301
|
Chapter 2 Chip Capillary Electrophoresis and Total Genetic Analysis Systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1871-0069(06)02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
302
|
Galluzzi L, Magnani M, Saunders N, Harms C, Bruce IJ. Current molecular techniques for the detection of microbial pathogens. Sci Prog 2007; 90:29-50. [PMID: 17455764 PMCID: PMC10361161 DOI: 10.3184/003685007780440521] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Traditionally the detection of microbial pathogens in clinical, environmental or food samples has commonly needed the prelevation of cells by culture before the application ofthe detection strategy. This is done to increase cell number thereby overcoming problems associated with the sensitivity of classical detection strategies. However, culture-based methods have the disadvantages of taking longer, usually are more complex and require skilled personnel as well as not being able to detect viable but non cultivable microbial species. A number of molecular methods have been developed in the last 10 to 15 years to overcome these issues and to facilitate the rapid, accurate, sensitive and cost effective identification and enumeration of microorganisms which are designed to replace and/or support classical approaches to microbial detection. Amongst these new methods, ones based on the polymerase chain reaction and nucleic acid hybridization have been shown to be particularly suitable for this purpose. This review generally summarizes some of the current and emerging nucleic acid based molecular approaches for the detection, discrimination andquantification ofmicrobes in environmental, food and clinical samples and includes reference to the recently developing areas of microfluidics and nanotechnology "Lab-on-a-chip".
Collapse
Affiliation(s)
- Luca Galluzzi
- lstituto di Chimica Biologica ‘G. Fornaini’, Università degli Studi “Carlo Bo”, Via Saffi, 2, 61029 Urbino, Italy
| | - Mauro Magnani
- lstituto di Chimica Biologica ‘G. Fornaini’, Università degli Studi “Carlo Bo”, Via Saffi, 2, 61029 Urbino, Italy
| | - Nick Saunders
- Centre for Infections, HPA (Colindale), 61 Colindale Avenue, London, NW9 5HT, UK
| | - Carsten Harms
- University of Applied Science Bremerhaven, Faculty I, An der Karlstadt 8 – 27568 Bremerhaven, Germany
| | - Ian James Bruce
- Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
303
|
Gonzalez A, Grimes R, Walsh EJ, Dalton T, Davies M. Interaction of quantitative PCR components with polymeric surfaces. Biomed Microdevices 2006; 9:261-6. [PMID: 17180709 DOI: 10.1007/s10544-006-9030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study investigated the effect of exposing a polymerase chain reaction (PCR) mixture to capillary tubing of different materials and lengths, at different contact times and flow rates and the adsorption of major reaction components into the tubing wall. Using 0.5 mm ID tubing, lengths of 40 cm and residence times up to 45 min, none of the tested polymeric materials was found to affect subsequent PCR amplification. However, after exposure of the mixture to tubing lengths of 3 m or reduction of sample volume, PCR inhibition occurred, increasing with the volume to length ratio. Different flow velocities did not affect PCR yield. When the adsorption of individual PCR components was studied, significant DNA adsorption and even more significant adsorption of the fluorescent dye Sybr Green I was found. The results indicate that PCR inhibition in polymeric tubing results from adsorption of reaction components to wall surfaces, increasing substantially with tubing length or sample volume reduction, but not with contact time or flow velocities typical in dynamic PCR amplification. The data also highlight that chemical compatibility of polymeric capillaries with DNA dyes should be carefully considered for the design of quantitative microfluidic devices.
Collapse
Affiliation(s)
- Asensio Gonzalez
- Stokes Research Institute, University of Limerick, Limerick, Ireland
| | | | | | | | | |
Collapse
|
304
|
Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci U S A 2006; 103:19272-7. [PMID: 17159153 PMCID: PMC1748216 DOI: 10.1073/pnas.0604663103] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a microfluidic genetic analysis system that represents a previously undescribed integrated microfluidic device capable of accepting whole blood as a crude biological sample with the endpoint generation of a genetic profile. Upon loading the sample, the glass microfluidic genetic analysis system device carries out on-chip DNA purification and PCR-based amplification, followed by separation and detection in a manner that allows for microliter samples to be screened for infectious pathogens with sample-in-answer-out results in < 30 min. A single syringe pump delivers sample/reagents to the chip for nucleic acid purification from a biological sample. Elastomeric membrane valving isolates each distinct functional region of the device and, together with resistive flow, directs purified DNA and PCR reagents from the extraction domain into a 550-nl chamber for rapid target sequence PCR amplification. Repeated pressure-based injections of nanoliter aliquots of amplicon (along with the DNA sizing standard) allow electrophoretic separation and detection to provide DNA fragment size information. The presence of Bacillus anthracis (anthrax) in 750 nl of whole blood from living asymptomatic infected mice and of Bordetella pertussis in 1 microl of nasal aspirate from a patient suspected of having whooping cough are confirmed by the resultant genetic profile.
Collapse
Affiliation(s)
| | - James M. Karlinsey
- *Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Joan M. Bienvenue
- *Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | | | - Michael G. Roper
- *Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | | | | | | | - Tod J. Merkel
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 28092
| | - Jerome P. Ferrance
- *Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - James P. Landers
- *Department of Chemistry, University of Virginia, Charlottesville, VA 22904
- Pathology, University of Virginia Health System, Charlottesville, VA 22908; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
305
|
Abstract
Background: The detection of multiple viruses is important for pathogenic diagnosis and disease control. Microarray detection is a good method, but requires complex procedures for multiple virus detection. Methods: We developed a novel PCR assay, the microarray-in-a-tube system, which integrates multiple PCR processes and DNA microarrays for multiple virus detection. A 5 × 5 oligonucleotide microarray for detecting 4 respiratory tract viruses (severe acute respiratory syndrome–associated coronavirus, influenza A virus, influenza B virus, and enterovirus) with inner controls was arranged on the inner surface of a specially designed Eppendorf cap with a flat, optically transparent window. Results: We were able to perform all detection processes in the encapsulated system without opening the cap. The 4 viruses were successfully amplified by one-step reverse transcription–PCR in the encapsulated tube. After the PCR process, the microarray-in-a-tube was inverted, and the fluorescence-labeled PCR products were directly hybridized on the microarray. Hybridization signals were obtained with an ordinary fluorescent microscope. The sensitivity of the system for virus detection reached 102 copies/μL. With the help of inner controls, the system provided reliable results without false negatives and false positives. Conclusions: The microarray-in-a-tube system is a rapid, labor-saving tool for multiple virus detection with several advantages, such as convenience, prevention of cross-contamination of the PCR products, and potential for multiple-gene detection.
