liquid chromatography-mass spectrometry (LC-MS) was employed for the identification of phenolic compounds, unearthing the prevalence of quinic acid and flavanols, including catechin (+) and epicatechin. Sugar analysis identified the presence of glucose and sucrose, emphasizing the seeds' unique carbohydrate composition. Gas chromatography elucidated the fatty acid profile, spotlighting prominent components such as palmitic acid (13.87%), stearic acid (3.37%), oleic acid (27.66%), linoleic acid (45.83%), and linolenic acid (3.53%). The findings underscore the seeds' nutritive significance, positioning them as rich sources of natural antioxidants, fatty acids, and phenolic compounds. Moreover, the extracts' favorable tannin content positions them as potential candidates for functional food applications, showcasing their promise as sources of bioactive molecules with diverse applications.
Collapse
Affiliation(s)
- Jamila Yehmed
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia.
- Faculty of Sciences of Gabes, University of Gabes, 6072 Zrig Gabes, Gabes, Tunisia.
| | - Samir Tlahig
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia.
- Project Management Office, University of Carthage, Avenue of the Republic BP 77-1054, Amilcar, Tunisia.
| | - Amina Mohamed
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Hedi Yahia
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Belgacem Lachiheb
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Leila Ben Yahia
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Mohamed Loumerem
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| |
Collapse
|
289
|
Abolarin PO, Amin A, Nafiu AB, Ogundele OM, Owoyele BV. Optimization of Parkinson's disease therapy with plant extracts and nutrition's evolving roles. IBRO Neurosci Rep 2024; 17:1-12. [PMID: 38872839 PMCID: PMC11167367 DOI: 10.1016/j.ibneur.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Death of dopaminergic cells in the SNpc leads to manifestations of motor dysfunction and non-motor symptoms of PD. The progression of PD symptoms severely affects the quality of life of patients and poses socio-economic problems to families and society at large. The clinical and neuropathological characteristics of PD are triggered by multiple factors such as oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein aggregation. Notwithstanding the advancements in pharmacological therapy in PD management, there is burgeoning interest in alternative and complementary approaches, essentially nutrition and plant extracts strategies. This review gives widespread analysis of the role of nutrition and plant extracts in the management of PD. Studies that investigated the effects of various dietary compounds and plant extract on PD symptoms and progression were reviewed from existing literatures. Nutraceuticals, including vitamins and phytochemicals such as Mucuna pruriens have shown potential neuroprotective functions in preclinical and clinical studies. Indeed, these strategies ameliorate mitochondrial dysfunction, oxidative stress, and neuroinflammation, all which are implicated in the pathogenesis of PD. The neuroprotective mechanisms of nutrition and plant extracts in PD, with emphasis on their capacity to target multiple pathways implicated in PD are discussed. Additionally, challenges and limitations related with translating preclinical findings into clinical practice including standardization of dosing regimens, bioavailability, and inter-individual variability are discussed. Largely, this review elucidates on the role of nutrition and plant extracts as adjunctive therapy in PD management.
