301
|
Dabagh M, Jalali P, Butler PJ, Tarbell JM. Shear-induced force transmission in a multicomponent, multicell model of the endothelium. J R Soc Interface 2015; 11:20140431. [PMID: 24966239 DOI: 10.1098/rsif.2014.0431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Haemodynamic forces applied at the apical surface of vascular endothelial cells (ECs) provide the mechanical signals at intracellular organelles and through the inter-connected cellular network. The objective of this study is to quantify the intracellular and intercellular stresses in a confluent vascular EC monolayer. A novel three-dimensional, multiscale and multicomponent model of focally adhered ECs is developed to account for the role of potential mechanosensors (glycocalyx layer, actin cortical layer, nucleus, cytoskeleton, focal adhesions (FAs) and adherens junctions (ADJs)) in mechanotransmission and EC deformation. The overriding issue addressed is the stress amplification in these regions, which may play a role in subcellular localization of mechanotransmission. The model predicts that the stresses are amplified 250-600-fold over apical values at ADJs and 175-200-fold at FAs for ECs exposed to a mean shear stress of 10 dyne cm(-2). Estimates of forces per molecule in the cell attachment points to the external cellular matrix and cell-cell adhesion points are of the order of 8 pN at FAs and as high as 3 pN at ADJs, suggesting that direct force-induced mechanotransmission by single molecules is possible in both. The maximum deformation of an EC in the monolayer is calculated as 400 nm in response to a mean shear stress of 1 Pa applied over the EC surface which is in accord with measurements. The model also predicts that the magnitude of the cell-cell junction inclination angle is independent of the cytoskeleton and glycocalyx. The inclination angle of the cell-cell junction is calculated to be 6.6° in an EC monolayer, which is somewhat below the measured value (9.9°) reported previously for ECs subjected to 1.6 Pa shear stress for 30 min. The present model is able, for the first time, to cross the boundaries between different length scales in order to provide a global view of potential locations of mechanotransmission.
Collapse
Affiliation(s)
- Mahsa Dabagh
- School of Technology, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Payman Jalali
- School of Technology, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Peter J Butler
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, PA, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, USA
| |
Collapse
|
302
|
Chen D, Hyldahl RD, Hayward RC. Creased hydrogels as active platforms for mechanical deformation of cultured cells. LAB ON A CHIP 2015; 15:1160-7. [PMID: 25563808 DOI: 10.1039/c4lc01296h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cells cultured in vitro using traditional substrates often change their behavior due to the lack of mechanical deformation they would naturally experience in vivo. To mimic the in vivo mechanical environment, we design temperature-responsive hydrogels with patterned surface creases as dynamic cell stretching devices. A one-step photolithographic method is first employed to pattern integrin-binding peptides on the gel, causing single cells or several-cell clusters to adhere to the surface in registry with creases. A variety of crease patterns are prescribed on a single substrate, enabling the mechanical deformation of cultured myoblast cells with different strain states and achieving tensile strain as high as 0.2. As creases provide large amplitude local deformation of the gel surface without the need for macroscopic deformation, can be formed on gels covering a wide range of modulus, and can be actuated using a variety of stimuli, they hold the potential to enable the design of high throughput and versatile platforms for mechano-biological studies.
Collapse
Affiliation(s)
- Dayong Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
303
|
Kim TJ, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang N, Ha T, Jakobsson E, Sun J, Wang Y. Distinct mechanisms regulating mechanical force-induced Ca²⁺ signals at the plasma membrane and the ER in human MSCs. eLife 2015; 4:e04876. [PMID: 25667984 PMCID: PMC4337650 DOI: 10.7554/elife.04876] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca2+ signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca2+, ER Ca2+ release is the source of intracellular Ca2+ oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca2+ release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca2+ permeable channels on the plasma membrane, specifically TRPM7. However, Ca2+ influx at the plasma membrane via mechanosensitive Ca2+ permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane. DOI:http://dx.doi.org/10.7554/eLife.04876.001 Cells receive many signals from their environment, for example, when they are compressed or pulled about by neighboring cells. Information about these ‘mechanical stimuli’ can be transmitted within the cell to trigger changes in gene expression and cell behavior. When a cell receives a mechanical stimulus, it can activate the release of calcium ions from storage compartments within the cell, including from a compartment called the endoplasmic reticulum. Calcium ions can also enter the cell from outside via channels located in the membrane that surrounds the cell (the plasma membrane). Kim et al. investigated how mechanical forces are transmitted in a type of human cell called mesenchymal stem cells using optical tweezers to apply a gentle force to the outside of a cell. These tweezers use a laser to attract tiny objects, in this case a bead attached to proteins in the cell's outer membrane. The cell's response to this mechanical stimulation was measured using a sensor protein that fluoresces a different color when it binds to calcium ions. With this set-up, Kim et al. found that mesenchymal stem cells are able to transmit mechanical forces to different depths within the cell. The forces can travel deep to trigger the release of calcium ions from the endoplasmic reticulum. This process involves a network of protein fibers that criss-cross to support the structure of a cell—called the cytoskeleton—and also requires proteins that are associated with the cytoskeleton to contract. However, calcium ion entry through the plasma membrane due to a mechanical force does not require these contractile proteins—only the cytoskeleton is involved. These results demonstrate that the transmission of mechanical signals to different depths within mesenchymal stem cells involves different components. Future work should shed light on how these mechanical signals control gene expression and the development of mesenchymal stem cells. DOI:http://dx.doi.org/10.7554/eLife.04876.002
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Chirlmin Joo
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Jihye Seong
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Reza Vafabakhsh
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, United States
| | - Michael W Berns
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, United States
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, United States
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Taekjip Ha
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Jie Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| |
Collapse
|
304
|
Feroze R, Shawky JH, von Dassow M, Davidson LA. Mechanics of blastopore closure during amphibian gastrulation. Dev Biol 2015; 398:57-67. [PMID: 25448691 PMCID: PMC4317491 DOI: 10.1016/j.ydbio.2014.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/16/2022]
Abstract
Blastopore closure in the amphibian embryo involves large scale tissue reorganization driven by physical forces. These forces are tuned to generate sustained blastopore closure throughout the course of gastrulation. We describe the mechanics of blastopore closure at multiple scales and in different regions around the blastopore by characterizing large scale tissue deformations, cell level shape change and subcellular F-actin organization and by measuring tissue force production and structural stiffness of the blastopore during gastrulation. We find that the embryo generates a ramping magnitude of force until it reaches a peak force on the order of 0.5μN. During this time course, the embryo also stiffens 1.5 fold. Strain rate mapping of the dorsal, ventral and lateral epithelial cells proximal to the blastopore reveals changing patterns of strain rate throughout closure. Cells dorsal to the blastopore, which are fated to become neural plate ectoderm, are polarized and have straight boundaries. In contrast, cells lateral and ventral to the blastopore are less polarized and have tortuous cell boundaries. The F-actin network is organized differently in each region with the highest percentage of alignment occurring in the lateral region. Interestingly F-actin was consistently oriented toward the blastopore lip in dorsal and lateral cells, but oriented parallel to the lip in ventral regions. Cell shape and F-actin alignment analyses reveal different local mechanical environments in regions around the blastopore, which was reflected by the strain rate maps.
