3151
|
Maiti D, Bhattacharyya A, Basu J. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2001; 276:329-33. [PMID: 11020382 DOI: 10.1074/jbc.m002650200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efforts in prevention and control of tuberculosis suffer from the lack of detailed knowledge of the mechanisms used by pathogenic mycobacteria for survival within host cell macrophages. The exploitation of host cell signaling pathways to the benefit of the pathogen is a phenomenon that deserves to be looked into in detail. We have tested the hypothesis that lipoarabinomannan (LAM) from the virulent species of Mycobacterium tuberculosis possesses the ability to modulate signaling pathways linked to cell survival. The Bcl-2 family member Bad is a proapoptotic protein. Phosphorylation of Bad promotes cell survival in many cell types. We demonstrate that man-LAM stimulates Bad phosphorylation in a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway in THP-1 cells. Man-LAM activated PI-3K. LAM-stimulated phosphorylation of Bad was abrogated in cells transfected with a dominant-negative mutant of PI-3K (Delta p85), indicating that activation of PI-3K is sufficient to trigger phosphorylation of Bad by LAM. Since phosphorylation of Bad occurred at serine 136, the target of the serine/threonine kinase Akt, the effect of LAM on Akt kinase activity was tested. Man-LAM could activate Akt as evidenced from phosphorylation of Akt at Thr(308) and by the phosphorylation of the exogenous substrate histone 2B. Akt activation was abrogated in cells transfected with Deltap85. The phosphorylation of Bad by man-LAM was abrogated in cells transfected with a kinase-dead mutant of Akt. These results establish that LAM-mediated Bad phosphorylation occurs in a PI-3K/Akt-dependent manner. It is therefore the first demonstration of the ability of a mycobacterial virulence factor to up-regulate a signaling pathway involved in cell survival. This is likely to be one of a number of virulence-associated mechanisms by which bacilli control host cell apoptosis.
Collapse
Affiliation(s)
- D Maiti
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta 700 009, India
| | | | | |
Collapse
|
3152
|
Aoki M, Blazek E, Vogt PK. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci U S A 2001; 98:136-41. [PMID: 11134523 PMCID: PMC14557 DOI: 10.1073/pnas.98.1.136] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oncoproteins P3k (homolog of the catalytic subunit of class IA phosphoinositide 3-kinase) and Akt (protein kinase B) induce oncogenic transformation of chicken embryo fibroblasts. The transformed cells show constitutive phosphorylation of the positive regulator of translation p70S6 kinase (S6K) and of the eukaryotic initiation factor 4E-BP1 binding protein (4E-BP1), a negative regulator of translation. Phosphorylation activates S6K and inactivates 4E-BP1. A mutant of Akt that retains kinase activity but does not induce phosphorylation of S6K or of 4E-BP1 fails to transform chicken embryo fibroblasts, suggesting a correlation between the oncogenicity of Akt and phosphorylation of S6K and 4E-BP1. The macrolide antibiotic rapamycin effectively blocks oncogenic transformation induced by either P3k or Akt but does not reduce the transforming activity of 11 other oncoproteins. Rapamycin inhibits the kinase mTOR, an important regulator of translation, and this inhibition requires binding of the antibiotic to the immunophilin FKBP12. Displacement of rapamycin from FKBP12 relieves the inhibition of mTOR and also restores P3k-induced transformation. These data are in accord with the hypothesis that transformation by P3k or Akt involves intervention in translational controls.
Collapse
Affiliation(s)
- M Aoki
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
3153
|
A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11134523 PMCID: PMC14557 DOI: 10.1073/pnas.011528498] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oncoproteins P3k (homolog of the catalytic subunit of class IA phosphoinositide 3-kinase) and Akt (protein kinase B) induce oncogenic transformation of chicken embryo fibroblasts. The transformed cells show constitutive phosphorylation of the positive regulator of translation p70S6 kinase (S6K) and of the eukaryotic initiation factor 4E-BP1 binding protein (4E-BP1), a negative regulator of translation. Phosphorylation activates S6K and inactivates 4E-BP1. A mutant of Akt that retains kinase activity but does not induce phosphorylation of S6K or of 4E-BP1 fails to transform chicken embryo fibroblasts, suggesting a correlation between the oncogenicity of Akt and phosphorylation of S6K and 4E-BP1. The macrolide antibiotic rapamycin effectively blocks oncogenic transformation induced by either P3k or Akt but does not reduce the transforming activity of 11 other oncoproteins. Rapamycin inhibits the kinase mTOR, an important regulator of translation, and this inhibition requires binding of the antibiotic to the immunophilin FKBP12. Displacement of rapamycin from FKBP12 relieves the inhibition of mTOR and also restores P3k-induced transformation. These data are in accord with the hypothesis that transformation by P3k or Akt involves intervention in translational controls.
Collapse
|
3154
|
Chaudhary LR, Hruska KA. The cell survival signal Akt is differentially activated by PDGF-BB, EGF, and FGF-2 in osteoblastic cells. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(20010501)81:2<304::aid-jcb1045>3.0.co;2-u] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3155
|
Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro D, Borboni P, Lauro R, Marchetti P, Melino G, Sesti G. The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets. FASEB J 2001; 15:22-24. [PMID: 11099486 DOI: 10.1096/fj.00-0414fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular scanning of human IRS-1 gene revealed a common polymorphism causing Gly-->Arg972 change. Diabetic and pre-diabetic carriers of Arg972 IRS-1 are characterized by low fasting levels of insulin and C-peptide. To investigate directly whether the Arg 972 IRS-1 affects human islet cells survival, we took advantage of the unique opportunity to analyze pancreatic islets isolated from three donors heterozygous for the Arg972 and six donors carrying wild-type IRS-1. Islets from carriers of Arg972 IRS-1 showed a two-fold increase in the number of apoptotic cells as compared with wild-type. IRS-1-associated PI3-kinase activity was decreased in islets from carriers of Arg972 IRS-1. Same results were reproduced in RIN rat b-cell lines stably expressing wild-type IRS-1 or Arg972 IRS-1. Using these cells, we characterized the downstream pathway by which Arg972 IRS-1 impairs b-cell survival. RIN-Arg972 cells exhibited a marked impairment in the sequential activation of PI3-kinase, Akt, and BAD as compared with RI N-WT. Impaired BAD phosphorylation resulted in increased binding to Bcl-XL instead of 14-3-3 protein, thus sequestering the Bcl-XL antiapoptotic protein to promote survival. Both caspase-9 and caspase-3 activities were increased in RIN-Arg972 cells. The results show that the common Arg972 polymorphism in IRS-1 impairs human b-cell survival and causes resistance to antiapoptotic effects of insulin by affecting the PI3-kinase/Akt survival pathway. These findings establish an important role for the insulin signaling in human b-cell survival and suggest that genetic defects in early steps of insulin signaling may contribute to b-cell failure.
