301
|
Abstract
The hexosamine biosynthesis pathway (HBP) is a relatively minor branch of glycolysis. Fructose 6-phosphate is converted to glucosamine 6-phosphate, catalyzed by the first and rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT). The major end product is UDP-N-acetylglucosamine (UDP-GlcNAc). Along with other amino sugars generated by HBP, it provides essential building blocks for glycosyl side chains, of proteins and lipids. UDP-GlcNAc regulates flux through HBP by regulating GFAT activity and is the obligatory substrate of O-GlcNAc transferase. The latter is a cytosolic and nuclear enzyme that catalyzes a reversible, posttranslational protein modification, transferring GlcNAc in O-linkage (O-GlcNAc) to specific serine/threonine residues of proteins. The metabolic effects of increased flux through HBP are thought to be mediated by increasing O-GlcNAcylation. Several investigators proposed that HBP functions as a cellular nutrient sensor and plays a role in the development of insulin resistance and the vascular complications of diabetes. Increased flux through HBP is required and sufficient for some of the metabolic effects of sustained, increased glucose flux, which promotes the complications of diabetes, e.g., diminished expression of sarcoplasmic reticulum Ca(2+)-ATPase in cardiomyocytes and induction of TGF-beta and plasminogen activator inhibitor-1 in vascular smooth muscle cells, mesangial cells, and aortic endothelial cells. The mechanism was consistent with enhanced O-GlcNAcylation of certain transcription factors. The role of HBP in the development of insulin resistance has been controversial. There are numerous papers showing a correlation between increased flux through HBP and insulin resistance; however, the causal relationship has not been established. More recent experiments in mice overexpressing GFAT in muscle and adipose tissue or exclusively in fat cells suggest that the latter develop in vivo insulin resistance via cross talk between fat cells and muscle. Although the relationship between HBP and insulin resistance may be quite complex, it clearly deserves further study in concert with its role in the complications of diabetes.
Collapse
Affiliation(s)
- Maria G Buse
- Department of Medicine, Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
302
|
Goldberg HJ, Whiteside CI, Hart GW, Fantus IG. Posttranslational, reversible O-glycosylation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. Endocrinology 2006; 147:222-31. [PMID: 16365142 DOI: 10.1210/en.2005-0523] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metabolic flux through the hexosamine biosynthetic pathway (HBP) is increased in the presence of high glucose (HG) and potentially stimulates the expression of genes associated with the development of diabetic nephropathy. A number of synthetic processes are coupled to the HBP, including enzymatic intracellular O-glycosylation (O-GlcNAcylation), the addition of single O-linked N-acetylglucosamine monosaccharides to serine or threonine residues. Despite much data linking flow through the HBP and gene expression, the exact contribution of O-GlcNAcylation to HG-stimulated gene expression remains unclear. In glomerular mesangial cells, HG-stimulated plasminogen activator inhibitor-1 (PAI-1) gene expression requires the HBP and the transcription factor, Sp1. In this study, the specific role of O-GlcNAcylation in HG-induced PAI-1 expression was tested by limiting this modification with a dominant-negative O-linked N-acetylglucosamine transferase, by overexpression of neutral beta-N-acetylglucosaminidase, and by knockdown of O-linked beta-N-acetylglucosamine transferase expression by RNA interference. Decreasing O-GlcNAcylation by these means inhibited the ability of HG to increase endogenous PAI-1 mRNA and protein levels, the activity of a PAI-1 promoter-luciferase reporter gene, and Sp1 transcriptional activation. Conversely, treatment with the beta-N-acetylglucosaminidase inhibitor, O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, in the presence of normal glucose increased Sp1 O-GlcNAcylation and PAI-1 mRNA and protein levels. These findings demonstrate for the first time that among the pathways served by the HBP, O-GlcNAcylation, is obligatory for HG-induced PAI-1 gene expression and Sp1 transcriptional activation in mesangial cells.
Collapse
Affiliation(s)
- Howard J Goldberg
- Department of Medicine, Mount Sinai Hospital and University Health Network, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
303
|
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
304
|
Sohn KC, Do SI. Transcriptional regulation and O-GlcNAcylation activity of zebrafish OGT during embryogenesis. Biochem Biophys Res Commun 2005; 337:256-63. [PMID: 16188232 DOI: 10.1016/j.bbrc.2005.09.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Zebrafish OGT (zOGT) sequence was identified in zebrafish (Danio rerio) genome and six different transcriptional variants of zOGT, designated var1 to var6, were isolated. Here we describe the developmental regulation of zOGT variants at transcriptional level and characterization of their OGT activities of protein O-GlcNAcylation. OGT transcriptional variants in zebrafish were differentially generated by alternative splicing and in particular, var1 and var2 were contained by 48 bp intron as a novel exon sequence, demonstrating that this form of OGT was not found in mammals. Transcript analysis revealed that var1 and var2 were highly expressed at early phase of development including unfertilized egg until dome stage whereas var3 and var4 were begins to be expressed at sphere stage until late phase of development. Our data indicate that var1 and var2 are likely to be maternal transcripts. The protein expression assay in Escherichia coli-p62 system showed that OGT activities of var3 and var4 were found to be only active whereas those of other variants were inactive.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Ajou University, Department of Life Science, Laboratory of Functional Glycomics, Republic of Korea
| | | |
Collapse
|
305
|
Andrali SS, März P, Ozcan S. Ataxin-10 interacts with O-GlcNAc transferase OGT in pancreatic β cells. Biochem Biophys Res Commun 2005; 337:149-53. [PMID: 16182253 DOI: 10.1016/j.bbrc.2005.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 09/06/2005] [Indexed: 11/22/2022]
Abstract
Several nuclear and cytoplasmic proteins in metazoans are modified by O-linked N-acetylglucosamine (O-GlcNAc). This modification is dynamic and reversible similar to phosphorylation and is catalyzed by the O-linked GlcNAc transferase (OGT). Hyperglycemia has been shown to increase O-GlcNAc levels in pancreatic beta cells, which appears to interfere with beta-cell function. To obtain a better understanding of the role of O-linked GlcNAc modification in beta cells, we have isolated OGT interacting proteins from a cDNA library made from the mouse insulinoma MIN6 cell line. We describe here the identification of Ataxin-10, encoded by the SCA10 (spinocerebellar ataxia type 10) gene as an OGT interacting protein. Mutations in the SCA10 gene cause progressive cerebellar ataxias and seizures. We demonstrate that SCA10 interacts with OGT in vivo and is modified by O-linked glycosylation in MIN6 cells, suggesting a novel role for the Ataxin-10 protein in pancreatic beta cells.
Collapse
Affiliation(s)
- Sreenath S Andrali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, 741 South Limestone Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
306
|
Lazarus BD, Roos MD, Hanover JA. Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase. J Biol Chem 2005; 280:35537-44. [PMID: 16105839 DOI: 10.1074/jbc.m504948200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of O-linked GlcNAc to serine/threonine residues of a variety of target proteins, many of which have been implicated in such diseases as diabetes and neurodegeneration. The addition of O-GlcNAc to proteins occurs in response to fluctuations in cellular concentrations of UDP-GlcNAc, which result from nutrients entering the hexosamine biosynthetic pathway. However, the molecular mechanisms involved in sugar nucleotide recognition and transfer to protein are poorly understood. We employed site-directed mutagenesis to target potentially important amino acid residues within the two conserved catalytic domains of OGT (CD I and CD II), followed by an in vitro glycosylation assay to evaluate N-acetylglucosaminyltransferase activity after bacterial expression. Although many of the amino acid substitutions caused inactivation of the enzyme, we identified three amino acid residues (two in CD I and one in CD II) that produced viable enzymes when mutated. Structure-based homology modeling revealed that these permissive mutants may be either in or near the sugar nucleotide-binding site. Our findings suggest a model in which the two conserved regions of the catalytic domain, CD I and CD II, contribute to the formation of a UDP-GlcNAc-binding pocket that catalyzes the transfer of O-GlcNAc to substrate proteins. Identification of viable OGT mutants may facilitate examination of its role in nutrient sensing and signal transduction cascades.
