301
|
Shteinikov VY, Korosteleva AS, Tikhonova TB, Potapieva NN, Tikhonov DB. Ligands of histamine receptors modulate acid-sensing ion channels. Biochem Biophys Res Commun 2017; 490:1314-1318. [PMID: 28688766 DOI: 10.1016/j.bbrc.2017.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022]
Abstract
Recently we found that synthetic compounds containing amino group linked to hydrophobic or aromatic moiety are potent modulators of the proton-gated channels (ASICs). These structures have clear similarity with ligands of histamine receptors. We have also demonstrated that histamine potentiates homomeric ASIC1a by shifting its activation dependence to less acidic conditions. In the present work the action of a series of histamine receptors ligands on recombinant ASIC1a and ASIC2a was characterized. Two types of action were found for ASIC1a. 1-methylhistamine, N-alpha-methylhistamine, dimaprit and thioperamide caused significant potentiation, which was pH-dependent and voltage-independent. The H4R antagonist A943931 caused inhibition, which is likely due to voltage-dependent pore block. ASIC2a were virtually insensitive to the drugs tested. We conclude that ligands of histamine receptors should also be considered as ASIC modulators.
Collapse
Affiliation(s)
- V Y Shteinikov
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - A S Korosteleva
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - T B Tikhonova
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - N N Potapieva
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - D B Tikhonov
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia.
| |
Collapse
|
302
|
Strakosas X, Selberg J, Hemmatian Z, Rolandi M. Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600527. [PMID: 28725527 PMCID: PMC5515233 DOI: 10.1002/advs.201600527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/14/2017] [Indexed: 05/08/2023]
Abstract
From cell-to-cell communication to metabolic reactions, ions and protons (H+) play a central role in many biological processes. Examples of H+ in action include oxidative phosphorylation, acid sensitive ion channels, and pH dependent enzymatic reactions. To monitor and control biological reactions in biology and medicine, it is desirable to have electronic devices with ionic and protonic currents. Here, we summarize our latest efforts on bioprotonic devices that monitor and control a current of H+ in physiological conditions, and discuss future potential applications. Specifically, we describe the integration of these devices with enzymatic logic gates, bioluminescent reactions, and ion channels.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - John Selberg
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Zahra Hemmatian
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Marco Rolandi
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| |
Collapse
|
303
|
Raney EB, Thankam FG, Dilisio MF, Agrawal DK. Pain and the pathogenesis of biceps tendinopathy. Am J Transl Res 2017; 9:2668-2683. [PMID: 28670360 PMCID: PMC5489872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Biceps tendinopathy is a relatively common ailment that typically presents as pain, tenderness, and weakness in the tendon of the long head of the biceps brachii. Though it is often associated with degenerative processes of the rotator cuff and the joint, this is not always the case, thus, the etiology remains considerably unknown. There has been recent interest in elucidating the pathogenesis of tendinopathy, since it can be an agent of chronic pain, and is difficult to manage. The purpose of this article is to critically evaluate relevant published research that reflects the current understanding of pain and how it relates to biceps tendinopathy. A review of the literature was conducted to create an organized picture of how pain arises and manifests itself, and how the mechanism behind biceps tendinopathy possibly results in pain. Chronic pain is thought to arise from neurogenic inflammation, central pain sensitization, excitatory nerve augmentation, inhibitory nerve loss, and/or dysregulation of supraspinal structures; thus, the connections of these theories to the ones regarding the generation of biceps tendinopathy, particularly the neural theory, are discussed. Pain mediators such as tachykinins, CGRP, and alarmins, in addition to nervous system ion channels, are highlighted as possible avenues for research in tendinopathy pain. Recognition of the nociceptive mechanisms and molecular of biceps tendinopathy might aid in the development of novel treatment strategies for managing anterior shoulder pain due to a symptomatic biceps tendon.
Collapse
Affiliation(s)
- Elise B Raney
- Department of Clinical and Translational Science, Creighton University School of MedicineOmaha, NE, USA
| | - Finosh G Thankam
- Department of Clinical and Translational Science, Creighton University School of MedicineOmaha, NE, USA
| | - Matthew F Dilisio
- Department of Orthopedic Surgery, Creighton University School of MedicineOmaha, NE, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of MedicineOmaha, NE, USA
| |
Collapse
|
304
|
Patel S. Inflammasomes, the cardinal pathology mediators are activated by pathogens, allergens and mutagens: A critical review with focus on NLRP3. Biomed Pharmacother 2017; 92:819-825. [PMID: 28599247 DOI: 10.1016/j.biopha.2017.05.126] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/14/2017] [Accepted: 05/28/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammation is a pivotal defense system of body. Unfortunately, when homeostasis falters, the same inflammatory mechanism acts as a double-edged sword, and turns offensive, paving the path for a broad array of pathologies. A multi-protein complex termed as inflammasome perceives the PAMPs (pathogen associated molecular patterns) and DAMPs (danger associated molecular patterns), executing immune responses. This activation predominantly encompasses the elaboration of effector cytokines IL-1β, IL-18, and the cysteine proteases (caspase 1 and 11). Extensive study on an inflammasome NLRP3 has revealed its role in the onset and progression of pathogenic, metabolic, autoimmune, neural, and geriatric diseases. In this regard, this inflammasome's immune activation mechanisms and inhibition strategies have been discussed. Through this rigorous literature analysis, the superficial diversity between pathogens/allergens and mutagens, and NLRP3 activity towards them has been emphasized. Though there is a scope for inhibition of aberrant inflammasomes, including that of NLRP3, given their complexity and unpredictability, prevention of their activation by lifestyle correction has been suggested.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr., 92182 San Diego, CA USA.
| |
Collapse
|
305
|
Patel S. Stressor-driven extracellular acidosis as tumor inducer via aberrant enzyme activation: A review on the mechanisms and possible prophylaxis. Gene 2017; 626:209-214. [PMID: 28546124 DOI: 10.1016/j.gene.2017.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 02/08/2023]
Abstract
When the extracellular pH of human body vacillates in either direction, tissue homeostasis is compromised. Fluctuations in acidity have been linked to a wide variety of pathological conditions, including bone loss, cancer, allergies, and auto-immune diseases. Stress conditions affect oxygen tension, and the resultant hypoxia modulates the expression and/or activity of membrane-tethered transporters/pumps, transcription factors, enzymes and intercellular junctions. These modifications provoke erratic gene expression, aberrant tissue remodeling and oncogenesis. While the physiological optimization of pH in tissues is practically challenging, it is at least theoretically achievable and can be considered as a possible therapy to resolve a broad array of diseases.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 92182 San Diego, CA, USA; Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr San Diego, CA 92182, USA..