Collapse
Affiliation(s)
- M Federici
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome-'Tor Vergata', 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3156
|
Gagnon A, Dods P, Roustan-Delatour N, Chen CS, Sorisky A. Phosphatidylinositol-3,4,5-trisphosphate is required for insulin-like growth factor 1-mediated survival of 3T3-L1 preadipocytes. Endocrinology 2001; 142:205-12. [PMID: 11145583 DOI: 10.1210/endo.142.1.7902] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adipocyte number, a determinant of adipose tissue mass, reflects the balance between the rates of proliferation/differentiation vs. apoptosis of preadipocytes. The percentage of 3T3-L1 preadipocytes undergoing cell death following serum deprivation was reduced by 10 nM insulin-like growth factor (IGF)-1 (from 50.0 +/- 0.7% for control starved cells to 27.5 +/- 3.1%). TUNEL staining confirmed the apoptotic nature of the cell death. The protective effect of IGF-1 was blocked by phosphoinositide 3-kinase (PI3K) inhibitors, wortmannin, and LY294002, but was unaffected by rapamycin, PD98059, or SB203580, which inhibit mammalian target of rapamycin (mTOR), ERK kinase (MEK1), and p38 MAPK respectively. Exogenous PI(3,4,5)P3 (10 microM), the principal product of IGF-1-stimulated PI3K in 3T3-L1 preadipocytes, had a modest survival effect on its own, reducing cell death from 47.9 +/- 3.4% to 35.6 +/- 3.5%. When added to the combination of IGF-1 and LY294002, PI(3,4,5)P3 reversed most of the inhibitory effect of LY294002 on IGF-1-dependent cell survival, protein kinase B/Akt phosphorylation, and caspase-3 activity. Taken together, these results implicate PI(3,4,5)P3 as a necessary signal for the anti-apoptotic action of IGF-1 on 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- A Gagnon
- The Departments of Medicine and Biochemistry, Microbiology & Immunology, Loeb Health Research Institute, Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | | | | | | | | |
Collapse
|
3157
|
Roschier M, Kuusisto E, Suuronen T, Korhonen P, Kyrylenko S, Salminen A. Insulin-like growth factor binding protein 5 and type-1 insulin-like growth factor receptor are differentially regulated during apoptosis in cerebellar granule cells. J Neurochem 2001; 76:11-20. [PMID: 11145973 DOI: 10.1046/j.1471-4159.2001.00002.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal apoptosis is considered to play a significant role in several neuropathological conditions. However, the molecular mechanisms underlying neuronal apoptosis are poorly understood. Insulin-like growth factor (IGF) signalling is considered to be an important regulator of neuronal differentiation, survival and apoptosis. We have examined the expression of two members of the IGF system, insulin-like growth factor binding protein 5 (IGFBP-5) and the type-1 IGF receptor (IGF1R), during apoptosis of rat cerebellar granule cells (CGCs) in vitro. We describe a prominent downregulation of IGFBP-5 mRNA and protein expression. We also show that IGF-I increases IGFBP-5 expression in CGCs and that the downregulation of IGFBP-5 mRNA can be suppressed by inhibiting mRNA synthesis with actinomycin D. The expression of IGF1R mRNA showed a transient upregulation during potassium chloride (KCl) deprivation induced apoptosis, in contrast to the IGF1R protein level, which was downregulated during KCl deprivation. Our results provide insight into the expression of IGF-related genes during neuronal apoptosis, and indicate that they mediate a protective response to the withdrawal of trophic stimulation. It seems that the expression of IGFBP-5 and IGF1R is regulated to maximize the availability of IGF and the activity of IGF-triggered survival signalling.
Collapse
Affiliation(s)
- M Roschier
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
3158
|
Salinas M, Martín D, Alvarez A, Cuadrado A. Akt1/PKBalpha protects PC12 cells against the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium and reduces the levels of oxygen-free radicals. Mol Cell Neurosci 2001; 17:67-77. [PMID: 11161470 DOI: 10.1006/mcne.2000.0921] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The phosphatidylinositol (PI)-3 kinase-Akt/PKB survival pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective effect against neurotoxins that produce oxidative stress and neurodegeneration has not been investigated. We analyzed the effect of this pathway on the action of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Overexpression of a membrane-targeted, N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 attenuated the apoptotic effect of the neurotoxin in PC12 cells. This effect was not due to protection of mitochondrial complex I activity or restoration of energy charge. Following MPP+-treatment, myr-EGFP-Akt1-transfected cells exhibited an unaltered mitochondrial membrane potential and lower ROS levels than control cells. These results provide a new site of action of Akt/PKB at the level of the oxidative detoxifying cell machinery and suggest that this effect may be responsible in part for the resistance of myr-EGFP-Akt1-expressing cells to oxidative stress and MPP+-induced apoptosis.
Collapse
Affiliation(s)
- M Salinas
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
3159
|
Moorehead RA, Fata JE, Johnson MB, Khokha R. Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice. Cell Death Differ 2001; 8:16-29. [PMID: 11313699 DOI: 10.1038/sj.cdd.4400762] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2000] [Revised: 07/27/2000] [Accepted: 08/07/2000] [Indexed: 11/09/2022] Open
Abstract
IGF-II is a growth factor implicated in human cancers and animal tumor models. While the mitogenic properties of IGF-II are well documented, its ability to suppress apoptosis in vivo has never been proven. We generated independent MMTV-IGF-II transgenic mice to examine the control of epithelial apoptosis at the morphological, cellular and molecular levels during the physiological event of postlactation mammary involution. Transgenic IGF-II expression was achieved in mammary epithelium and increased IGF-II bioactivity was confirmed by phosphorylation of the insulin receptor substrate-1, a signaling molecule downstream of the type I IGF receptor. IGF-II overexpression induced a delay in mammary involution, as evident by increased mammary gland to body weight ratios and persistence of both functionally intact lobulo-alveoli and mammary epithelial cellularity. The delayed mammary involution resulted from a significant reduction in mammary epithelial apoptosis, and not from increased epithelial proliferation. Recombinant IGF-II pellets implanted into involuting mammary glands of wild-type mice provided further evidence that IGF-II protein inhibited local epithelial apoptosis. At the molecular level, phosphorylated Akt/PKB, but not Erk1 or Erk2, persisted in IGF-II overexpressors and temporally correlated with reduced epithelial apoptosis. Levels of the phosphatase PTEN were unaltered in the transgenic tissue suggesting that the maintenance of Akt/PKB phosphorylation resulted from sustained phosphorylation rather than altered dephosphorylation of PIP-3. Together, this data reveal that IGF-II inhibits apoptosis in vivo and this effect correlates with prolonged phosphorylation of Akt/PKB
Collapse
Affiliation(s)
- R A Moorehead
- Department of Medical Biophysics, Ontario Cancer Institute/University Health Network, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | |
Collapse
|
3160
|
Livne A, Shtrichman R, Kleinberger T. Caspase activation by adenovirus e4orf4 protein is cell line specific and Is mediated by the death receptor pathway. J Virol 2001; 75:789-98. [PMID: 11134292 PMCID: PMC113975 DOI: 10.1128/jvi.75.2.789-798.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus E4orf4 protein has been shown to induce transformed cell-specific, protein phosphatase 2A-dependent, and p53-independent apoptosis. It has been further reported that the E4orf4 apoptotic pathway is caspase-independent in CHO cells. Here, we show that E4orf4 induces caspase activation in the human cell lines H1299 and 293T. Caspase activation is required for apoptosis in 293T cells, but not in H1299 cells. Dominant negative mutants of caspase-8 and the death receptor adapter protein FADD/MORT1 inhibit E4orf4-induced apoptosis in 293T cells, suggesting that E4orf4 activates the death receptor pathway. Cytochrome c is released into the cytosol in E4orf4-expressing cells, but caspase-9 is not required for induction of apoptosis. Furthermore, E4orf4 induces accumulation of reactive oxygen species (ROS) in a caspase-8- and FADD/MORT1-dependent manner, and inhibition of ROS generation by 4,5-dihydroxy-1, 3-benzene-disulfonic acid (Tiron) inhibits E4orf4-induced apoptosis. Thus, our results demonstrate that E4orf4 engages the death receptor pathway to generate at least part of the molecular events required for E4orf4-induced apoptosis.
Collapse
Affiliation(s)
- A Livne
- The Gonda Center of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | |
Collapse
|
3161
|
Wempe F, Yang JY, Hammann J, Melchner HV. Gene trapping identifies transiently induced survival genes during programmed cell death. Genome Biol 2001; 2:RESEARCH0023. [PMID: 11516336 PMCID: PMC55320 DOI: 10.1186/gb-2001-2-7-research0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 03/08/2001] [Accepted: 05/16/2001] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The existence of a constitutively expressed machinery for death in individual cells has led to the notion that survival factors repress this machinery and, if such factors are unavailable, cells die by default. In many cells, however, mRNA and protein synthesis inhibitors induce apoptosis, suggesting that in some cases transcriptional activity might actually impede cell death. To identify transcriptional mechanisms that interfere with cell death and survival, we combined gene trap mutagenesis with site-specific recombination (Cre/loxP system) to isolate genes from cells undergoing apoptosis by growth factor deprivation. RESULTS From an integration library consisting of approximately 2 x 106 unique proviral integrations obtained by infecting the interleukin-3 (IL-3)-dependent hematopoietic cell line - FLOXIL3 - with U3Cre gene trap virus, we have isolated 125 individual clones that converted to factor independence upon IL-3 withdrawal. Of 102 cellular sequences adjacent to U3Cre integration sites, 17% belonged to known genes, 11% matched single expressed sequence tags (ESTs) or full cDNAs with unknown function and 72% had no match within the public databases. Most of the known genes recovered in this analysis encoded proteins with survival functions. CONCLUSIONS We have shown that hematopoietic cells undergoing apoptosis after withdrawal of IL-3 activate survival genes that impede cell death. This results in reduced apoptosis and improved survival of cells treated with a transient apoptotic stimulus. Thus, apoptosis in hematopoietic cells is the end result of a conflict between death and survival signals, rather than a simple death by default.