Collapse
Affiliation(s)
- Patrick Oluwole Abolarin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Bamidele Victor Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
290
|
Saba AA, Nur J, Alam MS, Howlader ZH, Islam LN, Nabi AN. Missense variant rs75603675 within TMPRSS2 gene is associated with the increased risk of severe form of COVID-19. GENE REPORTS 2024; 37:102039. [DOI: 10.1016/j.genrep.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
291
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
292
|
Sattari M, Amri J, Shahaboddin ME, Sattari M, Tabatabaei-Malazy O, Azmon M, Meshkani R, Panahi G. The protective effects of fisetin in metabolic disorders: a focus on oxidative stress and associated events. J Diabetes Metab Disord 2024; 23:1753-1771. [PMID: 39610486 PMCID: PMC11599505 DOI: 10.1007/s40200-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 11/30/2024]
Abstract
Abstract Metabolic syndrome is increasingly recognized as a significant precursor to various chronic diseases, contributing to a growing public health concern. Its complex pathogenesis involves multiple interrelated mechanisms, with oxidative stress identified as a cornerstone that exacerbates other pathogenic pathways. This study elucidates the molecular mechanisms by which oxidative stress intensifies metabolic disturbances, particularly insulin resistance. Some recent research has focused on fisetin, a natural product known for its potential benefits in diabetes and its associated microvascular and macrovascular complications. This paper compiles a comprehensive collection of findings by reviewing studies conducted over the past decade, detailing dosages, investigated markers, and their respective outcomes. Notably, a recurrent finding was fisetin's ability to enhance Nrf2, a principal regulator of antioxidant defense, in both metabolic and non-metabolic diseases. Furthermore, intriguing results suggest that the effects of Nrf2 extend beyond oxidative stress modulation, demonstrating favorable impacts on tissue-specific functions in metabolic regulation. This highlights fisetin not only as an antioxidant but also as a potential therapeutic agent for improving metabolic health and mitigating the effects of metabolic syndrome. In conclusion, fisetin can enhance the body's antioxidant defenses by modulating the Nrf2 pathway while also improving metabolic health through its effects on inflammation, cell survival, and energy metabolism, offering a comprehensive approach to managing metabolic disorders. Graphical Abstract
Collapse
Affiliation(s)
- Mahboobe Sattari
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Mohammad Esmaeil Shahaboddin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohadese Sattari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
293
|
Le DD, Kim YR, Yu S, Dang T, Lee KT, Lee M. Phytochemical and bioactivities of promising flavonoid glycosides and their content from unmatured fruits of Vicia bungei with their bioactivity. Food Chem 2024; 460:140541. [PMID: 39137573 DOI: 10.1016/j.foodchem.2024.140541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Flavonoids have extensive biological qualities that support human health. A molecular networking strategy produced representative networks despite mass fragmentation of spectra of untargeted data-dependent acquisition approach to target flavonoid glycosides from Vicia bungei by using UHPLC-MS guided isolation. Using contemporary methods, seven chemicals were extracted and identified. Antioxidative and anti-inflammatory effects of these isolates were assessed in vitro on free radicals and inflammatory mediators, cytokines, enzymatic proteins. Two active compounds, apigenin 6-C-β-D-galactopyranosyl-8-C-β-D-xylopyranoside, and sphaerobioside, were further assessed for their binding affinity to target protein in in silico study. The molecular mechanism of sphaerobioside was found to involve suppression of LPS-stimulated inflammation by NF-κB inactivation by inhibiting nuclear translocation of p65 and prevention of phosphorylation of κB inhibitor α (IκBα) and IκB kinase (IKKα/β). Furthermore, an analytical method was successfully established and employed to quantify the total extract using these seven chemicals present in this plant as markers.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Republic of Korea.
| | - Ye-Rin Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soojung Yu
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Republic of Korea
| | - Thinhulinh Dang
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Mina Lee
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Republic of Korea; Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
294
|
Gu Y, Li C, Ren X, Hu X, Huang Y, Xia L. Long Noncoding RNA CRNDE Promotes Gastric Cancer Progression through Targeting miR-136-5p/MIEN1. Cancer Biother Radiopharm 2024; 39:770-781. [PMID: 38963782 DOI: 10.1089/cbr.2023.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) contribute to the initiation and progression of gastric cancer (GC). This study examined the potential role of lncRNA colorectal neoplasia differentially expressed (CRNDE) in modulating the expression of migration and invasion enhancer 1 (MIEN1) through the suppression of miR-136-5p in GC. Methods: The biological roles of CRNDE, miR-136-5p, and MIEN1 in GC were assessed both in laboratory settings and through the examination of clinical samples. Results: CRNDE was found to be significantly increased in GC tissues, and this upregulation was associated with an unfavorable prognosis of GC patients. In vitro experiments showed that inhibiting cell growth and migration, along with promoting apoptosis in GC cells, could be achieved by either disabling CRNDE or MIEN1, or by increasing the expression of miR-136-5p. MIEN1 is a specific recipient of miR-136-5p, and the anticancer effects of miR-136-5p can be counteracted by the increased expression of MIEN1. Through the examination of clinical specimens, it has been observed that there is a significant positive correlation between the expression of MIEN1 and CRNDE. In contrast, miR-136-5p expression in GC tissues shows a negative correlation. Conclusion: A previously unexplored therapeutic target for GC involves the CRNDE/miR-136-5p/MIEN1 signal transduction cascade.