Collapse
Affiliation(s)
- Brooke D Lazarus
- Laboratory of Cell Biology and Biochemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
307
|
Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC, Ashwell G, Krause M. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc Natl Acad Sci U S A 2005; 102:11266-71. [PMID: 16051707 PMCID: PMC1183534 DOI: 10.1073/pnas.0408771102] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is an evolutionarily conserved modification of nuclear pore proteins, signaling kinases, and transcription factors. The O-GlcNAc transferase (OGT) catalyzing O-GlcNAc addition is essential in mammals and mediates the last step in a nutrient-sensing "hexosamine-signaling pathway." This pathway may be deregulated in diabetes and neurodegenerative disease. To examine the function of O-GlcNAc in a genetically amenable organism, we describe a putative null allele of OGT in Caenorhabditis elegans that is viable and fertile. We demonstrate that, whereas nuclear pore proteins of the homozygous deletion strain are devoid of O-GlcNAc, nuclear transport of transcription factors appears normal. However, the OGT mutant exhibits striking metabolic changes manifested in a approximately 3-fold elevation in trehalose levels and glycogen stores with a concomitant approximately 3-fold decrease in triglycerides levels. In nematodes, a highly conserved insulin-like signaling cascade regulates macronutrient storage, longevity, and dauer formation. The OGT knockout suppresses dauer larvae formation induced by a temperature-sensitive allele of the insulin-like receptor gene daf-2. Our findings demonstrate that OGT modulates macronutrient storage and dauer formation in C. elegans, providing a unique genetic model for examining the role of O-GlcNAc in cellular signaling and insulin resistance.
Collapse
Affiliation(s)
- John A Hanover
- Laboratories of Cell Biochemistry and Biology and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
308
|
Marshall S, Okuyama R, Rumberger JM. Turnover and characterization of UDP-N-acetylglucosaminyl transferase in a stably transfected HeLa cell line. Biochem Biophys Res Commun 2005; 332:263-70. [PMID: 15896326 DOI: 10.1016/j.bbrc.2005.04.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/24/2005] [Indexed: 10/25/2022]
Abstract
To estimate the turnover of UDP-N-acetylglucosaminyl transferase (OGT), we exposed stably transfected HeLa cells to tetracycline for 16h to induce OGT gene expression and increase cytosolic enzyme levels. Removal of tetracycline led to a progressive decrease in OGT activity (after a 6h lag period), yielding an estimated OGT half-life of 13h. A similar half-life (12h) was obtained by measuring the loss of biosynthetically labeled OGT ([35S]methionine pulse-chase experiments). Since OGT turnover was relatively slow, it is unlikely that changes in OGT gene expression or protein expression play a role in the short-term regulatory actions mediated by the hexosamine signaling pathway. We also found that the overexpressed 110kDa murine OGT subunit (recombinant enzyme) was enzymatically similar to the endogenous holoenzyme derived from rat brain tissue. Thus, stably transfected HeLa cells provide an abundant source of enzyme that can be used to study the structure, function, and regulation of OGT.
Collapse
|
309
|
Abstract
From observations on human diseases and mutant mice, it has become clear that glycosylation plays a major role in metazoan development. Caenorhabditis elegans provides powerful tools to study this problem that are not available in men or mice. The worm has many genes homologous to mammalian genes involved in glycosylation. Glycobiologists have, in recent years, cloned and expressed some of these genes and studied the effects of mutations on worm development. Recent studies have focused on N-glycosylation, lumenal nucleoside diphosphatases, the resistance of C. elegans to a bacterial toxin and infections, fucosylation and proteoglycans.
Collapse
Affiliation(s)
- Harry Schachter
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
310
|
Ye X, Dai J, Fang W, Jin W, Guo Y, Song J, Ji C, Gu S, Xie Y, Mao Y. Cloning and characterization of a splice variant of human Bardet-Biedl syndrome 4 gene (BBS4). ACTA ACUST UNITED AC 2005; 15:213-8. [PMID: 15497446 DOI: 10.1080/10425170410001679165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a heterogeneous multisystemic disorder characterized primarily by five cardinal features of retinal degeneration, obesity, polydactyly, hypogenitalism and mental retardation. To date, six distinct BBS loci that have been identified on different chromosomes. BBS4 gene is mapped to 15q22.2-23, which when mutated can cause BBS4. Its protein shows strong homology to O-linked N-acetylglucosamine (O-GlcNAc) transferase. Here we report a splice variant of BBS4, which is 2556 bp in length and has an open reading frame coding a predicted 527 amino-acids protein. RT-PCR shows that the cDNA is widely expressed while it has higher expression levels in pancreas, liver and prostate.
Collapse
Affiliation(s)
- Xin Ye
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Okuyama R, Marshall S. Potential regulation of nuclear UDP-N-acetylglucosaminyl transferase (OGT) by substrate availability: ability of chromatin protein to bind UDP-N-acetylglucosamine and reduce OGT-mediated O-Linked glycosylation. Biol Pharm Bull 2005; 27:1293-6. [PMID: 15305040 DOI: 10.1248/bpb.27.1293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UDP-N-acetylglucosaminyl transferase (OGT) resides in both cytosolic and nuclear compartments and catalyzes O-linked glycosylation of various proteins. In the current study, we have extracted protein from nuclear DNA (chromatin protein) using 0.2% NP-40 detergent. Addition of chromatin protein to either cytosolic or nuclear preparations (containing abundant OGT) resulted in a dose-dependent loss of OGT activity. Since chromatin-mediated loss of OGT activity could be restored by immunopurification of OGT, we conclude that loss of enzyme activity is not due to direct inactivation of OGT. Addition of UDP-galactose (to saturate potential UDP binding proteins) effectively restored OGT activity in cytosol containing chromatin protein. This indicates that chromatin protein inhibits OGT activity by binding UDP-GlcNAc. These studies suggest that nuclear substrate availability may comprise one of the in vivo mechanisms regulating OGT activity and O-linked glycosylation of nuclear proteins. This is potentially significant, since most transcription factors are O-linked glycosylated and such post-translational modifications can alter gene expression.
Collapse
Affiliation(s)
- Ryo Okuyama
- Hexos, Inc, Woodinville, Washington 98072, USA.
| | | |
Collapse
|
312
|
Slawson C, Housley MP, Hart GW. O-GlcNAc cycling: How a single sugar post-translational modification is changing the Way We think about signaling networks. J Cell Biochem 2005; 97:71-83. [PMID: 16237703 DOI: 10.1002/jcb.20676] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
O-GlcNAc is an ubiquitous post-translational protein modification consisting of a single N-acetlyglucosamine moiety linked to serine or threonine residues on nuclear and cytoplasmic proteins. Recent work has begun to uncover the functional roles of O-GlcNAc in cellular processes. O-GlcNAc modified proteins are involved in sensing the nutrient status of the surrounding cellular environment and adjusting the activity of cellular proteins accordingly. O-GlcNAc regulates cellular responses to hormones such as insulin, initiates a protective response to stress, modulates a cell's capacity to grow and divide, and regulates gene transcription. This review will focus on recent work involving O-GlcNAc in sensing the environment and regulating signaling cascades.
Collapse
Affiliation(s)
- Chad Slawson
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
313
|
Sohn KC, Lee KY, Park JE, Do SI. OGT functions as a catalytic chaperone under heat stress response: a unique defense role of OGT in hyperthermia. Biochem Biophys Res Commun 2004; 322:1045-51. [PMID: 15336570 DOI: 10.1016/j.bbrc.2004.08.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Indexed: 11/24/2022]
Abstract
Protein O-GlcNAcylation is proceeded by O-linked GlcNAc transferase (OGT) in nucleocytoplasm and is involved in many biological processes although its physiological role is not clearly defined. To identify the functional significance of O-GlcNAcylation, we investigated heat stress effects on protein O-GlcNAcylation. Here, we found that protein O-GlcNAcylation was significantly increased in vivo during acute heat stress in mammalian cells and simultaneously, the enhanced protein O-GlcNAcylation was closely associated with cell survival in hyperthermia. Our results demonstrate that hyperthermal cytotoxicity may considerably be facilitated under the condition of insufficient level of protein O-GlcNAcylation inside cells. Furthermore, OGT reaction might be crucial for triggering thermotolerance to recover hyperthermal sensitivity without particular induction of heat shock proteins (hsps). Thus, we propose that OGT can respond rapidly to heat stress through the enhancement of nucleocytoplasmic protein O-GlcNAcylation for a rescue from the early phase of hyperthermal cytotoxicity.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Chungnam National University, School of Bioscience and Biotechnology, Taejon 305-764, Republic of Korea
| | | | | | | |
Collapse
|
314
|
Jínek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 2004; 11:1001-7. [PMID: 15361863 DOI: 10.1038/nsmb833] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 07/20/2004] [Indexed: 11/08/2022]
Abstract
Addition of N-acetylglucosamine (GlcNAc) is a ubiquitous form of intracellular glycosylation catalyzed by the conserved O-linked GlcNAc transferase (OGT). OGT contains an N-terminal domain of tetratricopeptide (TPR) repeats that mediates the recognition of a broad range of target proteins. Components of the nuclear pore complex are major OGT targets, as OGT depletion by RNA interference (RNAi) results in the loss of GlcNAc modification at the nuclear envelope. To gain insight into the mechanism of target recognition, we solved the crystal structure of the homodimeric TPR domain of human OGT, which contains 11.5 TPR repeats. The repeats form an elongated superhelix. The concave surface of the superhelix is lined by absolutely conserved asparagines, in a manner reminiscent of the peptide-binding site of importin alpha. Based on this structural similarity, we propose that OGT uses an analogous molecular mechanism to recognize its targets.
