301
|
Brasier AR. Therapeutic targets for inflammation-mediated airway remodeling in chronic lung disease. Expert Rev Respir Med 2018; 12:931-939. [PMID: 30241450 PMCID: PMC6485244 DOI: 10.1080/17476348.2018.1526677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Acute exacerbations of chronic lung disease account for substantial morbidity and health costs. Repeated inflammatory episodes and attendant bronchoconstriction cause structural remodeling of the airway. Remodeling is a multicellular response to mucosal injury that results in epithelial cell-state changes, enhanced extracellular deposition, and expansion of pro-fibrotic myofibroblast populations. Areas covered: This manuscript overviews mechanistic studies identifying key sentinel cell populations in the airway and how pattern recognition signaling induces maladaptive mucosal changes and airway remodeling. Studies elucidating how NFκB couples with an atypical histone acetyltransferase, bromodomain-containing protein 4 (BRD4) that reprograms mucosal fibrogenic responses, are described. The approaches to development and characterization of selective inhibitors of epigenetic reprogramming on innate inflammation and structural remodeling in preclinical models are detailed. Expert commentary: Bronchiolar cells derived from Scgb1a1-expressing progenitors function as major sentinel cells of the airway, responsible for initiating antiviral and aeroallergen responses. In these sentinel cells, activation of innate inflammation is coupled to neutrophilic recruitment, mesenchymal transition and myofibroblast expansion. Therapeutics targeting the NFkB-BRD4 may be efficacious in reducing pathological effects of acute exacerbations in chronic lung disease.
Collapse
Affiliation(s)
- Allan R Brasier
- a Department of Internal Medicine , Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
302
|
Hong HK, Maury E, Ramsey KM, Perelis M, Marcheva B, Omura C, Kobayashi Y, Guttridge DC, Barish GD, Bass J. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev 2018; 32:1367-1379. [PMID: 30366905 PMCID: PMC6217733 DOI: 10.1101/gad.319228.118] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.
Collapse
Affiliation(s)
- Hee-Kyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Eleonore Maury
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
- Unit of Endocrinology, Diabetes, and Nutrition, Université Catholique de Louvain (UCL), Brussels B-1200, Belgium
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis C Guttridge
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
303
|
Zheng Z, Zeng Y, Zhu X, Tan Y, Li Y, Li Q, Yi G. ApoM-S1P Modulates Ox-LDL-Induced Inflammation Through the PI3K/Akt Signaling Pathway in HUVECs. Inflammation 2018; 42:606-617. [DOI: 10.1007/s10753-018-0918-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
304
|
McKinsey TA, Vondriska TM, Wang Y. Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Res 2018; 7. [PMID: 30416708 PMCID: PMC6206605 DOI: 10.12688/f1000research.15797.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic processes are known to have powerful roles in organ development across biology. It has recently been found that some of the chromatin modulatory machinery essential for proper development plays a previously unappreciated role in the pathogenesis of cardiac disease in adults. Investigations using genetic and pharmacologic gain- and loss-of-function approaches have interrogated the function of distinct epigenetic regulators, while the increased deployment of the suite of next-generation sequencing technologies have fundamentally altered our understanding of the genomic targets of these chromatin modifiers. Here, we review recent developments in basic and translational research that have provided tantalizing clues that may be used to unlock the therapeutic potential of the epigenome in heart failure. Additionally, we provide a hypothesis to explain how signal-induced crosstalk between histone tail modifications and long non-coding RNAs triggers chromatin architectural remodeling and culminates in cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
305
|
Tian B, Hosoki K, Liu Z, Yang J, Zhao Y, Sun H, Zhou J, Rytting E, Kaphalia L, Calhoun WJ, Sur S, Brasier AR. Mucosal bromodomain-containing protein 4 mediates aeroallergen-induced inflammation and remodeling. J Allergy Clin Immunol 2018; 143:1380-1394.e9. [PMID: 30321559 DOI: 10.1016/j.jaci.2018.09.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Frequent exacerbations of allergic asthma lead to airway remodeling and a decrease in pulmonary function, producing morbidity. Cat dander is an aeroallergen associated with asthma risk. OBJECTIVE We sought to elucidate the mechanism of cat dander-induced inflammation-remodeling. METHODS We identified remodeling in mucosal samples from allergic asthma by using quantitative RT-PCR. We developed a model of aeroallergen-induced experimental asthma using repetitive cat dander extract exposure. We measured airway inflammation using immunofluorescence, leukocyte recruitment, and quantitative RT-PCR. Airway remodeling was measured by using histology, collagen content, myofibroblast numbers, and selected reaction monitoring. Inducible nuclear factor κB (NF-κB)-BRD4 interaction was measured by using a proximity ligation assay in situ. RESULTS Enhanced mesenchymal signatures are observed in bronchial biopsy specimens from patients with allergic asthma. Cat dander induces innate inflammation through NF-κB signaling, followed by production of a profibrogenic mesenchymal transition in primary human small airway epithelial cells. The IκB kinase-NF-κB signaling pathway is required for mucosal inflammation-coupled airway remodeling and myofibroblast expansion in the mouse model of aeroallergen exposure. Cat dander induces NF-κB/RelA to complex with and activate BRD4, resulting in modifying the chromatin environment of inflammatory and fibrogenic genes through its atypical histone acetyltransferase activity. A novel small-molecule BRD4 inhibitor (ZL0454) disrupts BRD4 binding to the NF-κB-RNA polymerase II complex and inhibits its histone acetyltransferase activity. ZL0454 prevents epithelial mesenchymal transition, myofibroblast expansion, IgE sensitization, and fibrosis in airways of naive mice exposed to cat dander. CONCLUSIONS NF-κB-inducible BRD4 activity mediates cat dander-induced inflammation and remodeling. Therapeutic modulation of the NF-κB-BRD4 pathway affects allergen-induced inflammation, epithelial cell-state changes, extracellular matrix production, and expansion of the subepithelial myofibroblast population.
Collapse
Affiliation(s)
- Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Tex
| | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Jia Zhou
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex
| | - Lata Kaphalia
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
306
|
Hoogeveen RM, Nahrendorf M, Riksen NP, Netea MG, de Winther MPJ, Lutgens E, Nordestgaard BG, Neidhart M, Stroes ESG, Catapano AL, Bekkering S. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. Eur Heart J 2018; 39:3521-3527. [PMID: 29069365 PMCID: PMC6174026 DOI: 10.1093/eurheartj/ehx581] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.
Collapse
Affiliation(s)
- Renate M Hoogeveen
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, 55 Fruit Street Boston, MA, USA
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, Munich, Germany
| | - Børge G Nordestgaard
- The Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Ringvej 75, Herlev, Copenhagen, Denmark
| | - Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, Milano, Italy
| | - Siroon Bekkering
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| |
Collapse
|
307
|
Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, Gionfriddo I, Mezzasoma F, Milano F, Nabet B, Buckley DL, Kornblau SM, Lin CY, Sportoletti P, Martelli MP, Falini B, Goodell MA. Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell 2018; 34:499-512.e9. [PMID: 30205049 PMCID: PMC6159911 DOI: 10.1016/j.ccell.2018.08.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023]
Abstract
NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.
