301
|
Azab NA, Zahran FM, Amin AA, Rady NH. DNA integrity in diagnosis of premalignant lesions. Med Oral Patol Oral Cir Bucal 2021; 26:e445-e450. [PMID: 33340077 PMCID: PMC8254884 DOI: 10.4317/medoral.24287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background Carcinogenesis is a dynamic process which traditional biopsying can not keep up with. Saliva as fluid in the vicinity of the tumor can offer better insights to this process. This study aimed to identify the accuracy of salivary DNA integrity index in differentiating between oral premalignant lesions and oral cancer.
Material and Methods This phase II diagnostic test accuracy study included 93 patients divided into three groups: 30 oral cancer patients, 33 patients with oral premalignant lesions divided into 21 oral lichen planus patients and 12 patients with leukoplakia and 30 normal individuals who acted as controls. Oral rinse was collected from all participants and they all underwent conventional visual and tactile examination, and patients with oral lesions had the diagnosis confirmed by histopathological examination of tissue biopsy. DNA integrity index was determined as the ratio between ALU247 and ALU115 measured by qPCR.
Results There was no statistically significant difference regarding ALU115, ALU247 and DNA integrity index between the three study groups. The index was significantly higher in the oral cancer group than the oral lichen planus patients, while no significant difference was found between the oral cancer and the leukoplakia cases. The DNA integrity index sensitivity, specificity, positive and negative predictive values were 73%, 45%, 55% and 65% respectively.
Conclusions Salivary DNA integrity index showed poor diagnostic abilities in differentiating between the oral cancer and premalignant lesions. Key words:DNA integrity index, oral lichen planus, leukoplakia, saliva, cell free DNA, oral cancer.
Collapse
Affiliation(s)
- N-A Azab
- Oral Medicine and Periodontology Department Faculty of Dentistry, Cairo University, Egypt 11 El-Saraya St. - Manial - Cairo, Egypt
| | | | | | | |
Collapse
|
302
|
Wilson-Robles H, Miller T, Jarvis J, Terrell J, Kelly TK, Bygott T, Bougoussa M. Characterizing circulating nucleosomes in the plasma of dogs with hemangiosarcoma. BMC Vet Res 2021; 17:231. [PMID: 34187493 PMCID: PMC8243913 DOI: 10.1186/s12917-021-02934-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background Nucleosomes consist of DNA wrapped around a histone octamer core like thread on a spool to condense DNA as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death, chromatin fragmentation and release of nucleosomes into the blood. The Nu.Q™ platform measures circulating nucleosomes in the blood of humans that result from disease and has been used to detect and identify cancer even at early stages. The objectives of this study are to quantify and better characterize nucleosomes in dogs with various stages of hemangiosarcoma (HSA) using this ELISA-based assay. Samples from 77 dogs with a confirmed diagnosis of hemangiosarcoma and 134 healthy controls were utilized for this study. The HSA samples were recruited from the Texas A&M University Small Animal Clinic (TAMU-SAC) or purchased from biobanks. All control samples were recruited from the TAMU-SAC. Results Dogs with hemangiosarcoma had a 6.6-fold increase in their median plasma nucleosome concentrations compared to controls (AUC 92.9 %). Elevated nucleosome concentrations were seen at all stages of disease and nucleosome concentrations increased with the stage of the disease. Conclusions Plasma nucleosome concentrations are a reliable way to differentiate dogs with hemangiosarcoma from healthy dogs. Further testing is underway to better characterize cancer associated HSA circulating nucleosomes and optimize future diagnostics for canine HSA detection. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02934-6.
Collapse
Affiliation(s)
- Heather Wilson-Robles
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA.