Collapse
Affiliation(s)
- Martin Jínek
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
315
|
Robertson M. Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. PLANT PHYSIOLOGY 2004; 136:2747-61. [PMID: 15347799 PMCID: PMC523338 DOI: 10.1104/pp.104.041665] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 06/20/2004] [Accepted: 06/28/2004] [Indexed: 05/21/2023]
Abstract
SPINDLY (SPY) protein from barley (Hordeum vulgare L. cv Himalaya; HvSPY) negatively regulated GA responses in aleurone, and genetic analyses of Arabidopsis thaliana predict that SPY functions in a derepressible GA-signaling pathway. Many, if not all, GA-dependent responses require SPY protein, and to improve our understanding of how the SPY signaling pathway operates, a yeast two-hybrid screen was used to identify both upstream and downstream components that might regulate the activity of the HvSPY protein. A number of proteins from diverse classes were identified using HvSPY as bait and barley cDNA libraries as prey. Two of the HvSPY-interacting (HSI) proteins were transcription factors belonging to the myb and NAC gene families, HSImyb and HSINAC. Interaction occurred via the tetratricopeptide repeat domain of HvSPY and specificity was shown both in vivo and in vitro. Messenger RNAs for these proteins were expressed differentially in many parts of the barley plant but at very low levels. Both HSImyb and HSINAC inhibited the GA(3) up-regulation of alpha-amylase expression in aleurone, both were activators of transcription in yeast, and the green fluorescent protein-HSI fusion proteins were localized in the nucleus. These results are consistent with the model that HSI transcription factors act downstream of HvSPY as negative regulators and that they in turn could activate other negative regulators, forming the HvSPY negative regulator-signaling pathway for GA response.
Collapse
Affiliation(s)
- Masumi Robertson
- Commonwealth Scientific and Industrial Research Organisation Plant Industry, Canberra, Australian Capitol Territory 2601, Australia.
| |
Collapse
|
316
|
Ripberger E, Linnebacher M, Schwitalle Y, Gebert J, von Knebel Doeberitz M. Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. J Clin Immunol 2004; 23:415-23. [PMID: 14601650 DOI: 10.1023/a:1025329819121] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deficient DNA mismatch repair results in microsatellite instability and might induce shifts of translational reading frames of genes encompassing coding microsatellites. These may be translated in truncated proteins, including neo-peptide tails functioning as tumor rejection antigens, when presented in the context of MHC class I. Recently, others and we identified a frameshift mutation in the coding T(10) microsatellite of the O-linked N-acetylglucosamine transferase gene (OGT) occuring in up to 41% of microsatellite unstable colorectal cancers. Here we describe a novel HLA-A0201-restricted cytotoxic T lymphocyte (CTL)-epitope (28-SLYKFSPFPL; FSP06) derived from this mutant OGT-protein. FSP06-specific CTL-clones killed peptide-sensitized target cells and tumor cell lines expressing both HLA-A0201 and mutant OGT proteins. This demonstrates that FSP06 is endogenously expressed and represents a CD8(+)-T cell epitope. Our data corroborate the concept of frameshift peptides constituting a novel subset of tumor-associated antigens specifically encountered in cancer cells with deficient mismatch repair.
Collapse
Affiliation(s)
- Eva Ripberger
- Institute of Molecular Pathology, Department of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
317
|
Marshall S, Okuyama R. Differential effects of vanadate on UDP-N-acetylglucosaminyl transferase activity derived from cytosol and nucleosol. Biochem Biophys Res Commun 2004; 318:911-5. [PMID: 15147958 DOI: 10.1016/j.bbrc.2004.04.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Indexed: 10/26/2022]
Abstract
UDP-N-acetylglucosaminyl transferase (OGT) is a key enzyme of a novel signal transduction pathway that regulates protein function through O-linked glycosylation. In the current study, we found that sodium vanadate potently inhibits OGT activity in brain cytosol (IC50 = 55 microM) and nucleosol (IC50 = 150 microM), but fails to alter activity of a related enzyme (UDP-galactosyltransferase). Vanadate also inhibits OGT activity in cytosol (IC50 of 2.3 microM) and nucleosol (IC50 of 130) derived from a stable HeLa cell line that overexpresses OGT. When HeLa cytosol was immunopurified to separate OGT from other cellular proteins, vanadate still inhibited OGT activity (IC50 = 2 microM). We conclude that OGT derived from cytosol exhibits greater vanadate sensitivity than nucleosol OGT and that a large difference exists (25-fold) in vanadate sensitivity when comparing OGT activity in different cell types (IC50 of 55 microM for brain cytosol vs. 2.3 microM for HeLa cytosol). Understanding the mechanism(s) by which a tyrosine phosphatase inhibitor differentially reduces OGT activity should lead to new insights into OGT function and regulation.
Collapse
|
318
|
Liu K, Paterson AJ, Zhang F, McAndrew J, Fukuchi KI, Wyss JM, Peng L, Hu Y, Kudlow JE. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem 2004; 89:1044-55. [PMID: 15140202 DOI: 10.1111/j.1471-4159.2004.02389.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
All tissues contain the enzymes that modify and remove O-GlcNAc dynamically from nucleocytoplasmic proteins. These enzymes have been shown to play a role in the control of transcription, vesicular trafficking and, more recently, proteasome function. Modification by O-GlcNAc of the 19S cap of the proteasome inhibits proteasomal function. Transcripts of both O-GlcNAc transferase and O-GlcNAcase are very abundant in the brain, with the highest concentrations in hippocampal neurons and Purkinje cells. When the on-rate of modification is favored over the off-rate by intraventricular administration of a drug, streptozocin, these areas of the brain display the most rapid accumulation of O-GlcNAc. Cerebral proteasome function is reduced and ubiquitin and p53 accumulate in these brain regions, with the subsequent activation of a p53-dependent transgene and the endogenous Mdm2 gene. Later, some hippocampal cells, but not Purkinje cells, undergo apoptosis. These observations suggest that the O-GlcNAc system may participate in neurodegeneration, particularly in the hippocampus.
Collapse
Affiliation(s)
- Kan Liu
- Department Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Dudognon P, Maeder-Garavaglia C, Carpentier JL, Paccaud JP. Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett 2004; 561:44-50. [PMID: 15013749 DOI: 10.1016/s0014-5793(04)00109-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 01/09/2004] [Accepted: 01/11/2004] [Indexed: 11/21/2022]
Abstract
Endoplasmic reticulum (ER)-to-Golgi transport is blocked in mammalian cells during mitosis; however, the mechanism underlying this blockade remains unknown. Since COPII proteins are involved in this transport pathway, we investigated at the biochemical level post-translational modifications of COPII components during the course of mitosis that could be linked to inhibition of ER-to-Golgi transport. By comparing biochemical properties of cytosolic COPII components during interphase and mitosis, we found that Sec24p isoforms underwent post-translational modifications resulting in an increase in their apparent molecular weight. No such modification was observed for the other COPII components Sec23p, Sec13p, Sec31p or Sar1p. Analyzing in more details Sec24p isoforms in interphase and mitotic conditions, we found that the interphase form of Sec24p was O-N-acetylglucosamine modified, a feature lost upon entering into mitosis. This mitotic deglycosylation was coupled to Sec24p phosphorylation, a feature likely responsible for the increase in apparent molecular weight of these molecules. These modifications correlated with an alteration in the membrane binding properties of Sec24p. These data suggest that when entering into mitosis, the COPII component Sec24p is simultaneously deglycosylated and phosphorylated, a process which may contribute to the observed mitotic ER-to-Golgi traffic block.