Collapse
Affiliation(s)
- Frank Wempe
- These authors contributed equally to this work
| | | | - Joanna Hammann
- Laboratory for Molecular Hematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - Harald von Melchner
- Laboratory for Molecular Hematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| |
Collapse
|
3162
|
Charland S, Boucher MJ, Houde M, Rivard N. Somatostatin inhibits Akt phosphorylation and cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal and tumoral pancreatic acinar cells. Endocrinology 2001; 142:121-8. [PMID: 11145574 DOI: 10.1210/endo.142.1.7908] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatostatin, or its structural analog SMS 201-995 (SMS), is recognized to exert a growth-inhibitory action in rat pancreas, but the cellular mechanisms are not completely understood. This study was undertaken to evaluate the effect of SMS on p42/p44 MAP kinases and phosphatidylinositol 3-kinase activation and to analyze expression of some cell cycle regulatory proteins in relation to pancreatic acinar cell proliferation in vivo (rat pancreas), as well as in the well-established tumoral cell line AR4-2J. We herein report that: 1) SMS inhibits caerulein-induced pancreatic weight and DNA content and abolishes epidermal growth factor (EGF)-stimulated AR4-2J proliferation; 2) SMS only moderately reduces the stimulatory effect of caerulein on p42/p44 MAP kinase activities in pancreas and has no effect on EGF-stimulated MAP kinase activities in AR4-2J cells; 3) SMS repressed caerulein-induced Akt activity in normal pancreas; 4) SMS has a strong inhibitory action on cyclin E expression induced by caerulein in pancreas and EGF in AR4-2J cells and as expected, the resulting cyclin E-associated cyclin-dependent kinase (cdk)2 activity, as well as pRb phosphorylation, are blunted by SMS treatment in both models; and 5) SMS suppresses mitogen-induced p27(Kip1) down-regulation, as well as marginally induces p21(Cip) expression. Thus, our data suggest that somatostatin-induced growth arrest is mediated by inhibition of phosphatidylinositol 3-kinase pathway and by enhanced expression of p21(Cip) and p27(Kip1), leading to repression of pRb phosphorylation and cyclin E-cdk2 complex activity.
Collapse
Affiliation(s)
- S Charland
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke (Québec), J1H 5N4, Canada
| | | | | | | |
Collapse
|
3163
|
Kline AE, Jenkins LW, Yan HQ, Dixon CE. Neurotransmitter and Growth Factor Alterations in Functional Deficits and Recovery Following Traumatic Brain Injury. Brain Inj 2001. [DOI: 10.1007/978-1-4615-1721-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
3164
|
|
3165
|
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143; e-mail:
| | - Louis F Reichardt
- Department of Physiology, University of California, San Francisco, California 94143, and Howard Hughes Medical Institute, San Francisco, California 94143; e-mail:
| |
Collapse
|
3166
|
Beitner-Johnson D, Rust RT, Hsieh TC, Millhorn DE. Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells. Cell Signal 2001; 13:23-7. [PMID: 11257444 DOI: 10.1016/s0898-6568(00)00128-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Akt is a serine/threonine kinase that has been shown to play a central role in promoting cell survival and opposing apoptosis. We evaluated the effect of hypoxia on Akt in rat pheochromocytoma (PC12) cells. PC12 cells were exposed to varying levels of hypoxia, including 21%, 15%, 10%, 5%, and 1% O(2). Hypoxia dramatically increased phosphorylation of Akt (Ser(473)). This effect peaked after 6 h exposure to hypoxia, but persisted strongly for up to 24 h. Phosphorylation of Akt was paralleled with a progressive increase in phosphorylation of glycogen synthase kinase-3 (GSK-3), one of its downstream substrates. The effect of hypoxia on phosphorylation of Akt was completely blocked by pretreatment of the cells with wortmannin (100 nM), indicating that this effect is mediated by phosphatidylinositol 3-kinase (P13K). In contrast, whereas hypoxia also strongly induced phosphorylation of the transcription factors CREB and EPAS1, these effects persisted in the presence of wortmannin. Thus, hypoxia regulates both P13K-dependent and P13K-independent signaling pathways. Furthermore, activation of the P13K and Akt signaling pathways may be one mechanism by which cells adapt and survive under conditions of hypoxia.
Collapse
Affiliation(s)
- D Beitner-Johnson
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, P.O. Box 67-0576, Cincinnati, OH 45267-0576, USA.
| | | | | | | |
Collapse
|
3167
|
Hong F, Nguyen VA, Shen X, Kunos G, Gao B. Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration. Biochem Biophys Res Commun 2000; 279:974-9. [PMID: 11162460 DOI: 10.1006/bbrc.2000.4044] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver regeneration is controlled by multiple signaling pathways induced by a variety of growth factors, hormones, and cytokines. Here we report that protein kinase B (PKB)/Akt, part of a key cell survival signaling pathway, is markedly activated after partial hepatectomy (PHX). The antiapoptotic protein Bad, a downstream target of PKB/Akt, is also phosphorylated. This cascade can be activated by various factors in primary hepatocytes, with the strongest activation by insulin and the alpha1-adrenergic agonist phenylephrine (PE), followed by IL-6, epidermal growth factor (EGF), and hepatocyte growth factor (HGF). Pretreatment of cells with the specific PI3 kinase inhibitor LY294002 abolished insulin- or PE-activation of PKB/Akt, suggesting that activation of PKB/Akt is mediated by a PI3 kinase-dependent mechanism. In vivo administration of PE, insulin, IL-6, HGF, or EGF to mice markedly stimulated PKB/Akt in the liver, with the strongest stimulation induced by insulin and PE. Moreover, HGF and insulin were able to attenuate transforming growth factor beta-induced apoptosis in hepatic cells, and these effects were antagonized by LY294002. Taken together, these findings suggest that rapid activation of PKB/Akt is a key antiapoptotic signaling pathway involved in liver regeneration.
Collapse
Affiliation(s)
- F Hong
- Section on Liver Biology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
3168
|
Robino G, Parola M, Marra F, Caligiuri A, De Franco RM, Zamara E, Bellomo G, Gentilini P, Pinzani M, Dianzani MU. Interaction between 4-hydroxy-2,3-alkenals and the platelet-derived growth factor-beta receptor. Reduced tyrosine phosphorylation and downstream signaling in hepatic stellate cells. J Biol Chem 2000; 275:40561-7. [PMID: 11007794 DOI: 10.1074/jbc.m007694200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSC) undergo activation toward myofibroblast-like cells during early stages of liver injury associated with fibrogenesis. Platelet-derived growth factor (PDGF), particularly its BB isoform, has been identified as the most potent mitogen for HSC. 4-Hydroxy-2,3-nonenal and related 4-hydroxy-2, 3-alkenals (HAKs) have been suggested to modulate the process of HSC activation. In this study we investigated the relationship between HAKs and PDGF receptor activation in human HSC. By employing noncytotoxic concentrations (10(-6) m) of HAKs, we observed a significant inhibition of PDGF-BB-dependent DNA synthesis. HAKs inhibited relevant pathways of PDGF-BB-dependent mitogenic signaling, including autophosphorylation of PDGF receptor (PDGF-R) beta subunits and activation of phosphatidylinositol 3-kinase and extracellular regulated kinases 1/2. Inhibition of DNA synthesis was reversible, and recovery of PDGF-mediated mitogenic signaling occurred within 24-48 h and was associated with HAKs-induced up-regulation of PDGF-R beta gene expression. 4-Hydroxy-2,3-nonenal, used as a model HAK, inhibited the intrinsic tyrosine kinase activity associated with the PDGF-R beta subunit, whereas binding of PDGF to its receptor was unaffected. This study identifies a novel regulatory mechanism of reactive aldehydes on PDGF receptor signaling and biologic actions, which may be relevant in several pathophysiological conditions, including liver fibrosis.