Collapse
Affiliation(s)
- Quanjun Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of China
| | - Shixin Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of China
| | - Tian Wen
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of China
| | - Zuhong Lu
- Address correspondence to this author at: State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China. Fax 086-25-83793779; e-mail
| |
Collapse
|
306
|
Long Z, Liu D, Ye N, Qin J, Lin B. Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis. Electrophoresis 2006; 27:4927-34. [PMID: 17117457 DOI: 10.1002/elps.200600252] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Microfluidic devices integrating membrane-based sample preparation with electrophoretic separation are demonstrated. These multilayer devices consist of 10 nm pore diameter membranes sandwiched between two layers of PDMS substrates with embedded microchannels. Because of the membrane isolation, material exchange between two fluidic layers can be precisely controlled by applied voltages. More importantly, since only small molecules can pass through the nanopores, the integrated membrane can serve as a filter or a concentrator prior to microchip electrophoresis under different design and operation modes. As a filter, they can be used for separation and selective injection of small analytes from sample matrix. This has been effectively applied in rapid determination of reduced glutathione in human plasma and red blood cells without any off-chip deproteinization procedure. Alternatively, in the concentrator mode, they can be used for online purification and preconcentration of macromolecules, which was illustrated by removing primers and preconcentrating the product DNA from a PCR product mixture.
Collapse
Affiliation(s)
- Zhicheng Long
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | |
Collapse
|
307
|
Abstract
Microarrays were designed to monitor the expression of many genes in parallel, providing substantially more information than Northern blots or reverse transcription polymerase chain reaction analysing one or few genes at a time. The large sequencing projects provided the content for detailed expression studies under a variety of stimuli and conditions. The human genome project identified around 30 000 human genes. Estimated number of protein products is, however, 10-30 times higher, mainly due to the alternative splicing and post-translational modifications. The identification of gene functions requires both genomic and proteomic approaches, including protein microarrays, and numerous current microarray projects focus on deciphering gene expression patterns under a variety of conditions. Establishing the key genes and gene products for particular conditions opens the way for diagnostic applications using multiparameter, high-throughput assays. This format can also accommodate existing blood screening assays, potentially providing a single testing platform. This review considers the progress in diagnostic microarrays in a wider context of in vitro diagnostics field.
Collapse
Affiliation(s)
- J Petrik
- Scottish National Blood Transfusion Service and Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
308
|
Yeung SW, Lee TMH, Cai H, Hsing IM. A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res 2006; 34:e118. [PMID: 17000638 PMCID: PMC1636451 DOI: 10.1093/nar/gkl702] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.
Collapse
Affiliation(s)
| | | | | | - I-Ming Hsing
- To whom correspondence should be addressed. Tel: +852 23587131; Fax: +852 31064857;
| |
Collapse
|
309
|
Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin SE, Horowitz D, Dixon JM, Brenan CJ. Nanoliter high throughput quantitative PCR. Nucleic Acids Res 2006; 34:e123. [PMID: 17000636 PMCID: PMC1635282 DOI: 10.1093/nar/gkl639] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding biological complexity arising from patterns of gene expression requires accurate and precise measurement of RNA levels across large numbers of genes simultaneously. Real time PCR (RT-PCR) in a microtiter plate is the preferred method for quantitative transcriptional analysis but scaling RT-PCR to higher throughputs in this fluidic format is intrinsically limited by cost and logistic considerations. Hybridization microarrays measure the transcription of many thousands of genes simultaneously yet are limited by low sensitivity, dynamic range, accuracy and sample throughput. The hybrid approach described here combines the superior accuracy, precision and dynamic range of RT-PCR with the parallelism of a microarray in an array of 3072 real time, 33 nl polymerase chain reactions (RT-PCRs) the size of a microscope slide. RT-PCR is demonstrated with an accuracy and precision equivalent to the same assay in a 384-well microplate but in a 64-fold smaller reaction volume, a 24-fold higher analytical throughput and a workflow compatible with standard microplate protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sergey E. Ilyin
- Johnson & Johnson Pharmaceutical Research & DevelopmentLLC, Spring House, PA 19477, USA
| | - Daniel Horowitz
- Johnson & Johnson Pharmaceutical Research & DevelopmentLLC, Spring House, PA 19477, USA
| | - James M. Dixon
- Johnson & Johnson Pharmaceutical Research & DevelopmentLLC, Spring House, PA 19477, USA
| | - Colin J.H. Brenan
- To whom correspondence should be addressed. Tel: +1 781 721 3615; Fax: +1 781 721 3601;
| |
Collapse
|
310
|
Abstract
Considerable effort has been invested in the development of integrated microfluidic devices for fast and highly efficient proteomic studies. Among various fabrication techniques for the preparation of analytical components (separation columns, reactors, extractors, valves, etc.) in integrated microchips, in situ fabrication of monolithic media is receiving increasing attention. This is mainly due to the ease and simplicity of preparation of monolithic media and the availability of various precursors and chemistries. In addition, UV-initiated photopolymerization technique enables the incorporation of multiple analytical components into specified parts of a single microchip using photomasks. This review summarizes preparation methods for monolithic media and their application as microfluidic analytical components in microchips.
Collapse
Affiliation(s)
- Kyung Won Ro
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
311
|
Abstract
Recent years have seen considerable progress in the development of microfabricated systems for use in the chemical and biological sciences. Much development has been driven by a need to perform rapid measurements on small sample volumes. However, at a more primary level, interest in miniaturized analytical systems has been stimulated by the fact that physical processes can be more easily controlled and harnessed when instrumental dimensions are reduced to the micrometre scale. Such systems define new operational paradigms and provide predictions about how molecular synthesis might be revolutionized in the fields of high-throughput synthesis and chemical production.
Collapse
Affiliation(s)
- Andrew J DeMello
- Electronic Materials Group, Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
312
|
Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. MICROBIAL ECOLOGY 2006; 52:159-75. [PMID: 16897303 DOI: 10.1007/s00248-006-9072-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/07/2006] [Indexed: 05/11/2023]
Abstract
Microarray technology has the unparalleled potential to simultaneously determine the dynamics and/or activities of most, if not all, of the microbial populations in complex environments such as soils and sediments. Researchers have developed several types of arrays that characterize the microbial populations in these samples based on their phylogenetic relatedness or functional genomic content. Several recent studies have used these microarrays to investigate ecological issues; however, most have only analyzed a limited number of samples with relatively few experiments utilizing the full high-throughput potential of microarray analysis. This is due in part to the unique analytical challenges that these samples present with regard to sensitivity, specificity, quantitation, and data analysis. This review discusses specific applications of microarrays to microbial ecology research along with some of the latest studies addressing the difficulties encountered during analysis of complex microbial communities within environmental samples. With continued development, microarray technology may ultimately achieve its potential for comprehensive, high-throughput characterization of microbial populations in near real time.