Collapse
Affiliation(s)
- Pierrick Dudognon
- Department of Morphology, University Medical Center, Geneva University, CH-1211 Geneva, Switzerland.
| | | | | | | |
Collapse
|
320
|
O'Donnell N, Zachara NE, Hart GW, Marth JD. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 2004; 24:1680-90. [PMID: 14749383 PMCID: PMC344186 DOI: 10.1128/mcb.24.4.1680-1690.2004] [Citation(s) in RCA: 346] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Ogt gene encodes a glycosyltransferase that links N-acetylglucosamine to serine and threonine residues (O-GlcNAc) on nuclear and cytosolic proteins. Efforts to study a mammalian model of Ogt deficiency have been hindered by the requirement for this X-linked gene in embryonic stem cell viability, necessitating the use of conditional mutagenesis in vivo. We have extended these observations by segregating Ogt mutation to distinct somatic cell types, including neurons, thymocytes, and fibroblasts, the latter by an approach developed for inducible Ogt mutagenesis. We show that Ogt mutation results in the loss of O-GlcNAc and causes T-cell apoptosis, neuronal tau hyperphosphorylation, and fibroblast growth arrest with altered expression of c-Fos, c-Jun, c-Myc, Sp1, and p27. We further segregated the mutant Ogt allele to parental gametes by oocyte- and spermatid-specific Cre-loxP mutagenesis. By this we established an in vivo genetic approach that supports the ontogeny of female heterozygotes bearing mutant X-linked genes required during embryogenesis. Successful production and characterization of such female heterozygotes further indicates that mammalian cells commonly require a functional Ogt allele. We find that O-GlcNAc modulates protein phosphorylation and expression among essential and conserved cell signaling pathways.
Collapse
Affiliation(s)
- Niall O'Donnell
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0625, USA
| | | | | | | |
Collapse
|
321
|
Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 2004; 115:715-25. [PMID: 14675536 DOI: 10.1016/s0092-8674(03)00974-7] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system classically selects its substrates for degradation by tagging them with ubiquitin. Here, we describe another means of controlling proteasome function in a global manner. The 26S proteasome can be inhibited by modification with the enzyme, O-GlcNAc transferase (OGT). This reversible modification of the proteasome inhibits the proteolysis of the transcription factor Sp1 and a hydrophobic peptide through inhibition of the ATPase activity of 26S proteasomes. The Rpt2 ATPase in the mammalian proteasome 19S cap is modified by O-GlcNAc in vitro and in vivo and as its modification increases, proteasome function decreases. This mechanism may couple proteasomes to the general metabolic state of the cell. The O-GlcNAc modification of proteasomes may allow the organism to respond to its metabolic needs by controlling the availability of amino acids and regulatory proteins.
Collapse
Affiliation(s)
- Fengxue Zhang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
322
|
Kamemura K, Hart GW. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:107-36. [PMID: 12882516 DOI: 10.1016/s0079-6603(03)01004-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The glycosylation of serine and threonine residues with beta-O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslational modification of nuclear and cytoplasmic proteins in multicellular eukaryotes. This highly dynamic glycosylation/deglycosylation of protein is catalyzed by the nucleocytoplasmic enzymes, UDP-G1cNAc: polypeptide O-beta-N-acetylglucosaminyltransferase (OGT)/O-beta-N-acetylglucosaminidase. OGT is required for embryonic stem cell viability and mouse ontogeny, thus O-GlcNAc is essential for the life of eukaryotes. The gene encoding O-GlcNAcase maps to a locus important to late-onset Alzheimer's disease. All known O-GlcNAc-modified proteins are also phosphoproteins that form reversible multimeric protein complexes. There is both a global and often site-specific reciprocal relationship between O-GlcNAc and O-phosphate in many cellular responses to stimuli. Thus, regulation of the protein-protein interaction(s) and/or protein function by dynamic glycosylation/phosphorylation has been hypothesized. In this chapter, we will review the current status of dynamic glycosylation/phosphorylation of several important regulatory proteins including c-Myc, estrogen receptors, Sp1, endothelial nitric oxide synthase, and beta-catenin. Various aspects of subcellular localization, association with binding partners, activity, and/or turnover of these proteins appear to be regulated by dynamic glycosylation/ phosphorylation in response to cellular signals or stages.
Collapse
Affiliation(s)
- Kazuo Kamemura
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
323
|
Abstract
The hormone gibberellin (GA) plays an important role in modulating diverse processes throughout plant development. In recent years, significant progress has been made in the identification of upstream GA signaling components and trans- and cis-acting factors that regulate downstream GA-responsive genes in higher plants. GA appears to derepress its signaling pathway by inducing proteolysis of GA signaling repressors (the DELLA proteins). Recent evidence indicates that the DELLA proteins are targeted for degradation by an E3 ubiquitin ligase SCF complex through the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
324
|
Whelan SA, Hart GW. Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Circ Res 2003; 93:1047-58. [PMID: 14645135 DOI: 10.1161/01.res.0000103190.20260.37] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) is both an abundant and dynamic posttranslational modification similar to phosphorylation that occurs on serine and threonine residues of cytosolic and nuclear proteins in all metazoans and cell types examined, including cardiovascular tissue. Since the discovery of O-GlcNAc more than 20 years ago, the elucidation of O-GlcNAc as a posttranslational modification has been slow, albeit similar to the rate of acceptance of phosphorylation, because of the lack of tools available for its study. Identifying O-GlcNAc posttranslational modifications on proteins is a major challenge to proteomics. The recent development of mild beta-elimination followed by Michael addition with dithiothreitol has significantly improved the site mapping of both O-GlcNAc and O-phosphate in functional proteomics. beta-Elimination followed by Michael addition with dithiothreitol facilitates the study of the labile O-GlcNAc modification in the etiology of disease states. We discuss how recent technological innovations will expand our present understanding of O-GlcNAc and what the implications are for diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stephen A Whelan
- Johns Hopkins University School of Medicine, Department of Biological Chemistry, 725 N Wolfe St, Baltimore, Md, USA
| | | |
Collapse
|
325
|
Abstract
The four essential building blocks of cells are proteins, nucleic acids, lipids, and glycans. Also referred to as carbohydrates, glycans are composed of saccharides that are typically linked to lipids and proteins in the secretory pathway. Glycans are highly abundant and diverse biopolymers, yet their functions have remained relatively obscure. This is changing with the advent of genetic reagents and techniques that in the past decade have uncovered many essential roles of specific glycan linkages in living organisms. Glycans appear to modulate biological processes in the development and function of multiple physiologic systems, in part by regulating protein-protein and cell-cell interactions. Moreover, dysregulation of glycan synthesis represents the etiology for a growing number of human genetic diseases. The study of glycans, known as glycobiology, has entered an era of renaissance that coincides with the acquisition of complete genome sequences for multiple organisms and an increased focus upon how posttranslational modifications to protein contribute to the complexity of events mediating normal and disease physiology. Glycan production and modification comprise an estimated 1% of genes in the mammalian genome. Many of these genes encode enzymes termed glycosyltransferases and glycosidases that reside in the Golgi apparatus where they play the major role in constructing the glycan repertoire that is found at the cell surface and among extracellular compartments. We present a review of the recently established functions of glycan structures in the context of mammalian genetic studies focused upon the mouse and human species. Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labours, as the peculiar nature of the means and artificial resources in their possession. T. Hager: Force of Nature (1)
Collapse
Affiliation(s)
- John B Lowe
- Department of Pathology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
326
|
Gould WR, Silveira JR, Tracy PB. Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet-derived cofactor: characterization of purified platelet-derived factor V/Va. J Biol Chem 2003; 279:2383-93. [PMID: 14594814 DOI: 10.1074/jbc.m308600200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet- and plasma-derived factor Va (FVa) serve essential cofactor roles in prothrombinase-catalyzed thrombin generation. Platelet-derived FV/Va, purified from Triton X-100 platelet lysates was composed of a mixture of polypeptides ranging from approximately 40 to 330 kDa, mimicking those visualized by Western blotting of platelet lysates and releasates with anti-FV antibodies. The purified, platelet-derived protein expressed significant cofactor activity such that thrombin activation led to only a 2-3-fold increase in cofactor activity yet expression of a specific activity identical to that of purified, plasma-derived FVa. Physical and functional differences between the two cofactors were identified. Purified, platelet-derived FVa was 2-3-fold more resistant to activated protein C-catalyzed inactivation than purified plasma-derived FVa on the thrombin-activated platelet surface. The heavy chain subunit of purified, platelet-derived FVa contained only a fraction ( approximately 10-15%) of the intrinsic phosphoserine present in the plasma-derived FVa heavy chain and was resistant to phosphorylation at Ser(692) catalyzed by either casein kinase II or thrombin-activated platelets. MALDI-TOF mass spectrometric analyses of tryptic digests of platelet-derived FV peptides detected an intact heavy chain uniquely modified on Thr(402) with an N-acetylglucosamine or N-acetylgalactosamine, whereas Ser(692) remained unmodified. N-terminal sequencing and MALDI-TOF analyses of platelet-derived FV/Va peptides identified the presence of a full-length heavy chain subunit, as well as a light chain subunit formed by cleavage at Tyr(1543) rather than Arg(1545) accounting for the intrinsic levels of cofactor activity exhibited by native platelet-derived FVa. These collective data are the first to demonstrate physical differences between the two FV cofactor pools and support the hypothesis that, subsequent to its endocytosis by megakaryocytes, FV is modified to yield a platelet-derived cofactor distinct from its plasma counterpart.