Collapse
Affiliation(s)
- G Robino
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3169
|
Lawlor MA, Rotwein P. Coordinate control of muscle cell survival by distinct insulin-like growth factor activated signaling pathways. J Cell Biol 2000; 151:1131-40. [PMID: 11121430 PMCID: PMC2190590 DOI: 10.1083/jcb.151.6.1131] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Peptide growth factors control diverse cellular functions by regulating distinct signal transduction pathways. In cultured myoblasts, insulin-like growth factors (IGFs) stimulate differentiation and promote hypertrophy. IGFs also maintain muscle cell viability. We previously described C2 skeletal muscle lines lacking expression of IGF-II. These cells did not differentiate, but underwent progressive apoptotic death when incubated in differentiation medium. Viability could be sustained and differentiation enabled by IGF analogues that activated the IGF-I receptor; survival was dependent on stimulation of phosphatidylinositol 3-kinase (PI3-kinase). We now find that IGF action promotes myoblast survival through two distinguishable PI3-kinase-regulated pathways that culminate in expression of the cyclin-dependent kinase inhibitor, p21. Incubation with IGF-I or transfection with active PI3-kinase led to rapid induction of MyoD and p21, and forced expression of either protein maintained viability in the absence of growth factors. Ectopic expression of MyoD induced p21, and inhibition of p21 blocked MyoD-mediated survival, thus defining one PI3-kinase-dependent pathway as leading first to MyoD, and then to p21 and survival. Unexpectedly, loss of MyoD expression did not impede IGF-mediated survival, revealing a second pathway involving activation by PI3-kinase of Akt, and subsequent induction of p21. Since inhibition of p21 caused death even in the presence of IGF-I, these results establish a central role for p21 as a survival factor for muscle cells. Our observations also define a MyoD-independent pathway for regulating p21 in muscle, and demonstrate that distinct mechanisms help ensure appropriate expression of this key protein during differentiation.
Collapse
Affiliation(s)
- Margaret A. Lawlor
- Molecular Medicine Division, Oregon Health Sciences University, Portland, Oregon 97201-3098
| | - Peter Rotwein
- Molecular Medicine Division, Oregon Health Sciences University, Portland, Oregon 97201-3098
| |
Collapse
|
3170
|
Whitlock BB, Gardai S, Fadok V, Bratton D, Henson PM. Differential roles for alpha(M)beta(2) integrin clustering or activation in the control of apoptosis via regulation of akt and ERK survival mechanisms. J Cell Biol 2000; 151:1305-20. [PMID: 11121444 PMCID: PMC2190581 DOI: 10.1083/jcb.151.6.1305] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2000] [Accepted: 10/27/2000] [Indexed: 12/17/2022] Open
Abstract
The role of integrins in leukocyte apoptosis is unclear, some studies suggest enhancement, others inhibition. We have found that beta(2)-integrin engagement on neutrophils can either inhibit or enhance apoptosis depending on the activation state of the integrin and the presence of proapoptotic stimuli. Both clustering and activation of alpha(M)beta(2) delays spontaneous, or unstimulated, apoptosis, maintains mitochondrial membrane potential, and prevents cytochrome c release. In contrast, in the presence of proapoptotic stimuli, such as Fas ligation, TNFalpha, or UV irradiation, ligation of active alpha(M)beta(2) resulted in enhanced mitochondrial changes and apoptosis. Clustering of inactive integrins did not show this proapoptotic effect and continued to inhibit apoptosis. This discrepancy was attributed to differential signaling in response to integrin clustering versus activation. Clustered, inactive alpha(M)beta(2) was capable of stimulating the kinases ERK and Akt. Activated alpha(M)beta(2) stimulated Akt, but not ERK. When proapoptotic stimuli were combined with either alpha(M)beta(2) clustering or activation, Akt activity was blocked, allowing integrin activation to enhance apoptosis. Clustered, inactive alpha(M)beta(2) continued to inhibit stimulated apoptosis due to maintained ERK activity. Therefore, beta(2)-integrin engagement can both delay and enhance apoptosis in the same cell, suggesting that integrins can play a dual role in the apoptotic progression of leukocytes.
Collapse
Affiliation(s)
- Ben B. Whitlock
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Shyra Gardai
- Departments of Pathology and Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | - Valerie Fadok
- Departments of Pathology and Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | - Donna Bratton
- Departments of Pathology and Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | - Peter M. Henson
- Departments of Pathology and Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| |
Collapse
|
3171
|
Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 2000; 87:1172-9. [PMID: 11110775 DOI: 10.1161/01.res.87.12.1172] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that chronic beta-adrenergic receptor (beta-AR) stimulation alters cardiac myocyte survival in a receptor subtype-specific manner. We examined the effect of selective beta(1)- and beta(2)-AR subtype stimulation on apoptosis induced by hypoxia or H(2)O(2) in rat neonatal cardiac myocytes. Although neither beta(1)- nor beta(2)-AR stimulation had any significant effect on the basal level of apoptosis, selective beta(2)-AR stimulation protected myocytes from apoptosis. beta(2)-AR stimulation markedly increased mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) activation as well as phosphatidylinositol-3'-kinase (PI-3K) activity and Akt/protein kinase B phosphorylation. beta(1)-AR stimulation also markedly increased MAPK/ERK activation but only minimally activated PI-3K and Akt. Pretreatment with pertussis toxin blocked beta(2)-AR-mediated protection from apoptosis as well as the beta(2)-AR-stimulated changes in MAPK/ERK, PI-3K, and Akt/protein kinase B. The selective PI-3K inhibitor, LY 294002, also blocked beta(2)-AR-mediated protection, whereas inhibition of MAPK/ERK activation at an inhibitor concentration that blocked agonist-induced activation but not the basal level of activation had no effect on beta(2)-AR-mediated protection. These findings demonstrate that beta(2)-ARs activate a PI-3K-dependent, pertussis toxin-sensitive signaling pathway in cardiac myocytes that is required for protection from apoptosis-inducing stimuli often associated with ischemic stress.
Collapse
Affiliation(s)
- A Chesley
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
3172
|
Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 2000; 13:817-27. [PMID: 11163197 DOI: 10.1016/s1074-7613(00)00079-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine phosphorylation of adaptor proteins permits the B cell antigen receptor (BCR)-associated protein tyrosine kinases to regulate downstream effector molecules. Here, we report the identification of a novel B cell adaptor for phosphoinositide 3-kinase (PI3K), termed BCAP. Tyrosine phosphorylation of BCAP is mediated by Syk and Btk, thereby providing binding site(s) for the p85 subunit of PI3K. Disruption of the BCAP gene in the DT40 B cell line inhibits BCR-mediated phosphatidylinositol 3,4,5-trisphosphate generation, leading to impaired Akt response. Moreover, recruitment of PI3K to glycolipid-enriched microdomains (GEMs) is significantly attenuated in the absence of BCAP. Hence, these data suggest that BCAP bridges BCR-associated kinases to the PI3K pathway by regulating PI3K localization.
Collapse
Affiliation(s)
- T Okada
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | |
Collapse
|
3173
|
Lawlor MA, Rotwein P. Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol Cell Biol 2000; 20:8983-95. [PMID: 11073997 PMCID: PMC86552 DOI: 10.1128/mcb.20.23.8983-8995.2000] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polypeptide growth factors activate specific transmembrane receptors, leading to the induction of multiple intracellular signal transduction pathways which control cell function and fate. Recent studies have shown that growth factors promote cell survival by stimulating the serine-threonine protein kinase Akt, which appears to function primarily as an antiapoptotic agent by inactivating death-promoting molecules. We previously established C2 muscle cell lines lacking endogenous expression of insulin-like growth factor II (IGF-II). These cells underwent apoptotic death in low-serum differentiation medium but could be maintained as viable myoblasts by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we show that IGF-I promotes muscle cell survival through Akt-mediated induction of the cyclin-dependent kinase inhibitor p21. Treatment of myoblasts with IGF-I or transfection with an inducible Akt maintained muscle cell survival and enhanced production of p21, and ectopic expression of p21 was able to sustain viability in the absence of growth factors. Blocking of p21 protein accumulation through a specific p21 antisense cDNA prevented survival regulated by IGF-I or Akt but did not block muscle cell viability mediated by PDGF-BB. Our results define Akt as an intermediate and p21 as a critical effector of an IGF-controlled myoblast survival pathway that is active during early myogenic differentiation and show that growth factors are able to maintain cell viability by inducing expression of pro-survival molecules.