Collapse
Affiliation(s)
- Rafey Feroze
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph H Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelangelo von Dassow
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Duke University Marine Lab, Beaufort, NC 28516, USA
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
305
|
Abstract
Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth.
Collapse
|
306
|
LaCroix AS, Rothenberg KE, Berginski ME, Urs AN, Hoffman BD. Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods Cell Biol 2015; 125:161-86. [PMID: 25640429 DOI: 10.1016/bs.mcb.2014.10.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Förster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors.
Collapse
Affiliation(s)
- Andrew S LaCroix
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Matthew E Berginski
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Aarti N Urs
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
307
|
Liebert A, Bicknell B, Adams R. Prion Protein Signaling in the Nervous System—A Review and Perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.4137/sti.s12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prion protein (PrPC) was originally known as the causative agent of transmissible spongiform encephalopathy (TSE) but with recent research, its true function in cells is becoming clearer. It is known to act as a scaffolding protein, binding multiple ligands at the cell membrane and to be involved in signal transduction, passing information from the extracellular matrix (ECM) to the cytoplasm. Its role in the coordination of transmitters at the synapse, glyapse, and gap junction and in short- and long-range neurotrophic signaling gives PrPC a major part in neural transmission and nervous system signaling. It acts to regulate cellular function in multiple targets through its role as a controller of redox status and calcium ion flux. Given the importance of PrPC in cell physiology, this review considers its potential role in disease apart from TSE. The putative functions of PrPC point to involvement in neurodegenerative disease, neuropathic pain, chronic headache, and inflammatory disease including neuroinflammatory disease of the nervous system. Potential targets for the treatment of disease influenced by PrPC are discussed.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Health Science, University of Sydney, Australia
| | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, Australia
| | | |
Collapse
|
308
|
Marjoram RJ, Lessey EC, Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med 2014; 14:199-208. [PMID: 24467208 PMCID: PMC3929014 DOI: 10.2174/1566524014666140128104541] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The low molecular weight GTP-binding protein RhoA regulates many cellular events, including cell migration, organization of the cytoskeleton, cell adhesion, progress through the cell cycle and gene expression. Physical forces influence these cellular processes in part by regulating RhoA activity through mechanotransduction of cell adhesion molecules (e.g. integrins, cadherins, Ig superfamily molecules). RhoA activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that are themselves regulated by many different signaling pathways. Significantly, the engagement of many cell adhesion molecules can affect RhoA activity in both positive and negative ways. In this brief review, we consider how RhoA activity is regulated downstream from cell adhesion molecules and mechanical force. Finally, we highlight the importance of mechanotransduction signaling to RhoA in normal cell biology as well as in certain pathological states.
Collapse
Affiliation(s)
| | | | - K Burridge
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
309
|
Wang Y, Meng F, Sachs F. Genetically encoded force sensors for measuring mechanical forces in proteins. Commun Integr Biol 2014. [DOI: 10.4161/cib.15505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
310
|
A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells. Sci Rep 2014; 4:6856. [PMID: 25358640 PMCID: PMC4215319 DOI: 10.1038/srep06856] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/10/2014] [Indexed: 12/23/2022] Open
Abstract
Application of alginate-microencapsulated therapeutic cells is a promising approach for diseases that require a local and constant supply of therapeutic molecules. However most conventional alginate microencapsulation systems are associated with low mechanical stability and protrusion of cells which is associated with higher surface roughness and limits their clinical application. Here we have developed a novel multilayer encapsulation system that prevents cells from protruding from capsules. The system was tested using a therapeutic protein with anti-tumor activity overexpressed in mammalian cells. The cell containing core of the multilayer capsule was formed by flexible alginate, creating a cell sustaining environment. Surrounded by a poly-L-lysine layer the flexible core was enveloped in a high-G alginate matrix that is less flexible and has higher mechanical stability, which does not support cell survival. The cells in the core of the multilayer capsule did not show growth impairment and protein production was normal for periods up to 70 days in vitro. The additional alginate layer also lowered the surface roughness compared to conventional cell containing alginate-PLL capsules. Our system provides a solution for two important, often overlooked phenomena in cell encapsulation: preventing cell protrusion and improving surface roughness.
