301
|
Dinglay S, Trewick SC, Lindahl T, Sedgwick B. Defective processing of methylated single-stranded DNA by E. coli alkB mutants. Genes Dev 2000. [DOI: 10.1101/gad.14.16.2097] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agentN-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. ArecA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells.
Collapse
|
302
|
Tentori L, Vernole P, Lacal PM, Madaio R, Portarena I, Levati L, Balduzzi A, Turriziani M, Dande P, Gold B, Bonmassar E, Graziani G. Cytotoxic and clastogenic effects of a DNA minor groove binding methyl sulfonate ester in mismatch repair deficient leukemic cells. Leukemia 2000; 14:1451-9. [PMID: 10942242 DOI: 10.1038/sj.leu.2401842] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mismatch repair deficiency contributes to tumor cell resistance to O6-guanine methylating compounds and to other antineoplastic agents. Here we demonstrate that MeOSO2(CH2)2-lexitropsin (Me-Lex), a DNA minor groove alkylating compound which generates mainly N3-methyladenine, has cytotoxic and clastogenic effects in mismatch repair-deficient leukemic cells. Moreover, MT-1 cells, which express p53 upon drug treatment and possess low levels of 3-methylpurine DNA glycosylase activity, are more susceptible to cytotoxicity induced by Me-Lex, with respect to p53-null and 3-methylpurine DNA glycosylase-proficient Jurkat cells. In both cell lines, the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide, which inhibits base excision repair capable of removing N-methylpurines, increases cytotoxicity and clastogenicity induced by Me-Lex or by temozolomide, which generates low levels of N3-methyl adducts. The enhancing effect is more evident at low Me-Lex concentrations, which induce a level of DNA damage that presumably does not saturate the repair ability of the cells. Nuclear fragmentation induced by Me-Lex + 3-aminobenzamide occurs earlier than in cells treated with the single agent. Treatment with Me-Lex and 3-aminobenzamide results in augmented expression of p53 protein and of the X-ray repair cross-complementing 1 transcript (a component of base excision repair). These results indicate that N3-methyladenine inducing agents, alone or combined with poly(ADP-ribose) polymerase inhibitors, could open up novel chemotherapeutic strategies to overcome drug resistance in mismatch repair-deficient leukemic cells.
Collapse
Affiliation(s)
- L Tentori
- Department of Neurosciences, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Liu H, Xu-Welliver M, Pegg AE. The role of human O(6)-alkylguanine-DNA alkyltransferase in promoting 1,2-dibromoethane-induced genotoxicity in Escherichia coli. Mutat Res 2000; 452:1-10. [PMID: 10894884 DOI: 10.1016/s0027-5107(00)00062-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of the DNA repair protein human O(6)-alkylguanine-DNA alkyltransferase (AGT) in Escherichia coli strains GWR109 or TRG8 that lack endogenous AGT greatly increased the toxicity and mutagenicity of 1,2-dibromoethane (DBE). Pretreatment of strain TRG8 expressing human AGT, which is permeable to exogenous drugs, with the AGT inhibitor O(6)-benzylguanine (BG) abolished the lethal and mutagenic effects of DBE, indicating that an active AGT is required for promoting DBE genotoxicity. This was confirmed by the observation that E. coli expressing either the C145A AGT mutant, which is inactive due to loss of the alkyl acceptor site, or mutants Y114E and R128A, which are inactive due to alteration of the DNA binding domain, did not enhance the action of DBE. However, the AGT mutant protein P138M/V139L/P140K, which is active in repairing methylated DNA but is totally resistant to inactivation by BG due to alterations in the active site pocket, was unable to enhance the genotoxicity of DBE. Similarly, other mutants, G156P, Y158H and K165R that are strongly resistant to BG, were much less effective than wild type AGT in mediating the genotoxicity of DBE. Mutant P140A, which is moderately resistant to BG, did increase mutations in response to DBE but was less active than wild type. These results suggest that human AGT is able to interact with a DNA lesion produced by DBE but, instead of repairing it, converts it to a more genotoxic adduct. This interaction is prevented by mutations that modify the active site of AGT to exclude BG.
Collapse
Affiliation(s)
- H Liu
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 17033-0850, USA
| | | | | |
Collapse
|
304
|
van Rijn J, Heimans JJ, van den Berg J, van der Valk P, Slotman BJ. Survival of human glioma cells treated with various combination of temozolomide and X-rays. Int J Radiat Oncol Biol Phys 2000; 47:779-84. [PMID: 10837964 DOI: 10.1016/s0360-3016(99)00539-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate the effect of temozolomide, a 3-methyl derivative of mitozolomide in combination with X-rays in human glioma-derived cell lines. METHODS AND MATERIALS Glioma cell lines D384 and U251 were treated with temozolomide for various periods of time in combinations with X-rays. Temozolomide administration was repeated every 24 h for exposures up to 96 h. Cytotoxicity was determined with a clonogenic assay. RESULTS Incubation of D384 cells with temozolomide during 24 h prior to or following irradiation results in a moderate enhancement of the cytotoxicity. Prolonged treatment with temozolomide, i.e., 48-96 h before X-rays, causes a stronger potentiation. In contrast, no enhancement is observed in irradiated U251 cells in combination with 24-96 h temozolomide treatment. In addition to single-dose irradiation, we investigated the effect of temozolomide in D384 cells with concomitant fractionated irradiation. A 96-h exposure to temozolomide with simultaneous doses of 2 Gy X-rays at 24-h intervals, causes a significant further reduction in cell survival as compared to fractionated irradiation only. CONCLUSION Depending on the cell line, treatment of glioma cells with temozolomide and X-rays can have either an additional effect or potentiate cell killing.
Collapse
Affiliation(s)
- J van Rijn
- Department of Radiation Oncology, Academic Hospital Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
305
|
Abstract
This article describes the five main classes of DNA repair processes that occur in humans with respect to their mechanism of action, major substrates, and role in protection against endogenous and environmental DNA damaging agents. The importance of all of these processes in protection from the initiation of neoplastic growth has been established either in studies of inheritable diseases affecting DNA repair or experiments with transgenic animals or both. The capacity of DNA repair pathways to deal with DNA damage is therefore a critical factor in the cellular response to environmental, and dietary carcinogens. DNA repair activity and factors affecting this activity either directly or indirectly must be taken into account in risk assessment.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| |
Collapse
|
306
|
Xu-Welliver M, Pegg AE. Point mutations at multiple sites including highly conserved amino acids maintain activity, but render O6-alkylguanine-DNA alkyltransferase insensitive to O6-benzylguanine. Biochem J 2000; 347:519-26. [PMID: 10749682 PMCID: PMC1220985 DOI: 10.1042/0264-6021:3470519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), is inactivated by reaction with the pseudosubstrate, O(6)-benzylguanine (BG). This inactivation sensitizes tumour cells to chemotherapeutic alkylating agents, and BG is aimed at enhancing cancer treatment in clinical trials. Point mutations in a 24 amino acid sequence likely to form the BG-binding pocket were identified using a screening method designed to identify BG-resistant mutants. It was found that alterations in 21 of these residues were able to render AGT resistant to BG. These included mutations at the highly conserved residues Lys(165), Leu(168) and Leu(169). The two positions at which changes led to the largest increase in resistance to BG were Gly(156) and Lys(165). Eleven mutants at Gly(156) were identified, with increases in resistance ranging from 190-fold (G156V) to 4400-fold (G156P). Two mutants at Lys(165) found in the screen (K165S and K165A) showed 620-fold and 100-fold increases in resistance to BG. Two mutants at the Ser(159) position (S159I and S159V) were >80-fold more resistant than wild-type AGT. Eleven active mutants at Leu(169) were also resistant to BG, but with lower increases (5-86-fold). Fourteen BG-resistant mutants were found for position Cys(150), with 3-26-fold increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation. Six BG-resistant mutants at Asn(157) were found with increases of 4-13-fold. These results show that many changes can render human AGT resistant to BG without preventing the ability to protect tumour cells from therapeutic alkylating agents.