| | - Tasha Miller
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA
| | - Jill Jarvis
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA
| | - Jason Terrell
- Volition America & Volition Veterinary Diagnostic Development, 13215 Bee Cave Parkway, Galleria Oaks B, Suite 125, Austin, Texas, 78738, USA
| | - Theresa Kathleen Kelly
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA.,Volition America & Volition Veterinary Diagnostic Development, 13215 Bee Cave Parkway, Galleria Oaks B, Suite 125, Austin, Texas, 78738, USA
| | - Thomas Bygott
- Volition Diagnostics UK Ltd, 93-95 Gloucester Place, London, W1U 6JQ, UK
| | - Mhammed Bougoussa
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| |
Collapse
|
303
|
Jouida A, McCarthy C, Fabre A, Keane MP. Exosomes: a new perspective in EGFR-mutated lung cancer. Cancer Metastasis Rev 2021; 40:589-601. [PMID: 33855679 PMCID: PMC8213600 DOI: 10.1007/s10555-021-09962-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are major contributors in cell to cell communication due to their ability to transfer biological material such as protein, RNA, DNA, and miRNA. Additionally, they play a role in tumor initiation, promotion, and progression, and recently, they have emerged as a potential source of information on tumor detection and may be useful as diagnostic, prognostic, and predictive tools. This review focuses on exosomes from lung cancer with a focus on EGFR mutations. Here, we outline the role of exosomes and their functional effect in carcinogenesis, tumor progression, and metastasis. Finally, we discuss the possibility of exosomes as novel biomarkers in early detection, diagnosis, assessment of prognosis, and prediction of therapeutic response in EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Amina Jouida
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- St. Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- St. Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Michael P Keane
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
- St. Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
304
|
Filipska M, Rosell R. Mutated circulating tumor DNA as a liquid biopsy in lung cancer detection and treatment. Mol Oncol 2021; 15:1667-1682. [PMID: 33969622 PMCID: PMC8169447 DOI: 10.1002/1878-0261.12983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, substantial developments have been made in the detection of circulating tumor DNA (ctDNA)-cell-free DNA (cfDNA) fragments released into the circulation from tumor cells and displaying the genetic alterations of those cells. As such, ctDNA detected in liquid biopsies serves as a powerful tool for cancer patient stratification, therapy guidance, detection of resistance, and relapse monitoring. In this Review, we describe lung cancer diagnosis and monitoring strategies using ctDNA detection technologies and compile recent evidence regarding lung cancer-related mutation detection in liquid biopsy. We focus not only on epidermal growth factor receptor (EGFR) alterations, but also on significant co-mutations that shed more light on novel ctDNA-based liquid biopsy applications. Finally, we discuss future perspectives of early-cancer detection and clonal hematopoiesis filtering strategies, with possible inclusion of microbiome-driven liquid biopsy.
Collapse
Affiliation(s)
- Martyna Filipska
- Germans Trias i Pujol Research Institute and HospitalBadalonaSpain
- Autonomous University of BarcelonaCerdanyola del VallesSpain
| | - Rafael Rosell
- Germans Trias i Pujol Research Institute and HospitalBadalonaSpain
- Autonomous University of BarcelonaCerdanyola del VallesSpain
| |
Collapse
|
305
|
Russo A, Incorvaia L, Del Re M, Malapelle U, Capoluongo E, Gristina V, Castiglia M, Danesi R, Fassan M, Giuffrè G, Gori S, Marchetti A, Normanno N, Pinto C, Rossi G, Santini D, Sartore-Bianchi A, Silvestris N, Tagliaferri P, Troncone G, Cinieri S, Beretta GD. The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM-SIAPEC-IAP-SIBioC-SIC-SIF Italian Scientific Societies. ESMO Open 2021; 6:100164. [PMID: 34091263 PMCID: PMC8182269 DOI: 10.1016/j.esmoop.2021.100164] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
The term liquid biopsy (LB) refers to the use of various biological fluids as a surrogate for neoplastic tissue to achieve information for diagnostic, prognostic and predictive purposes. In the current clinical practice, LB is used for the identification of driver mutations in circulating tumor DNA derived from both tumor tissue and circulating neoplastic cells. As suggested by a growing body of evidence, however, there are several clinical settings where biological samples other than tissue could be used in the routine practice to identify potentially predictive biomarkers of either response or resistance to targeted treatments. New applications are emerging as useful clinical tools, and other blood derivatives, such as circulating tumor cells, circulating tumor RNA, microRNAs, platelets, extracellular vesicles, as well as other biofluids such as urine and cerebrospinal fluid, may be adopted in the near future. Despite the evident advantages compared with tissue biopsy, LB still presents some limitations due to both biological and technological issues. In this context, the absence of harmonized procedures corresponds to an unmet clinical need, ultimately affecting the rapid implementation of LB in clinical practice. In this position paper, based on experts' opinions, the AIOM-SIAPEC-IAP-SIBIOC-SIF Italian Scientific Societies critically discuss the most relevant technical issues of LB, the current and emerging evidences, with the aim to optimizing the applications of LB in the clinical setting.