Collapse
Affiliation(s)
- T J Gentry
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
313
|
Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 2006; 6:307-18. [PMID: 16706735 DOI: 10.1586/14737159.6.3.307] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite recent progress in the treatment of cancer, the majority of cases are still diagnosed only after tumors have metastasized, leaving the patient with a grim prognosis. However, there may be an opportunity to drastically reduce the burden of cancer, if the disease can be detected early enough. Nanotechnology is in a unique position to transform cancer diagnostics and to produce a new generation of biosensors and medical imaging techniques with higher sensitivity and precision of recognition. This review examines the in vitro and in vivo diagnostic applications of nanoparticles, and other nanodevices that are likely to have an impact on the field in the future. Future developments that may lead to the realization of multifunctional detection and treatment nanoparticle platforms are also discussed.
Collapse
Affiliation(s)
- Piotr Grodzinski
- National Cancer Institute, 31 Center Drive, MSC 2580 Room 10A52, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
314
|
Situma C, Hashimoto M, Soper SA. Merging microfluidics with microarray-based bioassays. ACTA ACUST UNITED AC 2006; 23:213-31. [PMID: 16905357 DOI: 10.1016/j.bioeng.2006.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/16/2022]
Abstract
Microarray technologies provide powerful tools for biomedical researchers and medicine, since arrays can be configured to monitor the presence of molecular signatures in a highly parallel fashion and can be configured to search either for nucleic acids (DNA microarrays) or proteins (antibody-based microarrays) as well as different types of cells. Microfluidics on the other hand, provides the ability to analyze small volumes (micro-, nano- or even pico-liters) of sample and minimize costly reagent consumption as well as automate sample preparation and reduce sample processing time. The marriage of microarray technologies with the emerging field of microfluidics provides a number of advantages such as, reduction in reagent cost, reductions in hybridization assay times, high-throughput sample processing, and integration and automation capabilities of the front-end sample processing steps. However, this potential marriage is also fraught with some challenges as well, such as developing low-cost manufacturing methods of the fluidic chips, providing good interfaces to the macro-world, minimizing non-specific analyte/wall interactions due to the high surface-to-volume ratio associated with microfluidics, the development of materials that accommodate the optical readout phases of the assay and complete integration of peripheral components (optical and electrical) to the microfluidic to produce autonomous systems appropriate for point-of-care testing. In this review, we provide an overview and recent advances on the coupling of DNA, protein and cell microarrays to microfluidics and discuss potential improvements required for the implementation of these technologies into biomedical and clinical applications.
Collapse
Affiliation(s)
- Catherine Situma
- Center for Bio-Modular Multi-Scale Systems, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | | | | |
Collapse
|
315
|
Liu RH, Dill K, Fuji HS, McShea A. Integrated microfluidic biochips for DNA microarray analysis. Expert Rev Mol Diagn 2006; 6:253-61. [PMID: 16512784 DOI: 10.1586/14737159.6.2.253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fully integrated and self-contained microfluidic biochip device has been developed to automate the fluidic handling steps required to perform a gene expression study of the human leukemia cell line (K-562). The device consists of a DNA microarray semiconductor chip with 12,000 features and a microfluidic cartridge that consists of microfluidic pumps, mixers, valves, fluid channels and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. A single-color transcriptional analysis of K-562 cells with a series of calibration controls (spiked-in controls) was performed to characterize this new platform with regard to sensitivity, specificity and dynamic range. The device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than 3 orders of magnitude. Experiments also demonstrated that chip-to-chip variability was low, indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis.
Collapse
|
316
|
Doré K, Leclerc M, Boudreau D. Investigation of a Fluorescence Signal Amplification Mechanism Used for the Direct Molecular Detection of Nucleic Acids. J Fluoresc 2006; 16:259-65. [PMID: 16691456 DOI: 10.1007/s10895-006-0098-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
A fluorescence signal amplification mechanism allowing detection limits for DNA in the zeptomolar range was investigated. Photophysical properties of the molecular system were studied in order to better explain the signal amplification that is observed. We show that the confinement of a fluorescent DNA hybridization transducer in aggregates improves its quantum yield and photostability. Furthermore, we show that the combination of the resonance energy transfer occurring within the aggregates with the use of a conjugated polymer as the hybridization transducer and donor allows ultrafast and efficient energy coupling to the aggregates and can lead to the excitation of a large number of acceptors by only one donor.
Collapse
Affiliation(s)
- Kim Doré
- Chemistry Department and Centre d'optique, photonique et laser (COPL), Université Laval, Québec, QC, Canada, G1K 7P4
| | | | | |
Collapse
|
317
|
Easley CJ, Karlinsey JM, Landers JP. On-chip pressure injection for integration of infrared-mediated DNA amplification with electrophoretic separation. LAB ON A CHIP 2006; 6:601-10. [PMID: 16652175 DOI: 10.1039/b600039h] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) membrane valves were utilized for diaphragm pumping on a PDMS-glass hybrid microdevice in order to couple infrared-mediated DNA amplification with electrophoretic separation of the products in a single device. Specific amplification products created during non-contact, infrared (IR) mediated polymerase chain reaction (PCR) were injected via chip-based diaphragm pumping into an electrophoretic separation channel. Channel dimensions were designed for injection plug shaping via preferential flow paths, which aided in minimizing the plug widths. Unbiased injection of sample could be achieved in as little as 190 ms, decreasing the time required with electrokinetic injection by two orders of magnitude. Additionally, sample stacking was promoted using laminar or biased-laminar loading to co-inject either water or low ionic strength DNA marker solution along with the PCR-amplified sample. Complete baseline resolution (Res = 2.11) of the 80- and 102-bp fragments of pUC-18 DNA marker solution was achieved, with partially resolved 257- and 267-bp fragments (Res = 0.56), in a separation channel having an effective length of only 3.0 cm. This resolution was deemed adequate for many PCR amplicon separations, with the added advantage of short separation time-typically complete in <120 s. Decreasing the amount of glass surrounding the PCR chamber reduced the DNA amplification time, yielding a further enhancement in analysis speed, with heating and cooling rates as high as 13.4 and -6.4 degrees C s(-1), respectively. With the time requirements greatly reduced for each step, it was possible to seamlessly couple IR-mediated amplification, sample injection, and separation/detection of a 278-bp fragment from the invA gene of <1000 starting copies of Salmonella typhimurium DNA in approximately 12 min on a single device, representing the fastest PCR-ME integration achieved to date.