Collapse
Affiliation(s)
- M Xu-Welliver
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033-0850, U.S.A
| | | |
Collapse
|
307
|
Xu-Welliver M, Kanugula S, Loktionova NA, Crone TM, Pegg AE. Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine. Biochem J 2000; 347:527-34. [PMID: 10749683 PMCID: PMC1220986 DOI: 10.1042/0264-6021:3470527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of lysine(165) in the activity of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), and the ability of AGT to react with the pseudosubstrate inhibitor, O(6)-benzylguanine (BG), was investigated by changing this lysine to all other 19 possibilities. All of these mutants (except for K165T, which could not be tested as it was too poorly active for assay in crude cell extracts) gave BG-resistant AGTs with increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation (ED(50)) from 100-fold (K165A) to 2400-fold (K165F). Lys(165) is a completely conserved residue in AGTs from many species, and all of the mutations at this site also reduced the ability to repair methylated DNA. The least deleterious change was that to arginine, which reduced the rate constant for DNA repair by approx. 2.5-fold. Mutant K165R resembled all of the other mutants in being highly resistant to BG, with an ED(50) value for inactivation by BG>200-fold greater than wild-type. Detailed studies of purified K165A AGT showed that the rate constant for repair and the binding to methylated DNA substrates were reduced by 10-20-fold. Despite this, the K165A mutant AGT was able to protect cells from alkylating agents and this protection was not abolished by BG. These results show that, firstly, lysine at position 165 is needed for optimal activity of AGT towards methylated DNA substrates and is essential for efficient reaction with BG; and second, even if the AGT activity towards methylated DNA substrates is impaired by mutations at codon 165, such mutants can protect tumour cells from therapeutic alkylating agents. These results raise the possibility that the conservation of Lys(165) is due to the need for AGT activity towards substrates containing more bulky adducts than O(6)-methylguanine. They also suggest that alterations at Lys(165) may occur during chemotherapy with BG and alkylating agents and could limit the effectiveness of this therapy.
Collapse
Affiliation(s)
- M Xu-Welliver
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | | | | | |
Collapse
|
308
|
Daniels DS, Mol CD, Arvai AS, Kanugula S, Pegg AE, Tainer JA. Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J 2000; 19:1719-30. [PMID: 10747039 PMCID: PMC310240 DOI: 10.1093/emboj/19.7.1719] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human O(6)-alkylguanine-DNA alkyltransferase (AGT), which directly reverses endogenous alkylation at the O(6)-position of guanine, confers resistance to alkylation chemotherapies and is therefore an active anticancer drug target. Crystal structures of active human AGT and its biologically and therapeutically relevant methylated and benzylated product complexes reveal an unexpected zinc-stabilized helical bridge joining a two-domain alpha/beta structure. An asparagine hinge couples the active site motif to a helix-turn-helix (HTH) motif implicated in DNA binding. The reactive cysteine environment, its position within a groove adjacent to the alkyl-binding cavity and mutational analyses characterize DNA-damage recognition and inhibitor specificity, support a structure-based dealkylation mechanism and suggest a molecular basis for destabilization of the alkylated protein. These results support damaged nucleotide flipping facilitated by an arginine finger within the HTH motif to stabilize the extrahelical O(6)-alkylguanine without the protein conformational change originally proposed from the empty Ada structure. Cysteine alkylation sterically shifts the HTH recognition helix to evidently mechanistically couple release of repaired DNA to an opening of the protein fold to promote the biological turnover of the alkylated protein.
Collapse
Affiliation(s)
- D S Daniels
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, MB-4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | | | | | | | |
Collapse
|
309
|
Abstract
The predominant pathway for the repair of O(6)-methylguanine in DNA is via the activity of an alkyltransferase protein that transfers the methyl group to a cysteine acceptor site on the protein itself. This review article describes recent studies on this alkyltransferase. The protein repairs not only methyl groups but also 2-chloroethyl-, benzyl- and pyridyloxobutyl-adducts. It acts on double-stranded DNA by flipping the O(6)-guanine adduct out of the DNA helix and into a binding pocket. The free base, O(6)-benzylguanine, is able to bind in this pocket and react with the cysteine, rendering it an effective inactivator of mammalian alkyltransferases. The alkylated form of the protein is rapidly degraded by the ubiquitin/proteasomal system. Some tumor cells do not express alkyltransferase despite having an intact gene. Methylation of key sites in CpG-rich islands in the promoter region are involved in this silencing and a change in the nuclear localization of an enhancer binding protein may also contribute. The alkyltransferase promoter contains Sp1, GRE and AP-1 sites and is slightly inducible by glucocorticoids and protein kinase C activators. There is a complex relationship between p53 and alkyltransferase expression with p53 mediating a rise in alkyltransferase in response to ionizing radiation but having no clear effect on basal levels. DNA adducts at the O(6)-position of guanine are a major factor in the carcinogenic, mutagenic, apoptopic and clastogenic actions of methylating agents and chloroethylating agents. Studies with transgenic mice in which alkyltransferase levels are increased or decreased confirm the importance of this repair pathway in protecting against carcinogenesis. Alkyltransferase activity in tumors protects them from therapeutic agents such as temozolomide and BCNU. This resistance is abolished by O(6)-benzylguanine and this drug is currently in clinical trials to enhance cancer chemotherapy by these agents. Studies are in progress to reduce the toxicity of such therapy towards the bone marrow by gene therapy to express alkyltransferases with mutations imparting resistance to O(6)-benzylguanine at high levels in marrow stem cells. Several polymorphisms in the human alkyltransferase gene have been identified but the significance of these in terms of alkyltransferase action is currently unknown.
Collapse
Affiliation(s)
- A E Pegg
- Departments of Cellular and Molecular Physiology and Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA, USA.
| |
Collapse
|
310
|
Abstract
Maintaining the integrity of the genome is critical for the survival of any organism. To achieve this, many families of enzymatic repair systems which recognize and repair DNA damage have evolved. Perhaps most intriguing about the workings of these repair systems is the actual damage recognition process. What are the chemical characteristics which are common to sites of nucleic acid damage that DNA repair proteins may exploit in targeting sites? Importantly, thermodynamic and kinetic principles, as much as structural factors, make damage sites distinct from the native DNA bases, and indeed, in many cases, these are the features which are believed to be exploited by repair enzymes. Current proposals for damage recognition may not fulfill all of the demands required of enzymatic repair systems given the sheer size of many genomes, and the efficiency with which the genome is screened for damage. Here we discuss current models for how DNA damage recognition may occur and the chemical characteristics, shared by damaged DNA sites, of which repair proteins may take advantage. These include recognition based upon the thermodynamic and kinetic instabilities associated with aberrant sites. Additionally, we describe how small changes in base pair structure can alter also the unique electronic properties of the DNA base pair pi-stack. Further, we describe photophysical, electrochemical, and biochemical experiments in which mismatches and other local perturbations in structure are detected using DNA-mediated charge transport. Finally, we speculate as to how this DNA electron transfer chemistry might be exploited by repair enzymes in order to scan the genome for sites of damage.
Collapse
Affiliation(s)
- S R Rajski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
311
|
Wibley JE, Pegg AE, Moody PC. Crystal structure of the human O(6)-alkylguanine-DNA alkyltransferase. Nucleic Acids Res 2000; 28:393-401. [PMID: 10606635 PMCID: PMC102527 DOI: 10.1093/nar/28.2.393] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1999] [Revised: 11/24/1999] [Accepted: 11/24/1999] [Indexed: 11/14/2022] Open
Abstract
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to O(6)-alkylation of guanine in DNA. This lesion results in transition mutations. In both prokaryotic and eukaryotic cells, repair is effected by direct reversal of the damage by a suicide protein, O(6)-alkylguanine-DNA alkyltransferase. The alkyltransferase removes the alkyl group to one of its own cysteine residues. However, this mechanism for preserving genomic integrity limits the effectiveness of certain alkylating anticancer agents. A high level of the alkyltransferase in many tumour cells renders them resistant to such drugs. Here we report the X-ray structure of the human alkyltransferase solved using the technique of multiple wavelength anomalous dispersion. This structure explains the markedly different specificities towards various O(6)-alkyl lesions and inhibitors when compared with the Escherichia coli protein (for which the structure has already been determined). It is also used to interpret the behaviour of certain mutant alkyltransferases to enhance biochemical understanding of the protein. Further examination of the various models proposed for DNA binding is also permitted. This structure may be useful for the design and refinement of drugs as chemoenhancers of alkylating agent chemotherapy.
Collapse
Affiliation(s)
- J E Wibley
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | |
Collapse
|
312
|
Abstract
The ability to recognize and repair abnormal DNA structures is common to all forms of life. Studies in a variety of species have identified an incredible diversity of DNA repair pathways. Documenting and characterizing the similarities and differences in repair between species has important value for understanding the origin and evolution of repair pathways as well as for improving our understanding of phenotypes affected by repair (e.g., mutation rates, lifespan, tumorigenesis, survival in extreme environments). Unfortunately, while repair processes have been studied in quite a few species, the ecological and evolutionary diversity of such studies has been limited. Complete genome sequences can provide potential sources of new information about repair in different species. In this paper, we present a global comparative analysis of DNA repair proteins and processes based upon the analysis of available complete genome sequences. We use a new form of analysis that combines genome sequence information and phylogenetic studies into a composite analysis we refer to as phylogenomics. We use this phylogenomic analysis to study the evolution of repair proteins and processes and to predict the repair phenotypes of those species for which we now know the complete genome sequence.