Collapse
MESH Headings
- Aged
- Animals
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Down-Regulation
- Female
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Hydrazines/pharmacology
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Proteolysis
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Triazoles/pharmacology
- Xenograft Model Antitumor Assays
- Exportin 1 Protein
Collapse
Affiliation(s)
- Lorenzo Brunetti
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Michael C Gundry
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniele Sorcini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Anna G Guzman
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yung-Hsin Huang
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raghav Ramabadran
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilaria Gionfriddo
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Federica Mezzasoma
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Francesca Milano
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis L Buckley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven M Kornblau
- Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Maria Paola Martelli
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Brunangelo Falini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Margaret A Goodell
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
308
|
Zhao M, Joy J, Zhou W, De S, Wood WH, Becker KG, Ji H, Sen R. Transcriptional outcomes and kinetic patterning of gene expression in response to NF-κB activation. PLoS Biol 2018; 16:e2006347. [PMID: 30199532 PMCID: PMC6147668 DOI: 10.1371/journal.pbio.2006347] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/20/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022] Open
Abstract
Transcription factor nuclear factor kappa B (NF-κB) regulates cellular responses to environmental cues. Many stimuli induce NF-κB transiently, making time-dependent transcriptional outputs a fundamental feature of NF-κB activation. Here we show that NF-κB target genes have distinct kinetic patterns in activated B lymphoma cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. We also identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells. The nuclear factor kappa B (NF-κB) family of transcription factors regulates cellular responses to a wide variety of environmental cues. These could be extracellular stimuli that activate cell surface receptors, such as pathogens, or intracellular stress signals such as DNA damage or oxidative stress. In response to these triggers, NF-κB proteins accumulate in the cell nucleus, bind to specific DNA sequences in the genome, and thereby modulate gene transcription. Because of the diversity of signals that activate NF-κB and the ubiquity of this pathway in most cell types, cellular outcomes via NF-κB activation must be finely tuned to respond to the initiating stimulus. One mechanism by which NF-κB-dependent gene expression is regulated is by varying the duration of nuclear NF-κB; some signals lead to persistent nuclear NF-κB, while others lead to transient nuclear NF-κB. Consequently, time dependency of transcriptional responses is a unique signature of the initiating stimulus. Here we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in B lymphoma cells responding to a transient NF-κB-activating stimulus. By genetically manipulating NF-κB induction, we identified direct targets of RELA, a member of the NF-κB family, and provide evidence that kinetic patterns are established by a combination of factors that include the chromatin state of genes prior to cell activation and cofactors that work with RELA.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Supriyo De
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - William H. Wood
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
309
|
Zhang Z, Jiang F, Zeng L, Wang X, Tu S. PHACTR1 regulates oxidative stress and inflammation to coronary artery endothelial cells via interaction with NF-κB/p65. Atherosclerosis 2018; 278:180-189. [PMID: 30293016 DOI: 10.1016/j.atherosclerosis.2018.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Genome-wide association studies have showed that genetic variants in phosphatase and actin regulator 1 (PHACTR1) are associated with coronary artery disease and myocardial infarction. However, the underlying mechanism of PHACTR1 in atherosclerosis remains unknown. METHODS Immunoblots were performed to evaluate the expression of PHACTR1 and phosphorylation of NF-κB signaling. Reactive oxygen species (ROS) labeled with DCFH-DA were assessed by flow cytometry. Fluorescence microscope was used to detect the translocation of p65 in human coronary artery endothelial cells (HACECs). Co-immunoprecipitation was performed to determine the interaction of PHACTR1 with MRTF-A. RESULTS The mRNA and protein levels of PHACTR1 were markedly increased in carotid plaquescompared with normal carotid arteries. Immunofluorescence staining indicated that PHACTR1 was constitutively expressed in endothelial cells in carotid plaques. Knockdown of PHACTR1 reduced excessive ICAM-1, VCAM-1 and VE-cadherin expression induced by oxidized low density lipoprotein (ox-LDL) in HCAECs. Additionally, silencing PHACTR1 alleviated p47phox phosphorylation and intracellular oxidative stress reflected by the reduction of ROS. Molecular experiments revealed that knockdown of PHACTR1 attenuated NF-κB activity without affecting IκBα and IKKα/β phosphorylation. In contrast, nuclear translation of p65 was blocked by depletion of PHACTR1. Furthermore, co-immunoprecipitation showed that PHACTR1 interacted with MRTF-A and p65 in HCAECs. Knockdown of MRTF-A suppressed the interaction of PHACTR1 with p65, subsequently blocking the nuclear translocation of p65. CONCLUSIONS Our finding suggest that silencing PHACTR1 alleviates the nuclear accumulation of p65 and NF-κB via interaction with MRTF-A, ensuing attenuating oxidative stress and inflammation in HCAECs.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Fenglin Jiang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Lixiong Zeng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Xiaoyan Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Shan Tu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China.
| |
Collapse
|
310
|
Tian B, Widen SG, Yang J, Wood TG, Kudlicki A, Zhao Y, Brasier AR. The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. J Biol Chem 2018; 293:16528-16545. [PMID: 30166344 DOI: 10.1074/jbc.ra118.003662] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NF-κB in EMT of primary human small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor β (TGFβ) activated NF-κB/RELA proto-oncogene, NF-κB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFβ-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFβ stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified WNT, cadherin, and NF-κB signaling as the most prominent TGFβ-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to WNT, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: 1) the WNT/β-catenin morphogen pathway, 2) the JUN transcription factor, and 3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating WNT dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFβ-induced WNT5B expression and downstream activation of the WNT target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of WNT morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops.
Collapse
Affiliation(s)
- Bing Tian
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Steven G Widen
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Jun Yang
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Thomas G Wood
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Andrzej Kudlicki
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Yingxin Zhao
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705
| |
Collapse
|
311
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
312
|
Bocci M, Sjölund J, Kurzejamska E, Lindgren D, Marzouka NAD, Bartoschek M, Höglund M, Pietras K. Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer. Angiogenesis 2018; 22:117-131. [PMID: 30132150 PMCID: PMC6510886 DOI: 10.1007/s10456-018-9642-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells sustain their metabolic needs through nutrients and oxygen supplied by the bloodstream. The requirement for tumor angiogenesis has been therapeutically exploited in the clinical setting mainly by means of inhibition of the vascular endothelial growth factor family of ligands and receptors. Despite promising results in preclinical models, the benefits for patients proved to be limited. Inadequate efficacy similarly halted the development of agents impinging on the activity of the activin receptor-like kinase (ALK)1, a member of the transforming growth factor-β superfamily. Notwithstanding its characterization as an endothelial cell marker, the full spectrum of biological processes associated with ALK1 is essentially unexplored. Here, we present data revealing the genetic network associated with ACVRL1 (the gene encoding for ALK1) expression in human cancer tissues. Computational analysis unveiled a hitherto unknown role for ACVRL1 in relation to genes modulating the functionality of the immune cell compartment. Moreover, we generated a signature of 8 genes co-expressed with ACVRL1 across different tumor types and characterized the c-type lectin domain containing protein (CLEC)14A as a potential downstream target of ACVRL1. Considering the lack of reagents for ALK1 detection that has hampered the field to date, our work provides the opportunity to validate the 8-gene signature and CLEC14A as biomarkers for ALK1 activity. Ultimately, this may help revisit the clinical development of already existing ALK1-blocking compounds as precision medicines for cancer.
Collapse
Affiliation(s)
- Matteo Bocci
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Ewa Kurzejamska
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Nour-Al-Dain Marzouka
- Unit of Urothelial Cancer Genomics, Department of Oncology and Pathology, Lund University, Scheelevägen 8, 22363, Lund, Sweden
| | - Michael Bartoschek
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Mattias Höglund
- Unit of Urothelial Cancer Genomics, Department of Oncology and Pathology, Lund University, Scheelevägen 8, 22363, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden.
| |
Collapse
|
313
|
Lee MB, Lee JH, Hong SH, You JS, Nam ST, Kim HW, Park YH, Lee D, Min KY, Park YM, Kim YM, Kim HS, Choi WS. JQ1, a BET inhibitor, controls TLR4-induced IL-10 production in regulatory B cells by BRD4-NF-κB axis. BMB Rep 2018; 50:640-646. [PMID: 29187284 PMCID: PMC5749911 DOI: 10.5483/bmbrep.2017.50.12.194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
Regulatory B cells, also well-known as IL-10-producing B cells, play a role in the suppression of inflammatory responses. However, the epigenetic modulation of regulatory B cells is largely unknown. Recent studies showed that the bromodomain and extra-terminal domain (BET) protein inhibitor JQ1 controls the expression of various genes involving cell proliferation and cell cycle. However, the role of BET proteins on development of regulatory B cells is not reported. In this study, JQ1 potently suppressed IL-10 expression and secretion in murine splenic and peritoneal B cells. While bromodomain-containing protein 4 (BRD4) was associated with NF-κB on IL-10 promoter region by LPS stimulation, JQ1 interfered the interaction of BRD4 with NF-κB on IL-10 promoter. In summary, BRD4 is essential for toll like receptor 4 (TLR4)-mediated IL-10 expression, suggesting JQ1 could be a potential candidate in regulating IL-10-producing regulatory B cells in cancer.