Collapse
|
311
|
|
312
|
Daily application of low magnitude mechanical stimulus inhibits the growth of MDA-MB-231 breast cancer cells in vitro. Cancer Cell Int 2014; 14:102. [PMID: 25349533 PMCID: PMC4209025 DOI: 10.1186/s12935-014-0102-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Mechanical loads can regulate cell proliferation and differentiation at various stages of development and homeostasis. However, the extension of this regulatory effect of mechanical loads on cancer cells is largely unknown. Increased physical compliance is one of the key features of cancer cells, which may hamper the transmission of mechanical loads to these cells within tumor microenvironment. Here we tested whether brief daily application of an external low magnitude mechanical stimulus (LMMS), would impede the growth of MDA-MB-231 aggressive type breast cancer cells in vitro for 3 wks of growth. METHODS The signal was applied in oscillatory form at 90 Hz and 0.15 g, a regimen that would induce mechanical loads on MDA-MB-231 cells via inertial properties of cells rather than matrix deformations. Experimental cells were exposed to LMMS 15 min/day, 5 days/week in ambient conditions while control cells were sham loaded. Cell proliferation, viability, cycle, apoptosis, morphology and migration were tested via Trypan Blue dye exclusion, MTT, PI, Annexin V, Calcein-AM and phalloidin stains and scratch wound assays. RESULTS Compared to sham controls, daily application of LMMS reduced the number and viability of cancerous MDA-MB-231 cells significantly after first week in the culture, while non-cancerous MCF10A cells were found to be unaffected. Flow cytomety analyses suggested that the observed decrease for the cancer cells in the LMMS group was due to a cell cycle arrest rather than apoptosis. LMMS further reduced cancer cell circularity and increased cytoskeletal actin in MDA-MB-231 cells. CONCLUSION Combined, results suggest that direct application of mechanical loads negatively regulate the proliferation of aggressive type cancer cells. If confirmed, this non-invasive approach may be integrated to the efforts for the prevention and/or treatment of cancer.
Collapse
|
313
|
Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix. Exp Cell Res 2014; 330:311-324. [PMID: 25220424 DOI: 10.1016/j.yexcr.2014.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/20/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
We have previously reported a unique response of traction force generation for cells grown on mature cardiac ECM, where traction force was constant over a range of stiffnesses. In this study we sought to further investigate the role of the complex mixture of ECM on this response and assess the potential mechanism behind it. Using traction force microscopy, we measured cellular traction forces and stresses for mesenchymal stem cells (MSCs) grown on polyacrylamide gels at a range of stiffnesses (9, 25, or 48 kPa) containing either adult rat heart ECM, different singular ECM proteins including collagen I, fibronectin, and laminin, or ECM mimics comprised of varying amounts of collagen I, fibronectin, and laminin. We also measured the expression of integrins on these different substrates as well as probed for β1 integrin binding. There was no significant change in traction force generation for cells grown on the adult ECM, as previously reported, whereas cells grown on singular ECM protein substrates had increased traction force generation with an increase in substrate stiffness. Cells grown on ECM mimics containing collagen I, fibronectin and laminin were found to be reminiscent of the traction forces generated by cells grown on native ECM. Integrin expression generally increased with increasing stiffness except for the β1 integrin, potentially implicating it as playing a role in the response to adult cardiac ECM. We inhibited binding through the β1 integrin on cells grown on the adult ECM and found that the inhibition of β1 binding led to a return to the typical response of increasing traction force generation with increasing stiffness. Our data demonstrates that cells grown on the mature cardiac ECM are able to circumvent typical stiffness related cellular behaviors, likely through β1 integrin binding to the complex composition.
Collapse
|
314
|
Compton JL, Luo JC, Ma H, Botvinick E, Venugopalan V. High-throughput optical screening of cellular mechanotransduction. NATURE PHOTONICS 2014; 8:710-715. [PMID: 25309621 PMCID: PMC4189826 DOI: 10.1038/nphoton.2014.165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/23/2014] [Indexed: 05/25/2023]
Abstract
We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated micro-cavitation bubbles (μCBs) without requiring flow chambers or microfluidics. These μCBs expose adherent cells to a microTsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1mm2. We demonstrate microTsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation resulting in Ca2+ release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microTsunami-induced Ca2+ signalling by introducing a known inhibitor to this pathway. The imaging of Ca2+ signalling, and its modulation by exogenous molecules, demonstrates the capacity to initiate and assess cellular mechanosignalling in real-time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry.
Collapse
Affiliation(s)
- Jonathan L. Compton
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
| | - Justin C. Luo
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
| | - Huan Ma
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
| | - Elliot Botvinick
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
| | - Vasan Venugopalan
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
| |
Collapse
|
315
|
Snedeker JG. The nuclear envelope as a mechanostat: a central cog in the machinery of cell and tissue regulation? BONEKEY REPORTS 2014; 3:562. [PMID: 25177488 DOI: 10.1038/bonekey.2014.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jess G Snedeker
- Department of Orthopaedics, Balgrist Hospital, University of Zurich , Zurich, Switzerland ; Institute for Biomechanics, Swiss Federal Institute of Technology , Zurich, Switzerland
| |
Collapse
|
316
|
Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2014; 2:26. [PMID: 25147785 PMCID: PMC4123607 DOI: 10.3389/fbioe.2014.00026] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/31/2023] Open
Abstract
Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many different alginate-based capsule systems do exist. A pitfall in the field is that these systems are applied without a targeted strategy with varying degrees of success as a consequence. In the current review, the different properties of alginate-based systems are reviewed in view of future application in humans. The use of allogeneic and xenogeneic islet sources are discussed with acknowledging the different degrees of immune protection the encapsulation system should supply. Also issues such as oxygen supply and the role of danger associated molecular patterns (DAMPS) in immune activation are being reviewed. A common property of the encapsulation systems is that alginates for medical application should have an extreme high degree of purity and lack pathogen-associated molecular patterns (PAMPs) to avoid activation of the recipient’s immune system. Up to now, non-inflammatory alginates are only produced on a lab-scale and are not yet commercially available. This is a major pitfall on the route to human application. Also the lack of predictive pre-clinical models is a burden. The principle differences between relevant innate and adaptive immune responses in humans and other species are reviewed. Especially, the extreme differences between the immune system of non-human primates and humans are cumbersome as non-human primates may not be predictive of the immune responses in humans, as opposed to the popular belief of regulatory agencies. Current insight is that although the technology is versatile major research efforts are required for identifying the mechanical, immunological, and physico-chemical requirements that alginate-based capsules should meet for successful human application.