| |
Collapse
|
306
|
Zhu S, Zhou HY, Deng SC, Deng SJ, He C, Li X, Chen JY, Jin Y, Hu ZL, Wang F, Wang CY, Zhao G. ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca 2+/RhoA pathway. Cell Death Dis 2017; 8:e2806. [PMID: 28518134 PMCID: PMC5520710 DOI: 10.1038/cddis.2017.189] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Extracellular acid can have important effects on cancer cells. Acid-sensing ion channels (ASICs), which emerged as key receptors for extracellular acidic pH, are differently expressed during various diseases and have been implicated in underlying pathogenesis. This study reports that ASIC1 and ASIC3 are mainly expressed on membrane of pancreatic cancer cells and upregulated in pancreatic cancer tissues. ASIC1 and ASIC3 are responsible for an acidity-induced inward current, which is required for elevation of intracellular Ca2+ concentration ([Ca2+]i). Inhibition of ASIC1 and ASIC3 with siRNA or pharmacological inhibitor significantly decreased [Ca2+]i and its downstream RhoA during acidity and, thus, suppressed acidity-induced epithelial–mesenchymal transition (EMT) of pancreatic cancer cells. Meanwhile, downregulating [Ca2+]i with calcium chelating agent BAPTA-AM or knockdown of RhoA with siRNA also significantly repressed acidity-induced EMT of pancreatic cancer cells. Significantly, although without obvious effect on proliferation, knockdown of ASIC1 and ASIC3 in pancreatic cancer cells significantly suppresses liver and lung metastasis in xenograft model. In addition, ASIC1 and ASIC3 are positively correlated with expression of mesenchymal marker vimentin, but inversely correlated with epithelial marker E-cadherin in pancreatic cancer cells. In conclusion, this study indicates that ASICs are master regulator of acidity-induced EMT. In addition, the data demonstrate a functional link between ASICs and [Ca2+]i/RhoA pathway, which contributes to the acidity-induced EMT.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Yun Zhou
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Chang Deng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital West Campus, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Jiang Deng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi He
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Yuan Chen
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-You Wang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
307
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
308
|
Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology 2017; 127:173-184. [PMID: 28457973 DOI: 10.1016/j.neuropharm.2017.04.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
Abstract
Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
309
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
310
|
Abstract
The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.
Collapse
|
311
|
Down-regulation of ASIC1 suppressed gastric cancer via inhibiting autophagy. Gene 2017; 608:79-85. [DOI: 10.1016/j.gene.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
|
312
|
Rash LD. Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future …. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:35-66. [PMID: 28528673 DOI: 10.1016/bs.apha.2017.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
pH is one of the most strictly controlled parameters in mammalian physiology. An extracellular pH of ~7.4 is crucial for normal physiological processes, and perturbations to this have profound effects on cell function. Acidic microenvironments occur in many physiological and pathological conditions, including inflammation, bone remodeling, ischemia, trauma, and intense synaptic activity. Cells exposed to these conditions respond in different ways, from tumor cells that thrive to neurons that are either suppressed or hyperactivated, often fatally. Acid-sensing ion channels (ASICs) are primary pH sensors in mammals and are expressed widely in neuronal and nonneuronal cells. There are six main subtypes of ASICs in rodents that can form homo- or heteromeric channels resulting in many potential combinations. ASICs are present and activated under all of the conditions mentioned earlier, suggesting that they play an important role in how cells respond to acidosis. Compared to many other ion channel families, ASICs were relatively recently discovered-1997-and there is a substantial lack of potent, subtype-selective ligands that can be used to elucidate their structural and functional properties. In this chapter I cover the history of ASIC channel pharmacology, which began before the proteins were even identified, and describe the current arsenal of tools available, their limitations, and take a glance into the future to predict from where new tools are likely to emerge.
Collapse
Affiliation(s)
- Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
313
|
Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating. Proc Natl Acad Sci U S A 2017; 114:3768-3773. [PMID: 28320963 DOI: 10.1073/pnas.1620560114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-activated Na+ channels expressed in the nervous system, where they are involved in learning, fear behaviors, neurodegeneration, and pain sensation. In this work, we study the role in pH sensing of two regions of the ectodomain enriched in acidic residues: the acidic pocket, which faces the outside of the protein and is the binding site of several animal toxins, and the palm, a central channel domain. Using voltage clamp fluorometry, we find that the acidic pocket undergoes conformational changes during both activation and desensitization. Concurrently, we find that, although proton sensing in the acidic pocket is not required for channel function, it does contribute to both activation and desensitization. Furthermore, protonation-mimicking mutations of acidic residues in the palm induce a dramatic acceleration of desensitization followed by the appearance of a sustained current. In summary, this work describes the roles of potential pH sensors in two extracellular domains, and it proposes a model of acidification-induced conformational changes occurring in the acidic pocket of ASIC1a.
Collapse
|
314
|
Er SY, Cristofori-Armstrong B, Escoubas P, Rash LD. Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1. Neuropharmacology 2017; 127:185-195. [PMID: 28327374 DOI: 10.1016/j.neuropharm.2017.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/05/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022]
Abstract
Acute pharmacological inhibition of acid-sensing ion channel 1a (ASIC1a) is efficacious in rodent models in alleviating symptoms of neurological diseases such as stroke and multiple sclerosis. Thus, ASIC1a is a promising therapeutic target and selective ligands that modulate it are invaluable research tools and potential therapeutic leads. Spider venoms have provided an abundance of voltage-gated ion channel modulators, however, only one ASIC modulator (PcTx1) has so far been isolated from this source. Here we report the discovery, characterization, and chemical stability of a second spider venom peptide that potently modulates ASIC1a and ASIC1b, and investigate the molecular basis for its subtype selectivity. π-TRTX-Hm3a (Hm3a) is a 37-amino acid peptide isolated from Togo starburst tarantula (Heteroscodra maculata) venom with five amino acid substitutions compared to PcTx1, and is also three residues shorter at the C-terminus. Hm3a pH-dependently inhibited ASIC1a with an IC50 of 1-2 nM and potentiated ASIC1b with an EC50 of 46.5 nM, similar to PcTx1. Using ASIC1a to ASIC1b point mutants in rat ASIC1a revealed that Glu177 and Arg175 in the palm region opposite α-helix 5 play an important role in the Hm3a-ASIC1 interaction and contribute to the subtype-dependent effects of the peptide. Despite its high sequence similarity with PcTx1, Hm3a showed higher levels of stability over 48 h. Overall, Hm3a represents a potent, highly stable tool for the study of ASICs and will be particularly useful when stability in biological fluids is required, for example in long term in vitro cell-based assays and in vivo experiments. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sing Yan Er
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines, Villa 3, 06560 Valbonne, France
| | - Lachlan D Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
315
|
Aissouni Y, El Guerrab A, Hamieh AM, Ferrier J, Chalus M, Lemaire D, Grégoire S, Etienne M, Eschalier A, Ardid D, Lingueglia E, Marchand F. Acid-Sensing Ion Channel 1a in the amygdala is involved in pain and anxiety-related behaviours associated with arthritis. Sci Rep 2017; 7:43617. [PMID: 28321113 PMCID: PMC5340794 DOI: 10.1038/srep43617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic pain is associated with anxiety and depression episodes. The amygdala plays a key role in the relationship between emotional responses and chronic pain. Here, we investigated the role of Acid-Sensing Ion Channels 1a within the basolateral amygdala (BLA), in pain and associated anxiety in a rat model of monoarthritis (MoAr). Administration within the BLA of PcTx1 or mambalgin-1, two specific inhibitors of ASIC1a-containing channels significantly inhibited pain and anxiety-related behaviours in MoAr rats. The effect of PcTx1 was correlated with a reduction of c-Fos expression in the BLA. We examined the expression profile of ASICs and other genes in the amygdala in MoAr and sham animals, and found no variation of the expression of ASIC1a, which was confirmed at the protein level. However, an increase in the BLA of MoAr rats of both PI3Kinase mRNA and the phosphorylated form of Akt, along with Bdnf mRNA, suggest that the BDNF/PI3-kinase/Akt pathway might regulate ASIC1a in BLA neurons as demonstrated in spinal sensitisation phenomenon. We also observed changes in several kinase mRNAs expression (PICK1, Sgk1) that are potentially involved in ASIC1a regulation. These results show a crucial role of ASIC1a channels in the BLA in pain and anxiety-related behaviours during arthritis.