Collapse
Affiliation(s)
- J A Eisen
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
313
|
Long L, McCabe DR, Dolan ME. Determination of 8-oxoguanine in human plasma and urine by high-performance liquid chromatography with electrochemical detection. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 731:241-9. [PMID: 10510777 DOI: 10.1016/s0378-4347(99)00231-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A highly sensitive and selective method for determining 8-oxoguanine in plasma and urine was developed by high-performance liquid chromatography with electrochemical detection. The compound was separated by gradient elution on a C18 reversed-phase column with a mobile phase of acetonitrile and 0.1 M sodium acetate, pH 5.2. 8-Hydroxy-2'-deoxyguanosine was used as internal standard. 8-Oxoguanine was detected electrochemically by setting the potential to +300 mV vs. Pd reference. The sensitivity of the assay was 22 ng/ml with a signal-to-noise ratio of 7:1. The within-day relative standard deviations for 8-oxoguanine quality control samples with concentrations of 3340, 1340 and 84 ng/ml were 3.6, 4.3 and 5.7% for plasma, and 4.1, 4.6 and 6.2% for urine, respectively. The day-to-day relative standard deviations for the same samples were 3.8, 6.8 and 7.1% for plasma, and 3.9, 7.0 and 7.9% for urine, respectively. The method is designed to study the pharmacokinetics and metabolic fate of O6-benzylguanine in a phase I clinical trial. Previously, O6-benzyl-8-oxoguanine was identified as the primary metabolite of O6-benzylguanine in humans. We now demonstrate that 8-oxoguanine is a further metabolite of O6-benzylguanine.
Collapse
Affiliation(s)
- L Long
- Section of Hematology-Oncology, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
314
|
Abstract
It is generally agreed that ALS/PDC is triggered by a disappearing environmental factor peculiar to the lifestyle of people of the western Pacific (i.e., Guam, Irian Jaya, Indonesia, and the Kii Peninsula of Japan). A strong candidate is the cycad plant genotoxin cycasin, the beta-D-glucoside of methylazoxymethanol (MAM). We propose that prenatal or postnatal exposure to low levels of cycasin/MAM may damage neuronal DNA, compromise DNA repair, perturb neuronal gene expression, and irreversibly alter cell function to precipitate a slowly evolving disease ("slow-toxin" hypothesis). In support of our hypothesis, we have demonstrated the following: 1. DNA from postmitotic rodent central nervous system neurons is particularly sensitive to damage by MAM. 2. MAM reduces DNA repair in human and rodent neurons, whereas DNA-repair inhibitors potentiate MAM-induced DNA damage and toxicity in mature rodent nervous tissue. 3. Human neurons (SY5Y neuroblastoma) that are deficient in DNA repair are susceptible to MAM-induced cytotoxicity and DNA damage, whereas overexpression of DNA repair in similar cells is protective. 4. MAM alters gene expression in SY5Y human neuroblastoma cells and, in the presence of DNA damage and reduced DNA repair, enhances glutamate-modulated expression of tau mRNA in rat primary neurons; the corresponding protein (TAU) is elevated in ALS/PDC and Alzheimer's disease. These findings support a direct relationship between MAM-induced DNA damage and neurotoxicity and suggest the genotoxin may operate in a similar manner in vivo. More broadly, a combination of genotoxin-induced DNA damage (via exogenous and/or endogenous agents) and disturbed DNA repair may be important contributing factors in the slow and progressive degeneration of neurons that is characteristic of sporadic neurodegenerative disease. Preliminary studies demonstrate that DNA repair is reduced in the brain of subjects with western Pacific ALS/PDC, ALS, and Alzheimer's disease, which would increase the susceptibility of brain tissue to DNA damage by endogenous/exogenous genotoxins. Interindividual differences in the extent of prior exposure to DNA-damaging agents and/or the efficiency of its repair might produce population variety in the rate of damage accumulation and explain the susceptibility of certain individuals to sporadic neurodegenerative disease. Studies are underway using DNA-repair proficient and deficient neuronal cell cultures and mutant mice to explore gene-environment interplay with respect to MAM treatment, DNA damage, and DNA repair, and the age-related appearance of neurobehavioral and neuropathological compromise.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology, School of Medicine, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | |
Collapse
|
315
|
Qin X, Liu L, Gerson SL. Mice defective in the DNA mismatch gene PMS2 are hypersensitive to MNU induced thymic lymphoma and are partially protected by transgenic expression of human MGMT. Oncogene 1999; 18:4394-400. [PMID: 10439048 DOI: 10.1038/sj.onc.1202798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA mismatch repair (MMR) stabilizes the cellular genome. Mice defective in the MMR gene PMS2 are susceptible to spontaneous thymic lymphoma and sarcomas. To determine the sensitivity of PMS2 knockout mice to environmental carcinogens and the protective effect of O6-methylguanine DNA methyltransferase (MGMT), heterozygous PMS2 knockout mice and human MGMT (hMGMT) transgenic mice were mated and the PMS2-/- and PMS2+/+ with or without hMGMT offspring were treated at 5 weeks of age with 50 mg/kg N-methyl-N-nitrosourea (MNU). MNU produces carcinogenic O6-methylguanine (O6-meG) adducts, resulting in thymic lymphoma in mice, which can be prevented in normal mice by overexpression of hMGMT. A significantly higher incidence of thymic lymphomas was observed in MNU-treated PMS2-/- mice, compared to wildtype PMS2+/+ mice (100 vs 52%; P < 0.001). The mean latency of lymphomas was also significantly shortened in PMS2-/- mice (81 vs 102 days, P < 0.01). Transgenic expression of hMGMT significantly but incompletely blocked MNU lymphomagenesis in PMS2-/- mice. The incidence of lymphomas in PMS2-/-/hMGMT+ mice was reduced to 80% (P < 0.01) and mean latency increased to 91 days (P < 0.05). Thymic lymphomagenesis was efficiently blocked in PMS2+/+/hMGMT+ mice with rapid repair of O6-meG. Since O6-meG:T mismatches in MMR+ cells may trigger mismatch repair resulting in abortive repair and cell death whereas in the absence of MMR, these mismatches are converted to A:T, we predicted that G to A point mutations in codon 12 of the K-ras gene would occur. In this study, we found G to A point mutations in codon 12 of the K-ras gene in many tumors. Thus, in MMR deficient tissues, methylating agents induce point mutations in cells with a higher rate of cell survival which together are potently carcinogenic in the thymus. These data suggest that PMS2 defective lymphomas may arise by the concerted action of environmental and perhaps endogenous methylation of DNA coupled to genomic instability.
Collapse
Affiliation(s)
- X Qin
- Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio, OH 44106-4937, USA
| | | | | |
Collapse
|
316
|
Mol CD, Parikh SS, Putnam CD, Lo TP, Tainer JA. DNA repair mechanisms for the recognition and removal of damaged DNA bases. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:101-28. [PMID: 10410797 DOI: 10.1146/annurev.biophys.28.1.101] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent structural and biochemical studies have begun to illuminate how cells solve the problems of recognizing and removing damaged DNA bases. Bases damaged by environmental, chemical, or enzymatic mechanisms must be efficiently found within a large excess of undamaged DNA. Structural studies suggest that a rapid damage-scanning mechanism probes for both conformational deviations and local deformability of the DNA base stack. At susceptible lesions, enzyme-induced conformational changes lead to direct interactions with specific damaged bases. The diverse array of damaged DNA bases are processed through a two-stage pathway in which damage-specific enzymes recognize and remove the base lesion, creating a common abasic site intermediate that is processed by damage-general repair enzymes to restore the correct DNA sequence.