Collapse
Affiliation(s)
- Weston R Gould
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405-0086, USA
| | | | | |
Collapse
|
327
|
Nolte D, Niemann S, Müller U. Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proc Natl Acad Sci U S A 2003; 100:10347-52. [PMID: 12928496 PMCID: PMC193564 DOI: 10.1073/pnas.1831949100] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-linked dystonia parkinsonism (XDP) is an X-linked recessive adult onset movement disorder characterized by both dystonia and parkinsonism. We report delineation of the disease gene within a 300-kb interval of Xq13.1 by allelic association. Sequencing of this region in a patient revealed five disease-specific single-nucleotide changes (here referred to as DSC) and a 48-bp deletion unique to XDP. One of the DSCs is located within an exon of a not previously described multiple transcript system that is composed of at least 16 exons. There is a minimum of three different transcription start sites that encode four different transcripts. Two of these transcripts include distal portions of the TAF1 gene (TATA-box binding protein-associated factor 1) and are alternatively spliced. Three exons overlap with ING2 (a putative tumor suppressor) and with a homologue of CIS4 (cytokine-inducible SH2 protein 4), both of which are encoded by the opposite strand. Although all DSCs are located within this multiple transcript system, only DSC3 lies within an exon. This exon is used by all alternative transcripts making a pathogenic role of DSC3 in XDP likely. The multiple transcript system is therefore referred to as DYT3 (disease locus in XDP).
Collapse
Affiliation(s)
- Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität, Schlangenzahl 14, 35392 Giessen, Germany
| | | | | |
Collapse
|
328
|
Marshall S, Duong T, Wu T, Hering MA, Yada J, Higgins S, Orbus RJ, Yan ZH, Rumberger JM. Enhanced expression of uridine diphosphate-N-acetylglucosaminyl transferase (OGT) in a stable, tetracycline-inducible HeLa cell line using histone deacetylase inhibitors: kinetics of cytosolic OGT accumulation and nuclear translocation. Anal Biochem 2003; 319:304-13. [PMID: 12871726 DOI: 10.1016/s0003-2697(03)00329-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have created a stable, tetracycline-inducible HeLa cell line that overexpresses murine uridine diphosphate-N-acetylglucosaminyl transferase (OGT). Tetracycline increased cytosolic OGT activity about 4-fold in a dose-dependent manner (ED(50)=0.03 microg/ml) with enhanced activity observable at 8h and maximal activity observable by 40h. Enhanced OGT activity was due to overexpression of OGT protein as determined by Western analysis. Trichostatin A (TSA), a potent and specific histone deacetylase inhibitor (HDI), markedly enhanced tetracycline-induced OGT gene expression, resulting in a >10-fold increase in OGT activity (>50-fold compared to that of uninduced cells). Other HDIs such as butyrate (ED(50)=1.6mM) and propionate (ED(50)=8mM) were similarly effective, but less potent than TSA (ED(50)=120 nM). We next examined the appearance of recombinant OGT in cytosol and nucleosol at various times (10 min to 6h) after inducing OGT gene. Within 2h, recombinant OGT was detected by Western analysis in both cytosol and nucleosol. This indicates rapid biosynthesis and accumulation of recombinant OGT in the cytosol and subsequent nuclear translocation. Entry of OGT into the nucleus was closely correlated with enhanced O-linked glycosylation of nuclear proteins, indicating that recombinant OGT was enzymatically active. The ability to rapidly induce OGT expression in a stable cell line provides an excellent model system to study the mechanism(s) underlying OGT nuclear translocation and a useful system to elucidate the cascade of signaling events related to O-linked glycosylation.
Collapse
|
329
|
Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 2003; 100:9116-21. [PMID: 12874386 PMCID: PMC171382 DOI: 10.1073/pnas.1632821100] [Citation(s) in RCA: 443] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Indexed: 11/18/2022] Open
Abstract
The glycosylation of serine and threonine residues with a single GlcNAc moiety is a dynamic posttranslational modification of many nuclear and cytoplasmic proteins. We describe a chemical strategy directed toward identifying O-GlcNAc-modified proteins from living cells or proteins modified in vitro. We demonstrate, in vitro, that each enzyme in the hexosamine salvage pathway, and the enzymes that affect this dynamic modification (UDP-GlcNAc:polypeptidtyltransferase and O-GlcNAcase), tolerate analogues of their natural substrates in which the N-acyl side chain has been modified to bear a bio-orthogonal azide moiety. Accordingly, treatment of cells with N-azidoacetylglucosamine results in the metabolic incorporation of the azido sugar into nuclear and cytoplasmic proteins. These O-azidoacetylglucosamine-modified proteins can be covalently derivatized with various biochemical probes at the site of protein glycosylation by using the Staudinger ligation. The approach was validated by metabolic labeling of nuclear pore protein p62, which is known to be posttranslationally modified with O-GlcNAc. This strategy will prove useful for both the identification of O-GlcNAc-modified proteins and the elucidation of the specific residues that bear this saccharide.
Collapse
Affiliation(s)
- David J Vocadlo
- Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
330
|
Gao Y, Miyazaki JI, Hart GW. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 2003; 415:155-63. [PMID: 12831837 DOI: 10.1016/s0003-9861(03)00234-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic/duodenal homeobox-1 protein (PDX-1, also called STF-1, IPF-1) is a transcription factor that plays an important role in pancreatic function and development. Here, we have overexpressed and purified PDX-1 from baculovirus/sf-9 cells, transiently transfected Cos-7 cells and native Min6 cells and demonstrated that the protein is posttranslationally modified by O-linked N-acetylglucosamine (O-GlcNAc). The approaches we used include binding of the protein to the lectin WGA, labeling with galactosyltransferase and UDP-[(3)H]gal and probing with the O-GlcNAc-specific antibody, RL-2. PNGase F treatment and structural analysis indicate that the carbohydrate is beta-linked O-GlcNAc. Mapping of [(3)H]gal-labeled tryptic peptides indicates that PDX-1 has two major sites for O-GlcNAcylation. In Min6 cells, elevated glucose concentration leads to an increase in protein O-GlcNAcylation and this hyperglycosylation correlates with an increase in DNA binding activity of PDX-1 and insulin secretion. On the other hand, the GFAT inhibitor azaserine reduces intracellular O-GlcNAc levels and profoundly attenuates glucose-stimulated insulin secretion. These data suggest that O-GlcNAcylation may be involved in the regulation of PDX-1 DNA binding activity and in glucose-stimulated insulin secretion in beta-cells.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
331
|
Iyer SPN, Hart GW. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J Biol Chem 2003; 278:24608-16. [PMID: 12724313 DOI: 10.1074/jbc.m300036200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abundant and dynamic post-translational modification of nuclear and cytosolic proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc-transferase (OGT). Recently, we reported the identification of a novel family of OGT-interacting proteins (OIPs) that interact strongly with the tetratricopeptide repeat (TPR) domain of OGT (Iyer, S. P., Akimoto, Y., and Hart, G. W. (2003) J. Biol. Chem. 278, 5399-5409). Members of this family are modified by O-GlcNAc and are excellent substrates of OGT. Here, we further investigated the role of the TPR domain in the O-GlcNAcylation of OIP106, one of the members of this OIP family. Using N-terminal deletions, we first identified the region of OIP106 that binds OGT, termed the OGT-interacting domain (OID). Deletion analysis indicated that TPRs 2-6 of OGT interact with the OID of OIP106. The apparent Km of OGT for the OID of OIP106 is 3.35 microm. Unlike small peptide substrates, glycosylation of the OID was dependent upon its interaction with the first 6 TPRs of OGT. Furthermore, the isolated TPR domain of OGT competitively inhibited glycosylation of the OID protein, but did not inhibit glycosylation of a 12-amino acid casein kinase II peptide substrate, providing kinetic evidence for the role of the TPR domain as a protein substrate docking site. Additionally, both the OID of OIP106 and nucleoporin p62 competed with each other for glycosylation by OGT. These studies support the model that the catalytic subunit of OGT achieves both high specificity and a remarkable diversity of substrates by complexing with a variety of targeting proteins via its TPR protein-protein interaction domains.