Collapse
Affiliation(s)
- M A Lawlor
- Molecular Medicine Division, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
3174
|
Miao W, Luo Z, Kitsis RN, Walsh K. Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 2000; 32:2397-402. [PMID: 11113015 DOI: 10.1006/jmcc.2000.1283] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous data have shown that enhanced Akt signaling inhibits cardiac myocyte apoptosis in vitro and in vivo. To elucidate the contribution of apoptosis to the pathogenesis of the infarct, we investigated whether intra-coronary Akt gene delivery could reduce gross infarct size following ischemia/reperfusion injury. METHODS AND RESULTS Replication-defective adenoviral constructs encoding a myristoylated, constitutively-active form of Akt (myrAkt) or beta -galactosidase were delivered to rat hearts by intracoronary perfusion. Twenty-four h after gene transduction, hearts in both groups underwent 45 min of ischemia followed by 4 h of reperfusion. A third group of animals also underwent ischemia-reperfusion injury but were not transduced with an adenoviral vector. The proportion of the left ventricle at risk was not different among the experimental groups. However, infarct size as a proportion of the area at risk was significantly lower in myrAkt-treated group than in the beta -galactosidase treated group or in the control group that was not subject to intracoronary perfusion (myrAkt=20.9+/-2.7%v beta -galactosidase=56.1+/-3.9% and control=46.2+/-4.6%, P<0.05), as was infarct size as a proportion of the total left ventricle (myrAkt=11.4+/-3.2 v beta -galactosidase=32. 9+/-3.3 and control=23.5+/-3.0, P<0.05). CONCLUSIONS These data demonstrate that Akt signaling limits infarct size following ischemia/reperfusion injury and they indicate that the activation of this pathway may be useful in protecting against myocardial loss in the diseased heart.
Collapse
Affiliation(s)
- W Miao
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
3175
|
Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG, Duronio V, Finlay BB. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 2000; 275:37718-24. [PMID: 10978351 DOI: 10.1074/jbc.m008187200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The serine-threonine kinase Akt is a protooncogene involved in the regulation of cell proliferation and survival. Activation of Akt is initiated by binding to the phospholipid products of phosphoinositide 3-kinase at the inner leaflet of the plasma membranes followed by phosphorylation at Ser(473) and Thr(308). We have found that Akt is activated by Salmonella enterica serovar Typhimurium in epithelial cells. A bacterial effector protein, SigD, which is translocated into host cells via the specialized type III secretion system, is essential for Akt activation. In HeLa cells, wild type S. typhimurium induced translocation of Akt to membrane ruffles and phosphorylation at residues Thr(308) and Ser(473) and increased kinase activity. In contrast, infection with a SigD deletion mutant did not induce phosphorylation or activity although Akt was translocated to membrane ruffles. Complementation of the SigD deletion strain with a mutant containing a single Cys to Ser mutation (C462S), did not restore the Akt activation phenotype. This residue has previously been shown to be essential for inositol phosphatase activity of the SigD homologue, SopB. Our data indicate a novel mechanism of Akt activation in which the endogenous cellular pathway does not convert membrane-associated Akt into its active form. SigD is also the first bacterial effector to be identified as an activator of Akt.
Collapse
Affiliation(s)
- O Steele-Mortimer
- Biotechnology Laboratory and Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
3176
|
Whisstock JC, Romero S, Gurung R, Nandurkar H, Ooms LM, Bottomley SP, Mitchell CA. The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J Biol Chem 2000; 275:37055-61. [PMID: 10962003 DOI: 10.1074/jbc.m006244200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inositol polyphosphate 5-phosphatases (5-phosphatase) hydrolyze the 5-position phosphate from the inositol ring of phosphatidylinositol-derived signaling molecules; however, the mechanism of catalysis is only partially characterized. These enzymes play critical roles in regulating cell growth, apoptosis, intracellular calcium oscillations, and post-synaptic vesicular trafficking. The UCLA fold recognition server (threader) predicted that the conserved 300-amino acid catalytic domain, common to all 5-phosphatases, adopts the fold of the apurinic/apyrimidinic (AP) base excision repair endonucleases. PSI-BLAST searches of GENPEPT, using the amino acid sequence of AP endonuclease exonuclease III, identified all members of the 5-phosphatase family with highly significant scores. A sequence alignment between exonuclease III and all known 5-phosphatases revealed six highly conserved motifs containing residues that corresponded to the catalytic residues in the AP endonucleases. Mutation of each of these residues to alanine in the mammalian 43-kDa, or yeast Inp52p 5-phosphatase, resulted in complete loss of enzyme activity. We predict the 5-phosphatase enzymes share a similar mechanism of catalysis to the AP endonucleases, consistent with other common functional similarities such as an absolute requirement for magnesium for activity. Based on this analysis, functional roles have been assigned to conserved residues in all 5-phosphatase enzymes.
Collapse
Affiliation(s)
- J C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
3177
|
Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 2000; 19:5598-605. [PMID: 11114740 DOI: 10.1038/sj.onc.1203855] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
VEGFR-1 (Flt-1), VEGFR-2 (KDR) and VEGFR-3 (Flt4) are endothelial specific receptor tyrosine kinases, regulated by members of the vascular endothelial growth factor family. VEGFRs are indispensable for embryonic vascular development, and are involved in the regulation of many aspects of physiological and pathological angiogenesis. VEGF-C and VEGF-D, as ligands for VEGFR-3 are also capable of stimulating lymphangiogenesis and at least VEGF-C can enhance lymphatic metastasis. Recent studies have shown that missense mutations within the VEGFR-3 tyrosine kinase domain are associated with human hereditary lymphedema, suggesting an important role for this receptor in the development of the lymphatic vasculature.
Collapse
Affiliation(s)
- M J Karkkainen
- Molecular Cancer Biology Laboratory, and the Ludwig Institute for Cancer Research, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
3178
|
Obata T, Yaffe MB, Leparc GG, Piro ET, Maegawa H, Kashiwagi A, Kikkawa R, Cantley LC. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 2000; 275:36108-15. [PMID: 10945990 DOI: 10.1074/jbc.m005497200] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AKT was originally identified as a proto-oncogene with a pleckstrin homology and Ser/Thr protein kinase domains. Recent studies revealed that AKT regulates a variety of cellular functions including cell survival, cell growth, cell differentiation, cell cycle progression, transcription, translation, and cellular metabolism. To clarify the substrate specificity of AKT, we have used an oriented peptide library approach to determine optimal amino acids at positions N-terminal and C-terminal to the site of phosphorylation. The predicted optimal peptide substrate (Arg-Lys-Arg-Xaa-Arg-Thr-Tyr-Ser*-Phe-Gly where Ser* is the phosphorylation site) has similarities to but is distinct from optimal substrates that we previously defined for related basophilic protein kinases such as protein kinase A, Ser/Arg-rich kinases, and protein kinase C family members. The positions most important for high V(max)/K(m) ratio were Arg-3>Arg-5>Arg-7. The substrate specificity of AKT was further investigated by screening a lambdaGEX phage HeLa cell cDNA expression library. All of the substrates identified by this procedure contained Arg-Xaa-Arg-Xaa-Xaa-(Ser/Thr) motifs and were in close agreement with the motif identified by peptide library screening. The results of this study should help in prediction of likely AKT substrates from primary sequences.
Collapse
Affiliation(s)
- T Obata
- Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
3179
|
Kamalati T, Jolin HE, Fry MJ, Crompton MR. Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene 2000; 19:5471-6. [PMID: 11114724 DOI: 10.1038/sj.onc.1203931] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A high proportion of human breast cancers, in contrast with normal mammary tissue, express the intracellular tyrosine kinase BRK. BRK expression enhances the mitogenic response of mammary epithelial cells to epidermal growth factor, and conferment of a proliferative advantage through this mechanism may account for the frequent elevation of BRK expression in tumours. Here we report that BRK expression in mammary epithelial cells, at pathologically relevant levels, results in an enhanced phosphorylation of the epidermal growth factor receptor-related receptor erbB3 in response to epidermal growth factor. As a consequence, erbB3 recruits increased levels of phosphoinositide 3-kinase, and this is associated with a potentiated activation of Akt. This effect of BRK on the regulation of phosphoinositide 3-kinase and Akt activity may account for BRK's ability to enhance mammary cell mitogenesis, and raises the possibility that breast tumours expressing BRK may acquire a resistance to pro-apoptotic signals.