Collapse
Affiliation(s)
- C D Mol
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
317
|
Loktionova NA, Xu-Welliver M, Crone TM, Kanugula S, Pegg AE. Protection of CHO cells by mutant forms of O6-alkylguanine-DNA alkyltransferase from killing by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) plus O6-benzylguanine or O6-benzyl-8-oxoguanine. Biochem Pharmacol 1999; 58:237-44. [PMID: 10423163 DOI: 10.1016/s0006-2952(99)00095-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
O6-Benzylguanine (BG) is an inactivator of human O6-alkylguanine-DNA alkyltransferase (AGT) currently undergoing clinical trials to enhance cancer chemotherapy by alkylating agents. Mutant forms of AGT resistant to BG in vitro were expressed in CHO cells to determine if they could impart resistance to killing by the combination of BG and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). All the BG-resistant mutant proteins tested (P140A, P140K, P138M/V139L/P140K, G156A, P140A/G160R, and G160R) showed a reduced rate of reaction with methylated DNA substrates in vitro. However, when expressed in equal amounts in CHO cells, mutants P140A, P140K, P138M/V139L/P140K, and G160R gave levels of protection from the chloroethylating agent BCNU equivalent to that of wild-type AGT. This indicates that a 10-fold reduction in rate constant did not prevent their ability to repair chloroethylated DNA in the cell. AGT activity was readily lost when CHO cells expressing wild-type AGT were exposed to BG or its 8-oxo metabolite (O6-benzyl-8-oxoguanine), but cells expressing mutants P140A or G160R required 30-fold higher concentrations and cells expressing mutants P140K or P138M/V139L/P140K were totally resistant. When cells were treated with 80 microM BCNU plus BG or 8-oxo-BG, those expressing wild-type AGT were killed when inhibitor concentrations of up to 500 microM were used, whereas cells expressing P140K or P138M/V139L/P140K showed no effect, and cells expressing P140A or G160R showed an intermediate resistance. These results suggest that: (i) appearance of BG-resistant mutant AGTs may be a problem during therapy, and (ii) the P140K mutant AGT is an excellent candidate for gene therapy approaches where expression of a BG-resistant AGT in hematopoietic cells is used to reduce toxicity.
Collapse
Affiliation(s)
- N A Loktionova
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | | | | | |
Collapse
|
318
|
Kooistra R, Zonneveld JB, Watson AJ, Margison GP, Lohman PH, Pastink A. Identification and characterisation of the Drosophila melanogaster O6-alkylguanine-DNA alkyltransferase cDNA. Nucleic Acids Res 1999; 27:1795-801. [PMID: 10101186 PMCID: PMC148386 DOI: 10.1093/nar/27.8.1795] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein O 6-alkylguanine-DNA alkyltransferase(alkyltransferase) is involved in the repair of O 6-alkylguanine and O 4-alkylthymine in DNA and plays an important role in most organisms in attenuating the cytotoxic and mutagenic effects of certain classes of alkylating agents. A genomic clone encompassing the Drosophila melanogaster alkyltransferase gene ( DmAGT ) was identified on the basis of sequence homology with corresponding genes in Saccharomyces cerevisiae and man. The DmAGT gene is located at position 84A on the third chromosome. The nucleotide sequence of DmAGT cDNA revealed an open reading frame encoding 194 amino acids. The MNNG-hypersensitive phenotype of alkyltransferase-deficient bacteria was rescued by expression of the DmAGT cDNA. Furthermore, alkyltransferase activity was identified in crude extracts of Escherichia coli harbouring DmAGT cDNA and this activity was inhibited by preincubation of the extract with an oligonucleotide containing a single O6-methylguanine lesion. Similar to E.coli Ogt and yeast alkyltransferase but in contrast to the human alkyltransferase, the Drosophila alkyltransferase is resistant to inactivation by O 6-benzylguanine. In an E.coli lac Z reversion assay, expression of DmAGT efficiently suppressed MNNG-induced G:C-->A:T as well as A:T-->G:C transition mutations in vivo. These results demonstrate the presence of an alkyltransferase specific for the repair of O 6-methylguanine and O 4-methylthymine in Drosophila.
Collapse
Affiliation(s)
- R Kooistra
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
319
|
Case MC, Burt AD, Hughes J, Palmer JM, Collier JD, Bassendine MF, Yeaman SJ, Hughes MA, Major GN. Enhanced ultrasensitive detection of structurally diverse antigens using a single immuno-PCR assay protocol. J Immunol Methods 1999; 223:93-106. [PMID: 10037237 DOI: 10.1016/s0022-1759(98)00207-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our studies of DNA damage and repair in autoimmune disease, lymphomagenesis, and carcinogenesis, require identification of an immunoassay approach that is capable of ultrasensitive detection in a routine human tissue biopsy of several physicochemically diverse antigens, some of which will be present at very low level. Immuno-polymerase chain reaction (immuno-PCR) is a recently described method for ultrasensitive antigen detection that combines the amplification power of PCR with a method similar to a standard antibody capture, enzyme-linked immunosorbent assay (ELISA). As a test of the universality of immuno-PCR, and as an assessment of the suitability of this method for our studies, we used a single immuno-PCR protocol to assay purified forms of the following physicochemically diverse antigens: oligomeric pyruvate dehydrogenase complex (PDC; Mr 8.5 x 10(6)), the promutagenic DNA base adduct O(6)-methylguanosine (Mr 298) and its monomeric repair enzyme, O(6)-methylguanine-DNA methyltransferase (MGMT; Mr 22,000), and a peptide from the N-terminus of MGMT (Mr 2310). We found that all antigens could be ultrasensitively assayed using the single immuno-PCR protocol. Assay limits observed using antigen-specific (primary) antibodies at 1 microg/ml, were in the approximate range of 10(2)-10(9) molecules, with O(6)-methylguanosine being detected most sensitively. Sensitivity of the antigen assay appeared to positively correlate with primary antibody titres determined by ELISA. Furthermore, we observed a substantial increase in detection sensitivity for all antigens by the use of primary antibodies at the higher level of 10 microg/ml. The latter approach permitted antigen assay within the approximate range of 10(0)-10(7) molecules. The combination of higher titre primary antibodies and their use at higher input level, produced an increase of immuno-PCR assay sensitivity of up to four orders of magnitude greater than those previously reported through the use of this assay to measure other antigens. This represents up to a nine order of magnitude increase in immunoassay sensitivity compared to ELISA. Our findings provide compelling evidence that immuno-PCR is indeed a universal ultrasensitive antigen detection method. Using the indicated assay enhancements. immuno-PCR performed as detailed here can offer greatly increased sensitivity for antigen measurement compared to other methods. Thus, our findings suggest that parallel quantitation of several different antigens in very small samples of human tissue will be readily attainable using immuno-PCR.
Collapse
Affiliation(s)
- M C Case
- Department of Medicine, The Medical School, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
New techniques now make it feasible to tailor enzymes for cancer gene therapy. Novel enzymes with desired properties can be created and selected from vast libraries of mutants containing random substitutions within catalytic domains. In this review, we first consider genes for the ablation of tumors, namely, genes that have been mutated (or potentially can be mutated) to afford enhanced activation of prodrugs and increased sensitization of tumors to specific chemotherapeutic agents. We then consider genes that have been mutated to provide better protection of normal host tissues, such as bone marrow, against the toxicity of specific chemotherapeutic agents. Expression of the mutant enzyme could render sensitive tissues, such as bone marrow, more resistant to specific cytotoxic agents.
Collapse
Affiliation(s)
- L P Encell
- Department of Pathology, University of Washington School of Medicine, Seattle, 98195-7705, USA
| | | | | |
Collapse
|
321
|
Esclaire F, Kisby G, Spencer P, Milne J, Lesort M, Hugon J. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulates tau mRNA expression and excitotoxicity. Exp Neurol 1999; 155:11-21. [PMID: 9918700 DOI: 10.1006/exnr.1998.6962] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As in Alzheimer's disease, brains of Guam Chamorros with amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) contain intraneuronal-paired helical filaments composed of accumulated phosphorylated tau protein. Tau mRNA expression in rat neuronal cultures-normally modulated by glutamate-increases after treatment with the aglycone of cycasin, a cycad-derived toxin whose concentration in Chamorro food varies with disease incidence. Elevated Tau gene expression in vitro is coincident with increased cycasin-related DNA adducts and reduced DNA repair. Cycasin and endogenous glutamate may together promote the accumulation of tau protein and neuronal degeneration in Western Pacific ALS/PDC.
Collapse
Affiliation(s)
- F Esclaire
- Faculty of Medicine, University of Limoges, 87025 Limoges, ERS CNRS 6101, France
| | | | | | | | | | | |
Collapse
|
322
|
Edara S, Kanugula S, Pegg AE. Expression of the inactive C145A mutant human O6-alkylguanine-DNA alkyltransferase in E.coli increases cell killing and mutations by N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis 1999; 20:103-8. [PMID: 9934856 DOI: 10.1093/carcin/20.1.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human O6-alkylguanine-DNA alkyltransferase (AGT) counteracts the mutagenic and toxic effects of methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by removing the methyl group from O6-methylguanine lesions in DNA. The methyl group is transferred to a cysteine acceptor residue in the AGT protein, which is located at residue 145. The C145A mutant of AGT in which this cysteine is converted to an alanine residue is therefore inactive. When this C145A mutant was expressed in an Escherichia coli strain lacking endogenous alkyltransferase activity, the number of G:C-->A:T mutations actually increased and the toxicity of the MNNG treatment was enhanced. These effects were not seen when an E.coli strain also lacking nucleotide excision repair (NER) was used. The enhancement of mutagenesis and toxicity of MNNG produced by the C145A mutant AGT was not seen with another inactive mutant Y114E that contains a mutation preventing DNA binding, and the double mutant C145A/Y114E was also ineffective. These results suggest that the C145A mutant AGT binds to O6-methylguanine lesions in DNA and prevents their repair by NER. The inactive C145A mutant AGT also increased the number of A:T-->G:C transition mutations in MNNG-treated cells. These mutations are likely to arise from the minor methylation product, O4-methylthymine. However, expression of wild-type AGT also increased the incidence of these mutations. These results support the hypothesis that mammalian AGTs bind to O4-methylthymine but repair the lesion so slowly that they effectively shield it from more efficient repair by NER.