Collapse
Affiliation(s)
- Min Bum Lee
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Jun-Ho Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Seong Hwi Hong
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Jueng Soo You
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Seung Taek Nam
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Hyun Woo Kim
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | | | - Dajeong Lee
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Yeong-Min Park
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
314
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
315
|
BET-inhibition by JQ1 alleviates streptozotocin-induced diabetic cardiomyopathy. Toxicol Appl Pharmacol 2018; 352:9-18. [DOI: 10.1016/j.taap.2018.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
|
316
|
Zhang W, Xu W, Chen W, Zhou Q. Interplay of Autophagy Inducer Rapamycin and Proteasome Inhibitor MG132 in Reduction of Foam Cell Formation and Inflammatory Cytokine Expression. Cell Transplant 2018; 27:1235-1248. [PMID: 30001636 PMCID: PMC6434468 DOI: 10.1177/0963689718786229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
MG132 is a pivotal inhibitor of the ubiquitin-proteasome system (UPS), and rapamycin (RAPA) is an important inducer of autophagy. MG132 and RAPA have been shown to be effective agents that can cure multiple autoimmune diseases by reducing inflammation. Although individual MG132 and RAPA showed protective effects for atherosclerosis (AS), the combined effect of these two drugs and its molecular mechanism are still unclear. In this article we investigate the regulation of oxidative modification of low-density lipoprotein (ox-LDL) stress and foam cell formation in the presence of both proteasome inhibitor MG132 and the autophagy inducer RAPA to uncover the molecular mechanism underlying this process. We established the foam cells model by ox-LDL and an animal model. Then, we tested six experimental groups of MG132, RAPA, and 3MA drugs. As a result, RAPA-induced autophagy reduces accumulation of polyubiquitinated proteins and apoptosis of foam cells. The combination of MG132 with RAPA not only suppressed expression of the inflammatory cytokines and formation of macrophage foam cells, but also significantly affected the NF-κB signaling pathway and the polarization of RAW 264.7 cells. These data suggest that the combination of proteasome inhibitor and autophagy inducer ameliorates the inflammatory response and reduces the formation of macrophage foam cells during development of AS. Our research provides a new way to suppress vascular inflammation and stabilize plaques of late atherosclerosis.
Collapse
Affiliation(s)
- Wei Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wan Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
317
|
Rahnamoun H, Lee J, Sun Z, Lu H, Ramsey KM, Komives EA, Lauberth SM. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat Struct Mol Biol 2018; 25:687-697. [PMID: 30076409 PMCID: PMC6859054 DOI: 10.1038/s41594-018-0102-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
The bromodomain and extra-terminal motif (BET) protein BRD4 binds to acetylated histones at enhancers and promoters via its bromodomains (BDs) to regulate transcriptional elongation. In human colorectal cancer cells, we found that BRD4 was recruited to enhancers that were co-occupied by mutant p53 and supported the synthesis of enhancer-directed transcripts (eRNAs) in response to chronic immune signaling. BRD4 selectively associated with eRNAs that were produced from BRD4-bound enhancers. Using biochemical and biophysical methods, we found that BRD4 BDs function cooperatively as docking sites for eRNAs and that the BDs of BRD2, BRD3, BRDT, BRG1, and BRD7 directly interact with eRNAs. BRD4-eRNA interactions increased BRD4 binding to acetylated histones in vitro and augmented BRD4 enhancer recruitment and transcriptional cofactor activities. Our results suggest a mechanism by which eRNAs are directly involved in gene regulation by modulating enhancer interactions and transcriptional functions of BRD4.
Collapse
Affiliation(s)
- Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jihoon Lee
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Zhengxi Sun
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Hanbin Lu
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kristen M Ramsey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shannon M Lauberth
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
318
|
Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018; 361:eaar3958. [PMID: 29930091 PMCID: PMC6092193 DOI: 10.1126/science.aar3958] [Citation(s) in RCA: 1641] [Impact Index Per Article: 234.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/09/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
Abstract
Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | | | - Ann Boija
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Eliot L Coffey
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Krishna Shrinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John C Manteiga
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang E Guo
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Daniel S Day
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Jurian Schuijers
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
319
|
Gilmour J, Assi SA, Noailles L, Lichtinger M, Obier N, Bonifer C. The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 Drives Transcription Factor Complex Relocation During Haematopoietic Specification. Sci Rep 2018; 8:10410. [PMID: 29991720 PMCID: PMC6039467 DOI: 10.1038/s41598-018-28506-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023] Open
Abstract
Haematopoietic cells arise from endothelial cells within the dorsal aorta of the embryo via a process called the endothelial-haematopoietic transition (EHT). This process crucially depends on the transcription factor RUNX1 which rapidly activates the expression of genes essential for haematopoietic development. Using an inducible version of RUNX1 in a mouse embryonic stem cell differentiation model we showed that prior to the EHT, haematopoietic genes are primed by the binding of the transcription factor FLI1. Once expressed, RUNX1 relocates FLI1 towards its binding sites. However, the nature of the transcription factor assemblies recruited by RUNX1 to reshape the chromatin landscape and initiate mRNA synthesis are unclear. Here, we performed genome-wide analyses of RUNX1-dependent binding of factors associated with transcription elongation to address this question. We demonstrate that RUNX1 induction moves FLI1 from distal ETS/GATA sites to RUNX1/ETS sites and recruits the basal transcription factors CDK9, BRD4, the Mediator complex and the looping factor LDB1. Our study explains how the expression of a single transcription factor can drive rapid and replication independent transitions in cellular shape which are widely observed in development and disease.
Collapse
Affiliation(s)
- Jane Gilmour
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura Noailles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Monika Lichtinger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Clinical Research, University of Freiburg Medical School, Freiburg, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
320
|
Wang B, Chen G, Urabe G, Xie R, Wang Y, Shi X, Guo LW, Gong S, Kent KC. A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials 2018; 178:293-301. [PMID: 29958152 DOI: 10.1016/j.biomaterials.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023]
Abstract
Drug-eluting stents are the most commonly employed method to control post-angioplasty restenosis. Unfortunately, they exacerbate life-threatening stent thrombosis because of endothelium damage caused by both drug and stenting. To solve this major medical problem, an endothelium-protective and stent-free anti-restenotic method is highly desirable. Here we have generated a biomimetic intravenous delivery system using dendritic polymer-based nanoclusters, which were coated with platelet membranes for targeting to the injured arterial wall where restenosis occurs. These nanoclusters were loaded with an endothelium-protective epigenetic inhibitor (JQ1) or an endothelium-toxic status quo drug (rapamycin), and compared for their ability to mitigate restenosis without hindering the process of re-endothelialization. Fluorescence imaging of Cy5-tagged biomimetic nanoclusters indicated their robust homing to injured, but not uninjured arteries. Two weeks after angioplasty, compared to no-drug control, both rapamycin- and JQ1-loaded biomimetic nanoclusters substantially reduced (by >60%) neointimal hyperplasia, the primary cause of restenosis. However, whereas the rapamycin formulation impaired the endothelial re-coverage of the denuded inner arterial wall, the JQ1 formulation preserved endothelial recovery. In summary, we have created an endothelium-protective anti-restenotic system with biomimetic nanoclusters containing an epigenetic inhibitor. This system warrants further development for a non-thrombogenic and stent-free method for clinical applications.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Go Urabe
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xudong Shi
- Department of Surgery, 5151 Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - K Craig Kent
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
321
|
Endothelial cell activation is attenuated by everolimus via transcriptional and post-transcriptional regulatory mechanisms after drug-eluting coronary stenting. PLoS One 2018; 13:e0197890. [PMID: 29889836 PMCID: PMC5995375 DOI: 10.1371/journal.pone.0197890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/10/2018] [Indexed: 01/26/2023] Open
Abstract
We previously found higher level of endothelial cell (EC) activation in patients who suffered from in-stent restenosis after bare-metal stenting compared to subjects who underwent drug-eluting stenting (DES) showing no complications. Here we investigated the potential transcriptional and post-transcriptional regulatory mechanisms by which everolimus attenuated EC activation after DES. We studied the effect of everolimus on E-selectin (SELE) and VCAM1 mRNA levels when human coronary artery (HCAECs) and human umbilical vein ECs were challenged with recombinant TNF-α (100 ng/mL) for 1–24 hours in the presence or absence of everolimus using 0.5 μM concentration locally maintained by DES. EC activation was evaluated via the levels of IL-1β and IL-6 mRNAs with miR-155 expression by RT-qPCR as well as the nuclear translocation of nuclear factor kappa beta (NF-κB) detected by fluorescence microscopy. To investigate the transcriptional regulation of E-selectin and VCAM-1, TNF-α-induced enhancer RNA (eRNA) expression at p65-bound enhancers in the neighboring genomic regions of SELE and VCAM1 genes, including SELE_-11Kb and VCAM1_-10Kb, were measured in HCAECs. Mature and precursor levels of E-selectin and VCAM-1 repressor miR-181b were quantified to analyze the post-transcriptional regulation of these genes in HCAECs. Circulating miR-181b was analyzed in plasma samples of stented subjects by stem-loop RT-qPCR. TNF-α highly elevated E-selectin and VCAM-1 expression at transcriptional level in ECs. Levels of mature, pre- and pri-miR-181b were repressed in ECs by TNF-α, while everolimus acted as a negative regulator of EC activation via inhibited translocation of NF-κB p65 subunit into cell nuclei, lowered eRNA expression at SELE and VCAM1 genes-associated enhancers and modulated expression of their post-transcriptional repressor miR-181b. Significant negative correlation was observed between plasma miR-181b and soluble E-selectin and VCAM-1 in patients. In conclusion, everolimus attenuates EC activation via reduced NF-κB p65 translocation causing decreased E-selectin and VCAM-1 expression at transcriptional and post-transcriptional level after DES.