Collapse
Affiliation(s)
- Yingchao Gu
- Department of General Surgery, Qionglai Medical Center Hospital, Qionglai City, China
| | - Chaoyu Li
- Department of General Surgery, Qionglai Medical Center Hospital, Qionglai City, China
| | - Xiankun Ren
- Department of General Surgery, Qionglai Medical Center Hospital, Qionglai City, China
| | - Xiaodong Hu
- Department of General Surgery, Qionglai Medical Center Hospital, Qionglai City, China
| | - Yuwen Huang
- Department of General Surgery, Qionglai Medical Center Hospital, Qionglai City, China
| | - Lin Xia
- Department of General Surgery, Qionglai Medical Center Hospital, Qionglai City, China
| |
Collapse
|
295
|
Zaurito A, Mehmeti I, Limongelli F, Zupo R, Annunziato A, Fontana S, Tardugno R. Natural compounds for endometriosis and related chronic pelvic pain: A review. Fitoterapia 2024; 179:106277. [PMID: 39490444 DOI: 10.1016/j.fitote.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Endometriosis is a chronic gynecological disorder characterized by significant chronic pelvic pain (CPP) and infertility, adversely affecting the quality of life for many women worldwide. This review aims to synthesize recent findings on natural bioactive compounds derived from various plant sources that exhibit beneficial effects in the management of endometriosis and related CPP. A thorough search of databases, including PubMed, Scopus, and Google Scholar, was conducted to identify studies evaluating the efficacy of natural compounds on endometriosis and related CPP. In alphabetical order, curcumins, ginsenosides, polyphenols and other secondary metabolites showed promising effects on oxidative stress, inflammation, and pain modulation associated with endometriosis acting on multiple pathways. Most of the selected articles were in vitro and in vivo studies in animal models, with a limited number of clinical trials. The reported natural compounds according to the highlighted multiple bioactivities, might be valuable complementary alternatives as supplements, nutraceuticals, or in advanced personalized nutrition. Further clinical investigations are needed to comprehensively evaluate their therapeutic potential, safety, efficacy and to establish effective treatment protocols.
Collapse
Affiliation(s)
| | - Irsida Mehmeti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Catholic University 'Our Lady of Good Counsel', Tirana, Albania
| | - Francesco Limongelli
- Department of Pharmacy-Drug Sciences, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Roberta Zupo
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via Amendola 165/a, 70126 Bari, Italy
| | - Sergio Fontana
- Centro Studi e Ricerche 'Dr. S. Fontana 1900-1982', Farmalabor s.r.l., 76012 Canosa di Puglia, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari 'Aldo Moro', 70125 Bari, Italy.
| |
Collapse
|
296
|
Ünal N, Kiymaci ME, Savluk M, Erdogan H, Seker E. Determination of antibacterial and anti-biofilm activities of Terpinen-4-ol loaded polydopamine nanoparticles against Staphylococcus aureus isolates from cows with subclinical mastitis. Vet Res Commun 2024; 48:3655-3668. [PMID: 39196492 DOI: 10.1007/s11259-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Mastitis in cows is one of the most important diseases that give rise to economic losses in dairy farms. Increasing antimicrobial resistance in Staphylococcus aureus, one of the most common causes of mastitis, is a significant health problem. Due to the problems encountered in treating infections caused by resistant strains, developing alternative treatment methods, such as Nanomaterial systems and natural agents, are important. The essential oil of Melaleuca alternifolia is used as an antibacterial and the primary active component is terpinen-4-ol. This study aimed to investigate the antibacterial and anti-biofilm activity of terpinen-4-ol and terpinen-4-ol loaded polydopamine (T-PDA) nanoparticles against S. aureus isolates, which were resistant to at least one group of antibiotics isolated from milk samples of subclinical mastitis cows. The S. aureus strains were identified by biochemical tests and verified with the API Staph kit. The antibiotic susceptibility of the isolates was determined by the disc diffusion method. The broth microdilution method determined the antimicrobial activities of the terpinen-4-ol and T-PDA nanoparticles, and anti-biofilm activities were assessed using the modified crystal violet method. All of the isolates were resistant to benzylpenicillin and susceptible to trimethoprim/sulfamethoxazole. Multi-antibiotic resistance was detected in the 11 S. aureus isolates used in this study. For the terpinen-4-ol and T-PDA nanoparticles, MIC values were determined in the range of 0.125-0.5% (µL/mL) and 0.125-0.25% (µL/mL), respectively. None of the isolates formed biofilms. As a result, it was found that the antibacterial efficacy of the T- PDA nanoparticles was higher against nine of the S. aureus isolates than against the terpinen-4-ol.