Collapse
Affiliation(s)
- S Edara
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
323
|
Kyrtopoulos SA. O6-Alkylguanine-DNA alkyltransferase: influence on susceptibility to the genetic effects of alkylating agents. Toxicol Lett 1998; 102-103:53-7. [PMID: 10022232 DOI: 10.1016/s0378-4274(98)00282-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
O6-Alkylguanine-DNA alkyltransferase (AGT) repairs DNA containing O6-alkylguanine by a suicide mechanism involving transfer of the alkyl group to its active site. In this way AGT protects cells from the mutagenic and cytotoxic effects of O6-alkylguanine-type lesions such as O6-methylguanine (O6-meG), an observation which has during recent years been confirmed by studies in transgenic animals either over-expressing or completely lacking this activity. While the levels of expression of AGT have been shown to affect strongly the repair of O6-meG after high doses of methylating agents inducing complete and prolonged depletion of the cellular AGT pool, other data suggest that within smaller variations of AGT levels (such as the interindividual variations observed in man or as observed after low or moderate exposures to alkylating agents) the dependence of O6-meG repair is limited. This phenomenon may reflect the intracellular distribution of the repair protein and must be taken into account when assessing the role of AGT in determining susceptibility to alkylating agents of environmental or clinical significance.
Collapse
Affiliation(s)
- S A Kyrtopoulos
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
324
|
Lau AY, Schärer OD, Samson L, Verdine GL, Ellenberger T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 1998; 95:249-58. [PMID: 9790531 DOI: 10.1016/s0092-8674(00)81755-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
DNA N-glycosylases are base excision-repair proteins that locate and cleave damaged bases from DNA as the first step in restoring the genetic blueprint. The human enzyme 3-methyladenine DNA glycosylase removes a diverse group of damaged bases from DNA, including cytotoxic and mutagenic alkylation adducts of purines. We report the crystal structure of human 3-methyladenine DNA glycosylase complexed to a mechanism-based pyrrolidine inhibitor. The enzyme has intercalated into the minor groove of DNA, causing the abasic pyrrolidine nucleotide to flip into the enzyme active site, where a bound water is poised for nucleophilic attack. The structure shows an elegant means of exposing a nucleotide for base excision as well as a network of residues that could catalyze the in-line displacement of a damaged base from the phosphodeoxyribose backbone.
Collapse
Affiliation(s)
- A Y Lau
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
325
|
Levati L, Marra G, Lettieri T, D'Atri S, Vernole P, Tentori L, Lacal PM, Pagani E, Bonmassar E, Jiricny J, Graziani G. Mutation of the mismatch repair genehMSH2 andhMSH6 in a human T-cell leukemia line tolerant to methylating agents. Genes Chromosomes Cancer 1998. [DOI: 10.1002/(sici)1098-2264(199810)23:2<159::aid-gcc9>3.0.co;2-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
326
|
Chinnasamy N, Fairbairn LJ, Laher J, Willington MA, Rafferty JA. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells. Mutat Res 1998; 416:1-10. [PMID: 9725988 DOI: 10.1016/s1383-5718(98)00087-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.
Collapse
Affiliation(s)
- N Chinnasamy
- CRC Section of Haemopoietic Cell, Paterson Institute for Cancer Research, Christine Hospital NHS Trust, Mancester M20 4BX, UK
| | | | | | | | | |
Collapse
|
327
|
|
328
|
Dolan ME, Roy SK, Garbiras BJ, Helft P, Paras P, Chae MY, Moschel RC, Pegg AE. O6-alkylguanine-DNA alkyltransferase inactivation by ester prodrugs of O6-benzylguanine derivatives and their rate of hydrolysis by cellular esterases. Biochem Pharmacol 1998; 55:1701-9. [PMID: 9634007 DOI: 10.1016/s0006-2952(98)00047-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To modulate the bioavailability and perhaps improve the tumor cell selectivity of O6-alkylguanine-DNA alkyltransferase (AGT) inactivators, pivaloyloxymethyl ester derivatives of O6-benzylguanine (BG) were synthesized and tested as AGT inactivators and as substrates for cellular esterases. The potential prodrugs examined were the 7- and 9-pivaloyloxymethyl derivatives of O6-benzylguanine (7- and 9-esterBG), and of 8-aza-O6-benzylguanine (8-aza-7-esterBG and 8-aza-9-esterBG) and the 9-pivaloyloxymethyl derivative of 8-bromo-O6-benzylguanine (8-bromo-9-esterBG). The benzylated purines were all potent inactivators of the pure AGT and of the AGT activity in HT29 cells and cell extracts. Each ester was at least 75 times less potent than the corresponding benzylated purine against the pure human AGT. In contrast, the activities of esters and their respective benzylated purine were similar in crude cell extracts and in intact cells. The increase in potency of esters in cellular extracts could be explained by a conversion of the respective prodrug to the more potent benzylated purine in the presence of cellular esterases. The apparent catalytic activity (Vmax/Km) of liver microsomal esterase for 8-azaBG ester prodrugs was 70-130 times greater than for BG prodrugs and 10-20 times greater than for 8-bromo-9-esterBG. Tumor cell hydrolysis of the esters varied considerably as a function of cell type and prodrug structure. These data suggest that these or related prodrugs may be advantageous for selective AGT inactivation in certain tumor types.
Collapse
Affiliation(s)
- M E Dolan
- Section of Hematology-Oncology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Pegg AE, Kanugula S, Edara S, Pauly GT, Moschel RC, Goodtzova K. Reaction of O6-benzylguanine-resistant mutants of human O6-alkylguanine-DNA alkyltransferase with O6-benzylguanine in oligodeoxyribonucleotides. J Biol Chem 1998; 273:10863-7. [PMID: 9556560 DOI: 10.1074/jbc.273.18.10863] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the human DNA repair protein, O6-alkylguanine-DNA alkyltransferase (AGT), by O6-benzylguanine renders tumor cells susceptible to killing by alkylating agents. AGT mutants resistant to O6-benzylguanine can be made by converting Pro140 to an alanine (P140A) or Gly156 to an alanine (G156A). These mutations had a much smaller effect on the reaction with O6-benzylguanine when it was incorporated into a short single-stranded oligodeoxyribonucleotide. Such oligodeoxyribonucleotides could form the basis for the design of improved AGT inhibitors. AGT and mutants P140A and G156A preferentially reacted with O6-benzylguanine when incubated with a mixture of two 16-mer oligodeoxyribonucleotides, one containing O6-benzylguanine and the other, O6-methylguanine. When the 6 amino acids located in positions 159-164 in AGT were replaced by the equivalent sequence from the Escherichia coli Ada-C protein (mutant AGT/6ada) the preference for benzyl repair was eliminated. Further mutation incorporating the P140A change into AGT/6ada giving mutant P140A/6ada led to a protein that resembled Ada-C in preference for the repair of methyl groups, but P140A/6ada did not differ from P140A in reaction with the free base O6-benzylguanine. Changes in the AGT active site pocket can therefore affect the preference for repair of O6-benzyl or -methyl groups when present in an oligodeoxyribonucleotide without altering the reaction with free O6-benzylguanine.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA.
| | | | | | | | | | | |
Collapse
|
330
|
Dinglay S, Gold B, Sedgwick B. Repair in Escherichia coli alkB mutants of abasic sites and 3-methyladenine residues in DNA. Mutat Res 1998; 407:109-16. [PMID: 9637239 DOI: 10.1016/s0921-8777(97)00065-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Escherichia coli alkB mutants are sensitive to methyl methanesulfonate and dimethylsulphate, and are defective in the processing of methylated DNA. The function of the AlkB protein has not been determined. Here, we show that alkB mutants are not defective in repairing several different types of potentially toxic DNA lesions that are known to be generated by MMS, including apyrimidinic and apurinic sites, and secondary lesions that could arise at these sites (DNA-protein cross-links and DNA interstrand cross-links). Also, alkB mutants were not sensitive to MeOSO2-(CH2)2-Lex, a compound that alkylates the minor groove of DNA generating primarily 3-methyladenine.