Collapse
Affiliation(s)
- Genaro Alberto Paredes Juárez
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Milica Spasojevic
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Groningen , Netherlands
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
317
|
Han Y, Bai T, Liu W. Controlled heterogeneous stem cell differentiation on a shape memory hydrogel surface. Sci Rep 2014; 4:5815. [PMID: 25068211 PMCID: PMC5376171 DOI: 10.1038/srep05815] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022] Open
Abstract
The success of stem cell therapies is highly dependent on the ability to control their programmed differentiation. So far, it is commonly believed that the differentiation behavior of stem cells is supposed to be identical when they are cultured on the same homogeneous platform. However, in this report, we show that this is not always true. By utilizing a double-ion-triggered shape memory effect, the pre-seeded hMSCs were controllably located in different growth positions. Here, we demonstrate for the first time that the differentiation behavior of hMSCs is highly sensitive to their growth position on a hydrogel scaffold. This work will not only enrich the mechanisms for controlling the differentiation of stem cells, but also offer a one-of-a-kind platform to achieve a heterogeneously differentiated stem cell-seeded hydrogel scaffold for complex biological applications.
Collapse
Affiliation(s)
- Yanjiao Han
- 1] Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, P. R. China [2]
| | - Tao Bai
- 1] Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, P. R. China [2]
| | - Wenguang Liu
- Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
318
|
Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, Li YSJ, Chien S, Patapoutian A. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 2014; 111:10347-52. [PMID: 24958852 PMCID: PMC4104881 DOI: 10.1073/pnas.1409233111] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Zhaozhu Qiu
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Sung Sik Hur
- Department of Bioengineering andInstitute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92032
| | - Swetha E Murthy
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Stuart M Cahalan
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Jie Xu
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Jayanti Mathur
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Michael Bandell
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Bertrand Coste
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Yi-Shuan J Li
- Department of Bioengineering andInstitute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92032
| | - Shu Chien
- Department of Bioengineering andInstitute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92032
| | - Ardem Patapoutian
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
319
|
Sreenivasappa H, Chaki SP, Lim SM, Trzeciakowski JP, Davidson MW, Rivera GM, Trache A. Selective regulation of cytoskeletal tension and cell–matrix adhesion by RhoA and Src. Integr Biol (Camb) 2014; 6:743-54. [DOI: 10.1039/c4ib00019f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
320
|
|
321
|
Abstract
The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell-material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed.
Collapse
Affiliation(s)
- Mark Ahearne
- Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin 2 , Ireland ; Department of Mechanical and Manufacturing Engineering, School of Engineering , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
322
|
Abstract
Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations – cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.
Collapse
|
323
|
Jang HK, Kim BS. Modulation of stem cell differentiation with biomaterials. Int J Stem Cells 2014; 3:80-4. [PMID: 24855545 DOI: 10.15283/ijsc.2010.3.2.80] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 11/09/2022] Open
Abstract
Differentiation of stem cells can be controlled with interactions with microenvironments of the stem cells. The interactions contain various signals including soluble growth factor signal, cell adhesion signal, and mechanical signal, which can modulate differentiation of stem cells. Biomaterials can provide these types of signals to induce desirable cellular differentiation. Biomaterials can deliver soluble growth factors locally to stem cells at a controlled rate for a long period. Stem cell adhesion to specific adhesion molecules presented by biomaterials can induce specific differentiation. Mechanical signals can be delivered to stem cells seeded onto biomaterial scaffolds. These approaches would be invaluable for direction of stem cell differentiation and in vivo tissue regeneration using stem cells.
Collapse
Affiliation(s)
- Hyeon-Ki Jang
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Korea
| | - Byung-Soo Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Korea ; School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
324
|
Schleifenbaum J, Kassmann M, Szijártó IA, Hercule HC, Tano JY, Weinert S, Heidenreich M, Pathan AR, Anistan YM, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 2014; 115:263-72. [PMID: 24838176 DOI: 10.1161/circresaha.115.302882] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. OBJECTIVE To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. METHODS AND RESULTS We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. CONCLUSIONS Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance.
Collapse
Affiliation(s)
- Johanna Schleifenbaum
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Mario Kassmann
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - István András Szijártó
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Hantz C Hercule
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Jean-Yves Tano
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Stefanie Weinert
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Matthias Heidenreich
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Asif R Pathan
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Yoland-Marie Anistan
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Natalia Alenina
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Nancy J Rusch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Michael Bader
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Thomas J Jentsch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Maik Gollasch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.).
| |
Collapse
|
325
|
Imuta Y, Koyama H, Shi D, Eiraku M, Fujimori T, Sasaki H. Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos. Mech Dev 2014; 132:44-58. [DOI: 10.1016/j.mod.2014.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 11/29/2022]
|
326
|
Min SK, Yoon GH, Joo JH, Sim SJ, Shin HS. Mechanosensitive physiology of Chlamydomonas reinhardtii under direct membrane distortion. Sci Rep 2014; 4:4675. [PMID: 24728350 PMCID: PMC3985077 DOI: 10.1038/srep04675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid metabolism. C. reinhardtii showed a prolonged G1 phase with an extended total cell cycle time, and upregulated Mat3 regulated a cell size and cell cycle. Additionally, increased TAG compensated for the loss of cell mass. Overall, this study suggest that cell biology that requires direct membrane distortion can be realized using this system, and the implication of cell cycle with Mat3 expression of C. reinhardtii was first demonstrated. Finally, membrane distortion can be an attractive inducer for biodiesel production since it is reliable and robust.