Collapse
Affiliation(s)
- Youssef Aissouni
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Abderrahim El Guerrab
- Centre Jean Perrin, ERTICA EA4677 Université d'Auvergne F-63001, Clermont-Ferrand, France
| | - Al Mahdy Hamieh
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Jérémy Ferrier
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Maryse Chalus
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Diane Lemaire
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Stéphanie Grégoire
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Monique Etienne
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France.,CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Denis Ardid
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Fabien Marchand
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| |
Collapse
|
316
|
Chiacchiaretta M, Latifi S, Bramini M, Fadda M, Fassio A, Benfenati F, Cesca F. Neuronal hyperactivity causes Na +/H + exchanger-induced extracellular acidification at active synapses. J Cell Sci 2017; 130:1435-1449. [PMID: 28254883 DOI: 10.1242/jcs.198564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Collapse
Affiliation(s)
- Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Shahrzad Latifi
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Anna Fassio
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
317
|
Han JE, Cho JH, Choi IS, Kim DY, Jang IS. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:215-223. [PMID: 28280415 PMCID: PMC5343055 DOI: 10.4196/kjpp.2017.21.2.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 11/15/2022]
Abstract
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K+ and Ca2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K+ currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K+ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs+ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
Collapse
Affiliation(s)
- Jin-Eon Han
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
318
|
The Drosophila Postsynaptic DEG/ENaC Channel ppk29 Contributes to Excitatory Neurotransmission. J Neurosci 2017; 37:3171-3180. [PMID: 28213447 DOI: 10.1523/jneurosci.3850-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/30/2017] [Accepted: 02/12/2017] [Indexed: 11/21/2022] Open
Abstract
The protein family of degenerin/epithelial sodium channels (DEG/ENaCs) is composed of diverse animal-specific, non-voltage-gated ion channels that play important roles in regulating cationic gradients across epithelial barriers. Some family members are also enriched in neural tissues in both vertebrates and invertebrates. However, the specific neurophysiological functions of most DEG/ENaC-encoding genes remain poorly understood. The fruit fly Drosophila melanogaster is an excellent model for deciphering the functions of DEG/ENaC genes because its genome encodes an exceptionally large number of DEG/ENaC subunits termed pickpocket (ppk) 1-31 Here we demonstrate that ppk29 contributes specifically to the postsynaptic modulation of excitatory synaptic transmission at the larval neuromuscular junction. Electrophysiological data indicate that the function of ppk29 in muscle is necessary for normal postsynaptic responsivity to neurotransmitter release and for normal coordinated larval movement. The ppk29 mutation does not affect gross synaptic morphology and ultrastructure, which indicates that the observed phenotypes are likely due to defects in glutamate receptor function. Together, our data indicate that DEG/ENaC ion channels play a fundamental role in the postsynaptic regulation of excitatory neurotransmission.SIGNIFICANCE STATEMENT Members of the degenerin/epithelial sodium channel (DEG/ENaC) family are broadly expressed in epithelial and neuronal tissues. To date, the neurophysiological functions of most family members remain unknown. Here, by using the power of Drosophila genetics in combination with electrophysiological and behavioral approaches, we demonstrate that the DEG/ENaC-encoding gene pickpocket 29 contributes to baseline neurotransmission, possibly via the modulation of postsynaptic glutamate receptor functionality.
Collapse
|
319
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
320
|
Omar S, Clarke R, Abdullah H, Brady C, Corry J, Winter H, Touzelet O, Power UF, Lundy F, McGarvey LPA, Cosby SL. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells. PLoS One 2017; 12:e0171681. [PMID: 28187208 PMCID: PMC5302416 DOI: 10.1371/journal.pone.0171681] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.