Collapse
Affiliation(s)
- T Kamalati
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | |
Collapse
|
3180
|
Crowder RJ, Freeman RS. Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal. J Biol Chem 2000; 275:34266-71. [PMID: 10954722 DOI: 10.1074/jbc.m006160200] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous studies reveal that phosphatidylinositol (PI) 3-kinase and Akt protein kinase are important mediators of cell survival. However, the survival-promoting mechanisms downstream of these enzymes remain uncharacterized. Glycogen synthase kinase-3 beta (GSK-3 beta), which is inhibited upon phosphorylation by Akt, was recently shown to function during cell death induced by PI 3-kinase inhibitors. In this study, we tested whether GSK-3 beta is critical for the death of sympathetic neurons caused by the withdrawal of their physiological survival factor, the nerve growth factor (NGF). Stimulation with NGF resulted in PI 3-kinase-dependent phosphorylation of GSK-3 beta and inhibition of its protein kinase activity, indicating that GSK-3 beta is targeted by PI 3-kinase/Akt in these neurons. Expression of the GSK-3 beta inhibitor Frat1, but not a mutant Frat1 protein that does not bind GSK-3 beta, rescued neurons from death caused by inhibiting PI 3-kinase. Similarly, expression of Frat1 or kinase-deficient GSK-3 beta reduced death caused by inhibiting Akt. In NGF-maintained neurons, overexpression of GSK-3 beta caused a small but significant decrease in survival. However, expression of neither Frat1, kinase-deficient GSK-3 beta, nor GSK-3-binding protein inhibited NGF withdrawal-induced death. Thus, although GSK-3 beta function is required for death caused by inactivation of PI 3-kinase and Akt, neuronal death caused by NGF withdrawal can proceed through GSK-3 beta-independent pathways.
Collapse
Affiliation(s)
- R J Crowder
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
3181
|
Plate JM, Petersen KS, Buckingham L, Shahidi H, Schofield CM. Gene expression in chronic lymphocytic leukemia B cells and changes during induction of apoptosis. Exp Hematol 2000; 28:1214-24. [PMID: 11063869 DOI: 10.1016/s0301-472x(00)00536-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our studies in chronic lymphocytic leukemia (CLL) are directed at understanding which signals maintain viability in vivo and become lost upon removal of leukemic cells from the body, such that they immediately begin to undergo apoptosis ex vivo. In this report, we examine changes in gene expression observed between freshly isolated CLL B cells and after maintenance in vitro with and without Fludara. We compare these effects with an Epstein-Barr virus (EBV)-transformed cell line treated similarly. Kinetic effects of drug treatment on apoptosis and cell division were examined with DNA laddering, radioisotopic labeling, and flow cytometry using the fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Reverse transcriptase polymerase chain reaction and hybridization blots of microarray cDNA analyses were performed to examine gene expression. We demonstrate that many genes, especially cyclin D1, were downregulated after culture of CLL cells. Anti-apoptotic genes BAG-1 and Akt2 were upregulated. The greatest positive effect with Fludara was the upregulation of JNK1. The EBV-transformed cell line was resistant to classic DNA laddering induced with Fludara. Although DNA synthesis was blocked, the EBV-transformed cell line had some ability to recover from treatment following drug washout. CLL cells express cell cycle regulatory genes that are specific for activated cells in the G(1)-S phase of the cell cycle. Growth regulatory signals are lost when the leukemic cells are isolated from the body. Fludara enhances kinetics of apoptosis and induces expression of a gene responsive to stress that regulates expression of a kinase involved in initiation of the apoptotic pathway.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Tumor Cells, Cultured
- Vidarabine Phosphate/analogs & derivatives
- Vidarabine Phosphate/pharmacology
Collapse
Affiliation(s)
- J M Plate
- Rush Presbyterian St. Luke's Medical Center, Chicago, Ill 60612, USA.
| | | | | | | | | |
Collapse
|
3182
|
Abstract
The accumulation of neoplastic cells can occur through enhanced proliferation, diminished cell turnover, or a combination of both processes. Although the potential contribution of diminished cell turnover to tumor development has been appreciated for a decade, more recent studies in animal models and clinical cancer specimens have elucidated the mechanisms by which alterations in the apoptotic machinery contribute to the process of carcinogenesis. At the same time, a different group of studies have demonstrated the feasibility of eliminating neoplastic cells by selectively inducing apoptosis. In this essay, we review recent developments in the fields of carcinogenesis and molecular therapeutics in light of new understanding of apoptotic pathways.
Collapse
Affiliation(s)
- S H Kaufmann
- Division of Oncology Research and Department of Molecular Pharmacology, Mayo Graduate School, Rochester, Minnesota, USA.
| | | |
Collapse
|
3183
|
Abstract
In an often rapidly changing environment, cells must adapt by monitoring and reacting quickly to extracellular stimuli detected by membrane-bound receptors and proteins. Reversible phosphorylation of intracellular regulatory proteins has emerged as a crucial mechanism effecting the transmission and modulation of such signals and is determined by the relative activities of protein kinases and phosphatases within the cell. These are often arranged into complex signaling networks that may function independently or be subject to cross-regulation. Recently, genetic and biochemical analyses have identified the universally conserved mitogen-activated protein (MAP) kinase cascade as one of the most ubiquitous signal transduction systems. This pathway is activated after a variety of cellular stimuli and regulates numerous physiological processes, particularly the cell division cycle. Progression through the cell cycle is critically dependent on the presence of environmental growth factors and stress stimuli, and failure to correctly integrate such signals into the cell cycle machinery can lead to the accumulation of genetic damage and genomic instability characteristic of cancer cells. Here we focus on the MAP kinase cascade and discuss the molecular mechanisms by which these extensively studied signaling pathways influence cell growth and proliferation.
Collapse
Affiliation(s)
- M G Wilkinson
- Department of Molecular Neurobiology, SmithKline Beecham Pharmaceuticals Plc, New Frontiers Science Park, Harlow, Essex, CM19 5AW U.K.
| | | |
Collapse
|
3184
|
Abstract
Programmed cell death plays critical roles in a wide variety of physiological processes during fetal development and in adult tissues. In most cases, physiological cell death occurs by apoptosis as opposed to necrosis. Defects in apoptotic cell death regulation contribute to many diseases, including disorders where cell accumulation occurs (cancer, restenosis) or where cell loss ensues (stroke, heart failure, neurodegeneration, AIDS). In recent years, the molecular machinery responsible for apoptosis has been elucidated, revealing a family of intracellular proteases, the caspases, which are responsible directly or indirectly for the morphological and biochemical changes that characterize the phenomenon of apoptosis. Diverse regulators of the caspases have also been discovered, including activators and inhibitors of these cell death proteases. Inputs from signal transduction pathways into the core of the cell death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell death responses or cell survival maintenance. Knowledge of the molecular mechanisms of apoptosis is providing insights into the causes of multiple pathologies where aberrant cell death regulation occurs and is beginning to provide new approaches to the treatment of human diseases.
Collapse
Affiliation(s)
- J C Reed
- Burnham Institute, La Jolla, California 92037, USA.
| |
Collapse
|
3185
|
Makarov SS. NF-kappaB as a therapeutic target in chronic inflammation: recent advances. MOLECULAR MEDICINE TODAY 2000; 6:441-8. [PMID: 11074370 DOI: 10.1016/s1357-4310(00)01814-1] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The family of nuclear factor kappaB (NF-kappaB) transcription factors is a topic of intense interest in the biomedical community stemming from the role NF-kappaB plays in almost every aspect of cell regulation: stress responses, immune cell activation, apoptosis, proliferation, differentiation and oncogenic transformation. The objective of this article is to provide an overview of recent developments in the field with an emphasis on the role of NF-kappaB in chronic inflammation, and to discuss the feasibility of therapeutic approaches based on the specific suppression of the NF-kappaB pathway.
Collapse
Affiliation(s)
- S S Makarov
- Thurston Arthritis Research Center, Center for Inflammatory Disorders, and Department of Endodontics, University of North Carolina at Chapel Hill, 27599-7280, USA.
| |
Collapse
|
3186
|
Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 2000; 32:1123-36. [PMID: 11137452 DOI: 10.1016/s1357-2725(00)00048-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis or programmed cell death can be induced by a variety of stimuli including activation of death receptors. This subgroup of the TNF/NGF-receptor-superfamily activates caspases, a family of aspartyl-specific cysteine-proteases, which are the main executioners of apoptosis. Depending on the cell type, signalling pathways downstream of the death receptors can be modulated by different proteins such as Bcl-2, FLIPs, chaperones and kinases. Deregulation of apoptosis has been associated with diseases as cancer, autoimmunity and AIDS. Therefore, the identification of modulators of apoptosis has several therapeutic implications.