Collapse
Affiliation(s)
- Seul Ki Min
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Gwang Heum Yoon
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Jung Hyun Joo
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| |
Collapse
|
327
|
Gawlak G, Tian Y, O'Donnell JJ, Tian X, Birukova AA, Birukov KG. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex. FASEB J 2014; 28:3249-60. [PMID: 24706358 DOI: 10.1096/fj.13-245142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Suboptimal ventilator support or regional ventilation heterogeneity in inflamed lungs causes excessive tissue distension, which triggers stretch-induced pathological signaling and may lead to vascular leak and lung dysfunction. Focal adhesions (FAs) are cell-substrate adhesive complexes participating in cellular mechanotransduction and regulation of the Rho GTPase pathway. Stretch-induced Rho regulation remains poorly understood. We used human lung endothelial cells (ECs) exposed to pathological cyclic stretch (CS) at 18% distension to test the hypothesis that FA protein paxillin participates in CS-induced Rho activation by recruiting the Rho-specific guanine nucleotide exchange factor GEF-H1. CS induced phosphorylation of paxillin and activated p42/44-MAP kinase, Rho GTPase, and paxillin/GEF-H1/p42/44-MAPK association. CS caused nearly 2-fold increase in EC permeability, which was attenuated by paxillin knockdown. Expression of the paxillin-Y31/118F phosphorylation mutant decreased the CS-induced paxillin/GEF-H1 association (16.3 ± 4.1%), GEF-H1 activation (28.9 ± 9.2%), and EC permeability (28.7 ± 8.1%) but not CS-induced p42/44-MAPK activation. Inhibition of p42/44-MAPK suppressed CS-induced paxillin/GEF-H1 interactions (15.9 ± 7.9%), GEF-H1 activation (11.7 ± 4.3%), and disruption of EC monolayer. Expression of GEF-H1T678A lacking p42/44-MAPK phosphorylation site attenuated Rho activation (31.2±11.6%). We conclude that MAPK-dependent targeting of GEF-H1 to paxillin is involved in the regulation of CS-induced Rho signaling and EC permeability. This study proposes a novel concept of paxillin-GEF-H1-p42/44-MAPK module as a regulator of pathological mechanotransduction.-Gawlak, G., Tian, Y., O'Donnell, J. J., III, Tian, X., Birukova, A. A., Birukov, K. G. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.
Collapse
Affiliation(s)
- Grzegorz Gawlak
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yufeng Tian
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - James J O'Donnell
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Xinyong Tian
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Anna A Birukova
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G Birukov
- Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
328
|
Amado-Azevedo J, Valent ET, Van Nieuw Amerongen GP. Regulation of the endothelial barrier function: a filum granum of cellular forces, Rho-GTPase signaling and microenvironment. Cell Tissue Res 2014; 355:557-76. [PMID: 24633925 DOI: 10.1007/s00441-014-1828-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
Although the endothelium is an extremely thin single-cell layer, it performs exceedingly well in preventing blood fluids from leaking into the surrounding tissues. However, specific pathological conditions can affect this cell layer, compromising the integrity of the barrier. Vascular leakage is a hallmark of many cardiovascular diseases and despite its medical importance, no specialized therapies are available to prevent it or reduce it. Small guanosine triphosphatases (GTPases) of the Rho family are known to be key regulators of various aspects of cell behavior and studies have shown that they can exert both positive and negative effects on endothelial barrier integrity. Moreover, extracellular matrix stiffness has now been implicated in the regulation of Rho-GTPase signaling, which has a direct impact on the integrity of endothelial junctions. However, knowledge about both the precise mechanism of this regulation and the individual contribution of the specific regulatory proteins remains fragmentary. In this review, we discuss recent findings concerning the balanced activities of Rho-GTPases and, in particular, aspects of the regulation of the endothelial barrier. We highlight the role of Rho-GTPases in the intimate relationships between biomechanical forces, microenvironmental influences and endothelial intercellular junctions, which are all interwoven in a beautiful filigree-like fashion.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van den Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| | | | | |
Collapse
|
329
|
Jia YY, Li F, Geng N, Gong P, Huang SJ, Meng LX, Lan J, Ban Y. Fluid flow modulates the expression of genes involved in the Wnt signaling pathway in osteoblasts in 3D culture conditions. Int J Mol Med 2014; 33:1282-8. [PMID: 24626746 DOI: 10.3892/ijmm.2014.1694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/26/2014] [Indexed: 11/06/2022] Open
Abstract
The balance between osteoclastic bone resorption and osteoblastic bone formation maintains bone mass, while mechanical loads stimulate bone formation and suppress resorption. The molecular mechanisms responsible for this process have not yet been fully elucidated. In the present study, we assessed whether mechanical stimulation by pulsating fluid flow (PFF) leads to functional Wnt production and affects the function of osteoblasts. ROS17/2.8 osteoblasts were submitted to 1-4 h PFF (0.8 Pa) by three-dimensional (3D) cell culture system with fluid flow. PFF upregulated the gene expression levels of adenomatous polyposis coli, alkaline phosphatase, low density lipoprotein receptor-related protein 5 (LRP5), Wnt3a and β-catenin [catenin beta 1 (CTNNB1)] in all the groups of osteoblasts. Our results suggest that mechanical stimulation by PFF induces the differentiation of osteoblasts and the activation of the Wnt/β-catenin signaling pathway in a 3D cell culture system. Furthermore, mechanical stress plays an important role in the Wnt/β-catenin signaling pathway and is involved in bone formation.