Collapse
Affiliation(s)
- Sai Prasad N Iyer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
332
|
Wells L, Hart GW. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett 2003; 546:154-8. [PMID: 12829252 DOI: 10.1016/s0014-5793(03)00641-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic post-translational modification more analogous to phosphorylation than to classical complex O-glycosylation. A large number of nuclear and cytosolic proteins are modified by O-GlcNAc. Proteins modified by O-GlcNAc include transcription factors, signaling components, and metabolic enzymes. While the modification has been known for almost 20 years, functions for the monosaccharide modification are just now emerging. In this review, we will focus on the cycling enzymes and emerging roles for this post-translational modification in regulating signal transduction and transcription. Finally, we will discuss future directions and the working model of O-GlcNAc serving as a nutrient sensor.
Collapse
Affiliation(s)
- Lance Wells
- Johns Hopkins School of Medicine, Department of Biological Chemistry, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
333
|
Ravindranath RMH, Basilrose RM, Ravindranath NH, Vaitheesvaran B. Amelogenin interacts with cytokeratin-5 in ameloblasts during enamel growth. J Biol Chem 2003; 278:20293-302. [PMID: 12657653 DOI: 10.1074/jbc.m211184200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enamel protein amelogenin binds to GlcNAc (Ravindranath, R. M. H., Moradian-Oldak, R., and Fincham, A.G. (1999) J. Biol. Chem. 274, 2464-2471) and to the GlcNAc-mimicking peptide (GMp) (Ravindranath, R. M. H., Tam, W., Nguyen, P., and Fincham, A. G. (2000) J. Biol. Chem. 275, 39654-39661). The GMp motif in the N-terminal region of the cytokeratin 14 of ameloblasts binds to trityrosyl motif peptide (ATMP) of amelogenin (Ravindranath, R. M. H., Tam, W., Bringas, P., Santos, V., and Fincham, A. G. (2001) J. Biol. Chem. 276, 36586 - 36597). K14 (Type I) pairs with K5 (Type II) in basal epithelial cells; GlcNAc-acylated K5 is identified in ameloblasts. Dosimetric analysis showed the binding affinity of amelogenin to K5 and to GlcNAc-acylated-positive control, ovalbumin. The specific binding of [3H]ATMP with K5 or ovalbumin was confirmed by Scatchard analysis. [3H]ATMP failed to bind to K5 after removal of GlcNAc. Blocking K5 with ATMP abrogates the K5-amelogenin interaction. K5 failed to bind to ATMP when the third proline was substituted with threonine, as in some cases of human X-linked amelogenesis imperfecta or when tyrosyl residues were substituted with phenylalanine. Confocal laser scan microscopic observations on ameloblasts during postnatal (PN) growth of the teeth showed that the K5-amelogenin complex migrated from the cytoplasm to the periphery (on PN day 1) and accumulated at the apical region on day 3. Secretion of amelogenin commences from day 1. K5, similar to K14, may play a role of chaperone during secretion of amelogenin. Upon secretion of amelogenin, K5 pairs with K14. Pairing of K5 and K14 commences on day 3 and ends on day 9. The pairing of K5 and K14 marks the end of secretion of amelogenin.
Collapse
Affiliation(s)
- Rajeswari M H Ravindranath
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles 90033-1004, USA.
| | | | | | | |
Collapse
|
334
|
Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A. YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem 2003; 278:14046-52. [PMID: 12588874 DOI: 10.1074/jbc.m300789200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YY1 is a zinc finger DNA-binding transcription factor that influences expression of a wide variety of cellular and viral genes. YY1 is essential for the development of mammalian embryos. It regulates the expression of genes with important functions in DNA replication, protein synthesis, and cellular response to external stimuli during cell growth and differentiation. How YY1 accomplishes such a variety of functions is unknown. Here, we show that a subset of the nuclear YY1 appears to be O-GlcNAcylated regardless of the differentiation status of the cells. We found that glucose strongly stimulates O-linked N-acetylglucosaminylation (O-GlcNAcylation) on YY1. Glycosylated YY1 no longer binds the retinoblastoma protein (Rb). Upon dissociation from Rb, the glycosylated YY1 is free to bind DNA. The ability of the O-glycosylation on YY1 to disrupt the complex with Rb leads us to propose that O-glycosylation might have a profound effect on cell cycle transitions that regulate the YY1-Rb heterodimerization and promote the activity of YY1. Our observations provide strong evidence that YY1-regulated transcription is very likely connected to the pathway of glucose metabolism that culminates in the O-GlcNAcylation on YY1, changing its function in transcription.
Collapse
Affiliation(s)
- Makoto Hiromura
- Beth Israel Deaconess Medical Center, Department of Medicine, Endocrinology, Harvard Medical School, Boston, Massachussetts 02215, USA
| | | | | | | | | | | |
Collapse
|
335
|
Robertson M. Increased dehydrin promoter activity caused by HvSPY is independent of the ABA response pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:39-46. [PMID: 12662307 DOI: 10.1046/j.1365-313x.2003.01697.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A barley SPINDLY protein, HvSPY, is a negative regulator of gibberellin (GA) action. It is also found to be a positive regulator of the promoter of a barley dehydrin (Dhn) gene which is abscisic acid (ABA) upregulated. To investigate whether HvSPY acts through the ABA signaling pathway to upregulate the Dhn promoter, functional characterization was carried out by co-bombardment experiments. These experiments used Dhn promoter-GUS reporter constructs and an effector construct to overexpress HvSPY protein in barley aleurone. ABA dose-response experiments with and without HvSPY overexpression showed that the induction by HvSPY occurred in addition to the ABA effect. Gibberellic acid (GA3) did not reduce the induction by ABA, but it had a small, although significant, effect on the ability of HvSPY to upregulate. The induction of promoter activity of Dhn by HvSPY required the intact protein, and a small deletion in the tetratricopeptide repeat (TPR) region reduced this ability significantly. When a promoter region containing an element for ABA responsiveness was mutagenized or deleted, the mutant promoters lost ABA responsiveness but remained responsive to HvSPY. In addition, HvSPY did not increase promoter activities of other ABA-upregulated genes. Taken together, these results indicate that HvSPY and ABA both regulate promoter activity of Dhn, and that HvSPY acts independently of the ABA signaling pathway.
Collapse
Affiliation(s)
- Masumi Robertson
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
336
|
Akimoto Y, Comer FI, Cole RN, Kudo A, Kawakami H, Hirano H, Hart GW. Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res 2003; 966:194-205. [PMID: 12618343 DOI: 10.1016/s0006-8993(02)04158-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a ubiquitous nucleocytoplasmic protein modification that has a complex interplay with phosphorylation on cytoskeletal proteins, signaling proteins and transcription factors. O-GlcNAc is essential for life at the single cell level, and much indirect evidence suggests it plays an important role in nerve cell biology and neurodegenerative disease. Here we show the localization of O-GlcNAc Transferase (OGTase) mRNA, OGTase protein, and O-GlcNAc-modified proteins in the rat cerebellar cortex. The sites of OGTase mRNA expression were determined by in situ hybridization histochemistry. Intense hybridization signals were present in neurons, especially in the Purkinje cells. Fluorescent-tagged antibody against OGTase stained almost all of the neurons with especially intense reactivity in Purkinje cells, within which the nucleus, perikaryon, and dendrites were most intensely stained. Using immuno-electron microscopic labeling, OGTase was seen to be enriched in euchromatin, in the cytoplasmic matrix, at the nerve terminal, and around microtubules in dendrites. In nerve terminals, immuno-gold labeling was observed around synaptic vesicles, with the enzyme more densely localized in the presynaptic terminals than in the postsynaptic ones. Using an antibody to O-GlcNAc, we found the sugar localizations reflected results seen for OGTase. Collectively, these data support hypothesized roles for O-GlcNAc in key processes of brain cells, including the regulation of transcription, synaptic vesicle secretion, transport, and signal transduction. Thus, by modulating the phosphorylation or protein associations of key regulatory and cytoskeletal proteins, O-GlcNAc is likely important to many functions of the cerebellum.