Collapse
|
322
|
Fristiohady A, Milovanovic D, Krieger S, Huttary N, Nguyen CH, Basilio J, Jäger W, De Martin R, Krupitza G. 12(S)-HETE induces lymph endothelial cell retraction in vitro by upregulation of SOX18. Int J Oncol 2018; 53:307-316. [PMID: 29749465 DOI: 10.3892/ijo.2018.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 11/06/2022] Open
Abstract
Metastasising breast cancer cells communicate with adjacent lymph endothelia, intravasate and disseminate through lymphatic routes, colonise lymph nodes and finally metastasize to distant organs. Thus, understanding and blocking intravasation may attenuate the metastatic cascade at an early step. As a trigger factor, which causes the retraction of lymph endothelial cells (LECs) and opens entry ports for tumour cell intravasation, MDA-MB231 breast cancer cells secrete the pro-metastatic arachidonic acid metabolite, 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid [12(S)-HETE]. In the current study, treatment of LECs with 12(S)-HETE upregulated the expression of the transcription factors SRY-related HMG-box 18 (SOX18) and prospero homeobox protein 1 (PROX1), which determine endothelial development. Thus, whether they have a role in LEC retraction was determined using a validated intravasation assay, small interfering RNA mediated knockdown of gene expression, and mRNA and protein expression analyses. Specific inhibition of SOX18 or PROX1 significantly attenuated in vitro intravasation of MDA-MB231 spheroids through the LEC barrier and 12(S)-HETE-triggered signals were transduced by the high and low affinity receptors, 12(S)-HETE receptor and leukotriene B4 receptor 2. In addition, the current findings indicate that there is crosstalk between SOX18 and nuclear factor κ-light-chain-enhancer of activated B cells, which was demonstrated to contribute to MDA-MB231/lymph endothelial intravasation. The present data demonstrate that the endothelial-specific and lymph endothelial-specific transcription factors SOX18 and PROX1 contribute to LEC retraction.
Collapse
Affiliation(s)
- Adryan Fristiohady
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Daniela Milovanovic
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sigurd Krieger
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Nicole Huttary
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Chi Huu Nguyen
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Jose Basilio
- Department of Vascular Biology and Thrombosis Research, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Rainer De Martin
- Department of Vascular Biology and Thrombosis Research, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
323
|
Ghosh GC, Bhadra R, Ghosh RK, Banerjee K, Gupta A. RVX 208: A novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther 2018; 35. [PMID: 28423226 DOI: 10.1111/1755-5922.12265] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/17/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
Low-density cholesterol (LDL) has been the prime target of currently available lipid-lowering therapies although current research is expanding the focus beyond LDL lowering and has included high-density cholesterol (HDL) also as the target. Bromo and extra-terminal (BET) proteins are implicated in the regulation of transcription of several regulatory genes and regulation of proinflammatory pathways. As atherosclerosis is an inflammatory pathway and studies showed that BET inhibition has a role in inhibiting inflammation, the concept of BET inhibition came in the field of atherosclerosis. RVX 208 is a novel, orally active, BET protein inhibitor and the only BET inhibitor currently available in the field of atherosclerosis. RVX 208 acts primarily by increasing apo A-I (apolipoprotein A-I) and HDL levels. RVX 208 has a novel action of increasing larger, more cardio-protective HDL particles. Post hoc analysis of Phase II trials also showed that RVX 208 reduced major adverse cardiovascular events (MACE) in treated patients, over and above that of apo A-I/HDL increasing action. This MACE reducing actions of RVX 208 were largely due to its novel anti-inflammatory actions. Currently, a phase III trial, BETonMACE, is recruiting patients to look for the effects of RVX 208 in patients with increased risk of atherosclerotic cardiovascular disease. So BET inhibitors act in multiple ways to inhibit and modulate atherosclerosis and would be an emerging and potential option in the management of multifactorial disease like coronary artery disease by inhibiting a single substrate. But we need long-term phase III trial data's to look for effects on real-world patients.
Collapse
Affiliation(s)
- Gopal C Ghosh
- Department of Cardiology, Christian Medical College, Vellore, India
| | - Rajarshi Bhadra
- Department of Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Raktim K Ghosh
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anjan Gupta
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
324
|
Wasiak S, Tsujikawa LM, Halliday C, Stotz SC, Gilham D, Jahagirdar R, Kalantar-Zadeh K, Robson R, Sweeney M, Johansson JO, Wong NC, Kulikowski E. Benefit of Apabetalone on Plasma Proteins in Renal Disease. Kidney Int Rep 2018; 3:711-721. [PMID: 29854980 PMCID: PMC5976837 DOI: 10.1016/j.ekir.2017.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Apabetalone, a small molecule inhibitor, targets epigenetic readers termed BET proteins that contribute to gene dysregulation in human disorders. Apabetalone has in vitro and in vivo anti-inflammatory and antiatherosclerotic properties. In phase 2 clinical trials, this drug reduced the incidence of major adverse cardiac events in patients with cardiovascular disease. Chronic kidney disease is associated with a progressive loss of renal function and a high risk of cardiovascular disease. We studied the impact of apabetalone on the plasma proteome in patients with impaired kidney function. METHODS Subjects with stage 4 or 5 chronic kidney disease and matched controls received a single dose of apabetalone. Plasma was collected for pharmacokinetic analysis and for proteomics profiling using the SOMAscan 1.3k platform. Proteomics data were analyzed with Ingenuity Pathway Analysis to identify dysregulated pathways in diseased patients, which were targeted by apabetalone. RESULTS At baseline, 169 plasma proteins (adjusted P value <0.05) were differentially enriched in renally impaired patients versus control subjects, including cystatin C and β2 microglobulin, which correlate with renal function. Bioinformatics analysis of the plasma proteome revealed a significant activation of 42 pathways that control immunity and inflammation, oxidative stress, endothelial dysfunction, vascular calcification, and coagulation. At 12 hours postdose, apabetalone countered the activation of pathways associated with renal disease and reduced the abundance of disease markers, including interleukin-6, plasminogen activator inhibitor-1, and osteopontin. CONCLUSION These data demonstrated plasma proteome dysregulation in renally impaired patients and the beneficial impact of apabetalone on pathways linked to chronic kidney disease and its cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Robson
- Christchurch Clinical Studies Trust, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
325
|
A New Quinoline BRD4 Inhibitor Targets a Distinct Latent HIV-1 Reservoir for Reactivation from Other "Shock" Drugs. J Virol 2018; 92:JVI.02056-17. [PMID: 29343578 DOI: 10.1128/jvi.02056-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 01/30/2023] Open
Abstract
Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or "shock" drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection.IMPORTANCE The suggested "shock and kill" therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the "shocking" element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.