Collapse
Affiliation(s)
- Yuan-Yuan Jia
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Li
- Department of Stomatology, The People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Ning Geng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Jie Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ling-Xian Meng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Lan
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Ban
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
330
|
Microtubules mediate changes in membrane cortical elasticity during contractile activation. Exp Cell Res 2014; 322:21-9. [DOI: 10.1016/j.yexcr.2013.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
|
331
|
Tseng P, Di Carlo D. Substrates with patterned extracellular matrix and subcellular stiffness gradients reveal local biomechanical responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1242-7. [PMID: 24323894 PMCID: PMC3947434 DOI: 10.1002/adma.201304607] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Indexed: 05/23/2023]
Abstract
A substrate fabrication process is developed to pattern both the extracellular matrix (ECM) and rigidity at sub-cellular spatial resolution. When growing cells on these substrates, it is found that cells respond locally in their cytoskeleton assembly. The presented method allows unique insight into the biological interpretation of mechanical signals, whereas photolithography-based fabrication is amenable to integration with complex microfabricated substructures.
Collapse
Affiliation(s)
- Peter Tseng
- Department of Bioengineering, 420 Westwood Plaza 5121E Engineering V, Los Angeles, CA, 90095 (USA)
| | - Dino Di Carlo
- Department of Bioengineering, 420 Westwood Plaza 5121E Engineering V, Los Angeles, CA, 90095 (USA)
| |
Collapse
|
332
|
Arai KY, Sugimoto M, Ito K, Ogura Y, Akutsu N, Amano S, Adachi E, Nishiyama T. Repeated folding stress-induced morphological changes in the dermal equivalent. Skin Res Technol 2014; 20:399-408. [PMID: 24506301 DOI: 10.1111/srt.12131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE Repeated mechanical stresses applied to the same region of the skin are thought to induce morphological changes known as wrinkle. However, the underlying mechanisms are not fully understood. To study the mechanisms, we examined effects of repeated mechanical stress on the dermal equivalent. METHODS We developed a novel device to apply repeated folding stress to the dermal equivalent. After applying the mechanical stress, morphological changes of the dermal equivalent and expression of several genes related to extracellular matrix turn over and cell contraction were examined. RESULTS The repeated folding stress induced a noticeable decrease in the width of the dermal equivalent. The mechanical stress altered orientations of collagen fibrils. Hydroxyproline contents, dry weights and cell viability of the dermal equivalents were not affected by the mechanical stress. On the other hand, Rho-associated coiled-coil-containing kinase (ROCK) specific inhibitor Y27632 completely suppressed the decrease in the width of the dermal equivalent. CONCLUSION The present results revealed that either degradation of collagen or changes in the number of cells were not responsible for the decrease in the width of the dermal equivalent and indicate that the repeated mechanical stress induces unidirectional contraction in the dermal equivalent through the RhoA-ROCK signaling pathway.
Collapse
Affiliation(s)
- Koji Y Arai
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
333
|
The Migration of Cancer Cells in Gradually Varying Chemical Gradients and Mechanical Constraints. MICROMACHINES 2014. [DOI: 10.3390/mi5010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
334
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
335
|
The detection and role of molecular tension in focal adhesion dynamics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:3-24. [PMID: 25081612 DOI: 10.1016/b978-0-12-394624-9.00001-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells are exquisitely sensitive to the mechanical nature of their environment, including applied force and the stiffness of the extracellular matrix (ECM). Recent evidence has shown that these variables are critical regulators of diverse processes mediating embryonic development, adult tissue physiology, and many disease states, including cancer, atherosclerosis, and myopathies. Often, detection of mechanical stimuli is mediated by the structures that link cells that surround ECM, the focal adhesions (FAs). FAs are intrinsically force sensitive and display altered dynamics, structure, and composition in response to applied load. While much progress has been made in determining the proteins that localize to and regulate the formation of these structures, less is known about the role of tension across specific proteins in this process. A recently developed class of force-sensitive biosensors is enabling a greater understanding of the molecular bases of cellular mechanosensitivity and cell migration.
Collapse
|
336
|
Adrian A, Schoppmann K, Sromicki J, Brungs S, von der Wiesche M, Hock B, Kolanus W, Hemmersbach R, Ullrich O. The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 2013; 11:98. [PMID: 24359439 PMCID: PMC3880029 DOI: 10.1186/1478-811x-11-98] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/13/2013] [Indexed: 01/03/2023] Open
Abstract
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Ullrich
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| |
Collapse
|
337
|
Lee EA, Yim H, Heo J, Kim H, Jung G, Hwang NS. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch Pharm Res 2013; 37:120-8. [DOI: 10.1007/s12272-013-0303-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022]
|
338
|
Vorselen D, Roos WH, MacKintosh FC, Wuite GJL, van Loon JJWA. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 2013; 28:536-47. [PMID: 24249634 DOI: 10.1096/fj.13-236356] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A large body of evidence indicates that single cells in vitro respond to changes in gravity, and that this response might play an important role for physiological changes at the organism level during spaceflight. Gravity can lead to changes in cell proliferation, differentiation, signaling, and gene expression. At first glance, gravitational forces seem too small to affect bodies with the size of a cell. Thus, the initial response to gravity is both puzzling and important for understanding physiological changes in space. This also offers a unique environment to study the mechanical response of cells. In the past 2 decades, important steps have been made in the field of mechanobiology, and we use these advances to reevaluate the response of single cells to changes in gravity. Recent studies have focused on the cytoskeleton as initial gravity sensor. Thus, we review the observed changes in the cytoskeleton in a microgravity environment, both during spaceflight and in ground-based simulation techniques. We also evaluate to what degree the current experimental evidence supports the cytoskeleton as primary gravity sensor. Finally, we consider how the cytoskeleton itself could be affected by changed gravity. To make the next step toward understanding the response of cells to altered gravity, the challenge will be to track changes quantitatively and on short timescales.