Collapse
Affiliation(s)
- Shadia Omar
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Rebecca Clarke
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Haniah Abdullah
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Clare Brady
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - John Corry
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Hanagh Winter
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Olivier Touzelet
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Ultan F. Power
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Fionnuala Lundy
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - Lorcan P. A. McGarvey
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| | - S. Louise Cosby
- Queen’s University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Belfast, United Kingdom
| |
Collapse
|
321
|
Battaglia M. Sensitivity to carbon dioxide and translational studies of anxiety disorders. Neuroscience 2017; 346:434-436. [PMID: 28188857 DOI: 10.1016/j.neuroscience.2017.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Heightened concentrations of CO2 in inhaled air provoke temporary acidification of the brain, followed by compensatory hyperventilation and increased arousal/anxiety. These responses are likely to map a basic, latent general alarm/avoidance system that is largely shared across mammals, and are sources of individual differences. By showing paroxysmal respiratory and emotional responses to CO2 challenges, humans with panic and separation anxiety disorders lie at one extreme of the distribution for CO2 sensitivity. This is also a developmental trait, sensitive to interference with parental cares. By sharing CO2 sensitivity with humans, rodents constitute a valuable resource to model panic and separation anxiety in the laboratory. Advantages of modeling CO2 sensitivity in rodents include non-inferential measurements (e.g. respiratory readouts) as proxies for human conditions, unbiased investigation of gene-environment interplays, and flexible availability of tissues for mechanistic studies. Data in humans and animals such as those reported in this issue of Neuroscience begin to reveal that CO2-driven behavioral responses stem from anatomo-physiological systems that are relatively separated from those subserving general dispositions to anxiety. This supports the notion that sensitivity to suffocative stimuli and ensuing human panic are significantly independent from trait/cognitive anxiety, and corroborates newer conceptualizations that distinguish between fear and anxiety circuitries.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, The University of Toronto, Toronto, Canada; Division of Child, Youth and Emerging Adulthood, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
322
|
Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. NATURE REVIEWS. MATERIALS 2017; 2:16093. [PMID: 31448131 PMCID: PMC6707077 DOI: 10.1038/natrevmats.2016.93] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Within the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the tools capable of probing the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not address the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices capable of simultaneous recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes, and look at emergent directions inspired by the principles of neural transduction.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
323
|
Analgesic effects of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic pain. Pain 2016; 157:552-559. [PMID: 26492527 DOI: 10.1097/j.pain.0000000000000397] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mambalgins are 57-amino acid peptides isolated from snake venom that evoke naloxone-resistant analgesia after local (intraplantar) and central (intrathecal) injections through inhibition of particular subtypes of acid-sensing ion channels (ASICs). We now show that mambalgins also have an opioid-independent effect on both thermal and mechanical inflammatory pain after systemic intravenous (i.v.) administration and are effective against neuropathic pain. By combining the use of knockdown and knockout animals, we show the critical involvement of peripheral ASIC1b-containing channels, along with a contribution of ASIC1a-containing channels, in the i.v. effects of these peptides against inflammatory pain. The potent analgesic effect on neuropathic pain involves 2 different mechanisms depending on the route of administration, a naloxone-insensitive and ASIC1a-independent effect associated with i.v. injection and an ASIC1a-dependent and partially naloxone-sensitive effect associated with intrathecal injection. These data further support the role of peripheral and central ASIC1-containing channels in pain, demonstrate their participation in neuropathic pain, and highlight differences in the repertoire of channels involved in different pain conditions. They also strengthen the therapeutic potential of mambalgin peptides that are active in a broader range of experimental pain models and through i.v. systemic delivery.
Collapse
|
324
|
Acid-sensing ion channels are expressed in the ventrolateral medulla and contribute to central chemoreception. Sci Rep 2016; 6:38777. [PMID: 27934921 PMCID: PMC5146928 DOI: 10.1038/srep38777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The role of acid-sensing ion channels (ASICs) in the ventrolateral medulla (VLM) remains uncertain. Here, we found that ASIC1a and ASIC2 are widely expressed in rat medulla, and the expression level is higher at neonatal stage as compared to adult stage. The two ASIC subunits co-localized in medualla neurons. Furthermore, pH reduction triggered typical ASIC-type currents in the medulla, including the VLM. These currents showed a pH50 value of 6.6 and were blocked by amiloride. Based on their sensitivity to psalmotoxin 1 (PcTx1) and zinc, homomeric ASIC1a and heteromeric ASIC1a/2 channels were likely responsible for acid-mediated currents in the mouse medulla. ASIC currents triggered by pH 5 disappeared in the VLM neurons from ASIC1−/−, but not ASIC2−/− mice. Activation of ASICs in the medulla also triggered neuronal excitation. Moreover, microinjection of artificial cerebrospinal fluid at a pH of 6.5 into the VLM increased integrated phrenic nerve discharge, inspiratory time and respiratory drive in rats. Both amiloride and PcTx1 inhibited the acid-induced stimulating effect on respiration. Collectively, our data suggest that ASICs are highly expressed in the medulla including the VLM, and activation of ASICs in the VLM contributes to central chemoreception.
Collapse
|
325
|
Li WG, Liu MG, Deng S, Liu YM, Shang L, Ding J, Hsu TT, Jiang Q, Li Y, Li F, Zhu MX, Xu TL. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun 2016; 7:13770. [PMID: 27924869 PMCID: PMC5150990 DOI: 10.1038/ncomms13770] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 10/28/2016] [Indexed: 01/20/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) has been shown to play important roles in synaptic plasticity, learning and memory. Here we identify a crucial role for ASIC1a in long-term depression (LTD) at mouse insular synapses. Genetic ablation and pharmacological inhibition of ASIC1a reduced the induction probability of LTD without affecting that of long-term potentiation in the insular cortex. The disruption of ASIC1a also attenuated the extinction of established taste aversion memory without altering the initial associative taste learning or its long-term retention. Extinction of taste aversive memory led to the reduced insular synaptic efficacy, which precluded further LTD induction. The impaired LTD and extinction learning in ASIC1a null mice were restored by virus-mediated expression of wild-type ASIC1a, but not its ion-impermeable mutant, in the insular cortices. Our data demonstrate the involvement of an ASIC1a-mediated insular synaptic depression mechanism in extinction learning, which raises the possibility of targeting ASIC1a to manage adaptive behaviours.
The acid-sensing ion channel, ASIC1a, is known to play a role in synaptic transmission and plasticity. Here, the authors demonstrate a role for ASIC1a in regulating plasticity in the insular cortex and find that extinction of conditioned taste aversion memory is disrupted in the ASIC1a knockout mice.
Collapse
Affiliation(s)
- Wei-Guang Li
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Ming-Gang Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shining Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Yan-Mei Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Lin Shang
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Jing Ding
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Tsan-Ting Hsu
- Institute of Neuroscience, National Yang-Ming University, 155, Section 2, Li-Nong Street, Taipei 112, Taiwan
| | - Qin Jiang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Ying Li
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Tian-Le Xu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
326
|
Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation. Sci Rep 2016; 6:37251. [PMID: 27853254 PMCID: PMC5112517 DOI: 10.1038/srep37251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
Tissue injury is known to produce inflammation and pain. Synaptic potentiation between peripheral nociceptors and spinal lamina I neurons has been proposed to serve as a trigger for chronic inflammatory pain. Gastrodin is a main bioactive constituent of the traditional Chinese herbal medicine Gastrodia elata Blume, which has been widely used as an analgesic since ancient times. However, its underlying cellular mechanisms have remained elusive. The present study demonstrated for the first time that gastrodin exhibits an analgesic effect at the spinal level on spontaneous pain, mechanical and thermal pain hypersensitivity induced by peripheral inflammation, which is not dependent on opioid receptors and without tolerance. This analgesia by gastrodin is at least in part mediated by depressing spinal synaptic potentiation via blockade of acid-sensing ion channels. Further studies with miniature EPSCs and paired-pulse ratio analysis revealed the presynaptic origin of the action of gastrodin, which involves a decrease in transmitter release probability. In contrast, neither basal nociception nor basal synaptic transmission was altered. This study revealed a dramatic analgesic action of gastrodin on inflammatory pain and uncovered a novel spinal mechanism that could underlie the analgesia by gastrodin, pointing the way to a new analgesic for treating chronic inflammatory pain.