Collapse
Affiliation(s)
- Christopher J Easley
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
318
|
Good BT, Bowman CN, Davis RH. An effervescent reaction micropump for portable microfluidic systems. LAB ON A CHIP 2006; 6:659-66. [PMID: 16652182 DOI: 10.1039/b601542e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A water-activated, effervescent reaction was used to transport fluid in a controllable manner on a portable microfluidic device. The reaction between sodium bicarbonate and an organic acid, tartaric acid and/or benzoic acid, was modeled to analyze methods of controlling the generation of carbon-dioxide gas for the purposes of pumping fluids. Integration and testing of the effervescent reaction pump in a microfluidic device was made possible by using elastomeric polymers as both photopolymerizable septa and removable lids. These materials combined to enable facile access to otherwise gas-tight devices. Based on theoretical predictions for 0.33 mg of sodium bicarbonate and a stoichiometric amount of organic acid, the pumping flow rate could be varied from 0.01 microL s(-1) to 70 microL s(-1). The flow rate is controlled by adjusting any or all of the particle size of the least soluble reactant, the amount of reactants used, and the type of organic acid selected. The tartaric acid systems rapidly produce carbon dioxide; however, the gas generation rates dramatically decrease over the course of the reaction. In contrast, carbon dioxide production rate in the benzoic acid systems is lower and nearly constant for several minutes. Water activation and direct placement on a microfluidic device are key features of this micropump, which is therefore useful for portable microfluidic applications.
Collapse
Affiliation(s)
- Brian T Good
- Department of Chemical and Biological Engineering, ECCH 111, UCB 424, University of Colorado, Boulder, CO 80309-0424, USA
| | | | | |
Collapse
|
319
|
Tay HK, Lee D, Xu G, Yang C. Design and Fabrication of a Flow Delivery Microdevice with Asymmetric Microelectrodes Pairs. ACTA ACUST UNITED AC 2006. [DOI: 10.1088/1742-6596/34/1/183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
320
|
Gilbride KA, Lee DY, Beaudette LA. Molecular techniques in wastewater: Understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 2006; 66:1-20. [PMID: 16635533 DOI: 10.1016/j.mimet.2006.02.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 01/30/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Traditionally, the detection of pathogens in water, wastewater, and other environmental samples is restricted by the ability to culture such organisms from complex environmental samples. During the last decade the use of molecular methods have supplied the means for examining microbial diversity and detecting specific organisms without the need for cultivation. The application of molecular techniques to the study of natural and engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in complex environments. In this paper, we will review the current and emerging molecular approaches for characterizing microbial community composition and structure in wastewater processes. Recent studies show that advances in microarray assays are increasing our capability of detecting hundreds and even thousands of DNA sequences simultaneously and rapidly. With the current progress in microfluidics and optoelectronics, the ability to automate a detection/identification system is now being realized. The status of such a system for wastewater monitoring is discussed.
Collapse
Affiliation(s)
- K A Gilbride
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St. Toronto, ON, Canada M4B 2K3.
| | | | | |
Collapse
|
321
|
Consolandi C, Severgnini M, Frosini A, Caramenti G, De Fazio M, Ferrara F, Zocco A, Fischetti A, Palmieri M, De Bellis G. Polymerase chain reaction of 2-kb cyanobacterial gene and human anti-alpha1-chymotrypsin gene from genomic DNA on the In-Check single-use microfabricated silicon chip. Anal Biochem 2006; 353:191-7. [PMID: 16620755 DOI: 10.1016/j.ab.2006.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/25/2022]
Abstract
The microfabricated chip is a promising format for automating and miniaturizing the multiple steps of genotyping. We tested an innovative silicon biochip (In-Check Lab-on-Chip; STMicroelectronics, Agrate Brianza, Italy) designed for polymerase chain reaction (PCR) analysis of complex biological samples. The chip is mounted on a 1x3-in(2). plastic slide that provides the necessary mechanical, thermal, electrical, and fluidic connections. A temperature control system drives the chip to the desired temperatures, and a graphical user interface allows experimenters to define cycling conditions and monitor reactions in real time. During thermal cycling, we recorded a cooling rate of 3.2 degrees C/s and a heating rate of 11 degrees C/s. The temperature maintained at each thermal plateau was within 0.13 degrees C of the programmed temperature at three sensors. From 0.5 ng/microl genomic DNA, the In-Check device successfully amplified the 2060-bp cyanobacterial 16S rRNA gene and the 330-bp human anti-alpha(1)-chymotrypsin gene. The shortest PCR protocol that produced an amplicon by capillary electrophoresis comprised 30 cycles and was 22.5 min long. These thermal cycling characteristics suggest that the In-Check device will permit future development of a genotyping lab-on-a-chip device, yielding results in a short time from a limited amount of biological starting material.
Collapse
Affiliation(s)
- Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, ITB-CNR, Via Fratelli Cervi 93, I-20090 Segrate, MI, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Gabig-Ciminska M. Developing nucleic acid-based electrical detection systems. Microb Cell Fact 2006; 5:9. [PMID: 16512917 PMCID: PMC1420323 DOI: 10.1186/1475-2859-5-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022] Open
Abstract
Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical detection are discussed.
Collapse
|
323
|
Shiddiky MJA, Park DS, Shim YB. Detection of polymerase chain reaction fragments using a conducting polymer-modified screen-printed electrode in a microfluidic device. Electrophoresis 2006; 26:4656-63. [PMID: 16283692 DOI: 10.1002/elps.200500447] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A simple and fast method for electrochemical detection of amplified fragments by PCR was successfully developed using CE in a microfluidic device with a modified screen-printed carbon electrode (SPCE). The surfaces of the SPCE were modified with poly-5,2'-5',2''-terthiophene-3'-carboxylic acid, which improves the analysis performance by lowering the detection potential, enhancing the S/N characteristics, and avoiding electrode poisoning. DNA fragments amplified by PCR were separated within 210 s in a 75.5 mm-long coated-separation channel at a separation field strength of -200 V/cm. To minimize the sample adsorption into the inner surface of the capillary wall, which disturbs the separation, a dynamically coated capillary with an acrylamide solution was used. Furthermore, the analysis procedure was simplified and rendered reproducible by using 0.50% w/v hydroxyethylcellulose as a separation matrix in a coated channel. The reproducibility of the analysis employing the coated channel yielded RSD of 4.3% for the peak areas and 1.4% for the migration times in eight repetitive measurements at a modified electrode, compared with 21.3 and 9.4% for a bare electrode. The sensitivity of the assay was 18.74 pAs/(pg/microL) with a detection limit of 584.31 +/- 1.3 fg/microL.