Collapse
Affiliation(s)
- Daan Vorselen
- 1Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Office 11N15, Gustav Mahler Laan 3004, 1081LA, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
339
|
Li Y, Luo Y, Huang K, Xing J, Xie Z, Lin M, Yang L, Wang Y. The responses of osteoblasts to fluid shear stress depend on substrate chemistries. Arch Biochem Biophys 2013; 539:38-50. [DOI: 10.1016/j.abb.2013.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
340
|
Batra N, Riquelme MA, Burra S, Jiang JX. 14-3-3θ facilitates plasma membrane delivery and function of mechanosensitive connexin 43 hemichannels. J Cell Sci 2013; 127:137-46. [PMID: 24163432 DOI: 10.1242/jcs.133553] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular signaling in osteocytes activated by mechanical loading is important for bone formation and remodeling. These signaling events are mediated by small modulators released from Cx43 hemichannels (HC). We have recently shown that integrin α5 senses the mechanical stimulation and induces the opening of Cx43 HC; however, the underlying mechanism is unknown. Here, we show that both Cx43 and integrin α5 interact with 14-3-3θ, and this interaction is required for the opening of Cx43 HC upon mechanical stress. The absence of 14-3-3θ prevented the interaction between Cx43 and integrin α5, and blocked HC opening. Furthermore, it decreased the transport of Cx43 and integrin α5 from the Golgi apparatus to the plasma membrane. Mechanical loading promoted the movement of Cx43 to the surface which was associated not only with an increase in 14-3-3θ levels but also its interaction with Cx43 and integrin α5. This stimulatory effect on forward transport by mechanical loading was attenuated in the absence of 14-3-3θ and the majority of the Cx43 accumulated in the Golgi. Disruption of the Golgi by brefeldin A reduced the association of Cx43 and integrin α5 with 14-3-3θ, further suggesting that the interaction is likely to occur in the Golgi. Together, these results define a previously unidentified, scaffolding role of 14-3-3θ in assisting the delivery of Cx43 and integrin α5 to the plasma membrane for the formation of mechanosensitive HC in osteocytes.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
341
|
Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 2013; 28:430-9. [PMID: 24097311 PMCID: PMC4012163 DOI: 10.1096/fj.13-231894] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone turnover in vivo is regulated by mechanical forces such as shear stress originating from interstitial oscillatory fluid flow (OFF), and bone cells in vitro respond to mechanical loading. However, the mechanisms by which bone cells sense mechanical forces, resulting in increased mineral deposition, are not well understood. The aim of this study was to investigate the role of the primary cilium in mechanosensing by osteoblasts. MLO-A5 murine osteoblasts were cultured in monolayer and subjected to two different OFF regimens: 5 short (2 h daily) bouts of OFF followed by morphological analysis of primary cilia; or exposure to chloral hydrate to damage or remove primary cilia and 2 short bouts (2 h on consecutive days) of OFF. Primary cilia were shorter and there were fewer cilia per cell after exposure to periods of OFF compared with static controls. Damage or removal of primary cilia inhibited OFF-induced PGE2 release into the medium and mineral deposition, assayed by Alizarin red staining. We conclude that primary cilia are important mediators of OFF-induced mineral deposition, which has relevance for the design of bone tissue engineering strategies and may inform clinical treatments of bone disorders causes by load-deficiency.—Delaine-Smith, R. M., Sittichokechaiwut, A., Reilly, G. C. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts.
Collapse
Affiliation(s)
- Robin M Delaine-Smith
- 1School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK.
| | | | | |
Collapse
|
342
|
Shwartz Y, Blitz E, Zelzer E. One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation 2013; 86:104-11. [DOI: 10.1016/j.diff.2013.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
|
343
|
Richter K, Kiefer KP, Grzesik BA, Clauss WG, Fronius M. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels. FASEB J 2013; 28:45-55. [PMID: 24048216 DOI: 10.1096/fj.13-229252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; P<0.0001). This effect was reversible and repeatable ≥30 times. Preincubation with ATP-sensitive K(+) channel (K(ATP)) inhibitors (HMR1098 and glibenclamide) prevented the decrease in I(SC) (I(5cm)/I(0cm): HMR1098=1.19, P<0.0001; glibenclamide=1.11, P<0.0001). Similar effects were observed with hemichannel inhibitors (I(5cm)/I(0cm): meclofenamic acid=1.09, P<0.0001; probenecid=1.0, P<0.0001). The HP effect was accompanied by release of ATP (P<0.05), determined by luciferin-luciferase luminescence in perfusion solution from the luminal side of an Ussing chamber. ATP release was abrogated by both meclofenamic acid and probenecid. RT-PCR experiments revealed the expression of pannexin and connexin hemichannels and KATP subunit transcripts in X. laevis lung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.