Collapse
|
326
|
Wu J, Wang Q, Dai W, Wang W, Yue M, Wang J. Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB. J Genet Genomics 2018; 45:193-203. [PMID: 29748061 DOI: 10.1016/j.jgg.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/01/2022]
Abstract
Nuclear factor κB (NF-κB) is a DNA-binding transcription factor. Characterizing its genomic binding sites is crucial for understanding its gene regulatory function and mechanism in cells. This study characterized the binding sites of NF-κB RelA/p65 in the tumor neurosis factor-α (TNFα) stimulated HeLa cells by a precise chromatin immunoprecipitation-sequencing (ChIP-seq). The results revealed that NF-κB binds nontraditional motifs (nt-motifs) containing conserved GGAA quadruplet. Moreover, nt-motifs mainly distribute in the peaks nearby centromeres that contain a larger number of repetitive elements such as satellite, simple repeats and short interspersed nuclear elements (SINEs). This intracellular binding pattern was then confirmed by the in vitro detection, indicating that NF-κB dimers can bind the nontraditional κB (nt-κB) sites with low affinity. However, this binding hardly activates transcription. This study thus deduced that NF-κB binding nt-motifs may realize functions other than gene regulation as NF-κB binding traditional motifs (t-motifs). To testify the deduction, many ChIP-seq data of other cell lines were then analyzed. The results indicate that NF-κB binding nt-motifs is also widely present in other cells. The ChIP-seq data analysis also revealed that nt-motifs more widely distribute in the peaks with low-fold enrichment. Importantly, it was also found that NF-κB binding nt-motifs is mainly present in the resting cells, whereas NF-κB binding t-motifs is mainly present in the stimulated cells. Astonishingly, no known function was enriched by the gene annotation of nt-motif peaks. Based on these results, this study proposed that the nt-κB sites that extensively distribute in larger numbers of repeat elements function as a nuclear reservoir of NF-κB. The nuclear NF-κB proteins stored at nt-κB sites in the resting cells may be recruited to the t-κB sites for regulating its target genes upon stimulation.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Qiao Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
327
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
328
|
Huang F, Shao W, Fujinaga K, Peterlin BM. Bromodomain-containing protein 4-independent transcriptional activation by autoimmune regulator (AIRE) and NF-κB. J Biol Chem 2018; 293:4993-5004. [PMID: 29463681 PMCID: PMC5892592 DOI: 10.1074/jbc.ra117.001518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.
Collapse
Affiliation(s)
- Fang Huang
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
329
|
Affiliation(s)
- Celine Souilhol
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and Bateson Centre, University of Sheffield, United Kingdom
| | - Paul C. Evans
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and Bateson Centre, University of Sheffield, United Kingdom
| |
Collapse
|
330
|
Population based and animal study on the effects of Schistosoma japonicum infection in the regulation of host glucose homeostasis. Acta Trop 2018; 180:33-41. [PMID: 29309743 DOI: 10.1016/j.actatropica.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/19/2017] [Accepted: 01/05/2018] [Indexed: 01/17/2023]
Abstract
Although parasitic infection affects the glucose homeostasis of mice, only few studies have integrated epidemiological and animal data to determine the effect of Schistosoma japonicum infection on mice metabolism. The current study assessed the effects of S. japonicum infection on blood glucose and other metabolic parameters in both patients and animal models of chronic schistomiasis. A total of 2183 patients with chronic schistosomiasis and age- and gender-matched individuals without schistosomiasis (n = 1798) were enrolled in this study. Fasting blood glucose and other metabolic parameters, including body mass index (BMI) and serum triglyceride and total cholesterol, were compared between the two groups. Mice infected with S. japonicum were used to test the effects of the parasite on glucose tolerance. We found that chronic schistosomiasis patients had significantly lower BMI and fasting blood glucose, serum triglyceride, and total cholesterol levels than non-schistosomiasis individuals. In the animal studies, both bisexual and unisexual S. japonicum infection improved glucose tolerance in wild-type mice. Additionally, S. japonicum-infected ob/ob mice, a model that spontaneously develops obesity and diabetes, also had decreased body weight and improved glucose tolerance. We further observed that S. japonicum-infected mice had lower inflammatory gene expression in the visceral white adipose tissue than the control mice. Collectively, our results demonstrated that S. japonicum infection improved glucose tolerance and other metabolic parameters both in human and animals. Downregulated inflammatory gene expression due to S. japonicum infection might be among the mechanisms for the improved glucose tolerance.
Collapse
|
331
|
Kulikowski E, Halliday C, Johansson J, Sweeney M, Lebioda K, Wong N, Haarhaus M, Brandenburg V, Beddhu S, Tonelli M, Zoccali C, Kalantar-Zadeh K. Apabetalone Mediated Epigenetic Modulation is Associated with Favorable Kidney Function and Alkaline Phosphatase Profile in Patients with Chronic Kidney Disease. Kidney Blood Press Res 2018; 43:449-457. [PMID: 29566379 DOI: 10.1159/000488257] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The association between serum alkaline phosphatase (ALP) with adverse cardiovascular outcomes, in Chronic Kidney Disease (CKD) patients has previously been reported and may be a result of increased vascular calcification and inflammation. Here we report, for the first time, the effects of pharmacologic epigenetic modulation on levels of ALP and kidney function via a novel oral small molecule BET inhibitor, apabetalone, in CKD patients. METHODS A post-hoc analysis evaluated patients with estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2, who participated in the apabetalone phase 2 randomized controlled trials (SUSTAIN and ASSURE). 48 CKD subjects with a history of cardiovascular disease (CVD) were treated with 100mg twice-daily of 24 and 26 weeks of apabetalone or placebo. ALP and eGFR were measured prior to randomization and at final visits. RESULTS Patients who received apabetalone (n=35) versus placebo (n=13) over 6 months showed significantly (p=0.02) lowered serum ALP -14.0% (p<0.0001 versus baseline) versus -6.3% (p=0.9 versus baseline). The eGFR in the apabetalone group increased by 3.4% (1.7 mL/min/1.73 m2) (p=0.04 versus baseline) and decreased by 5.8% (2.9 mL/min/1.73 m2) (p=0.6 versus baseline) in the placebo group. Apabetalone was well tolerated. CONCLUSION A post-hoc analysis of CKD subjects from the SUSTAIN and ASSURE randomized controlled trials demonstrated favorable effects of apabetalone on ALP and eGFR, and generated the hypothesis that epigenetic modulation by BET inhibition may potentially offer a novel therapeutic strategy to treat CVD and progressive kidney function loss in CKD patients. This is being examined in the phase III trial BETonMACE.
Collapse
Affiliation(s)
| | | | - Jan Johansson
- Resverlogix Corp. Clinical Development, San Francisco, California, USA
| | - Mike Sweeney
- Resverlogix Corp. Clinical Development, San Francisco, California, USA
| | - Kenneth Lebioda
- Resverlogix Corp. Research and Development, Calgary, Alberta, Canada
| | - Norman Wong
- Resverlogix Corp. Research and Development, Calgary, Alberta, Canada
| | - Mathias Haarhaus
- Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Srinivasan Beddhu
- Division of Nephrology and Hypertension and Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carmine Zoccali
- Division of Nephrology and Hypertension and Renal Transplantation, Ospedali Riuniti, Reggio Calabria, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, California, USA.,Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, USA.,Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
332
|
Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S, Becher I, Muelbaier M, Wagner AJ, Strohmer K, Werner T, Melchert S, Petretich M, Rutkowska A, Vappiani J, Franken H, Steidel M, Sweetman GM, Gilan O, Lam EYN, Dawson MA, Prinjha RK, Grandi P, Bergamini G, Bantscheff M. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell 2018; 173:260-274.e25. [PMID: 29551266 PMCID: PMC5871718 DOI: 10.1016/j.cell.2018.02.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 02/07/2023]
Abstract
Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed “multiplexed proteome dynamics profiling” (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems. Multiplexed proteome dynamics profiling, mPDP, measures changes in proteostasis JQ1-PROTAC degrades a key mRNA export factor and blocks protein synthesis Raloxifene induces TMEM97 degradation dysregulating cholesterol homeostasis Characterization of proteins dependent on HSP90 constitutively or during synthesis
Collapse
Affiliation(s)
- Mikhail M Savitski
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nico Zinn
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Daniel Poeckel
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Gade
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Marcel Muelbaier
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne J Wagner
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Katrin Strohmer
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thilo Werner
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephanie Melchert
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Massimo Petretich
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anna Rutkowska
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Johanna Vappiani
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Holger Franken
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michael Steidel
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gavain M Sweetman
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Paola Grandi
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Giovanna Bergamini
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Marcus Bantscheff
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
333
|
Homeostatic Response of Mouse renin Gene Transcription in a Hypertensive Environment Is Mediated by a Novel 5' Enhancer. Mol Cell Biol 2018; 38:MCB.00566-17. [PMID: 29358217 DOI: 10.1128/mcb.00566-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
The renin-angiotensin system plays an essential role in blood pressure homeostasis. Because renin activity is reflected as a blood pressure phenotype, its gene expression in the kidney is tightly regulated by a feedback mechanism; i.e., renin gene transcription is suppressed in a hypertensive state. To address the molecular mechanisms controlling hypertension-responsive mouse renin (mRen) gene regulation, we deleted either 5' (17-kb) or 3' (78-kb) regions of the endogenous mRen gene and placed the animals in a hypertensive environment. While the mRen gene bearing the 3' deletion was appropriately downregulated, the one bearing the 5' deletion lost this hypertension responsiveness. Because the 17-kb sequence exhibited enhancer activity in vivo and in vitro, we narrowed down the enhancer to a 2.3-kb core using luciferase assays in As4.1 cells. When this 2.3-kb sequence was removed from the endogenous mRen gene in the mouse, its basal expression was dramatically reduced, and the hypertension responsiveness was significantly attenuated. Furthermore, we demonstrated that the angiotensin II signal played an important role in mRen gene suppression. We propose that in a hypertensive environment, the activity of this novel enhancer is attenuated, and, as a consequence, mRen gene transcription is suppressed to maintain blood pressure.