Collapse
|
327
|
Reznikov LR, Meyerholz DK, Adam RJ, Abou Alaiwa M, Jaffer O, Michalski AS, Powers LS, Price MP, Stoltz DA, Welsh MJ. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 2016; 11:e0166089. [PMID: 27820848 PMCID: PMC5098826 DOI: 10.1371/journal.pone.0166089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/22/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.
Collapse
Affiliation(s)
- Leah R. Reznikov
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Omar Jaffer
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew S. Michalski
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret P. Price
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
328
|
Hao J, Xiao T, Wu F, Yu P, Mao L. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes. Anal Chem 2016; 88:11238-11243. [DOI: 10.1021/acs.analchem.6b03854] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Hao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Tongfang Xiao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
329
|
Saatchi M, Farhad AR, Shenasa N, Haghighi SK. Effect of Sodium Bicarbonate Buccal Infiltration on the Success of Inferior Alveolar Nerve Block in Mandibular First Molars with Symptomatic Irreversible Pulpitis: A Prospective, Randomized Double-blind Study. J Endod 2016; 42:1458-61. [DOI: 10.1016/j.joen.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
|
330
|
Ergonul Z, Yang L, Palmer LG. Properties of acid-induced currents in mouse dorsal root ganglia neurons. Physiol Rep 2016; 4:4/9/e12795. [PMID: 27173673 PMCID: PMC4873640 DOI: 10.14814/phy2.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022] Open
Abstract
Acid‐sensing ion channels (ASICs) are cation channels that are activated by protons (H+). They are expressed in neurons throughout the nervous system and may play important roles in several neurologic disorders including inflammation, cerebral ischemia, seizures, neurodegeneration, anxiety, depression, and migraine. ASICs generally produce transient currents that desensitize in response to a decrease in extracellular pH. Under certain conditions, the inactivation of ASICs can be incomplete and allow them to produce sustained currents. Here, we characterize the properties of both transient and sustained acid‐induced currents in cultured mouse dorsal root ganglia (DRG) neurons. At pH levels between 7.3 and 7.1 they include “window currents” through ASICs. With stronger acid signals sustained currents are maintained in the absence of extracellular Na+ or the presence of the ASIC blockers amiloride and Psalmotoxin‐1(PcTx1). These sustained responses may have several different origins in these cells, including acid‐induced stimulation of inward Cl− currents, block of outward K+ currents, and augmentation of inward H+ currents, properties that distinguish these novel sustained currents from the well‐characterized transient currents.
Collapse
Affiliation(s)
- Zuhal Ergonul
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York Department of Pediatrics, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Lei Yang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York Department of Physiology, Harbin Medical University, Harbin, China
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| |
Collapse
|
331
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
332
|
Gupta SC, Singh R, Asters M, Liu J, Zhang X, Pabbidi MR, Watabe K, Mo YY. Regulation of breast tumorigenesis through acid sensors. Oncogene 2016; 35:4102-11. [PMID: 26686084 PMCID: PMC6450404 DOI: 10.1038/onc.2015.477] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/01/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
The low extracellular pH in the microenvironment has been shown to promote tumor growth and metastasis; however, the underlying mechanism is poorly understood. Particularly, little is known how the tumor cell senses the acidic signal to activate the acidosis-mediated signaling. In this study, we show that breast cancer cells express acid-sensing ion channel 1 (ASIC1), a proton-gated cation channel primarily expressed in the nervous system. RNA interference, knockout and rescue experiments demonstrate a critical role for ASIC1 in acidosis-induced reactive oxidative species and NF-κB activation, two key events for tumorigenesis. Mechanistically, ASIC1 is required for acidosis-mediated signaling through calcium influx. We show that as a cytoplasmic membrane protein, ASIC1 is also associated with mitochondria, suggesting that ASIC1 may regulate mitochondrial calcium influx. Importantly, interrogation of the Cancer Genome Atlas breast invasive carcinoma data set indicates that alterations of ASIC1 alone or combined with other 4 ASIC genes are significantly correlated with poor patient survival. Furthermore, ASIC1 inhibitors cause a significant reduction of tumor growth and tumor load. Together, these results suggest that ASIC1 contributes to breast cancer pathogenesis in response to acidic tumor microenvironments, and ASIC1 may serve as a prognostic marker and a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- S C Gupta
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - R Singh
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - M Asters
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - J Liu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - X Zhang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS, USA
| | - M R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - K Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Y-Y Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
333
|
Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly. Sci Rep 2016; 6:30684. [PMID: 27477936 PMCID: PMC4967927 DOI: 10.1038/srep30684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this differential subcellular localization remained to be further elucidated. By constructing ASIC2 chimeras, we found that the first transmembrane (TM1) domain and the proximal post-TM1 domain (17 amino acids) of ASIC2a are critical for membrane targeting of the proteins. We also observed that replacement of corresponding residues in ASIC2b by those of ASIC2a conferred proton-sensitivity as well as surface expression to ASIC2b. We finally confirmed that ASIC2b is delivered to the cell surface from the ER by forming heteromers with ASIC2a, and that the N-terminal region of ASIC2a is additionally required for the ASIC2a-dependent membrane targeting of ASIC2b. Together, our study supports an important role of ASIC2a in membrane targeting of ASIC2b.