Collapse
Affiliation(s)
- Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, 181-8611, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
337
|
Parker GJ, Lund KC, Taylor RP, McClain DA. Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem 2003; 278:10022-7. [PMID: 12510058 DOI: 10.1074/jbc.m207787200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the mechanism by which high concentrations of glucose inhibit insulin stimulation of glycogen synthase. In NIH-3T3-L1 adipocytes cultured in low glucose (LG; 2.5 mm), the half-maximal activation concentration (A(0.5)) of glucose 6-phosphate was 162 +/- 15 microm. Exposure to either high glucose (HG; 20 mm) or glucosamine (GlcN; 10 mm) increased the A(0.5) to 558 +/- 61 or 612 +/- 34 microm. Insulin treatment with LG reduced the A(0.5) to 96 +/- 10 microm, but cells cultured with HG or GlcN were insulin-resistant (A(0.5) = 287 +/- 27 or 561 +/- 77 microm). Insulin resistance was not explained by increased phosphorylation of synthase. In fact, culture with GlcN decreased phosphorylation to 61% of the levels seen in cells cultured in LG. Hexosamine flux and subsequent enzymatic protein O-glycosylation have been postulated to mediate nutrient sensing and insulin resistance. Glycogen synthase is modified by O-linked N-acetylglucosamine, and the level of glycosylation increased in cells treated with HG or GlcN. Treatment of synthase in vitro with protein phosphatase 1 increased basal synthase activity from cells cultured in LG to 54% of total activity but was less effective with synthase from cells cultured in HG or GlcN, increasing basal activity to only 13 or 16%. After enzymatic removal of O-GlcNAc, however, subsequent digestion with phosphatase increased basal activity to over 73% for LG, HG, and GlcN. We conclude that O-GlcNAc modification of glycogen synthase results in the retention of the enzyme in a glucose 6-phosphate-dependent state and contributes to the reduced activation of the enzyme in insulin resistance.
Collapse
Affiliation(s)
- Glendon J Parker
- Veterans Affairs Medical Center and Division of Endocrinology, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
338
|
Marshall S, Duong T, Orbus RJ, Rumberger JM, Okuyama R. Measurement of UDP-N-acetylglucosaminyl transferase (OGT) in brain cytosol and characterization of anti-OGT antibodies. Anal Biochem 2003; 314:169-79. [PMID: 12654302 DOI: 10.1016/s0003-2697(02)00686-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UDP-N-acetylglucosaminyl transferase (OGT) catalyzes O-linked glycosylation of cytosolic and nuclear proteins, but enzyme studies have been hampered by the lack of a rapid, sensitive, and economical OGT assay. Employed assay methods typically involved the use of HPLC, formic acid, and large amounts of expensive radiolabeled [3H]UDP-N-acetylglucosaminyl ([3H]UDP-GlcNAc). In the current study, we have developed an OGT assay that circumvents many of these problems through four critical assay improvements: (1) identification of an abundant and enriched source of OGT enzyme (rat brain tissue), (2) utilization of a rapid method for efficiently removing salts and sugar nucleotides from cytosol (polyethylene glycol precipitation of active enzyme), (3) expression of a recombinant p62 acceptor substrate designed to facilitate purification (polyhistidine metal-chelation site), and (4) development of two alternative methods to rapidly separate free [3H]UDP-GlcNAc from 3H-p62ST acceptor peptide (trichloroacetic acid precipitation and metal-chelation affinity purification). To study the enzymology of OGT, independent of potential regulatory proteins within cytosol, we also developed and characterized an alternate OGT assay that uses antibody-purified OGT as the enzyme source. The major advantage of this assay lies in the ability to measure OGT in the absence of other cytosolic proteins.
Collapse
|
339
|
Abstract
Beta-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of nuclear and cytosolic proteins. The enzymes for its addition and removal have recently been cloned and partially characterized. While only about 80 mammalian proteins have been identified to date that carry this modification, it is clear that this represents just a small percentage of the modified proteins. O-GlcNAc has all the properties of a regulatory modification including being dynamic and inducible. The modification appears to modulate transcriptional and signal transduction events. There are also accruing data that O-GlcNAc plays a role in apoptosis and neurodegeneration. A working model is emerging that O-GlcNAc serves as a metabolic sensor that attenuates a cell's response to extracellular stimuli based on the energy state of the cell. In this review, we will focus on the enzymes that add/remove O-GlcNAc, the functional impact of O-GlcNAc modification, and the current working model for O-GlcNAc as a nutrient sensor.
Collapse
Affiliation(s)
- Lance Wells
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 517 WBSB, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | |
Collapse
|
340
|
Iyer SPN, Hart GW. Dynamic nuclear and cytoplasmic glycosylation: enzymes of O-GlcNAc cycling. Biochemistry 2003; 42:2493-9. [PMID: 12614143 DOI: 10.1021/bi020685a] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sai Prasad N Iyer
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
341
|
Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA, Kochran J. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 2003; 116:647-54. [PMID: 12538765 DOI: 10.1242/jcs.00246] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
O-linked GlcNAc transferase (OGT) mediates a novel glycan-dependent signaling pathway, but the intracellular targeting of OGT is poorly understood. We examined the localization of OGT by immunofluorescence microscopy, subcellular fractionation and immunoblotting using highly specific affinity-purified antisera. In addition to the expected nuclear localization, we found that OGT was highly concentrated in mitochondria. Since the mitochondrial OGT (103 kDa) was smaller than OGT found in other compartments (116 kDa) we reasoned that it was one of two predicted splice variants of OGT. The N-termini of these isoforms are unique; the shorter form contains a potential mitochondrial targeting sequence. We found that when epitope-tagged, the shorter form (mOGT; 103 kDa) concentrated in HeLa cell mitochondria, whereas the longer form (ncOGT; 116 kDa) localized to the nucleus and cytoplasm. The N-terminus of mOGT was essential for proper targeting. Although mOGT appears to be an active transferase, O-linked GlcNAc-modified substrates do not accumulate in mitochondria. Using immunoelectron microscopy and mitochondrial fractionation, we found that mOGT was tightly associated with the mitochondrial inner membrane. The differential localization of mitochondrial and nucleocytoplasmic isoforms of OGT suggests that they perform unique intracellular functions.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
342
|
Iyer SPN, Akimoto Y, Hart GW. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem 2003; 278:5399-409. [PMID: 12435728 DOI: 10.1074/jbc.m209384200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abundant and dynamic post-translational modification of nuclear and cytosolic proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc transferase (OGT). Here we used the yeast two-hybrid approach to identify and isolate GABA(A) receptor-associated protein, GRIF-1 (Beck, M., Brickley, K., Wilkinson, H. L., Sharma, S., Smith, M., Chazot, P. L., Pollard, S., and Stephenson, F. A. (2002) J. Biol. Chem. 277, 30079-30090), and its novel homolog, OIP106 (KIAA1042), as novel OGT-interacting proteins. The proteins are highly similar to each other but are encoded by two separate genes. Both GRIF-1 and OIP106 contain coiled-coil domains and interact with the tetratricopeptide repeats of OGT. GRIF-1 and OIP106 are modified by O-GlcNAc and therefore are substrates for OGT. However, unlike another high affinity protein substrate, such as nucleoporin p62, OIP106 and GRIF-1 co-immunoprecipitate with OGT, exhibiting stable in vitro and in vivo associations. Whereas GRIF-1 has been reported to be expressed only in excitable tissue, OIP106 is expressed in all human cell lines that were examined. Confocal and electron microscopy show that OIP106 localizes to nuclear punctae in HeLa cells and co-localizes with RNA polymerase II. Co-immunoprecipitation experiments confirm the presence of an in vivo RNA polymerase II-OIP106-OGT complex, suggesting that OIP106 may target OGT to transcriptional complexes for glycosylation of transcriptional proteins, such as RNA polymerase II, and transcription factors. Similarly, GRIF-1 may serve to target OGT to GABA(A) receptor complexes for mediating GABA signaling cascades.
Collapse
Affiliation(s)
- Sai Prasad N Iyer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
343
|
Bohlmeyer T, Ferdensi A, Bristow MR, Takahashi S, Zisman LS. Selective activation of N-acyl-D-glucosamine 2-epimerase expression in failing human heart ventricular myocytes. J Card Fail 2003; 9:59-68. [PMID: 12612874 DOI: 10.1054/jcaf.2003.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND O-linked N-acyl-glycosylation may regulate protein function by competing with phosphorylation of serine residues. Availability of substrate for this process is regulated, in part, by N-Acyl-D-glucosamine 2-epimerase (NAGE), which interconverts N-acetyl-glucosamine (GlcNAc) and N-acetylmannosamine (ManNAc). NAGE is also a putative renin-binding protein. This study tested the hypothesis that NAGE is present in the human heart and that NAGE expression is increased in the failing human heart. METHODS AND RESULTS Ribonuclease protection assays (RPAs) demonstrated increased NAGE gene expression in failing hearts from subjects with idiopathic dilated and ischemic cardiomyopathies compared with nonfailing hearts. In situ reverse transcriptase-polymerase chain reaction, using primers designed to localize NAGE mRNA, demonstrated that, in nonfailing hearts, NAGE gene expression was restricted to endothelial cells and not detectable in cardiac myocytes. However, in failing human hearts NAGE gene expression was selectively activated in cardiac myocytes, but not endothelial cells. Immunohistochemistry confirmed that the pattern of NAGE protein expression corresponded to the pattern of gene expression. CONCLUSIONS NAGE gene and protein expression were selectively activated in left ventricular myocytes from end-stage failing human hearts.