Collapse
|
334
|
Li X, Tang Y, Ma B, Wang Z, Jiang J, Hou S, Wang S, Zhang J, Deng M, Duan Z, Tang X, Chen AF, Jiang L. The peptide lycosin-I attenuates TNF-α-induced inflammation in human umbilical vein endothelial cells via IκB/NF-κB signaling pathway. Inflamm Res 2018. [DOI: 10.1007/s00011-018-1138-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
335
|
Piao S, Lee JW, Nagar H, Jung SB, Choi S, Kim S, Lee I, Kim SM, Shin N, Lee YR, Lee SD, Park JB, Irani K, Won M, Hur GM, Jeon BH, Kim DW, Kim CS. CR6 interacting factor 1 deficiency promotes endothelial inflammation by SIRT1 downregulation. PLoS One 2018; 13:e0192693. [PMID: 29474366 PMCID: PMC5825004 DOI: 10.1371/journal.pone.0192693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
Aims CR6 interacting factor 1 (CRIF1) deficiency impairs mitochondrial oxidative phosphorylation complexes, contributing to increased mitochondrial and cellular reactive oxygen species (ROS) production. CRIF1 downregulation has also been revealed to decrease sirtuin 1 (SIRT1) expression and impair vascular function. Inhibition of SIRT1 disturbs oxidative energy metabolism and stimulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-induced inflammation. Therefore, we hypothesized that both CRIF1 deficiency-induced mitochondrial ROS production and SIRT1 reduction play stimulatory roles in vascular inflammation. Methods and results Plasma levels and mRNA expression of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) were markedly elevated in endothelium-specific CRIF1-knockout mice and CRIF1-silenced endothelial cells, respectively. Moreover, CRIF1 deficiency-induced vascular adhesion molecule-1 (VCAM-1) expression was consistently attenuated by the antioxidant N-acetyl-cysteine and NF-κB inhibitor (BAY11). We next showed that siRNA-mediated CRIF1 downregulation markedly activated NF-κB. SIRT1 overexpression not only rescued CRIF1 deficiency-induced NF-κB activation but also decreased inflammatory cytokines (TNF-α, IL-1β, and IL-6) and VCAM-1 expression levels in endothelial cells. Conclusions These results strongly suggest that CRIF1 deficiency promotes endothelial cell inflammation by increasing VCAM-1 expression, elevating inflammatory cytokines levels, and activating the transcription factor NF-κB, all of which were inhibited by SIRT1 overexpression.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Wan Lee
- Emergency ICU, Regional Emergency Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Harsha Nagar
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Saet-byel Jung
- Department of Endocrinology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sujeong Choi
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-min Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Ran Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Do Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA United States of America
| | - Minho Won
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
336
|
Poulsen LLC, Edelmann RJ, Krüger S, Diéguez-Hurtado R, Shah A, Stav-Noraas TE, Renzi A, Szymanska M, Wang J, Ehling M, Benedito R, Kasprzycka M, Bækkevold E, Sundnes O, Midwood KS, Scott H, Collas P, Siebel CW, Adams RH, Haraldsen G, Sundlisæter E, Hol J. Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers. Arterioscler Thromb Vasc Biol 2018; 38:854-869. [PMID: 29449332 DOI: 10.1161/atvbaha.117.310388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context. APPROACH AND RESULTS Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB-directed inflammatory enhancers. CONCLUSIONS Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype.
Collapse
Affiliation(s)
- Lars la Cour Poulsen
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Reidunn Jetne Edelmann
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Stig Krüger
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Rodrigo Diéguez-Hurtado
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Akshay Shah
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Tor Espen Stav-Noraas
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Anastasia Renzi
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Monika Szymanska
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Junbai Wang
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Manuel Ehling
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Rui Benedito
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Monika Kasprzycka
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Espen Bækkevold
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Olav Sundnes
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Kim S Midwood
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Helge Scott
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Philippe Collas
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Christian W Siebel
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Ralf H Adams
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Guttorm Haraldsen
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.).
| | - Eirik Sundlisæter
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Johanna Hol
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| |
Collapse
|
337
|
Abstract
Developmental transitions are guided by master regulatory transcription factors. During adipogenesis, a transcriptional cascade culminates in the expression of PPARγ and C/EBPα, which orchestrate activation of the adipocyte gene expression program. However, the coactivators controlling PPARγ and C/EBPα expression are less well characterized. Here, we show the bromodomain-containing protein, BRD4, regulates transcription of PPARγ and C/EBPα. Analysis of BRD4 chromatin occupancy reveals that induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic redistribution of BRD4 to de novo super-enhancers proximal to genes controlling adipocyte differentiation. Inhibition of the bromodomain and extraterminal domain (BET) family of bromodomain-containing proteins impedes BRD4 occupancy at these de novo enhancers and disrupts transcription of Pparg and Cebpa, thereby blocking adipogenesis. Furthermore, silencing of these BRD4-occupied distal regulatory elements at the Pparg locus by CRISPRi demonstrates a critical role for these enhancers in the control of Pparg gene expression and adipogenesis in 3T3L1s. Together, these data establish BET bromodomain proteins as time- and context-dependent coactivators of the adipocyte cell state transition.
Collapse
|
338
|
Sacta MA, Tharmalingam B, Coppo M, Rollins DA, Deochand DK, Benjamin B, Yu L, Zhang B, Hu X, Li R, Chinenov Y, Rogatsky I. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages. eLife 2018; 7:34864. [PMID: 29424686 PMCID: PMC5821458 DOI: 10.7554/elife.34864] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 01/13/2023] Open
Abstract
The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.
Collapse
Affiliation(s)
- Maria A Sacta
- Weill Cornell/ Rockefeller/ Sloan Kettering Tri-Institutional MD-PhD Program, New York, United States.,Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Bowranigan Tharmalingam
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Maddalena Coppo
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - David A Rollins
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Bradley Benjamin
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
339
|
Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. BET Family Protein BRD4: An Emerging Actor in NFκB Signaling in Inflammation and Cancer. Biomedicines 2018; 6:biomedicines6010016. [PMID: 29415456 PMCID: PMC5874673 DOI: 10.3390/biomedicines6010016] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/04/2023] Open
Abstract
NFκB (Nuclear Factor-κ-light-chain-enhancer of activated B cells) signaling elicits global transcriptional changes by activating cognate promoters and through genome-wide remodeling of cognate regulatory elements called “super enhancers”. BET (Bromodomain and Extra-Terminal domain) protein family inhibitor studies have implicated BET protein member BRD4 and possibly other BET proteins in NFκB-dependent promoter and super-enhancer modulation. Members of the BET protein family are known to bind acetylated chromatin to facilitate access by transcriptional regulators to chromatin, as well as to assist the activity of transcription elongation complexes via CDK9/pTEFb. BET family member BRD4 has been shown to bind non-histone proteins and modulate their activity. One such protein is RELA, the NFκB co-activator. Specifically, BRD4 binds acetylated RELA, which increases its transcriptional transactivation activity and stability in the nucleus. In aggregate, this establishes an intimate link between NFκB and BET signaling, at least via BRD4. The present review provides a brief overview of the structure and function of BET family proteins and then examines the connections between NFκB and BRD4 signaling, using the inflammatory response and cancer cell signaling as study models. We also discuss the potential of BET inhibitors for relief of aberrant NFκB signaling in cancer, focusing on non-histone, acetyl-lysine binding functions.