Collapse
Affiliation(s)
- Nilgün Ünal
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey.
| | - Merve Eylul Kiymaci
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Merve Savluk
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Esra Seker
- Department of Microbiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyon, Turkey
| |
Collapse
|
297
|
Guo QH, Jian LY, Hu Y, Wang S. A comprehensive and systematic review on Curcumin as a promising candidate for the inhibition of melanoma growth: From pre-clinical evidence to molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156073. [PMID: 39515103 DOI: 10.1016/j.phymed.2024.156073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Melanoma, a highly malignant skin tumor, can develop systemic metastases during the early stage. Several studies of melanoma animal models indicate that curcumin, a natural plant extract, inhibits melanoma growth through various mechanisms. To evaluate the relationships among different experimental conditions, curcumin itself, its derivatives, and special formulations, it is necessary to conduct a systematic review and meta-analysis. PURPOSE This meta-analysis aims to evaluate the potential of Curcumin as a drug for inhibiting the growth of melanoma and to determine the optimal dosage range and treatment duration for Curcumin administration. METHODS A systematic search of studies published from inception to December 2023 was conducted across six databases (PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data, and VIP). Methodological quality was assessed using SYRCLE's RoB tool. Study heterogeneity was assessed using Cochran's Q test and I2 statistics. Publication bias risk was evaluated using a funnel plot. All analyses were performed using R (version 4.3.3). Additionally, three-dimensional effect analysis and machine learning techniques were utilized to determine the optimal dosage range and treatment duration for Curcumin administration. RESULTS Forty studies involving 989 animals were included. The results demonstrated that, relative to the control group, administration of Curcumin resulted in a significant reduction in tumor volume. [SMD=-3.44; 95 % CI (-4.25, -2.63); P<0.01; I2 = 79 %] and tumor weight [SMD=-1.93; 95 % CI (-2.41, -1.45); P<0.01; I2 = 75 %]. Additionally, Curcumin demonstrated a significant capacity to decrease the number of lung tumor nodules and microangiogenesis, as well as to extend survival time, in animal models. The results from three-dimensional effect analysis and machine learning emphasize that the optimal dosage range for Curcumin is 25-50 mg/kg, with an intervention duration of 10-20 days. CONCLUSION Curcumin can inhibit the growth of melanoma, and the dose-response relationship is not linear. However, further large-scale animal and clinical studies are required to confirm these conclusions.
Collapse
Affiliation(s)
- Qi-Hao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yihan Hu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
298
|
Md Yusoff MH, Shafie MH. A review of in vitro antioxidant and antidiabetic polysaccharides: Extraction methods, physicochemical and structure-activity relationships. Int J Biol Macromol 2024; 282:137143. [PMID: 39500430 DOI: 10.1016/j.ijbiomac.2024.137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
Nowadays, various plant polysaccharides have been successfully extracted which exhibited strong biological activities and might be useful for diabetes management. However, the effect of extraction methods, physicochemical and the structural-activity relationships of polysaccharides to exhibit antioxidants and antidiabetics were inadequate to explain their mechanism in action. The uses of advance extraction methods might be preferred to obtain higher antioxidants and antidiabetic activities of polysaccharides compared to conventional methods, but the determination of optimal extraction conditions might be crucial to preserve their structure and biological functions. Other than that, the physicochemical and structural properties of polysaccharides were closely related to their biological activities such as antioxidant and antidiabetic activities. Therefore, this review addressed the research gap of the influence of extraction methods, physicochemical and structural relationships of polysaccharides to biological activities, pointing out the challenges and limitations as well as future prospects to the current findings.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
299
|