Collapse
Affiliation(s)
- Teresa Bohlmeyer
- The Heart Institute, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
344
|
Walgren JLE, Vincent TS, Schey KL, Buse MG. High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab 2003; 284:E424-34. [PMID: 12397027 DOI: 10.1152/ajpendo.00382.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased flux through the hexosamine biosynthesis pathway has been implicated in the development of glucose-induced insulin resistance and may promote the modification of certain proteins with O-linked N-acetylglucosamine (O-GlcNAc). L6 myotubes (a model of skeletal muscle) were incubated for 18 h in 5 or 25 mM glucose with or without 10 nM insulin. As assessed by immunoblotting with an O-GlcNAc-specific antibody, high glucose and/or insulin enhanced O-GlcNAcylation of numerous proteins, including the transcription factor Sp1, a known substrate for this modification. To identify novel proteins that may be O-GlcNAc modified in a glucose concentration/insulin-responsive manner, total cell membranes were separated by one- or two-dimensional gel electrophoresis. Selected O-GlcNAcylated proteins were identified by mass spectrometry (MS) analysis. MS sequencing of tryptic peptides identified member(s) of the heat shock protein 70 (HSP70) family and rat alpha-tubulin. Immunoprecipitation/immunoblot studies demonstrated several HSP70 isoforms and/or posttranslational modifications, some with selectively enhanced O-GlcNAcylation following exposure to high glucose plus insulin. In conclusion, in L6 myotubes, Sp1, membrane-associated HSP70, and alpha-tubulin are O-GlcNAcylated; the modification is markedly enhanced by sustained increased glucose flux.
Collapse
Affiliation(s)
- Jennie L E Walgren
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
345
|
Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 2003; 409:287-97. [PMID: 12504895 DOI: 10.1016/s0003-9861(02)00578-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-Linked N-acetylglucosamine (GlcNAc) transferase (OGT) mediates a novel hexosamine-dependent signal transduction pathway. Yet, little is known about the regulation of ogt gene expression in mammals. We report the sequence and characterization of the mouse ogt locus and provide a comparison with the human and rat ogt genes. The mammalian ogt genes are similar in structure and exhibit approximately 80% sequence identity. The mouse and human ogt genes contain two potential promoters producing four major transcripts. By analyzing 56 human cDNA clones and other existing expressed sequence tags, we found that at least three protein products differing at their amino terminus result from alternative splicing. We used OGT-specific antisera to demonstrate the presence of these isoforms in HeLa cells. The longest form is a nucleocytoplasmic OGT (ncOGT) with 12 tetratricopeptide repeats (TPRs); a shorter form of OGT encodes a mitochondrially sequestered enzyme with 9 TPRs and an N-terminal mitochondrion-targeting sequence (mOGT). An even shorter form of OGT (sOGT) contains only 2 TPRs. The genomic organization of OGT appears to be highly conserved throughout metazoan evolution. These results provide the basis for a more detailed analysis of the significance and regulation of the nucleocytoplasmic and mitochondrial isoforms of OGT in mammals.
Collapse
Affiliation(s)
- John A Hanover
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Building 8, Room 402, 8 Center Drive, MSC 0850, NIH, Bethesda, MD 20892-0850, USA.
| | | | | | | | | | | | | |
Collapse
|
346
|
Pathways and functions of mammalian protein glycosylation. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
347
|
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic post-translational modification of cytoplasmic and nuclear proteins. Although the function of this abundant modification is yet to be definitively elucidated, all O-GlcNAc proteins are phosphoproteins. Further, the serine and threonine residues substituted with O-GlcNAc are often sites of, or close to sites of, protein phosphorylation. This implies that there may be a dynamic interplay between these two post-translational modifications to regulate protein function. In this review, the functions of some of the proteins that are modified by O-GlcNAc will be considered in the context of the potential role of the O-GlcNAc modification. Furthermore, predictions will be made as to how cellular function and developmental regulation might be affected by changes in O-GlcNAc levels.
Collapse
Affiliation(s)
- Niall O'Donnell
- Department of Cellular and Molecular Medicine, The Howard Hughes Medical Institute, Glycobiology Research and Training Center, University of California San Diego, La Jolla 92093, USA
| |
Collapse
|
348
|
Vosseller K, Sakabe K, Wells L, Hart GW. Diverse regulation of protein function by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification. Curr Opin Chem Biol 2002; 6:851-7. [PMID: 12470741 DOI: 10.1016/s1367-5931(02)00384-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Acetylglucosamine O-linked to serines and threonines of cytosolic and nuclear proteins (O-GlcNAc) is an abundant reversible post-translational modification found in all higher eukaryotes. Evidence for functional regulation of proteins by this dynamic saccharide is rapidly accumulating. Deletion of the gene encoding the enzyme that attaches O-GlcNAc (OGT) is lethal at the single cell level, indicating the fundamental requirement for this modification. Recent studies demonstrate a role for O-GlcNAcylation in processes as diverse as transcription in the nucleus and signaling in the cytoplasm, suggesting that O-GlcNAc has both protein and site-specific influences on biochemistry and metabolism throughout the cell.
Collapse
Affiliation(s)
- Keith Vosseller
- Johns Hopkins University School of Medicine, Department of Biological Chemistry, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
349
|
Slawson C, Shafii S, Amburgey J, Potter R. Characterization of the O-GlcNAc protein modification in Xenopus laevis oocyte during oogenesis and progesterone-stimulated maturation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:121-9. [PMID: 12399021 DOI: 10.1016/s0304-4165(02)00369-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Little information exists about single N-acetylglucosamine modifications on proteins in growth and developmental model systems. To explore these phenomena, Xenopus laevis oocytes from stages I-VI of oogenesis were isolated and proteins analyzed on SDS-PAGE. The proteins were probed with antibodies specific for O-GlcNAc. Levels of the O-GlcNAc protein modification were highest in stages I and II, while decreasing in stages III-VI. The reduction in amount of O-GlcNAc-modified proteins was correlated to increases in apparent O-GlcNAcase (streptozotocin-inhibitable neutral hexosaminidase), activity involved in removing protein monoglycosylations. The O-GlcNAc modification was also characterized during progesterone-stimulated oocyte maturation. Although O-GlcNAcase activity appeared relatively constant between quiescent and matured stage VI oocytes, a small decrease in the levels of both total and specific O-GlcNAc-modified proteins was observed. Investigating the function of O-GlcNAc during maturation, oocytes were incubated with compounds known to modulate the levels of the O-GlcNAc protein modification and then stimulated to mature. Oocytes treated with compounds known to increase O-glycosylation consistently matured slower than non-treated controls, while oocytes treated with compounds that decrease O-glycosylation matured slightly faster than controls. The O-GlcNAc modification may play important roles in both the developmental and cell division processes of X. laevis oocytes.
Collapse
Affiliation(s)
- Chad Slawson
- Department of Chemistry, University of South Florida, 4202 Fowler Avenue, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
350
|
Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 2002; 1:791-804. [PMID: 12438562 DOI: 10.1074/mcp.m200048-mcp200] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identifying sites of post-translational modifications on proteins is a major challenge in proteomics. O-Linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic modification more analogous to phosphorylation than to classical complex O-glycosylation. We describe a mass spectrometry-based method for the identification of sites modified by O-GlcNAc that relies on mild beta-elimination followed by Michael addition with dithiothreitol (BEMAD). Using synthetic peptides, we also show that biotin pentylamine can replace dithiothreitol as the nucleophile. The modified peptides can be efficiently enriched by affinity chromatography, and the sites can be mapped using tandem mass spectrometry. This same methodology can be applied to mapping sites of serine and threonine phosphorylation, and we provide a strategy that uses modification-specific antibodies and enzymes to discriminate between the two post-translational modifications. The BEMAD methodology was validated by mapping three previously identified O-GlcNAc sites, as well as three novel sites, on Synapsin I purified from rat brain. BEMAD was then used on a purified nuclear pore complex preparation to map novel sites of O-GlcNAc modification on the Lamin B receptor and the nucleoporin Nup155. This method is amenable for performing quantitative mass spectrometry and can also be adapted to quantify cysteine residues. In addition, our studies emphasize the importance of distinguishing between O-phosphate versus O-GlcNAc when mapping sites of serine and threonine post-translational modification using beta-elimination/Michael addition methods.
Collapse
Affiliation(s)
- Lance Wells
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|