Collapse
|
334
|
Battaglia M. Separation anxiety: at the neurobiological crossroads of adaptation and illness. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26487808 PMCID: PMC4610612 DOI: 10.31887/dcns.2015.17.3/mbattaglia] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Physiological and adaptive separation anxiety (SA) is intimately connected with the evolutionary emergence of new brain structures specific of paleomammalians, the growth of neomammalian—and later hominid—brain and skull size, and the appearance of bipedalism. All these evolutionary milestones have contributed to expanding the behavioral repertoire and plasticity of prehuman and human beings, at the cost of more prolonged dependency of the infant and of the child on parental care. Separation anxiety disorder (SAD) can be seen as an exaggerated/inappropriate manifestation of SA that constitutes a gateway to poorer mental and physical health. By blending epidemiological, genetic-epidemiological, endophenotypic, and animal laboratory approaches, it is possible to delineate some of the mechanisms that link childhood-adolescence SA and SAD to health problems later in life. Causal mechanisms include gene-environment interplays and likely differential regulation of genes and functional net-works that simultaneously affect multiple behavioral and physical phenotypes after exposure to early-life adversity, including parental separation/loss.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry and Neurosciences, Laval University, Québec, Canada; Centre de Recherche Institut Universitaire en Santé Mentale de Québec, Canada
| |
Collapse
|
335
|
Miller-Fleming TW, Petersen SC, Manning L, Matthewman C, Gornet M, Beers A, Hori S, Mitani S, Bianchi L, Richmond J, Miller DM. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons. eLife 2016; 5. [PMID: 27403890 PMCID: PMC4980115 DOI: 10.7554/elife.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI:http://dx.doi.org/10.7554/eLife.14599.001 The brain contains billions of nerve cells, or neurons, that communicate with one another through connections called synapses. As the brain develops, these circuits are extensively modified as new synapses are created and others are removed. Neurological disorders may emerge if these processes are not regulated correctly. Identifying the biological pathways that control the addition and removal of synapses could therefore provide new insights into how to treat human brain diseases. To communicate across a synapse, the signaling neuron releases chemicals called neurotransmitters that alter the activity of the receiving neuron. Some neurotransmitters, such as GABA, inhibit the activity of the receiving neuron. The activity of a neuron – and hence how often it releases neurotransmitters – depends on different ions moving into and out of the neuron through proteins called ion channels that are embedded in the cell membrane. For example, the movement of calcium ions into the neuron can trigger the release of neurotransmitters. The roundworm Caenorhabditis elegans is often used as a model organism to study how the brain develops. During development, the worm nervous system eliminates synapses that release GABA and reassembles them at new locations. However, the nervous system does not eliminate these synapses at random. Miller-Fleming, Petersen et al. now show that a C. elegans protein called UNC-8 is responsible for this effect. UNC-8 forms part of an ion channel that allows sodium ions to enter the neuron and is selectively produced in GABA neurons that are destined for remodeling. Miller-Fleming, Petersen et al. found that inside GABA-releasing neurons, calcium ions stimulate an enzyme called calcineurin that may in turn activate UNC-8. Sodium ions then enter the neuron through UNC-8 channels. This boosts the activity of the calcium ion channels, which further increases how many calcium ions enter the cell. Ultimately, the amount of calcium inside the neuron becomes high enough to activate an additional pathway that eliminates the synapse. This downstream pathway involves components of a cell-killing (or “apoptotic”) mechanism that is repurposed in this case to remove the GABA release apparatus at the synapse. Other proteins are likely to help UNC-8 sense the activity of neurons and destroy synapses in response. Further work is required to investigate these additional components and to determine how they work with UNC-8 to remove synapses in the nervous system during development. DOI:http://dx.doi.org/10.7554/eLife.14599.002
Collapse
Affiliation(s)
| | - Sarah C Petersen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Laura Manning
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Cristina Matthewman
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Megan Gornet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Allison Beers
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Janet Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
336
|
Howe ENW, Busschaert N, Wu X, Berry SN, Ho J, Light ME, Czech DD, Klein HA, Kitchen JA, Gale PA. pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones. J Am Chem Soc 2016; 138:8301-8. [PMID: 27299473 DOI: 10.1021/jacs.6b04656] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gated ion transport across biological membranes is an intrinsic process regulated by protein channels. Synthetic anion carriers (anionophores) have potential applications in biological research; however, previously reported examples are mostly nonspecific, capable of mediating both electrogenic and electroneutral (nonelectrogenic) transport processes. Here we show the transmembrane Cl(-) transport studies of synthetic phenylthiosemicarbazones mimicking the function of acid-sensing (proton-gated) ion channels. These anionophores have remarkable pH-switchable transport properties with up to 640-fold increase in transport efficacy on going from pH 7.2 to 4.0. This "gated" process is triggered by protonation of the imino nitrogen and concomitant conformational change of the anion-binding thiourea moiety from anti to syn. By using a combination of two cationophore-coupled transport assays, with either monensin or valinomycin, we have elucidated the fundamental transport mechanism of phenylthiosemicarbazones which is shown to be nonelectrogenic, inseparable H(+)/Cl(-) cotransport. This study demonstrates the first examples of pH-switchable nonelectrogenic anion transporters.
Collapse
Affiliation(s)
- Ethan N W Howe
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | | | - Xin Wu
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Stuart N Berry
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Junming Ho
- Institute of High Performance Computing, Agency for Science Technology and Research , 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632
| | - Mark E Light
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Dawid D Czech
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Harry A Klein
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | | | - Philip A Gale
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| |
Collapse
|
337
|
Echeverry S, Rodriguez MJ, Torres YP. Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotox Res 2016; 30:467-78. [PMID: 27260222 DOI: 10.1007/s12640-016-9632-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Microglia modulate the nervous system cellular environment and induce neuroprotective and neurotoxic effects. Various molecules are involved in these processes, including families of ion channels expressed in microglial cells, such as transient receptor potential (TRP) channels. TRP channels comprise a family of non-selective cation channels that can be activated by mechanical, thermal, and chemical stimuli, and which contribute to the regulation of intracellular calcium concentrations. TRP channels have been shown to be involved in cellular processes such as osmotic regulation, cytokine production, proliferation, activation, cell death, and oxidative stress responses. Given the significance of these processes in microglial activity, studies of TRP channels in microglia have focused on determining their roles in both neuroprotective and neurotoxic processes. TRP channel activity has been proposed to play an important function in neurodegenerative diseases, ischemia, inflammatory responses, and neuropathic pain. Modulation of TRP channel activity may thus be considered as a potential therapeutic strategy for the treatment of various diseases associated with alterations of the central nervous system (CNS). In this review, we describe the expression of different subfamilies of TRP channels in microglia, focusing on their physiological and pathophysiological roles, and consider their potential use as therapeutic targets in CNS diseases.
Collapse
Affiliation(s)
- Santiago Echeverry
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - María Juliana Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia.
| |
Collapse
|
338
|
Chandra V, Karamitri A, Richards P, Cormier F, Ramond C, Jockers R, Armanet M, Albagli-Curiel O, Scharfmann R. Extracellular acidification stimulates GPR68 mediated IL-8 production in human pancreatic β cells. Sci Rep 2016; 6:25765. [PMID: 27166427 PMCID: PMC4863151 DOI: 10.1038/srep25765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023] Open
Abstract
Acute or chronic metabolic complications such as diabetic ketoacidosis are often associated with extracellular acidification and pancreatic β-cell dysfunction. However, the mechanisms by which human β-cells sense and respond to acidic pH remain elusive. In this study, using the recently developed human β-cell line EndoC-βH2, we demonstrate that β-cells respond to extracellular acidification through GPR68, which is the predominant proton sensing receptor of human β-cells. Using gain- and loss-of-function studies, we provide evidence that the β-cell enriched transcription factor RFX6 is a major regulator of GPR68. Further, we show that acidic pH stimulates the production and secretion of the chemokine IL-8 by β-cells through NF-кB activation. Blocking of GPR68 or NF-кB activity severely attenuated acidification induced IL-8 production. Thus, we provide mechanistic insights into GPR68 mediated β-cell response to acidic microenvironment, which could be a new target to protect β-cell against acidosis induced inflammation.