Collapse
Affiliation(s)
- Azadeh Hajmirza
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
| | - Anouk Emadali
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
- Pôle Recherche, Grenoble-Alpes University Hospital, F-38043 Grenoble, France.
| | - Arnaud Gauthier
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
| | - Olivier Casasnovas
- Département d'Hématologie Clinique, Dijon University Hospital, F-21000 Dijon, France.
| | - Rémy Gressin
- Département d'Hématologie Clinique, Grenoble-Alpes University Hospital, F-38043 Grenoble, France.
| | - Mary B Callanan
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
- Centre for Innovation in Cancer Genetics and Epigenetics, Dijon University Hospital, F-21000 Dijon, France.
| |
Collapse
|
340
|
Krah NM, Murtaugh LC. Differentiation and Inflammation: 'Best Enemies' in Gastrointestinal Carcinogenesis. Trends Cancer 2018. [PMID: 28630946 DOI: 10.1016/j.trecan.2016.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While recent studies demonstrate that cancer can arise from mutant stem cells, this hypothesis does not explain why tissues without defined stem cell populations are susceptible to inflammation-driven tumorigenesis. We propose that chronic inflammatory diseases, such as colitis and pancreatitis, predispose to gastrointestinal (GI) adenocarcinoma by reprogramming differentiated cells. Focusing on colon and pancreas, we discuss recently discovered connections between inflammation and loss of cell differentiation, and propose that dysregulation of cell fate may be a novel rate-limiting step of tumorigenesis. We review studies identifying differentiation mechanisms that limit tumor initiation and that, upon reactivation, can prevent or revert the cancer cell transformed phenotype. Together, these findings suggest that differentiation-targeted treatments hold promise as a therapeutic strategy in GI cancer.
Collapse
Affiliation(s)
- Nathan M Krah
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
341
|
Xiao X, Fan Y, Li J, Zhang X, Lou X, Dou Y, Shi X, Lan P, Xiao Y, Minze L, Li XC. Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation. J Exp Med 2018; 215:559-574. [PMID: 29339447 PMCID: PMC5789412 DOI: 10.1084/jem.20170928] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
Xiao et al. demonstrate that formation of super-enhancers at Il9 locus is critical for robust IL-9 expression and Th9 cell induction, and assembly of Il9 super-enhancers is driven by OX40-mediated chromatin acetylation. Th9 cells are prominently featured in allergic lung inflammation, but the mechanism that regulates IL-9 induction in T helper cells remains poorly defined. Here we demonstrate that formation of super-enhancers (SEs) is critical in robust induction of IL-9 and that assembly of the Il9 SEs in Th cells requires OX40-triggered chromatin acetylation. Mechanistically, we found that OX40 costimulation induces RelB expression, which recruits the histone acetyltransferase p300 to the Il9 locus to catalyze H3K27 acetylation. This allows binding of the SE factor Brd4 to organize assembly of the SE complex, which in turn drives robust IL-9 expression and Th9 cell induction. Thus, Th9 cells are strongly induced upon OX40 stimulation, and disruption of SEs abolished Th9 cell induction in vitro and inhibited Th9 cell–mediated allergic airway inflammation in vivo. Together, our data suggest that formation of SEs is essential in IL-9 expression and Th9 cell induction. These findings may have important clinical implications.
Collapse
Affiliation(s)
- Xiang Xiao
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Yihui Fan
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Junhui Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Xiaolong Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Xiaohua Lou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Yaling Dou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Xiaomin Shi
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Peixiang Lan
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Yue Xiao
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Laurie Minze
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX
| | - Xian Chang Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY
| |
Collapse
|
342
|
Yan A, Yue T, Li L, Li W, Li Q, Li J. Bromodomain-containing protein 7 deficiency augments atherosclerotic lesions in ApoE -/- mice. Biochem Biophys Res Commun 2018; 495:2202-2208. [PMID: 29273506 DOI: 10.1016/j.bbrc.2017.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
Atherosclerotic plaque formation is characterized by the persistence of lipid-laden macrophages on the inner walls of arteries. Chronic inflammation and imbalanced macrophage function are likely to play a critical role. Herein, we investigated whether bromodomain-containing protein 7 (Brd7), a member of the bromodomain-containing protein family, regulates atherosclerosis, and if so, which mechanisms are responsible for the process. We found that Brd7 is expressed in mouse atherosclerotic plaques, and mostly in macrophages. Inhibition of Brd7 accelerates atherosclerotic lesion formation in ApoE-/- mice by promoting NF-κB-mediated inflammation. Furthermore, Brd7 inhibition alters the phenotype of macrophages and promotes plaque instability, at least partly via STAT6 signaling. Our data define a previously undescribed role of Brd7 in the development of atherosclerosis.
Collapse
Affiliation(s)
- Aiguo Yan
- Department of Geriatrics, Zibo Center Hospital, Zibo, Shandong 255036, China
| | - Tao Yue
- Department of Geriatrics, Zibo Center Hospital, Zibo, Shandong 255036, China.
| | - Li Li
- Department of Geriatrics, Zibo Center Hospital, Zibo, Shandong 255036, China.
| | - Wei Li
- Department of Geriatrics, Zibo Center Hospital, Zibo, Shandong 255036, China
| | - Qinghua Li
- Department of Emergency, Zibo Center Hospital, Zibo, Shandong 255036, China
| | - Jun Li
- Department of Neurosurgery, Zibo Center Hospital, Zibo, Shandong 255036, China
| |
Collapse
|
343
|
Bachu M, Dey A, Ozato K. Chromatin Landscape of the IRF Genes and Role of the Epigenetic Reader BRD4. J Interferon Cytokine Res 2018; 36:470-5. [PMID: 27379869 DOI: 10.1089/jir.2015.0179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone post-translational modification patterns represent epigenetic states of genomic genes and denote the state of their transcription, past history, and future potential in gene expression. Genome-wide chromatin modification patterns reported from various laboratories are assembled in the ENCODE database, providing a fertile ground for understanding epigenetic regulation of any genes of interest across many cell types. The IRF family genes critically control innate immunity as they direct expression and activities of interferons. While these genes have similar structural and functional traits, their chromatin landscapes and epigenetic features have not been systematically evaluated. Here, by mining ENCODE database using an imputational approach, we summarize chromatin modification patterns for 6 of 9 IRF genes and show characteristic features that connote their epigenetic states. BRD4 is a BET bromodomain protein that "reads and translates" epigenetic marks into transcription. We review recent findings that BRD4 controls constitutive and signal-dependent transcription of many genes, including IRF genes. BRD4 dynamically binds to various genomic genes with a spatial and temporal specificity. Of particular importance, BRD4 is shown to critically regulate IRF-dependent anti-pathogen protection, inflammatory responses triggered by NF-κB, and the growth and spread of many cancers. The advent of small molecule inhibitors that disrupt binding of BET bromdomain to acetylated histone marks has opened new therapeutic possibilities for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
344
|
Kleppe M, Koche R, Zou L, van Galen P, Hill CE, Dong L, De Groote S, Papalexi E, Hanasoge Somasundara AV, Cordner K, Keller M, Farnoud N, Medina J, McGovern E, Reyes J, Roberts J, Witkin M, Rapaport F, Teruya-Feldstein J, Qi J, Rampal R, Bernstein BE, Bradner JE, Levine RL. Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell 2018; 33:29-43.e7. [PMID: 29249691 PMCID: PMC5760343 DOI: 10.1016/j.ccell.2017.11.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/13/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Genetic and functional studies underscore the central role of JAK/STAT signaling in myeloproliferative neoplasms (MPNs). However, the mechanisms that mediate transformation in MPNs are not fully delineated, and clinically utilized JAK inhibitors have limited ability to reduce disease burden or reverse myelofibrosis. Here we show that MPN progenitor cells are characterized by marked alterations in gene regulation through differential enhancer utilization, and identify nuclear factor κB (NF-κB) signaling as a key pathway activated in malignant and non-malignant cells in MPN. Inhibition of BET bromodomain proteins attenuated NF-κB signaling and reduced cytokine production in vivo. Most importantly, combined JAK/BET inhibition resulted in a marked reduction in the serum levels of inflammatory cytokines, reduced disease burden, and reversed bone marrow fibrosis in vivo.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lihua Zou
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter van Galen
- Department of Pathology Massachusetts General Hospital, Harvard Medical School, Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Corinne E Hill
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Lauren Dong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Sofie De Groote
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Efthymia Papalexi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Amritha V Hanasoge Somasundara
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Keith Cordner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Matthew Keller
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Noushin Farnoud
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Juan Medina
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin McGovern
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jaime Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | - Justin Roberts
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | - Matthew Witkin
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Franck Rapaport
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bradley E Bernstein
- Department of Pathology Massachusetts General Hospital, Harvard Medical School, Broad Institute of Harvard and MIT, Boston, MA, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
345
|
Abstract
In this issue of Cancer Cell, Kleppe et al. describe a combination strategy designed to inhibit BET bromodomain and JAK/STAT signaling as a method for effectively inhibiting NF-κB and cytokine production in myeloproliferative neoplasms (MPNs). The results provide a strong rationale for clinical evaluation of dual BET/JAK inhibition in MPNs.