Ansari Z, Maleki MH, Roohy F, Ebrahimi Z, Shams M, Mokaram P, Zamanzadeh Z, Hosseinzadeh Z, Koohpeyma F, Dastghaib S. "Protective effects of artichoke extract and Bifidobacterium longum on male infertility in diabetic rats". Biochem Biophys Rep 2024; 40:101834. [PMID: 39386078 PMCID: PMC11462217 DOI: 10.1016/j.bbrep.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Diabetes is a major global health concern and plays a significant role in male infertility and hormonal abnormalities by altering the tissue structure of spermatogenic tubes and decreasing the number of spermatogonia. This study investigated the effect of artichoke (Cynara scolymus L) hydroalcoholic extract and Bifidobacterium longum probiotic on sexual hormones, oxidative stress, apoptosis pathway, and histopathological changes in testicular tissues of diabetic rats to find an adjuvant therapy to manage the infertility complications of diabetes. Methods In this experiment, 96 male-rats were randomly selected from eight groups. Control, Sham (normal saline), DM group (IP injected with 60 mg/kg STZ), Cynara (400 mg/kg hydroalcoholic extract of Cynara scolymus L), BBL (received 1 × 109 CFU/ml/day Bifidobacterium longum), DM + Cynara, DM + BBL, and DM + Cynara + BBL groups. After 48 days of orally gavage, serum level of FBS (fasting blood sugar), Malondi-aldehyde (MDA), Total-Anti-Oxidant Capacity (TAC), FSH (Follicle-stimulating hormone), LH (Luteinizing hormone), Testosterone, Testis mRNA-expressions of Protamin (prm1), BCL2, and Caspase-9 genes, as well as stereological changes were measured. Results In comparison to the diabetic group, the hydroalcoholic extract of Cynara scolymus L combined with the probiotic Bifidobacterium longum resulted in a substantial decrease in FBS (p < 0.001) and MDA(p < 0.05) concentrations, and the expression of the Caspase-9 gene (1.33-fold change). In addition, serum levels of TAC, LH, FSH, Testosterone were significantly increased (p < 0.05). mRNA expression of protamine (p = 0.016) and BCL2 (0.72-fold change) were detected. Furthermore, in comparison with diabetic rats, the Cynara scolymus L-and Bifidobacterium longum-treated groups showed a significant increase in the number of sexual lineage cells, total weight, sperm count, motility, normal morphology, volume of the testis, and volume and length of seminiferous tubules (p < 0.05). Conclusion The findings demonstrated that Cynara scolymus L extract and Bifidobacterium longum supplement had great therapeutic potential, including antioxidant, anti-apoptotic, anti-diabetic, fertility index improvement, and sex hormone modulators.
Collapse
Affiliation(s)
- Zahra Ansari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| |
Collapse
|
300
|
Gu MJ, Ahn Y, Lee YR, Yoo G, Kim Y, Choi I, Ha SK, Kim D. Coriandrum sativum L. Leaf Extract Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Modulating the AMPK Pathway in High Fat-Fed C57BL/6 Mice. Nutrients 2024; 16:4165. [PMID: 39683561 DOI: 10.3390/nu16234165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. In recent times, the term NAFLD has been modified to metabolic dysfunction-associated steatotic liver disease (MASLD), reflecting its comprehensive scope encompassing a range of metabolic abnormalities. Coriandrum sativum L. (CS) is a traditional medicine, although the preventive mechanism of CS extracts remains unclear. OBJECTIVE This study evaluated the preventive effects of CS in high-fat diet (HFD)-induced MASLD mice by oral administration of 100 or 200 mg/kg/day of CS extracts for 12 weeks. RESULTS The major CS extract compounds were chlorogenic acid, caffeic acid, rutin, and isoquercetin. The administration of CS extract suppressed HFD-induced weight gain, liver weight, and the liver/body weight ratio. It improved the mice's serum biological profiles and suppressed HFD-induced lipid droplet and lipid accumulation by inhibiting lipid accumulation-related gene expression in the liver. It modulated HFD-induced Ampk-Srebp1c pathways and suppressed HFD-induced NF-κB pathway activation in the liver. It regulated inflammation and the AMPK alpha signaling pathway in HFD-fed mice by reducing the accumulation of specific amino acids, leading to the amelioration of fatty liver. CONCLUSIONS The CS extract prevents HFD-induced MASLD and may help prevent or treat MASLD.
Collapse
Affiliation(s)
- Min Ji Gu
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yu Ra Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Inwook Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Donghwan Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|