Collapse
Affiliation(s)
- Muhammad J A Shiddiky
- Department of Chemistry and Center for Innovative BioPhysio Sensor Technology, Pusan National University, Keumjeong-ku, Busan, South Korea
| | | | | |
Collapse
|
324
|
Walsh EJ, King C, Grimes R, Gonzalez A. Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR. Biomed Microdevices 2006; 8:59-64. [PMID: 16491332 DOI: 10.1007/s10544-006-6383-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The two-phase segmented flow approach to the processing and quantitative analysis of biological samples in microdevices offers significant advantages over the single-phase continuous flow methodology. Despite this, little is known about the compatibility of samples and reactants with segmenting fluids, although a number of investigators have reported reduced yield and inhibition of enzymatic reactions depending on the segmenting fluid employed. The current study addresses the compatibility of various segmenting fluids with real time quantitative PCR to understand the physicochemical requirements of this important reaction in biotechnology. The results demonstrate that creating a static segmenting fluid/PCR mix interface has a negligible impact on the reaction efficiency, crossing threshold and end fluorescence levels using a variety of segmenting fluids. The implication is then that the previously reported inhibitory effects are the result of the dynamic motion between the segmenting fluid and the sample in continuously flowing systems. The results presented here are a first step towards understanding the limitations of the segmented flow methodology, which are necessary to bring this approach into mainstream use.
Collapse
Affiliation(s)
- E J Walsh
- University of Limerick, Limerick, Ireland.
| | | | | | | |
Collapse
|
325
|
Liu X, Krull UJ. DNA hybridization on silica microbeads that are physically adsorbed as arrays on glass surfaces. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
326
|
Goral VN, Zaytseva NV, Baeumner AJ. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. LAB ON A CHIP 2006; 6:414-21. [PMID: 16511625 DOI: 10.1039/b513239h] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A microfluidic biosensor with electrochemical detection for the quantification of nucleic acid sequences was developed. In contrast to most microbiosensors that are based on fluorescence for signal generation, it takes advantage of the simplicity and high sensitivity provided by an amperometric and coulorimetric detection system. An interdigitated ultramicroelectrode array (IDUA) was fabricated in a glass chip and integrated directly with microchannels made of poly(dimethylsiloxane) (PDMS). The assembly was packaged into a Plexiglas housing providing fluid and electrical connections. IDUAs were characterized amperometrically and using cyclic voltammetry with respect to static and dynamic responses for the presence of a reversible redox couple-potassium hexacyanoferrate (ii)/hexacyanoferrate (iii) (ferri/ferrocyanide). A combined concentration of 0.5 microM of ferro/ferricyanide was determined as lower limit of detection with a dynamic range of 5 orders of magnitude. Background signals were negligible and the IDUA responded in a highly reversible manner to the injection of various volumes and various concentrations of the electrochemical marker. For the detection of nucleic acid sequences, liposomes entrapping the electrochemical marker were tagged with a DNA probe, and superparamagnetic beads were coated with a second DNA probe. A single stranded DNA target sequence hybridized with both probes. The sandwich was captured in the microfluidic channel just upstream of the IDUA via a magnet located in the outside housing. Liposomes were lysed using a detergent and the amount of released ferro/ferricyanide was quantified while passing by the IDUA. Optimal location of the magnet with respect to the IDUA was investigated, the effect of dextran sulfate on the hybridization reaction was studied and the amount of magnetic beads used in the assay was optimized. A dose response curve using varying concentrations of target DNA molecules was carried out demonstrating a limit of detection at 1 fmol assay(-1) and a dynamic range between 1 and 50 fmol. The overall assay took 6 min to complete, plus 15-20 min of pre-incubation and required only a simple potentiostat for signal recording and interpretation.
Collapse
Affiliation(s)
- Vasiliy N Goral
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
327
|
Yi C, Zhang Q, Li CW, Yang J, Zhao J, Yang M. Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal Bioanal Chem 2006; 384:1259-68. [PMID: 16795144 DOI: 10.1007/s00216-005-0252-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to fabricate microfluidic systems with complex structures and with compatible dimensions between the microfluidics and biological cells have attracted significant attention in the development of microchips for analyzing the biophysical and biochemical functions of cells. Just as cell-based microfluidics have become a versatile tool for biosensing, diagnostics, drug screening and biological research, detector modules for cell-based microfluidics have also undergone major development over the past decade. This review focuses on detection methods commonly used in cell-based microfluidic systems, and provides a general survey and an in-depth look at recent developments in optical and electrochemical detection methods for microfluidic applications for biological systems, particularly cell analysis. Selected examples are used to illustrate applications of these detection systems and their advantages and weaknesses.
Collapse
Affiliation(s)
- Changqing Yi
- Biochip Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
328
|
Yi C, Li CW, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.12.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
329
|
Lee TMH, Hsing IM. DNA-based bioanalytical microsystems for handheld device applications. Anal Chim Acta 2006; 556:26-37. [PMID: 17723328 PMCID: PMC7094345 DOI: 10.1016/j.aca.2005.05.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/23/2005] [Accepted: 05/25/2005] [Indexed: 11/29/2022]
Abstract
This article reviews and highlights the current development of DNA-based bioanalytical microsystems for point-of-care diagnostics and on-site monitoring of food and water. Recent progresses in the miniaturization of various biological processing steps for the sample preparation, DNA amplification (polymerase chain reaction), and product detection are delineated in detail. Product detection approaches utilizing "portable" detection signals and electrochemistry-based methods are emphasized in this work. The strategies and challenges for the integration of individual processing module on the same chip are discussed.
Collapse
Affiliation(s)
- Thomas Ming-Hung Lee
- Department of Chemical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
330
|
Gabig-Ciminska M, Liu Y, Enfors SO. Gene-based identification of bacterial colonies with an electric chip. Anal Biochem 2006; 345:270-6. [PMID: 16137631 DOI: 10.1016/j.ab.2005.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/19/2005] [Accepted: 07/20/2005] [Indexed: 11/28/2022]
Abstract
A method for the identification of bacterial colonies based on their content of specific genes is presented. This method does not depend on DNA separation or DNA amplification. Bacillus cereus carrying one of the genes (hblC) coding for the enterotoxin hemolysin was identified with this method. It is based on target DNA hybridization to a capturing probe immobilized on magnetic beads, followed by enzymatic labeling and measurement of the enzyme product with a silicon-based chip. An hblC-positive colony containing 10(7) cells could be assayed in 30 min after ultrasonication and centrifugation. The importance of optimizing the ultrasonication is illustrated by analysis of cell disruption kinetics and DNA fragmentation. An early endpoint PCR analysis was used to characterize the DNA fragmentation as a function of ultrasonication time. The first minutes of sonication increased the signal due to both increased DNA release and increased DNA fragmentation. The latter is assumed to increase the signal due to improved diffusion and faster hybridization of the target DNA. Too long sonication decreased the signal, presumably due to loss of hybridization sites on the targets caused by extensive DNA fragmentation. The results form a basis for rational design of an ultrasound cell disruption system integrated with analysis on chip that will move nucleic acid-based detection through real-time analysis closer to reality.