Collapse
Affiliation(s)
- Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
346
|
KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation. Nat Commun 2018; 9:49. [PMID: 29302027 PMCID: PMC5754359 DOI: 10.1038/s41467-017-02089-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/03/2017] [Indexed: 02/03/2023] Open
Abstract
The three-dimensional structure of chromatin organized by genomic loops facilitates RNA polymerase II access to distal promoters. The Kaposi's sarcoma-associated herpesvirus (KSHV) lytic transcriptional program is initiated by a single viral transactivator, K-Rta. Here we report the KSHV genomic structure and its relationship with K-Rta recruitment sites using Capture Hi-C analyses. High-resolution 3D viral genomic maps identify a number of direct physical, long-range, and dynamic genomic interactions. Mutant KSHV chromosomes harboring point mutations in the K-Rta responsive elements (RE) significantly attenuate not only the directly proximate downstream gene, but also distal gene expression in a domain-specific manner. Genomic loops increase in the presence of K-Rta, while abrogation of K-Rta binding impairs the formation of inducible genomic loops, decreases the expression of genes networked through the looping, and diminishes KSHV replication. Our study demonstrates that genomic architectural dynamics plays an essential role in herpesvirus gene expression.
Collapse
|
347
|
Rusan M, Li K, Li Y, Christensen CL, Abraham BJ, Kwiatkowski N, Buczkowski KA, Bockorny B, Chen T, Li S, Rhee K, Zhang H, Chen W, Terai H, Tavares T, Leggett AL, Li T, Wang Y, Zhang T, Kim TJ, Hong SH, Poudel-Neupane N, Silkes M, Mudianto T, Tan L, Shimamura T, Meyerson M, Bass AJ, Watanabe H, Gray NS, Young RA, Wong KK, Hammerman PS. Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discov 2018; 8:59-73. [PMID: 29054992 PMCID: PMC5819998 DOI: 10.1158/2159-8290.cd-17-0461] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Acquired drug resistance is a major factor limiting the effectiveness of targeted cancer therapies. Targeting tumors with kinase inhibitors induces complex adaptive programs that promote the persistence of a fraction of the original cell population, facilitating the eventual outgrowth of inhibitor-resistant tumor clones. We show that the addition of a newly identified CDK7/12 inhibitor, THZ1, to targeted therapy enhances cell killing and impedes the emergence of drug-resistant cell populations in diverse cellular and in vivo cancer models. We propose that targeted therapy induces a state of transcriptional dependency in a subpopulation of cells poised to become drug tolerant, which THZ1 can exploit by blocking dynamic transcriptional responses, promoting remodeling of enhancers and key signaling outputs required for tumor cell survival in the setting of targeted therapy. These findings suggest that the addition of THZ1 to targeted therapies is a promising broad-based strategy to hinder the emergence of drug-resistant cancer cell populations.Significance: CDK7/12 inhibition prevents active enhancer formation at genes, promoting resistance emergence in response to targeted therapy, and impedes the engagement of transcriptional programs required for tumor cell survival. CDK7/12 inhibition in combination with targeted cancer therapies may serve as a therapeutic paradigm for enhancing the effectiveness of targeted therapies. Cancer Discov; 8(1); 59-73. ©2017 AACR.See related commentary by Carugo and Draetta, p. 17This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Maria Rusan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kapsok Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Buczkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bruno Bockorny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shuai Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kevin Rhee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Haikuo Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wankun Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tiffany Tavares
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alan L Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tae-Jung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook-Hee Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Michael Silkes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tenny Mudianto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Takeshi Shimamura
- Molecular Pharmacology and Therapeutics, Oncology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153 USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Departments of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Novartis Institutes of Biomedical Research, Cambridge, MA, 02139
| |
Collapse
|
348
|
The BET/BRD inhibitor JQ1 attenuates diabetes-induced cognitive impairment in rats by targeting Nox4-Nrf2 redox imbalance. Biochem Biophys Res Commun 2018; 495:204-211. [DOI: 10.1016/j.bbrc.2017.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
|
349
|
Ha SJ, Lee J, Song KM, Kim YH, Lee NH, Kim YE, Jung SK. Ultrasonicated Lespedeza cuneata extract prevents TNF-α-induced early atherosclerosis in vitro and in vivo. Food Funct 2018; 9:2090-2101. [DOI: 10.1039/c7fo01666b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluated the use of ultrasonication to extract Lespedeza cuneata as a potential nutraceutical for preventing vascular inflammation.
Collapse
Affiliation(s)
- Su Jeong Ha
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
- Department of Agricultural Biotechnology
| | - Jangho Lee
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
- Department of Food Biotechnology
| | - Kyung-Mo Song
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
| | - Young Ho Kim
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
| | - Nam Hyouck Lee
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
| | - Young-Eon Kim
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
| | - Sung Keun Jung
- Division of Functional Food Research
- Korea Food Research Institute
- Jeollabuk-do 55365
- Republic of Korea
- School of Food Science and Biotechnology
| |
Collapse
|
350
|
Proust A, Barat C, Leboeuf M, Drouin J, Tremblay MJ. Contrasting effect of the latency-reversing agents bryostatin-1 and JQ1 on astrocyte-mediated neuroinflammation and brain neutrophil invasion. J Neuroinflammation 2017; 14:242. [PMID: 29228979 PMCID: PMC5725742 DOI: 10.1186/s12974-017-1019-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background Despite effectiveness of the combined antiretroviral therapy, HIV-1 persists in long-lived latently infected cells. Consequently, new therapeutic approaches aimed at eliminating this latent reservoir are currently being developed. A “shock and kill” strategy using latency-reversing agents (LRA) to reactivate HIV-1 has been proposed. However, the impact of LRA on the central nervous system (CNS) remains elusive. Methods We used human fetal astrocytes and investigated the effects of several LRA on their functional and secretory activities. Astrocytes were infected with VSV-G-pseudotyped HIV-1 before treatment with various blood-brain barrier (BBB)-permeable LRA at subcytotoxic doses, which allow HIV-1 reactivation based on previous in vitro and clinical studies. Cells and supernatants were then used to evaluate effects of infection and LRA on (i) viability and metabolic activity of astrocytes using a colorimetric MTS assay; (ii) chemokines and proinflammatory cytokines secretion and gene expression by astrocytes using ELISA and RT-qPCR, respectively; (iii) expression of complement component 3 (C3), a proxy for astrogliosis, by RT-qPCR; (iv) glutamate uptake capacity by a fluorometric assay; and (v) modulation of neutrophil transmigration across an in vitro BBB model. Results We demonstrate that bryostatin-1 induces secretion of chemokines CCL2 and IL-8 and proinflammatory cytokines IL-6 and GM-CSF, whereas their production is repressed by JQ1. Bryostatin-1 also increases expression of complement component 3 and perturbs astrocyte glutamate homeostasis. Lastly, bryostatin-1 enhances transmigration of neutrophils across an in vitro blood-brain barrier model and induces formation of neutrophil extracellular traps. Conclusions These observations highlight the need to carefully assess the potential harmful effect to the CNS when selecting LRA for HIV-1 reactivation strategies. Electronic supplementary material The online version of this article (10.1186/s12974-017-1019-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, G1V 4G2, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, G1V 4G2, Canada
| | - Mathieu Leboeuf
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine,, Université Laval, Québec, G1V 0A6, Canada
| | - Jean Drouin
- Département de médecine familiale et d'urgence, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, G1V 4G2, Canada. .,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|