Collapse
Affiliation(s)
- I Schmitz
- Tumorimmunology Program, Division of Immunogenetics, German Cancer Research Centre, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
3187
|
Abstract
The Bcl-2 family of proteins are key regulators of apoptosis. Bcl-xL, is an anti-apoptotic protein with a high degree of homology to Bcl-2; however, the signals that regulate Bcl-xL and Bcl-2 appear to be different. Levels of Bcl-xL, but not Bcl-2, are increased in response to various survival signals. Furthermore, an inverse correlation between the levels of Bcl-2 and Bcl-xL has been reported for a number of cancers. Although the precise molecules that control Bcl-xL activity are unclear, the STAT, Rel/NF-kappaB, and Ets transcription factor families have recently been reported to directly regulate the bcl-x gene. Activated Ras, integrin, vitronectin, and hepatocyte growth factor signaling cascades have also been linked to changes in Bcl-xL expression. Bcl-xL can also be affected by post-translational mechanisms. Here we review recent advances in identifying the signaling pathways and factors involved in regulation of the bcl-x gene.
Collapse
Affiliation(s)
- J M Grad
- Sylvester Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Miami School of Medicine, Florida, USA
| | | | | |
Collapse
|
3188
|
Spanos S, Becker DL, Winston RM, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod 2000; 63:1413-20. [PMID: 11058546 DOI: 10.1095/biolreprod63.5.1413] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) has been shown to increase the proportion of embryos forming blastocysts and the number of inner cell mass cells in human and other mammalian preimplantation embryos. Here we examined whether the increased cell number resulted from increased cell division or decreased cell death. Normally fertilized, Day 2 human embryos of good morphology were cultured to Day 6 in glucose-free Earle's balanced salt solution supplemented with 1 mM glutamine, with (n = 42) and without (n = 45) 1.7 nM IGF-I. Apoptotic cells in Day 6 blastocysts were identified using terminal deoxynucleotidyl dUTP terminal transferase (TUNEL) labeling to detect DNA fragmentation and 4'-6-diamidino-2-phenylindole (DAPI) counterstain to evaluate nuclear morphology. The number of nuclei and extent of DNA and nuclear fragmentation was assessed using laser scanning confocal microscopy. IGF-I significantly increased the proportion of embryos developing to the blastocyst stage from 49% (control) to 74% (+IGF-I) (P < 0.05). IGF-I also significantly decreased the mean proportion of apoptotic nuclei from 16.3 +/- 2.9% (-IGF-I) to 8.7 +/- 1.4% (+IGF-I) (P < 0.05). The total number of cells remained similar between both groups (61.7 +/- 4.6 with IGF-I; 54.5 +/- 5.1 without IGF-I). The increased number of blastocysts combined with reduced cell death suggests that IGF-I is rescuing embryos in vitro which would otherwise arrest and acting as a survival factor during preimplantation human development.
Collapse
Affiliation(s)
- S Spanos
- Department of Reproductive Science and Medicine, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London, W12 ONN, United Kingdom.
| | | | | | | |
Collapse
|
3189
|
Aikin R, Rosenberg L, Maysinger D. Phosphatidylinositol 3-kinase signaling to Akt mediates survival in isolated canine islets of Langerhans. Biochem Biophys Res Commun 2000; 277:455-61. [PMID: 11032744 DOI: 10.1006/bbrc.2000.3664] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of islet cells from the pancreas by enzymatic digestion causes many of these cells to undergo apoptosis. The aim of this work was to investigate the role of phosphatidylinositol 3-kinase (PI3-K)/Akt signaling in mediating the survival of isolated islets. Insulin-like growth factor-1 (IGF-I) was examined as a potential culture media supplement that could rescue isolated islets from their apoptotic fate. Western blot analysis demonstrated that Akt phosphorylation peaks 20 h after routine islet isolation. PI3-K inhibition with wortmannin abolished both basal and IGF-I-mediated Akt phosphorylation. IGF-I did not increase survival of isolated islets under normal conditions but it did have a protective effect against cytokine (TNF-alpha, IL-1beta, INF-gamma)-mediated cell death. The protective effect of IGF-I against cytokine-stimulated apoptosis was blocked by wortmannin. In addition, inhibition of basal levels of PI3-K activity caused a 31% decrease in islet survival, as shown by MTT assay. These results demonstrate that the PI3-K/Akt pathway mediates survival of isolated islets of Langerhans.
Collapse
Affiliation(s)
- R Aikin
- Department of Surgery, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | | | | |
Collapse
|
3190
|
Holmström TH, Schmitz I, Söderström TS, Poukkula M, Johnson VL, Chow SC, Krammer PH, Eriksson JE. MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J 2000; 19:5418-28. [PMID: 11032809 PMCID: PMC314013 DOI: 10.1093/emboj/19.20.5418] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
When T cells are activated, the expression of the CD95 ligand is elevated, with the purpose of inducing apoptosis in target cells and to later eliminate the activated T cells. We have shown previously that mitogen-activated protein kinase (MAPK or ERK) signaling suppresses CD95-mediated apoptosis in different cellular systems. In this study we examined whether MAPK signaling controls the persistence and CD95-mediated termination of an immune response in activated T cells. Our results show that activation of Jurkat T cells through the T cell receptor immediately suppresses CD95-mediated apoptosis, and that this suppression is mediated by MAPK activation. During the phase of elevated MAPK activity, the activation of caspase-8 and Bid is inhibited, whereas the assembly of a functional death-inducing signaling complex (DISC) is not affected. These results explain the resistance to CD95 responses observed during the early phase of T cell activation and suggest that MAPK-activation deflects DISC signaling from activating caspase-8 and Bid. The physiological relevance of the results was confirmed in activated primary peripheral T cells, in which inhibition of MAPK signaling markedly sensitized the cells to CD95-mediated apoptosis.
Collapse
Affiliation(s)
- T H Holmström
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, PO Box 123, FIN-20521 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
3191
|
Affiliation(s)
- J Schlessinger
- Department of Pharmacology and The Skirball Institute, New York University Medical Center, New York 10016, USA.
| |
Collapse
|
3192
|
Abstract
Neuronal apoptosis sculpts the developing brain and has a potentially important role in neurodegenerative diseases. The principal molecular components of the apoptosis programme in neurons include Apaf-1 (apoptotic protease-activating factor 1) and proteins of the Bcl-2 and caspase families. Neurotrophins regulate neuronal apoptosis through the action of critical protein kinase cascades, such as the phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase pathways. Similar cell-death-signalling pathways might be activated in neurodegenerative diseases by abnormal protein structures, such as amyloid fibrils in Alzheimer's disease. Elucidation of the cell death machinery in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
3193
|
Ozaki S, DeWald DB, Shope JC, Chen J, Prestwich GD. Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc Natl Acad Sci U S A 2000; 97:11286-91. [PMID: 11005844 PMCID: PMC17192 DOI: 10.1073/pnas.210197897] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide signaling regulates events in endocytosis and exocytosis, vesicular trafficking of proteins, transduction of extracellular signals, remodeling of the actin cytoskeleton, regulation of calcium flux, and apoptosis. Obtaining mechanistic insights in living cells is impeded by the membrane impermeability of these anionic lipids. We describe a carrier system for intracellular delivery of phosphoinositide polyphosphates (PIP(n)s) and fluorescently labeled PIP(n)s into living cells, such that intracellular localization can be directly observed. Preincubation of PIP(n)s or inositol phosphates with carrier polyamines produced complexes that entered mammalian, plant, yeast, bacterial, and protozoal cells in seconds to minutes via a nonendocytic mechanism. Time-dependent transit of both PIP(n)s and the carrier to specific cytosolic and nuclear compartments was readily visualized by fluorescence microscopy. Platelet-derived growth factor treatment of NIH 3T3 fibroblasts containing carrier-delivered phosphatidylinositol 4,5-bisphosphate [PtdIns(4, 5)P(2)]-7-nitrobenz-2-oxa-1,3-diazole resulted in the redistribution of the fluorescent signal, suggesting that fluorescent PtdIns(4, 5)P(2) was a substrate for phospholipase C. We also observed a calcium flux in NIH 3T3 cells when complexes of carrier and PtdIns(4, 5)P(2) or inositol 1,4,5-trisphosphate were added extracellularly. This simple intracellular delivery system allows for the efficient translocation of biologically active PIP(n)s, inositol phosphates, and their fluorescent derivatives into living cells in a physiologically relevant context.