Collapse
|
331
|
Sun Y, Kwok YC. Polymeric microfluidic system for DNA analysis. Anal Chim Acta 2006; 556:80-96. [PMID: 17723333 DOI: 10.1016/j.aca.2005.09.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The application of micro total analysis system (microTAS) has grown exponentially in the past decade. DNA analysis is one of the primary applications of microTAS technology. This review mainly focuses on the recent development of the polymeric microfluidic devices for DNA analysis. After a brief introduction of material characteristics of polymers, the various microfabrication methods are presented. The most recent developments and trends in the area of DNA analysis are then explored. We focus on the rapidly developing fields of cell sorting, cell lysis, DNA extraction and purification, polymerase chain reaction (PCR), DNA separation and detection. Lastly, commercially available polymer-based microdevices are included.
Collapse
Affiliation(s)
- Yi Sun
- Department of Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | | |
Collapse
|
332
|
Patientennahe Diagnostik in Krisensituationen / Near patient testing in exceptional situations. ACTA ACUST UNITED AC 2006. [DOI: 10.1515/jlm.2006.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
333
|
Loy A, Bodrossy L. Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 2006; 363:106-19. [PMID: 16126187 DOI: 10.1016/j.cccn.2005.05.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Oligonucleotide microarrays are highly parallel hybridization platforms, allowing rapid and simultaneous identification of many different microorganisms and viruses in a single assay. In the past few years, researchers have been confronted with a dramatic increase in the number of studies reporting development and/or improvement of oligonucleotide microarrays for microbial diagnostics, but use of the technology in routine diagnostics is still constrained by a variety of factors. Careful development of microarray essentials (such as oligonucleotide probes, protocols for target preparation and hybridization, etc.) combined with extensive performance testing are thus mandatory requirements for the maturation of diagnostic microarrays from fancy technological gimmicks to robust and routinely applicable tools.
Collapse
Affiliation(s)
- Alexander Loy
- Department of Microbial Ecology, University of Vienna, Austria.
| | | |
Collapse
|
334
|
Zhang Q, Zhu L, Feng H, Ang S, Chau FS, Liu WT. Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal Chim Acta 2006; 556:171-7. [PMID: 17723345 DOI: 10.1016/j.aca.2005.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/02/2005] [Accepted: 07/06/2005] [Indexed: 11/28/2022]
Abstract
This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap=1-2 microm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 microL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.
Collapse
Affiliation(s)
- Qing Zhang
- Division of Environmental Science and Engineering, National University of Singapore, Blk E1A, #07-03, Engineering Drive 2, Singapore 117576, Singapore
| | | | | | | | | | | |
Collapse
|
335
|
Abstract
Magnetic forces are now being utilised in an amazing variety of microfluidic applications. Magnetohydrodynamic flow has been applied to the pumping of fluids through microchannels. Magnetic materials such as ferrofluids or magnetically doped PDMS have been used as valves. Magnetic microparticles have been employed for mixing of fluid streams. Magnetic particles have also been used as solid supports for bioreactions in microchannels. Trapping and transport of single cells are being investigated and recently, advances have been made towards the detection of magnetic material on-chip. The aim of this review is to introduce and discuss the various developments within the field of magnetism and microfluidics.
Collapse
Affiliation(s)
- Nicole Pamme
- National Institute for Materials Science (NIMS), International Centre for Young Scientists (ICYS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
336
|
Gheorghe M, Blionas S, Ragoussis J, Galvin P. Evaluation of silicon and polymer substrates for fabrication of integrated microfluidic microsystems for DNA extraction and amplification. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:2482-2485. [PMID: 17946117 DOI: 10.1109/iembs.2006.259931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper is presenting two different alternatives for the DNA extraction and amplification that will be carried out by two competitive research projects developing bioanalytical microsystems with microfluidics. The first project will develop the microfluidics part on polymer material and the other one on silicon. The polymer approach is currently under development based on a modular microfluidic architecture aimed to simplify the process of designing and building such a microsystem device. A silicon alternative is about to start and is expected to decrease packaging costs of the microsystem allowing future manufacturability of the device.
Collapse
|
337
|
Smoot LM, Smoot JC, Smidt H, Noble PA, Könneke M, McMurry ZA, Stahl DA. DNA microarrays as salivary diagnostic tools for characterizing the oral cavity's microbial community. Adv Dent Res 2005; 18:6-11. [PMID: 15998937 DOI: 10.1177/154407370501800103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- L M Smoot
- Civil and Environmental Engineering, 302 More Hall, Box 352700, University of Washington, Seattle, WA 98195-2700, USA
| | | | | | | | | | | | | |
Collapse
|
338
|
Zhang C, Xu J, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol Adv 2005; 24:243-84. [PMID: 16326063 DOI: 10.1016/j.biotechadv.2005.10.002] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/02/2005] [Accepted: 10/24/2005] [Indexed: 11/23/2022]
Abstract
The miniaturization of biological and chemical analytical devices by micro-electro-mechanical-systems (MEMS) technology has posed a vital influence on such fields as medical diagnostics, microbial detection and other bio-analysis. Among many miniaturized analytical devices, the polymerase chain reaction (PCR) microchip/microdevices are studied extensively, and thus great progress has been made on aspects of on-chip micromachining (fabrication, bonding and sealing), choice of substrate materials, surface chemistry and architecture of reaction vessel, handling of necessary sample fluid, controlling of three or two-step temperature thermocycling, detection of amplified nucleic acid products, integration with other analytical functional units such as sample preparation, capillary electrophoresis (CE), DNA microarray hybridization, etc. However, little has been done on the review of above-mentioned facets of the PCR microchips/microdevices including the two formats of flow-through and stationary chamber in spite of several earlier reviews [Zorbas, H. Miniature continuous-flow polymerase chain reaction: a breakthrough? Angew Chem Int Ed 1999; 38 (8):1055-1058; Krishnan, M., Namasivayam, V., Lin, R., Pal, R., Burns, M.A. Microfabricated reaction and separation systems. Curr Opin Biotechnol 2001; 12:92-98; Schneegabeta, I., Köhler, J.M. Flow-through polymerase chain reactions in chip themocyclers. Rev Mol Biotechnol 2001; 82:101-121; deMello, A.J. DNA amplification: does 'small' really mean 'efficient'? Lab Chip 2001; 1: 24N-29N; Mariella, Jr. R. MEMS for bio-assays. Biomed Microdevices 2002; 4 (2):77-87; deMello AJ. Microfluidics: DNA amplification moves on. Nature 2003; 422:28-29; Kricka, L.J., Wilding, P. Microchip PCR. Anal BioAnal Chem 2003; 377:820-825]. In this review, we survey the advances of the above aspects among the PCR microfluidic devices in detail. Finally, we also illuminate the potential and practical applications of PCR microfluidics to some fields such as microbial detection and disease diagnosis, based on the DNA/RNA templates used in PCR microfluidics. It is noted, especially, that this review is to help a novice in the field of on-chip PCR amplification to more easily find the original papers, because this review covers almost all of the papers related to on-chip PCR microfluidics.