Collapse
Affiliation(s)
- Vikash Chandra
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Angeliki Karamitri
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Paul Richards
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Françoise Cormier
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Cyrille Ramond
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Ralf Jockers
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Mathieu Armanet
- Cell Therapy Unit, Hôpital Saint Louis, AP-HP, and University Paris-Diderot, Paris, 75010, France
| | - Olivier Albagli-Curiel
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| |
Collapse
|
339
|
Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016; 61:2-16. [PMID: 26724974 PMCID: PMC4884561 DOI: 10.1016/j.jbior.2015.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
340
|
Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201600047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - B. Jelle Toebes
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Jan Lauko
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie Grigore T.; Popa, Str. Universitatii nr. 16 700115 Iasi Romania
| | | |
Collapse
|
341
|
Cittaro D, Lampis V, Luchetti A, Coccurello R, Guffanti A, Felsani A, Moles A, Stupka E, D' Amato FR, Battaglia M. Histone Modifications in a Mouse Model of Early Adversities and Panic Disorder: Role for Asic1 and Neurodevelopmental Genes. Sci Rep 2016; 6:25131. [PMID: 27121911 PMCID: PMC4848503 DOI: 10.1038/srep25131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice’s respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.
Collapse
Affiliation(s)
- Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Lampis
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Genomnia srl, Lainate, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D' Amato
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, University Of Toronto, Toronto, Canada.,Division of Child and Youth Mental Health, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
342
|
Ferenczi EA, Vierock J, Atsuta-Tsunoda K, Tsunoda SP, Ramakrishnan C, Gorini C, Thompson K, Lee SY, Berndt A, Perry C, Minniberger S, Vogt A, Mattis J, Prakash R, Delp S, Deisseroth K, Hegemann P. Optogenetic approaches addressing extracellular modulation of neural excitability. Sci Rep 2016; 6:23947. [PMID: 27045897 PMCID: PMC4820717 DOI: 10.1038/srep23947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022] Open
Abstract
The extracellular ionic environment in neural tissue has the capacity to influence, and be influenced by, natural bouts of neural activity. We employed optogenetic approaches to control and investigate these interactions within and between cells, and across spatial scales. We began by developing a temporally precise means to study microdomain-scale interactions between extracellular protons and acid-sensing ion channels (ASICs). By coupling single-component proton-transporting optogenetic tools to ASICs to create two-component optogenetic constructs (TCOs), we found that acidification of the local extracellular membrane surface by a light-activated proton pump recruited a slow inward ASIC current, which required molecular proximity of the two components on the membrane. To elicit more global effects of activity modulation on ‘bystander’ neurons not under direct control, we used densely-expressed depolarizing (ChR2) or hyperpolarizing (eArch3.0, eNpHR3.0) tools to create a slow non-synaptic membrane current in bystander neurons, which matched the current direction seen in the directly modulated neurons. Extracellular protons played contributory role but were insufficient to explain the entire bystander effect, suggesting the recruitment of other mechanisms. Together, these findings present a new approach to the engineering of multicomponent optogenetic tools to manipulate ionic microdomains, and probe the complex neuronal-extracellular space interactions that regulate neural excitability.
Collapse
Affiliation(s)
- Emily A Ferenczi
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Neurosciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Johannes Vierock
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Kyoko Atsuta-Tsunoda
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Satoshi P Tsunoda
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Charu Ramakrishnan
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Christopher Gorini
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Kimberly Thompson
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Soo Yeun Lee
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Andre Berndt
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Chelsey Perry
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Sonja Minniberger
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Arend Vogt
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Joanna Mattis
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Neurosciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Rohit Prakash
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Neurosciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Scott Delp
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,HHMI, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Department of Psychiatry &Behavioral Science, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| |
Collapse
|
343
|
Liu MG, Li HS, Li WG, Wu YJ, Deng SN, Huang C, Maximyuk O, Sukach V, Krishtal O, Zhu MX, Xu TL. Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Sci Rep 2016; 6:23350. [PMID: 26996240 PMCID: PMC4800407 DOI: 10.1038/srep23350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hu-Song Li
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Guang Li
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Yan-Jiao Wu
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shi-Ning Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Chen Huang
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine.,State Key Laboratory for Molecular and Cellular Biology, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Volodymyr Sukach
- Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine.,State Key Laboratory for Molecular and Cellular Biology, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine.,State Key Laboratory for Molecular and Cellular Biology, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Tian-Le Xu
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
344
|
Gan X, Wu J, Ren C, Qiu CY, Li YK, Hu WP. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling. Pharmacol Res 2016; 107:19-26. [PMID: 26946972 DOI: 10.1016/j.phrs.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 01/15/2023]
Abstract
Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.
Collapse
Affiliation(s)
- Xiong Gan
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Jing Wu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Cuixia Ren
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Chun-Yu Qiu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Yan-Kun Li
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Wang-Ping Hu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China.
| |
Collapse
|
345
|
Wu J, Leng T, Jing L, Jiang N, Chen D, Hu Y, Xiong ZG, Zha XM. Two di-leucine motifs regulate trafficking and function of mouse ASIC2a. Mol Brain 2016; 9:9. [PMID: 26819004 PMCID: PMC4729175 DOI: 10.1186/s13041-016-0190-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acid-sensing ion channels (ASICs) are proton-gated cation channels that mediate acid-induced responses in neurons. ASICs are important for mechanosensation, learning and memory, fear, pain, and neuronal injury. ASIC2a is widely expressed in the nervous system and modulates ASIC channel trafficking and activity in both central and peripheral systems. Here, to better understand mechanisms regulating ASIC2a, we searched for potential protein motifs that regulate ASIC2a trafficking. RESULTS AND CONCLUSIONS We identified a LLDLL sequence in the C-terminal juxtamembrane region of ASIC2a. Deleting or mutating the LLDLL sequence increased total expression and surface levels of ASIC2a in CHO cells. Mutating either of the two LL motifs had a similar effect. We further assessed ASIC2a localization in organotypic hippocampal slice neurons. The LL motif mutants exhibited increased dendritic trafficking and elevated targeting to dendritic spines. Consistent with an efficient trafficking, the LL motif mutants increased acid-activated current density. In addition, mutating the second LL motif increased pH sensitivity of the channel. These data identify the LL motifs as a negative regulator of ASIC2a trafficking and function, and suggest novel regulatory mechanisms in acid signaling.