Collapse
Affiliation(s)
- Katrin Richter
- 2Institute of Animal Physiology, Justus Liebig University, Giessen, Heinrich Buff Ring 26, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
344
|
Boada-Lopez J, DeJesus-Maldonado I, Jerez J, Romañach R, Diffoot-Carlo N, Sundaram P. Collagen abundance in mechanically stimulated osteoblast cultures using near infrared microscopy. J Biomech 2013; 46:2442-50. [PMID: 23938057 DOI: 10.1016/j.jbiomech.2013.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 05/18/2013] [Accepted: 07/11/2013] [Indexed: 11/15/2022]
Affiliation(s)
- Jairo Boada-Lopez
- Department of Mechanical Engineering,University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA
| | | | | | | | | | | |
Collapse
|
345
|
Nagayama K, Yahiro Y, Matsumoto T. Apical and Basal Stress Fibers have Different Roles in Mechanical Regulation of the Nucleus in Smooth Muscle Cells Cultured on a Substrate. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0294-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
346
|
Hinz B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol 2000 2013; 63:14-28. [DOI: 10.1111/prd.12030] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2012] [Indexed: 01/17/2023]
|
347
|
Li M, Zhang C, Wang L, Liu L, Xi N, Wang Y, Dong Z. Investigating the morphology and mechanical properties of blastomeres with atomic force microscopy. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics; Shenyang Institute of Automation, Chinese Academy of Sciences; Shenyang 110016 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Changlin Zhang
- State Key Laboratory of Robotics; Shenyang Institute of Automation, Chinese Academy of Sciences; Shenyang 110016 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Liu Wang
- State Key Laboratory of Reproductive Biology; Institute of Zoology, Chinese Academy of Sciences; Beijing 100101 China
| | - Lianqing Liu
- State Key Laboratory of Robotics; Shenyang Institute of Automation, Chinese Academy of Sciences; Shenyang 110016 China
| | - Ning Xi
- State Key Laboratory of Robotics; Shenyang Institute of Automation, Chinese Academy of Sciences; Shenyang 110016 China
- Department of Mechanical and Biomedical Engineering; City University of Hong Kong; Hong Kong China
| | - Yuechao Wang
- State Key Laboratory of Robotics; Shenyang Institute of Automation, Chinese Academy of Sciences; Shenyang 110016 China
| | - Zaili Dong
- State Key Laboratory of Robotics; Shenyang Institute of Automation, Chinese Academy of Sciences; Shenyang 110016 China
| |
Collapse
|
348
|
Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol 2013; 13:565-72. [PMID: 23896937 DOI: 10.1007/s10237-013-0518-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously, we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium, an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (r(2) = 0.87, p < 0.05), and significant cell death was observed at strains >40%. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology.
Collapse
|
349
|
Li Y, Luo Y, Xie Z, Xing J, Lin M, Yang L, Wang Y, Huang K. The optimal combination of substrate chemistry with physiological fluid shear stress. Colloids Surf B Biointerfaces 2013; 112:51-60. [PMID: 23948154 DOI: 10.1016/j.colsurfb.2013.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Osteoblasts on implanted biomaterials sense both substrate chemistry and mechanical stimulus. The effects of substrate chemistry alone and mechanical stimulus alone on osteoblasts have been widely studied. This study investigates the optimal combination of substrate chemistry and 12dyn/cm(2) physiological flow shear stress (FSS) by examining their influences on primary rat osteoblasts (ROBs), including the releases of ATP, nitric oxide (NO), and prostaglandin E2 (PGE2). Self-assembled monolayers (SAMs) on glass slides with -OH, -CH3, and -NH2 were employed to provide various substrate chemistries, whereas a parallel-plate fluid flow system produced the physiological FSS. Substrate chemistry alone exerted no observable effects on the releases of ATP, NO, and PGE2. Nevertheless, when ROBs were exposed to both substrate chemistry and FSS, the ATP releases of NH2 were upregulated about 12-fold compared to substrate chemistry alone, while the ATP releases of CH3 and OH was similarly increased 7-fold at the peak. Similar trends were observed for the releases of NO and PGE2. The expressions of ATP, NO, and PGE2 followed the pattern of NH2-FSS>Glass-FSS>CH3-FSS≈OH-FSS. ROBs on NH2 produced the optimal combination of substrate chemistry with the physiological FSS. The F-actin organization and focal adhesion (FA) formation of ROBs on various SAMs without FSS were examined. NH2 produced the best results whereas CH3 and OH produced the worst ones. Inhibition of FAs and/or disruption of F-actin significantly decreased the releases of FSS-induced PGE2, NO, and/or ATP. Consequently, a mechanism was proposed that the best F-actin organization and FA formation of ROBs on NH2 lead to the optimal combination of substrate chemistry with the 12dyn/cm(2) physiological FSS. This mechanism gives guidance for the design of implanted biomaterials and bioreactors for bone tissue engineering.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400030, China; Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Nick P. Microtubules, signalling and abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:309-23. [PMID: 23311499 DOI: 10.1111/tpj.12102] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/06/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
Plant microtubules, in addition to their role in cell division and axial cell expansion, convey a sensory function that is relevant for the perception of mechanical membrane stress and its derivatives, such as osmotic or cold stress. During development, sensory microtubules participate in the mechanical integration of plant architecture, including the patterning of incipient organogenesis and the alignment with gravity-dependent load. The sensory function of microtubules depends on dynamic instability, and often involves a transient elimination of cortical microtubules followed by adaptive events accompanied by subsequent formation of stable microtubule bundles. It is proposed that microtubules, because of their relative rigidity in combination with their innate nonlinear dynamics, are pre-adapted for a function as mechanosensors and, in concert with the flexible actin filaments and the anisotropic cell wall, comprise a tensegral system that allows plant cells to sense geometry and to respond to fields of mechanical strains such that the load is minimized. Microtubules are proposed as elements of a sensory hub that decodes stress-related signal signatures, with phospholipase D as an important player.
Collapse
Affiliation(s)
- Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76128 Karlsruhe, Germany.
| |
Collapse
|