Collapse
Affiliation(s)
- Chunsun Zhang
- Micro-Energy System Laboratory, Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, No. 1 Nengyuan Road, Wushan, Tianhe District, Guangzhou 510640, PR China
| | | | | | | |
Collapse
|
339
|
Hybarger G, Bynum J, Williams RF, Valdes JJ, Chambers JP. A microfluidic SELEX prototype. Anal Bioanal Chem 2005; 384:191-8. [PMID: 16315013 DOI: 10.1007/s00216-005-0089-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Aptamers are nucleic acid binding species capable of recognizing a wide variety of targets ranging from small organic molecules to supramolecular structures, including organisms. They are isolated from combinatorial libraries of synthetic nucleic acid by an iterative process referred to as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). Here we describe an automated microfluidic, microline-based assembly that uses LabView-controlled actuatable valves and a PCR machine, and which is capable of the selection and synthesis of an anti-lysozyme aptamer as verified by sequence analysis. The microfluidic prototype described is 1) a simple apparatus that is relatively inexpensive to assemble, making automated aptamer selection accessible to many investigators, and 2) useful for the continued "morphing" of macro-->meso-->microfabricated structures until a convergence to a few functional systems evolves and emerges, partly or completely achieving simpler, smaller and more rapid SELEX applications.
Collapse
Affiliation(s)
- Glen Hybarger
- Department of Biology, The University of Texas at San Antonio, 6900 N. Loop 1604 W., San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
340
|
Schmidt U, Lutz-Bonengel S, Weisser HJ, Sänger T, Pollak S, Schön U, Zacher T, Mann W. Low-volume amplification on chemically structured chips using the PowerPlex16 DNA amplification kit. Int J Legal Med 2005; 120:42-8. [PMID: 16231187 DOI: 10.1007/s00414-005-0041-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
In forensic DNA analysis, improvement of DNA typing technologies has always been an issue. It has been shown that DNA amplification in low volumes is a suitable way to enhance the sensitivity and efficiency of amplification. In this study, DNA amplification was performed on a flat, chemically structured glass slide in 1-microl reaction volumes from cell line DNA contents between 1,000 and 4 pg. On-chip DNA amplification reproducibly yielded full allelic profiles from as little as 32 pg of template DNA. Applicability on the simultaneous amplification of 15 short tandem repeats and of a segment of the Amelogenin gene, which are routinely used in forensic DNA analysis, is shown. The results are compared to conventional in-tube amplification carried out in 25-microl reaction volumes.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Institute of Legal Medicine, Albert Ludwig University Freiburg, Albertstrasse 9, 79104, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
341
|
Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 2005; 18:583-607. [PMID: 16223949 PMCID: PMC1265906 DOI: 10.1128/cmr.18.4.583-607.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent events have made public health officials acutely aware of the importance of rapidly and accurately detecting acts of bioterrorism. Because bioterrorism is difficult to predict or prevent, reliable platforms to rapidly detect and identify biothreat agents are important to minimize the spread of these agents and to protect the public health. These platforms must not only be sensitive and specific, but must also be able to accurately detect a variety of pathogens, including modified or previously uncharacterized agents, directly from complex sample matrices. Various commercial tests utilizing biochemical, immunological, nucleic acid, and bioluminescence procedures are currently available to identify biological threat agents. Newer tests have also been developed to identify such agents using aptamers, biochips, evanescent wave biosensors, cantilevers, living cells, and other innovative technologies. This review describes these current and developing technologies and considers challenges to rapid, accurate detection of biothreat agents. Although there is no ideal platform, many of these technologies have proved invaluable for the detection and identification of biothreat agents.
Collapse
Affiliation(s)
- Daniel V Lim
- Department of Biology, Center for Biological Defense, University of South Florida, Tampa, FL 33620-5200, USA.
| | | | | | | |
Collapse
|
342
|
Pal R, Yang M, Lin R, Johnson BN, Srivastava N, Razzacki SZ, Chomistek KJ, Heldsinger DC, Haque RM, Ugaz VM, Thwar PK, Chen Z, Alfano K, Yim MB, Krishnan M, Fuller AO, Larson RG, Burke DT, Burns MA. An integrated microfluidic device for influenza and other genetic analyses. LAB ON A CHIP 2005; 5:1024-32. [PMID: 16175256 DOI: 10.1039/b505994a] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An integrated microfluidic device capable of performing a variety of genetic assays has been developed as a step towards building systems for widespread dissemination. The device integrates fluidic and thermal components such as heaters, temperature sensors, and addressable valves to control two nanoliter reactors in series followed by an electrophoretic separation. This combination of components is suitable for a variety of genetic analyses. As an example, we have successfully identified sequence-specific hemagglutinin A subtype for the A/LA/1/87 strain of influenza virus. The device uses a compact design and mass production technologies, making it an attractive platform for a variety of widely disseminated applications.
Collapse
Affiliation(s)
- R Pal
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Csako G. Present and future of rapid and/or high-throughput methods for nucleic acid testing. Clin Chim Acta 2005; 363:6-31. [PMID: 16102738 DOI: 10.1016/j.cccn.2005.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/03/2005] [Accepted: 07/03/2005] [Indexed: 12/21/2022]
Abstract
BACKGROUND Behind the success of 'completing' the human genome project was a more than 30-year history of technical innovations for nucleic acid testing. METHODS Discovery of specific restriction endonucleases and reverse transcriptase was followed shortly by the development of the first diagnostic nucleic acid tests in the early 1970s. Introduction of Southern, Northern and dot blotting and DNA sequencing later in the 1970s considerably advanced the diagnostic capabilities. Nevertheless, it was the discovery of the polymerase chain reaction (PCR) in 1985 that led to an exponential growth in molecular biology and the introduction of practicable nucleic acid tests in the routine laboratory. The past two decades witnessed a continuing explosion of technological innovations in molecular diagnostics. In addition to classic PCR and reverse transcriptase PCR, numerous variations of PCR and alternative amplification techniques along with an ever-increasing variety of detection chemistries, closed tube (homogeneous) assays, and automated systems were developed. Discovery of real-time quantitative PCR and the development of oligonucleotide microarrays, the 'DNA chip', in the 1990s heralded the beginning of another revolution in molecular biology and diagnostics that is still in progress.