Collapse
Affiliation(s)
- S Ozaki
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
3194
|
Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 2000; 10:1201-4. [PMID: 11050388 DOI: 10.1016/s0960-9822(00)00728-4] [Citation(s) in RCA: 759] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell death is regulated mainly through an evolutionarily conserved form of cell suicide termed apoptosis [1]. Deregulation of apoptosis has been associated with cancer, autoimmune diseases and degenerative disorders. Many cells, particularly those of the hematopoietic system, have a default program of cell death and survival that is dependent on the constant supply of survival signals. The Bcl-2 family, which has both pro- and anti-apoptotic members, plays a critical role in regulating cell survival [2]. One family member, the Bcl-2 interacting mediator of cell death (Bim), contains only a protein-interaction motif known as the BH3 domain, allowing it to bind pro-survival Bcl-2 molecules, neutralizing their function [3]. Disruption of the bim gene results in resistance to apoptosis following cytokine withdrawal in leukocytes, indicating that regulation of the pro-apoptotic activity of Bim is critical for maintenance of the default apoptotic program [4]. Here, we report that withdrawal of cytokine results in upregulation of Bim expression concomitant with induction of the apoptotic program in lymphocytes. Activation of the forkhead transcription factor FKHR-L1, previously implicated in regulation of apoptosis in T lymphocytes [5], was sufficient to induce Bim expression. We propose a mechanism by which cytokines promote lymphocyte survival by inhibition of FKHR-L1, preventing Bim expression.
Collapse
Affiliation(s)
- P F Dijkers
- Department of Pulmonary Diseases, University Medical Center Utrecht, G03.550, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
3195
|
Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 2000; 19:5092-104. [PMID: 11013212 PMCID: PMC302091 DOI: 10.1093/emboj/19.19.5092] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hexosamine pathway provides UDP-N:-acetylhexosamine donor substrates used in cytosolic and Golgi-mediated glycosylation of proteins and for formation of glycosylphosphatidylinositol (GPI) anchors, which tether proteins to the outer plasma membrane. We have recently identified the murine glucosamine-6-phosphate (GlcN6P) acetyltransferase, EMeg32, as a developmentally regulated enzyme on the route to UDP-N:-acetylglucosamine (UDP-GlcNAc). Here we describe embryos and cells that have the EMeg32 gene inactivated by homologous recombination. Homozygous mutant embryos die at around embryonic day (E) 7.5 with a general proliferative delay of development. In vitro differentiated EMeg32(-/-) ES cells show reduced proliferation. Mouse embryonic fibroblasts (MEFs) deficient for EMeg32 exhibit defects in proliferation and adhesiveness, which could be complemented by stable re-expression of EMeg32 or by nutritional restoration of intracellular UDP-GlcNAc levels. Reduced UDP-GlcNAc levels predominantly translated into decreased O-GlcNAc modifications of cytosolic and nuclear proteins. Interestingly, growth-impaired EMeg32(-/-) MEFs withstand a number of apoptotic stimuli and express activated PKB/AKT. Thus, EMeg32-dependent UDP-GlcNAc levels influence cell cycle progression and susceptibility to apoptotic stimuli.
Collapse
Affiliation(s)
- G Boehmelt
- Amgen Institute, 620 University Avenue, Toronto, M5G 2C1, Ontario Cancer Institute, 610 University Avenue, Toronto, M5G 2M9 and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada M5G 1X5 Present addres
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3196
|
Houslay MD, Kolch W. Cell-Type Specific Integration of Cross-Talk between Extracellular Signal-Regulated Kinase and cAMP Signaling. Mol Pharmacol 2000. [DOI: 10.1124/mol.58.4.659] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3197
|
Shah OJ, Anthony JC, Kimball SR, Jefferson LS. 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 2000; 279:E715-29. [PMID: 11001751 DOI: 10.1152/ajpendo.2000.279.4.e715] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maintenance of cellular protein stores in skeletal muscle depends on a tightly regulated synthesis-degradation equilibrium that is conditionally modulated under an extensive range of physiological and pathophysiological circumstances. Recent studies have established the initiation phase of mRNA translation as a pivotal site of regulation for global rates of protein synthesis, as well as a site through which the synthesis of specific proteins is controlled. The protein synthetic pathway is exquisitely sensitive to the availability of hormones and nutrients and employs a comprehensive integrative strategy to interpret the information provided by hormonal and nutritional cues. The translational repressor, eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and the 70-kDa ribosomal protein S6 kinase (S6K1) have emerged as important components of this strategy, and together they coordinate the behavior of both eukaryotic initiation factors and the ribosome. This review discusses the role of 4E-BP1 and S6K1 in translational control and outlines the mechanisms through which hormones and nutrients effect changes in mRNA translation through the influence of these translational effectors.
Collapse
Affiliation(s)
- O J Shah
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
3198
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 603] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3199
|
Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology 2000; 32:796-802. [PMID: 11003625 DOI: 10.1053/jhep.2000.17738] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Akt/PI-3 kinase pathway is a system essential for cell survival. In the current study, we showed that hepatocyte growth factor (HGF) activates the Akt/PI-3 kinase pathway to suppress Fas-mediated cell death in human hepatocellular carcinoma (HCC; 3 lines; SK-Hep1, HLE, and Chang Liver cell lines), hepatoblastoma (1 line; HepG2), and embryonic hepatocyte (1 line; WRL). Five tested cell lines showed the resistance to Fas-mediated cell death by the pretreatment of HGF. This HGF-induced cell survival was suppressed by wortmannin (Akt/PI-3 kinase pathway inhibitor), suggesting an involvement of Akt. When cells were pretreated with HGF, Fas-mediated cell death was suppressed, followed by Akt phosphorylation at Ser473. Fas-death-inducing signaling complex (DISC) formation, especially FADD and caspase 8 interaction, was suppressed by HGF and the suppression of the Akt/PI-3 kinase pathway by transient expression of PTEN, resulting in acquisition of Fas-DISC formation and Fas-mediated cell death in HGF-treated cells. We suggest that HGF promotes cell survival in hepatocyte-derived cell lines (HCC, hepatoblastoma, and embryonic hepatocyte) from Fas-mediated cell death via Fas-DISC suppression as a result of Akt activation.
Collapse
Affiliation(s)
- A Suzuki
- Project for the Cell Death Research, Basic Technology Research Laboratory, Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
3200
|
Giallourakis C, Kashiwada M, Pan PY, Danial N, Jiang H, Cambier J, Coggeshall KM, Rothman P. Positive regulation of interleukin-4-mediated proliferation by the SH2-containing inositol-5'-phosphatase. J Biol Chem 2000; 275:29275-82. [PMID: 10875931 DOI: 10.1074/jbc.m002853200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SH2-containing inositol 5'-phosphatase (SHIP) is tyrosine-phosphorylated in response to cytokines such as interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor. SHIP has been shown to modulate negatively these cytokine signalings; however, a potential role in IL-4 signaling remains uncharacterized. It has been recently shown that IL-4 induces tyrosine phosphorylation of SHIP, implicating the phosphatase in IL-4 processes. Tyrosine kinases, Jak1 and Jak3, involved in IL-4 signaling can associate with SHIP, yet only Jak1 can tyrosine-phosphorylate SHIP when co-expressed. In functional studies, cells overexpressing wild type SHIP are found to be hyperproliferative in response to IL-4 in comparison to parental cells. In contrast, cells expressing catalytically inactive form, SHIP(D672A), show reduced proliferation in response to IL-4. These changes in IL-4-induced proliferation correlate with alterations in phosphatidylinositol 3,4,5-triphosphate levels. However, no differential activation of STAT6, Akt, IRS-2, or p70(S6k), in response to IL-4, was observed in these cells. These data suggest that the catalytic activity of SHIP acts in a novel manner to influence IL-4 signaling. In addition, these data support recent findings that suggest there are uncharacterized signaling pathways downstream of phosphatidylinositol 3,4,5-triphosphate.
Collapse
Affiliation(s)
- C Giallourakis
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|