Collapse
Affiliation(s)
- S Dinglay
- Imperial Cancer Research Fund, Clare Hall Laboratories, Herts, UK
| | | | | |
Collapse
|
331
|
Kanugula S, Goodtzova K, Pegg AE. Probing of conformational changes in human O6-alkylguanine-DNA alkyl transferase protein in its alkylated and DNA-bound states by limited proteolysis. Biochem J 1998; 329 ( Pt 3):545-50. [PMID: 9445381 PMCID: PMC1219075 DOI: 10.1042/bj3290545] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human O6-alkylguanine-DNA alkyl transferase (hAGT) is a DNA repair protein that protects cells from alkylation damage by transferring an alkyl group from the O6-position of guanine to a cysteine residue in the active site (-PCHR-) of the protein. The structure of the hAGT protein (23 kDa) has been probed by limited proteolysis with trypsin and Glu-C endoproteases and analysis of the polypeptide fragments by SDS/PAGE. The native hAGT protein had limited accessibility to digestion with trypsin and Glu-C in spite of a number of potential cleavage sites. Initial cleavage by trypsin occurred at residue Lys-193 to give a 21 kDa polypeptide fragment, and this polypeptide underwent further cleavage at residues Arg-128 and Lys-165. These trypsin-cleavage sites became more accessible to digestion in the presence of double-stranded DNA (dsDNA), indicating that hAGT undergoes a change in its conformation on binding to DNA. However, the trypsin cutting site at the Arg-128 position was less available for digestion in the presence of single-stranded DNA (ssDNA), suggesting that the hAGT protein has a different conformation when bound to ssDNA compared with dsDNA. When protease digestion was carried out on wild-type protein, preincubated with the low-molecular-mass pseudosubstrate O6-benzylguanine, increased susceptibility to proteases was observed. A mutant C145A hAGT protein, which cannot repair O6-alkylguanine because the Cys-145 acceptor site in the active site of the protein is changed to Ala, showed identical trypsin cleavage to the wild type, but its digestion was not affected by O6-benzylguanine. These results suggest that alkylation of hAGT leads to an altered conformation. The acquisition of increased susceptibility to proteases upon DNA binding and alkylation demonstrates that hAGT undergoes considerable conformational changes in its structure upon binding to DNA and after repair of alkylation damage.
Collapse
Affiliation(s)
- S Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | |
Collapse
|
332
|
Ludlum DB. The chloroethylnitrosoureas: sensitivity and resistance to cancer chemotherapy at the molecular level. Cancer Invest 1997; 15:588-98. [PMID: 9412665 DOI: 10.3109/07357909709047601] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chloroethylnitrosoureas were developed in a synthetic program that began with the observation that N-methyl-N'-nitro-N-nitrosoguanidine was an effective agent against L1210 cells. The antitumor activity of the chloroethylnitrosoureas is based on their reactions with DNA, especially the formation of a cytosine-guanine crosslink in DNA. Resistance occurs when the enzyme, O6-alkylguanine-DNA alkyltransferase, repairs an intermediate in crosslink formation. Inhibition of O6-alkylguanine-DNA alkyltransferase often restores sensitivity to the chloroethlylnitrosoureas although evidence is accumulating that other repair mechanisms may also contribute to the resistance phenomenon. Continuing investigations in this field center on finding agents whose reactions with DNA are more specific, on elucidating other resistance mechanisms, and on overcoming resistance by developing new inhibitors of repair enzymes.
Collapse
Affiliation(s)
- D B Ludlum
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester 01655-0126, USA
| |
Collapse
|
333
|
Skandalis A, Encell LP, Loeb LA. Creating novel enzymes by applied molecular evolution. CHEMISTRY & BIOLOGY 1997; 4:889-98. [PMID: 9427661 DOI: 10.1016/s1074-5521(97)90297-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent molecular techniques have made it feasible to simulate evolutionary processes and apply in vitro selection to evolve enzymes with novel properties that may have potential benefits for medical and industrial applications. The characterization of such mutants has also provided new insights into how molecular structure determines enzyme function.
Collapse
Affiliation(s)
- A Skandalis
- The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington School of Medicine, Box 357705, Seattle, WA 98195-7705, USA
| | | | | |
Collapse
|
334
|
Abstract
O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that transfers methyl and alkyl lesions from the O6 position of guanine to a cysteine in its structure. The ability of MGMT to also remove precytotoxic O6-alkylguanine lesions induced by chemotherapeutic chloroethylnitrosoureas has made down-regulation of MGMT expression the key component in strategies designed to sensitize tumors to the cytotoxic potential of chloroethylnitrosoureas. The study of how to regulate MGMT expression at the gene, mRNA, and protein levels has contributed not only to the development of effective inhibitors of MGMT action, but also, in a broader sense, to a better understanding of gene regulation and protein structure/function.
Collapse
Affiliation(s)
- R O Pieper
- Division of Hematology/Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
335
|
Watts GS, Pieper RO, Costello JF, Peng YM, Dalton WS, Futscher BW. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol 1997; 17:5612-9. [PMID: 9271436 PMCID: PMC232409 DOI: 10.1128/mcb.17.9.5612] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
O6-Methylguanine DNA methyltransferase (MGMT) repairs the mutagenic and cytotoxic O6-alkylguanine lesions produced by environmental carcinogens and the chemotherapeutic nitrosoureas. As such, MGMT-mediated repair of O6-alkylguanine lesions constitutes a major form of resistance to nitrosourea chemotherapy and makes control of MGMT expression of clinical interest. The variability of expression in cell lines and tissues, along with the ease with which the MGMT phenotype reverts under various conditions, suggests that MGMT is under epigenetic control. One such epigenetic mechanism, 5-methylation of cytosines, has been linked to MGMT expression. We have used an isogenic human multiple myeloma tumor cell line model composed of an MGMT-positive parent cell line, RPMI 8226/S, and its MGMT-negative variant, termed 8226/V, to study the control of MGMT expression. The loss of MGMT activity in 8226/V was found to be due to the loss of detectable MGMT gene expression. Bisulfite sequencing of the MGMT CpG island promoter revealed large increases in the levels of CpG methylation within discrete regions of the 8226/V MGMT CpG island compared to those in 8226/S. These changes in CpG methylation are associated with local heterochromatinization of the 8226/V MGMT transcription start site and provide a likely mechanism for the loss of MGMT transcription in 8226/V.
Collapse
Affiliation(s)
- G S Watts
- Bone Marrow Transplant Program, Arizona Cancer Center, and Department of Pharmacology, University of Arizona, Tucson 85724, USA
| | | | | | | | | | | |
Collapse
|
336
|
Maze R, Hanenberg H, Williams DA. Establishing chemoresistance in hematopoietic progenitor cells. MOLECULAR MEDICINE TODAY 1997; 3:350-8. [PMID: 9269688 DOI: 10.1016/s1357-4310(97)01094-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An attractive approach to circumvent chemotherapy-induced myelosuppression is the use of gene-transfer technology to introduce new genetic material into hematopoietic cells. Several pre-clinical studies have demonstrated that increasing the expression of genes encoding proteins that modulate drug resistance in hematopoietic cells provides significant protection against chemotherapy-induced myelosuppression both in vitro and in vivo. Most work in this area has focused on the use of recombinant retroviruses as vectors for the delivery of DNA sequences into hematopoietic stem cells and progenitor cells. Based on these studies, clinical trials are now under way to evaluate the potential use of two gene sequences-multidrug resistance gene 1 and O6-methylguanine DNA methyltransferase. Reducing chemotherapy-induced myelosuppression by increasing the expression of genes that modulate drug resistance via gene transfer into bone marrow cells might allow dose-intensification of chemotherapy, which might result in an improvement in the clinical outcome of patients with high-risk tumors.
Collapse
Affiliation(s)
- R Maze
- Section of Pediatric Hematology Oncology, Herman B. Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
337
|
Inhibition of DNA repair as a means of increasing the antitumor activity of DNA reactive agents. Adv Drug Deliv Rev 1997; 26:105-118. [PMID: 10837537 DOI: 10.1016/s0169-409x(97)00028-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapeutic alkylnitrosoureas (BCNU, CCNU, streptozotocin) and alkyltriazenes (DTIC, temozolomide) produce a cytotoxic lesion at the O(6)-position of guanine. The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase removes damage from the O(6)-position in a single-step mechanism without co-factors. There is extensive evidence that this protein is one of the most important factors contributing to alkylnitrosourea and alkyltriazene treatment failure. There is an inverse correlation between the level of this protein and the sensitivity of cells to the cytotoxic effects of O(6)-alkylating agents. Attempts have been made to modulate AGT activity using anti-sense technology, methylating agents, O(6)-alkylguanines, and O(6)-benzylguanine analogs. O(6)-Benzylguanine and its analogs are clearly the most potent direct inactivators of the AGT protein. The mechanism involves O(6)-benzylguanine acting as a low-molecular weight substrate with transfer of the benzyl group to the cysteine residue within the active site of the repair protein. Pretreatment of cells with non-toxic doses of O(6)-benzylguanine results in an increase in the sensitivity to O(6)-alkylating agents. Animal studies revealed that the therapeutic index of BCNU increased when administered in combination with O(6)-benzylguanine. This drug is currently in phase I clinical trials. Evidence from animal studies indicates that myelosuppression may be the dose-limiting toxicity, thus, efforts are aimed at improving the therapeutic index by the stable expression of O(6)-benzylguanine-resistant AGT proteins into targeted normal tissue such as bone marrow. The successful modulation of alkyltransferases brings on an exciting new era for alkylnitrosoureas and alkyltriazenes.