Collapse
Affiliation(s)
- Junjun Wu
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Tiandong Leng
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, 30310, GA, USA.
| | - Lan Jing
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 1320 West Beijing Rd, Shanghai, 200040, China.
| | - Nan Jiang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,Shanghai University School of Life Sciences, Shanghai, China.
| | - Daijie Chen
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, 30310, GA, USA.
| | - Xiang-ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA.
| |
Collapse
|
346
|
Metabolic Connection of Inflammatory Pain: Pivotal Role of a Pyruvate Dehydrogenase Kinase-Pyruvate Dehydrogenase-Lactic Acid Axis. J Neurosci 2016; 35:14353-69. [PMID: 26490872 DOI: 10.1523/jneurosci.1910-15.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Pyruvate dehydrogenase kinases (PDK1-4) are mitochondrial metabolic regulators that serve as decision makers via modulation of pyruvate dehydrogenase (PDH) activity to convert pyruvate either aerobically to acetyl-CoA or anaerobically to lactate. Metabolic dysregulation and inflammatory processes are two sides of the same coin in several pathophysiological conditions. The lactic acid surge associated with the metabolic shift has been implicated in diverse painful states. In this study, we investigated the role of PDK-PDH-lactic acid axis in the pathogenesis of chronic inflammatory pain. Deficiency of Pdk2 and/or Pdk4 in mice attenuated complete Freund's adjuvant (CFA)-induced pain hypersensitivities. Likewise, Pdk2/4 deficiency attenuated the localized lactic acid surge along with hallmarks of peripheral and central inflammation following intraplantar administration of CFA. In vitro studies supported the role of PDK2/4 as promoters of classical proinflammatory activation of macrophages. Moreover, the pharmacological inhibition of PDKs or lactic acid production diminished CFA-induced inflammation and pain hypersensitivities. Thus, a PDK-PDH-lactic acid axis seems to mediate inflammation-driven chronic pain, establishing a connection between metabolism and inflammatory pain. SIGNIFICANCE STATEMENT The mitochondrial pyruvate dehydrogenase (PDH) kinases (PDKs) and their substrate PDH orchestrate the conversion of pyruvate either aerobically to acetyl-CoA or anaerobically to lactate. Lactate, the predominant end product of glycolysis, has recently been identified as a signaling molecule for neuron-glia interactions and neuronal plasticity. Pathological metabolic shift and subsequent lactic acid production are thought to play an important role in diverse painful states; however, their contribution to inflammation-driven pain is still to be comprehended. Here, we report that the PDK-PDH-lactic acid axis constitutes a key component of inflammatory pain pathogenesis. Our findings establish an unanticipated link between metabolism and inflammatory pain. This study unlocks a previously ill-explored research avenue for the metabolic control of inflammatory pain pathogenesis.
Collapse
|
347
|
Marra S, Ferru-Clément R, Breuil V, Delaunay A, Christin M, Friend V, Sebille S, Cognard C, Ferreira T, Roux C, Euller-Ziegler L, Noel J, Lingueglia E, Deval E. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids. EMBO J 2016; 35:414-28. [PMID: 26772186 DOI: 10.15252/embj.201592335] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling.
Collapse
Affiliation(s)
- Sébastien Marra
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Romain Ferru-Clément
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | | | - Anne Delaunay
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Marine Christin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Valérie Friend
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Stéphane Sebille
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | - Christian Cognard
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | - Thierry Ferreira
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | | | | | - Jacques Noel
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Emmanuel Deval
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| |
Collapse
|
348
|
Rahman MH, Jha MK, Kim JH, Nam Y, Lee MG, Go Y, Harris RA, Park DH, Kook H, Lee IK, Suk K. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy. J Biol Chem 2016; 291:6011-6025. [PMID: 26769971 DOI: 10.1074/jbc.m115.699215] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 01/15/2023] Open
Abstract
The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Md Habibur Rahman
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Mithilesh Kumar Jha
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Jong-Heon Kim
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Youngpyo Nam
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Maan Gee Lee
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program
| | - Younghoon Go
- the Department of Internal Medicine, Division of Endocrinology and Metabolism, and
| | - Robert A Harris
- the Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| | - Dong Ho Park
- the Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Hyun Kook
- the Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - In-Kyu Lee
- the Department of Internal Medicine, Division of Endocrinology and Metabolism, and
| | - Kyoungho Suk
- From the Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program,.
| |
Collapse
|
349
|
Wu J, Xu Y, Jiang YQ, Xu J, Hu Y, Zha XM. ASIC subunit ratio and differential surface trafficking in the brain. Mol Brain 2016; 9:4. [PMID: 26746198 PMCID: PMC4706662 DOI: 10.1186/s13041-016-0185-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are key mediators of acidosis-induced responses in neurons. However, little is known about the relative abundance of different ASIC subunits in the brain. Such data are fundamental for interpreting the relative contribution of ASIC1a homomers and 1a/2 heteromers to acid signaling, and essential for designing therapeutic interventions to target these channels. We used a simple biochemical approach and semi-quantitatively determined the molar ratio of ASIC1a and 2 subunits in mouse brain. Further, we investigated differential surface trafficking of ASIC1a, ASIC2a, and ASIC2b. Results and conclusions ASIC1a subunits outnumber the sum of ASIC2a and ASIC2b. There is a region-specific variation in ASIC2a and 2b expression, with cerebellum and striatum expressing predominantly 2b and 2a, respectively. Further, we performed surface biotinylation and found that surface ASIC1a and ASIC2a ratio correlates with their total expression. In contrast, ASIC2b exhibits little surface presence in the brain. This result is consistent with increased co-localization of ASIC2b with an ER marker in 3T3 cells. Our data are the first semi-quantitative determination of relative subunit ratio of various ASICs in the brain. The differential surface trafficking of ASICs suggests that the main functional ASICs in the brain are ASIC1a homomers and 1a/2a heteromers. This finding provides important insights into the relative contribution of various ASIC complexes to acid signaling in neurons.
Collapse
Affiliation(s)
- Junjun Wu
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Yu-Qing Jiang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Xiang-ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA.
| |
Collapse
|
350
|
Jalalvand E, Robertson B, Wallén P, Grillner S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 2016; 7:10002. [PMID: 26743691 PMCID: PMC4729841 DOI: 10.1038/ncomms10002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
Cerebrospinal fluid-contacting (CSF-c) cells are found in all vertebrates but their function has remained elusive. We recently identified one type of laterally projecting CSF-c cell in lamprey spinal cord with neuronal properties that expresses GABA and somatostatin. We show here that these CSF-c neurons respond to both mechanical stimulation and to lowered pH. These effects are most likely mediated by ASIC3-channels, since APETx2, a specific antagonist of ASIC3, blocks them both. Furthermore, lowering of pH as well as application of somatostatin will reduce the locomotor burst rate. The somatostatin receptor antagonist counteracts the effects of both a decrease in pH and of somatostatin. Lateral bending movement imposed on the spinal cord, as would occur during natural swimming, activates CSF-c neurons. Taken together, we show that CSF-c neurons act both as mechanoreceptors and as chemoreceptors through ASIC3 channels, and their action may protect against pH-changes resulting from excessive neuronal activity.
Collapse
Affiliation(s)
- Elham Jalalvand
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Brita Robertson
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Wallén
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Sten Grillner
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|