Collapse
Affiliation(s)
- Gyorgy Csako
- Department of Laboratory Medicine, W.G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892-1508, USA.
| |
Collapse
|
344
|
Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ. Development of a microfluidic biosensor module for pathogen detection. LAB ON A CHIP 2005; 5:805-11. [PMID: 16027930 DOI: 10.1039/b503856a] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of a microfluidic biosensor module with fluorescence detection for the identification of pathogenic organisms and viruses is presented in this article. The microfluidic biosensor consists of a network of microchannels fabricated in polydimethylsiloxane (PDMS) substrate. The microchannels are sealed with a glass substrate and packed in a Plexiglas housing to provide connection to the macro-world and ensure leakage-free flow operation. Reversible sealing permits easy disassembly for cleaning and replacing the microfluidic channels. The fluidic flow is generated by an applied positive pressure gradient, and the module can be operated under continuous solution flow of up to 80 microL min(-1). The biosensor recognition principle is based on DNA/RNA hybridization and liposome signal amplification. Superparamagnetic beads are incorporated into the system as a mobile solid support and are an essential part of the analysis scheme. In this study, the design, fabrication and the optimization of concentrations and amounts of the different biosensor components are carried out. The total time required for an assay is only 15 min including sample incubation time. The biosensor module is designed so that it can be easily integrated with a micro total analysis system, which will combine sample preparation and detection steps onto a single chip.
Collapse
Affiliation(s)
- Natalya V Zaytseva
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
345
|
Oh KW, Park C, Namkoong K, Kim J, Ock KS, Kim S, Kim YA, Cho YK, Ko C. World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays. LAB ON A CHIP 2005; 5:845-50. [PMID: 16027935 DOI: 10.1039/b503437j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world-to-chip microfluidic interconnections. After sample loading and sealing, leakage tests were conducted at 100 degrees C for 30 min and no detectable leakage flows were found during the test for 100 microchambers. To demonstrate the utility of our world-to-chip microfluidic interface, we designed a microscale PCR chip with four chambers and performed PCR assays. The PCR results yielded a 100% success rate with no contamination or leakage failures. In conclusion, we have introduced a simple and inexpensive microfluidic interfacing system for both sample loading and sealing with no dead volume, no leakage flow and biochemical compatibility.
Collapse
Affiliation(s)
- Kwang W Oh
- Bio Lab, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Panaro NJ, Lou XJ, Fortina P, Kricka LJ, Wilding P. Micropillar array chip for integrated white blood cell isolation and PCR. ACTA ACUST UNITED AC 2005; 21:157-62. [PMID: 15748689 DOI: 10.1016/j.bioeng.2004.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 11/10/2004] [Accepted: 11/23/2004] [Indexed: 11/25/2022]
Abstract
We report the fabrication of silicon chips containing a row of 667 pillars, 10 by 20 microm in cross-section, etched to a depth of 80 microm with adjacent pillars being separated by 3.5 microm. The chips were used to separate white blood cells from whole blood in less than 2 min and for subsequent PCR of a genomic target (eNOS). Chip fluid dynamics were validated experimentally using CoventorWare microfluidic simulation software. The amplicon concentrations were determined using microchip capillary electrophoresis and were >40% of that observed in conventional PCR tubes for chips with and without pillars. Reproducible on-chip PCR was achieved using white blood cell preparations isolated from whole human blood pumped through the chip.
Collapse
Affiliation(s)
- Nicholas J Panaro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
347
|
Fiorini GS, Chiu DT. Disposable microfluidic devices: fabrication, function, and application. Biotechniques 2005; 38:429-46. [PMID: 15786809 DOI: 10.2144/05383rv02] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This review article describes recent developments in microfluidics, with special emphasis on disposable plastic devices. Included is an overview of the common methods used in the fabrication of polymer microfluidic systems, including replica and injection molding, embossing, and laser ablation. Also described are the different methods by which on-chip operations--such as the pumping and valving of fluid flow, the mixing of different reagents, and the separation and detection of different chemical species--have been implemented in a microfluidic format. Finally, a few select biotechnological applications of microfluidics are presented to illustrate both the utility of this technology and its potential for development in the future.
Collapse
|
348
|
Abstract
Rapid advances in microfabrication, DNA and protein microarray and microfluidic technologies have enabled the development of fully-integrated, miniaturized systems. These so called 'laboratory-on-a-chip' (LOC) devices perform sample preparation (i.e. concentration, separation and purification) together with biochemical reactions and detection steps in a simple and automated manner. We believe LOC technology for environmental microbiology studies will have immediate impacts on microbial monitoring by achieving detection and identification within minutes at the single-cell level, and on microbial ecology by deepening the understanding of microbial community structure and diversity and correlating these with niche-specific functions within a micro space. In the long run, significant impacts are anticipated on environmental metagenomics and proteomics.
Collapse
Affiliation(s)
- Wen-Tso Liu
- Department of Civil Engineering, National University of Singapore, 117576, Singapore.
| | | |
Collapse
|
349
|
Gingeras TR, Higuchi R, Kricka LJ, Lo YMD, Wittwer CT. Fifty Years of Molecular (DNA/RNA) Diagnostics. Clin Chem 2005; 51:661-71. [PMID: 15650028 DOI: 10.1373/clinchem.2004.045336] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
350
|
Fruetel JA, Renzi RF, Vandernoot VA, Stamps J, Horn BA, West JAA, Ferko S, Crocker R, Bailey CG, Arnold D, Wiedenman B, Choi WY, Yee D, Shokair I, Hasselbrink E, Paul P, Rakestraw D, Padgen D. Microchip separations of protein biotoxins using an integrated hand-held device. Electrophoresis 2005; 26:1144-54. [PMID: 15704246 DOI: 10.1002/elps.200406194] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the development of a hand-held instrument capable of performing two simultaneous microchip separations (gel and zone electrophoresis), and demonstrate this instrument for the detection of protein biotoxins. Two orthogonal analysis methods are chosen over a single method in order to improve the probability of positive identification of the biotoxin in an unknown mixture. Separations are performed on a single fused-silica wafer containing two separation channels. The chip is housed in a microfluidic manifold that utilizes o-ring sealed fittings to enable facile and reproducible fluidic connection to the chip. Sample is introduced by syringe injection into a septum-sealed port on the device exterior that connects to a sample loop etched onto the chip. Detection of low nanomolar concentrations of fluorescamine-labeled proteins is achieved using a miniaturized laser-induced fluorescence detection module employing two diode lasers, one per separation channel. Independently controlled miniature high-voltage power supplies enable fully programmable electrokinetic sample injection and analysis. As a demonstration of the portability of this instrument, we evaluated its performance in a laboratory field test at the Defence Science and Technology Laboratory with a series of biotoxin variants. The two separation methods cleanly distinguish between members of a biotoxin test set. Analysis of naturally occurring variants of ricin and two closely related staphylococcal enterotoxins indicates the two methods can be used to readily identify ricin in its different forms and can discriminate between two enterotoxin isoforms.
Collapse
Affiliation(s)
- Julia A Fruetel
- Sandia National Laboratories, P.O. Box 969, MS 9201, Livermore, CA 94551, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|