Collapse
|
338
|
Pegg AE, Chung L, Moschel RC. Effect of DNA on the inactivation of O6-alkylguanine-DNA alkyltransferase by 9-substituted O6-benzylguanine derivatives. Biochem Pharmacol 1997; 53:1559-64. [PMID: 9260884 DOI: 10.1016/s0006-2952(97)00060-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies were carried out on the inactivation of pure human O6-alkylguanine-DNA alkyltransferase by 9-substituted O6-benzylguanine derivatives in the presence and absence of DNA. The addition of DNA increased the rate of inactivation of the alkyltransferase by O6-benzylguanine and its 9-methyl derivative but had little effect on the rate of inactivation by the 9-cyanomethyl derivative. In contrast, when O6-benzylguanine derivatives with larger 9-substituents such as ribose, 2'-deoxyribose, dihydrotestosterone, or 2-hydroxy-3-(isopropoxy)propyl were used, the addition of DNA was strongly inhibitory to the inactivation. In the case of O6-benzylguanine, O6-benzylguanosine, and O6-benzyl-2'-deoxyguanosine, these results were confirmed by directly measuring the rate of formation by the alkyltransferase of guanine, guanosine, or 2'-deoxyguanosine, respectively. The data indicated that the presence of DNA activated the alkyltransferase, rendering it more reactive with O6-benzylguanine or O6-benzyl-9-methylguanine, but that DNA interferes with the binding of inhibitors with larger 9-substituents, presumably by competing for the same binding site. Since these inactivators readily inactivate alkyltransferase in cells, the amount of cellular alkyltransferase bound to DNA must be small or readily exchangeable with the free form.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, U.S.A
| | | | | |
Collapse
|
339
|
Federwisch M, Hassiepen U, Bender K, Dewor M, Rajewsky MF, Wollmer A. Recombinant human O6-alkylguanine-DNA alkyltransferase (AGT), Cys145-alkylated AGT and Cys145 --> Met145 mutant AGT: comparison by isoelectric focusing, CD and time-resolved fluorescence spectroscopy. Biochem J 1997; 324 ( Pt 1):321-8. [PMID: 9164873 PMCID: PMC1218433 DOI: 10.1042/bj3240321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Isoelectric focusing, CD, steady-state and time-resolved fluorescence spectroscopy were used to compare the native recombinant human DNA-repair protein O6-alkylguanine-DNA alkyltransferase (AGT) with AGT derivatives methylated or benzylated on Cys145 or modified by site-directed mutagenesis at the active centre (Met145 mutant). The AGT protein is approximately spherical with highly constrained Trp residues, but is not stabilized by disulphide bridges. In contrast with native AGT, alkylated AGT precipitated at 25 degrees C but remained monomeric at 4 degrees C. As revealed by isoelectric focusing, pI changed from 8.2 (AGT) to 8. 4 (Cys145-methylated AGT) and 8.6 (Cys145-benzylated AGT). The alpha-helical content of the Met145 mutant was decreased by approx. 5% and Trp residues were partially liberated. Although non-covalent binding of O6-benzylguanine did not alter the secondary structure of AGT, its alpha-helical content was increased by approx. 2% on methylation and by approx. 4% on benzylation, altogether indicating a small conformational change in AGT on undergoing alkylation. No signal sequences have been found in AGT that mark it for polyubiquitination. Therefore the signal for AGT degradation remains to be discovered.
Collapse
Affiliation(s)
- M Federwisch
- Institute of Cell Biology (Cancer Research), University of Essen Medical School, Hufeland-Strasse 55, D-45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
340
|
Federwisch M, Hassiepen U, Bender K, Rajewsky MF, Wollmer A. Recombinant human O6-alkylguanine-DNA alkyltransferase induces conformational change in bound DNA. FEBS Lett 1997; 407:333-6. [PMID: 9175879 DOI: 10.1016/s0014-5793(97)00370-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circular dichroism, and steady-state and time-resolved fluorescence spectroscopy were used to compare the native recombinant human DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) with AGT bound to ds-DNA. Contrary to fluorescence, analysis of the far-UV CD spectra indicated a conformational change of AGT upon binding to DNA: its alpha-helical content is increased by approximately 12%. Analysis of near-UV CD spectra revealed that DNA was also affected, probably being separated into single strands locally.
Collapse
Affiliation(s)
- M Federwisch
- Institute of Cell Biology (Cancer Research) [IFZ], University of Essen Medical School, Germany
| | | | | | | | | |
Collapse
|
341
|
Goodtzova K, Kanugula S, Edara S, Pauly GT, Moschel RC, Pegg AE. Repair of O6-benzylguanine by the Escherichia coli Ada and Ogt and the human O6-alkylguanine-DNA alkyltransferases. J Biol Chem 1997; 272:8332-9. [PMID: 9079656 DOI: 10.1074/jbc.272.13.8332] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
O6-Methylguanine is removed from DNA via the transfer of the methyl group to a cysteine acceptor site present in the DNA repair protein O6-alkylguanine-DNA alkyltransferase. The human alkyltransferase is inactivated by the free base O6-benzylguanine, raising the possibility that substantially larger alkyl groups could also be accepted as substrates. However, the Escherichia coli alkyltransferase, Ada-C, is not inactivated by O6-benzylguanine. The Ada-C protein was rendered capable of reaction by the incorporation of two site-directed mutations converting Ala316 to a proline (A316P) and Trp336 to alanine (W336A) or glycine (W336G). These changes increase the space at the active site of the protein where Cys321 is buried and thus permit access of the O6-benzylguanine inhibitor. Reaction of the mutant A316P/W336A-Ada-C with O6-benzylguanine was greatly stimulated by the presence of DNA, providing strong support for the concept that binding of DNA to the Ada-C protein activates the protein. The Ada-C protein was able to repair O6-benzylguanine in a 16-mer oligodeoxyribonucleotide. However, the rate of repair was very slow, whereas the E. coli Ogt, the human alkyltransferase, and the mutant A316P/W336A-Ada-C alkyltransferases reacted very rapidly with this 16-mer substrate and preferentially repaired it when incubated with a mixture of the methylated and benzylated 16-mers. These results show that benzyl groups are better substrates than methyl groups for alkyltransferases provided that steric factors do not prevent binding of the substrate in the correct orientation for alkyl group transfer.
Collapse
Affiliation(s)
- K Goodtzova
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | | | | | |
Collapse
|
342
|
Debiton E, Cussac-Buchdhal C, Mounetou E, Rapp M, Dupuy JM, Maurizis JC, Veyre A, Madelmont JC. Enhancement by O6-benzyl-N2-acetylguanosine of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea therapeutic index on nude mice bearing resistant human melanoma. Br J Cancer 1997; 76:1157-62. [PMID: 9365163 PMCID: PMC2228110 DOI: 10.1038/bjc.1997.527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The exposure of cells to O6-benzyl-N2-acetylguanosine (BNAG) and several guanine derivatives is known to reduce the activity of O6-alkylguanine-DNA alkyltransferase (MGMT) and to enhance the sensitivity of Mer+ (methyl enzyme repair positive) tumour cells to chloroethylnitrosoureas (CENUs) in vitro and in vivo. High water solubility and the pharmacokinetic properties of BNAG make it a candidate for simultaneous administration with CENUs by the i.v. route in human clinical use. In vivo we have shown previously that BNAG significantly increases the efficiency of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea (cystemustine) against M4Beu melanoma cells (Mer+) through its cytostatic activity by the i.p. route, but also increases its toxicity. To investigate the toxicity of BNAG and cystemustine when administered simultaneously in mice, we compared the maximum tolerated dose and LD50 doses of cystemustine alone or in combination with 40 mg kg(-1) BNAG by the i.p. route. The toxicity of cystemustine was enhanced by a factor of almost 1.44 when combined with BNAG. To compare the therapeutic index of cystemustine alone and the cystemustine/BNAG combination, pharmacological tests were carried out in nude mice bearing Mer+ M4Beu human melanoma cells. Isotoxic doses were calculated using the 1.44 ratio. The treatments were administered three times by the i.v. route on days 1, 5 and 9 after s.c. inoculation of tumour cells. Although the toxicities of the treatments were equal, BNAG strongly enhanced tumour growth inhibition. These results demonstrate the increase of the therapeutic index of cystemustine by BNAG and justify the use of BNAG to enhance nitrosourea efficiency in vivo by i.v. co-injection.
Collapse
Affiliation(s)
- E Debiton
- Institut National de la Santé et de la Recherche Médicale U.71, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
343
|
Schleifer S, Tempel K. Formation and persistence of N7- and O6-methyl-guanine in DNA of chick embryo brain cells in ovo following administration of N-nitroso-N-methylurea. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE A 1996; 43:589-98. [PMID: 9011148 DOI: 10.1111/j.1439-0442.1996.tb00492.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previously, O6-methyl-guanine-DNA alkyltransferase (AT) of the chicken embryo has been investigated in vitro. In the present studies, the effect of in vivo (in ovo) treatment with methylnitrosourea (MNU) was examined at a developmental stage of 15 days and doses of 1.25-20 mg/egg, yielding about 1-16 mmol MNU/kg embryo weight. At intervals of 1-24 h, DNA of the brain was prepared. N7-methylguanine and O6-methylguanine were quantified by combining a rapid method of DNA isolation, high-pressure-liquid-chromatography (HPLC) and electrochemical detection of the guanine-alkyl adducts. In parallel, the AT activity of brain homogenates was determined. Within the range of the detection limits (N7-methylguanine: 16 nM, O6-methylguanine: 2.5 nM), no repair of the guanine adducts, being about 500 nmol O6-methyl- and 1800 nmol N7-methyl-adducts per mmol guanine 1 h following administration of 10 mg MNU/egg, was evident. The rather low acute toxicity of MNU in the chicken embryo at the 15th day of development DL50/24 h being > 4 mg MNU/embryo, argues, therefore, for an additional repair mechanism, e.g. cell replacement repair.
Collapse
Affiliation(s)
- S Schleifer
- Institut für Pharmakologie, Toxikologie und Pharmazie, Tierärztliche Fakultät, Universität München, Deutschland
| | | |
Collapse
|
344
|
Silber JR, Blank A, Bobola MS, Mueller BA, Kolstoe DD, Ojemann GA, Berger MS. Lack of the DNA repair protein O6-methylguanine-DNA methyltransferase in histologically normal brain adjacent to primary human brain tumors. Proc Natl Acad Sci U S A 1996; 93:6941-6. [PMID: 8692923 PMCID: PMC38913 DOI: 10.1073/pnas.93.14.6941] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exposure to exogenous alkylating agents, particularly N-nitroso compounds, has been associated with increased incidence of primary human brain tumors, while intrinsic risk factors are currently unknown. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a major defense against the carcinogenicity of N-nitroso compounds and other alkylators. We report here that in 55% (64/117) of cases, histologically normal brain tissue adjacent to primary human brain tumors lacked detectable MGMT activity [methyl excision repair-defective (Mer-) status]. The incidence of Mer- status in normal brain tissue from brain tumor patients was age-dependent, increasing from 21% in children 0.25-19 years of age to 75% in adults over 50. In contrast, Mer- status was found in 12% (5/43) of normal brain specimens from patients operated for conditions other than primary brain tumors and was not age-dependent. The 4.6-fold elevation in incidence of Mer- status in brain tumor patients is highly significant (chi2 = 24; p < or = 0.001). MGMT activity was independent of age in the lymphocytes of brain tumor patients and was present in lymphocytes from six of nine tumor patients whose normal brain specimen was Mer-. DNA polymerase beta, apurinic/apyrimidinic endonuclease, and lactate dehydrogenase activities were present in all specimens tested, including Mer- specimens from brain tumor patients. Our data are consistent with a model of carcinogenesis in human brain in which epigenetically regulated lack of MGMT is a predisposing factor and alkylation-related mutagenesis is a driving force.
Collapse
Affiliation(s)
- J R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
345
|
Christians FC, Loeb LA. Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proc Natl Acad Sci U S A 1996; 93:6124-8. [PMID: 8650230 PMCID: PMC39200 DOI: 10.1073/pnas.93.12.6124] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.
Collapse
Affiliation(s)
- F C Christians
- The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
346
|
Crone TM, Goodtzova K, Pegg AE. Amino acid residues affecting the activity and stability of human O6-alkylguanine-DNA alkyltransferase. Mutat Res 1996; 363:15-25. [PMID: 8632775 DOI: 10.1016/0921-8777(95)00058-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amino acid residues in the human O6-alkylguanine-DNA alkyltransferase (AGT) were mutated and seventeen of the mutant proteins expressed in the ada- ogt-E. coli strain GWR 109 which is very sensitive to killing by methylating agents because of the absence of endogenous alkyltransferases. Thirteen of the mutations tested (delta-10, delta 1-19, R128A, N137A, H146A, R147A, delta N157, Y158A, E172Q, delta 92-97, Y114E, C145A and E172stop) reduced activity to below detectable levels when crude cell extracts were tested for the ability to remove O6-[3H]methylguanine from 3H-methylated DNA. However, only 4 of these mutations (delta 92-97, Y114E, C145A and E172stop) led to a complete loss of activity when tested for the ability to protect the cells from killing by MNNG. This suggests that the other nine mutations do not lead to the complete inactivation of AGT but produce protein with a reduced activity or in reduced amounts. These results show that none of the residues altered in these mutations (delta 1-10, delta 1-19, R128A, N137A, delta N157, H146A, R147A, Y158A and E172Q) are absolutely essential for AGT activity in protection against killing by MNNG. The stability of the mutant AGT proteins was determined by measuring the half-life of the protein synthesis was blocked. These results indicated that five of mutants that lacked AGT activity when tested in the crude extracts (Y114E, R128A, C145A, delta N157 and Y158A) were stable in the cell showing that the alteration of these residues does greatly reduce AGT activity. The other eight mutants lacking activity in crude extracts (delta 1-10, delta 92-97, E172Q, E172stop, delta 1-19, N137A, H146A and R147A) produced a large decrease in the stability of the AGT protein. This may account for the inability to detect AGT activity in vitro despite the ability to protect from MNNG toxicity in vivo. It is of particular interest that mutation of residues His146, Arg147, Asn137 and Glu172 resulted in unstable AGT proteins active in vivo but not in vitro. The crystal structure of the related Ada-C alkyltransferase suggests the involvement of these residues with the Cys145 acceptor site in a hydrogen bond network that may stabilize the protein and aid in the reaction mechanism. The data presented here support the existence of such an interaction existing in the human AGT and stress its importance in maintaining the configuration of the protein.
Collapse
Affiliation(s)
- T M Crone
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | |
Collapse
|
347
|
Pegg AE, Swenn K, Chae MY, Dolan ME, Moschel RC. Increased killing of prostate, breast, colon, and lung tumor cells by the combination of inactivators of O6-alkylguanine-DNA alkyltransferase and N,N'-bis(2-chloroethyl)-N-nitrosourea. Biochem Pharmacol 1995; 50:1141-8. [PMID: 7488227 DOI: 10.1016/0006-2952(95)00249-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of a number of compounds that act as inactivators of O6-alkylguanine-DNA alkyltransferase (AGT) to sensitize human tumor cell lines to the effects of N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU) were examined. The AGT inactivators tested included O6-benzylguanine (BG) and its 8-aza-, 8-bromo-, 8-methyl-, 8-oxo, and 8-amino-derivatives and O6-[p-(hydroxymethyl)benzyl]guanine. All of these compounds except the 8-amino-derivative were active in greatly increasing the killing of HT29 colon, Du145 prostate, MCF-7 breast and A549 lung tumor cells by BCNU. Their activities were comparable to those of BG. Two pyrimidines, 2,4-diamino-6-benzyloxy-5-nitrosopyrimidine and 2,4-diamino-6-benzyloxy-5-nitropyrimidine, were found to be considerably more potent than BG in enhancing BCNU-induced cell killing. The addition of a steroid group to the 9-position of BG forming either O6-benzyl-9-[3-oxo-4-androsten-17 beta-yloxycarbonyl)methyl]guanine or O6-benzyl-9-[3-oxo-5 alpha-androstan-17 beta-yloxycarbonyl)methyl]guanine also produced compounds effective in enhancing the cytotoxicity of BCNU when added at 10 microM. These results indicate that a range of potent compounds with potentially different pharmacokinetics is available to test the hypothesis that inactivation of AGT overcomes the resistance of many tumor cells to nitrosoureas.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | | | | | |
Collapse
|