Collapse
Affiliation(s)
- A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - L Incorvaia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - M Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - U Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - E Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - V Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - M Castiglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - M Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - G Giuffrè
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - S Gori
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - A Marchetti
- Center of Predictive Molecular Medicine, University-Foundation, CeSI Biotech Chieti, Chieti, Italy
| | - N Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - C Pinto
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS-AUSL di Reggio Emilia, Reggio Emilia, Italy
| | - G Rossi
- Pathology Unit, Ospedale Santa Maria Delle Croci, Ravenna, Italy
| | - D Santini
- Department of Medical Oncology, University Campus Biomedico, Rome, Italy
| | - A Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - N Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II' of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - P Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - G Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - G D Beretta
- Department of Oncology, Humanitas Gavazzeni, Bergamo, Italy
| |
Collapse
|
306
|
Molecular Genetics in Neuroblastoma Prognosis. CHILDREN-BASEL 2021; 8:children8060456. [PMID: 34072462 PMCID: PMC8226597 DOI: 10.3390/children8060456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
In recent years, much research has been carried out to identify the biological and genetic characteristics of the neuroblastoma (NB) tumor in order to precisely define the prognostic subgroups for improving treatment stratification. This review will describe the major genetic features and the recent scientific advances, focusing on their impact on diagnosis, prognosis, and therapeutic solutions in NB clinical management.
Collapse
|
307
|
Adusei E, Ahenkorah J, Adu-Aryee NA, Adutwum-Ofosu KK, Tagoe EA, Koney NKK, Nkansah E, Aryee NA, Blay RM, Hottor BA, Clegg-Lamptey JN, Arko-Boham B. Reduced Serum Circulation of Cell-Free DNA Following Chemotherapy in Breast Cancer Patients. Med Sci (Basel) 2021; 9:medsci9020037. [PMID: 34070520 PMCID: PMC8163010 DOI: 10.3390/medsci9020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common malignancy in women, with alarming mortalities. Neoadjuvant treatments employ chemotherapy to shrink tumours to a well-defined size for a better surgical outcome. The current means of assessing effectiveness of chemotherapy management are imprecise. We previously showed that breast cancer patients have higher serum circulating cell-free DNA concentrations. cfDNA is degraded cellular DNA fragments released into the bloodstream. We further report on the utility of cfDNA in assessing the response to chemotherapy and its potential as a monitoring biomarker. A total of 32 newly diagnosed and treatment-naive female breast cancer patients and 32 healthy females as controls were included. Anthropometric, demographic and clinicopathological information of participants were recorded. Each participant donated 5 mL of venous blood from which sera were separated. Blood sampling was carried out before the commencement of chemotherapy (timepoint 1) and after the third cycle of chemotherapy (timepoint 2). qPCR was performed on the sera to quantify ALU 115 and 247 levels, and DNA integrity (ALU247/ALU115) was determined. ALU 115 and 247 levels were elevated in cancer patients but were significantly decreased after the third cycle of chemotherapy (T2) compared to T1. DNA integrity increased after the third cycle. Serum cfDNA may provide a relatively inexpensive and minimally invasive procedure to evaluate the response to chemotherapy in breast cancer.
Collapse
Affiliation(s)
- Evelyn Adusei
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - John Ahenkorah
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - Nii Armah Adu-Aryee
- Department of Surgery, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (N.A.A.-A.); (J.-N.C.-L.)
- Department of Surgery, Korle-Bu Teaching Hospital, Korle Bu, Accra P.O. Box 77, Ghana
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana;
| | - Nii Koney-Kwaku Koney
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - Emmanuel Nkansah
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana;
| | - Richard Michael Blay
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - Bismarck Afedo Hottor
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
| | - Joe-Nat Clegg-Lamptey
- Department of Surgery, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (N.A.A.-A.); (J.-N.C.-L.)
- Department of Surgery, Korle-Bu Teaching Hospital, Korle Bu, Accra P.O. Box 77, Ghana
| | - Benjamin Arko-Boham
- Department of Anatomy, University of Ghana Medical School, University of Ghana, Accra P.O. Box GP 4236, Ghana; (E.A.); (J.A.); (K.K.A.-O.); (N.K.-K.K.); (E.N.); (R.M.B.); (B.A.H.)
- Correspondence: ; Tel.: +233-200120709
| |
Collapse
|
308
|
Donor-derived Cell-free DNA Kinetics Post-kidney Transplant Biopsy. Transplant Direct 2021; 7:e703. [PMID: 34056078 PMCID: PMC8154469 DOI: 10.1097/txd.0000000000001149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background. Donor-derived cell-free DNA (dd-cfDNA) has generated interest as a biomarker for kidney injury including transplant (KT) rejection. It is possible that the KT biopsy procedure can cause the release of dd-cfDNA, therefore affecting the reliability of this assay in the postbiopsy period. We evaluated the effect of KT biopsy on the kinetics of dd-cfDNA. Methods. We conducted a single-arm prospective study. Samples were collected from 16 adult KT recipients undergoing KT biopsy. All participants had samples drawn within 8 h before the biopsy (prebiopsy), within 20 min (hour 0), 2 h (hour 2), and 24–48 h (hours 24–48) after the biopsy. We evaluated the change in dd-cfDNA from the prebiopsy time point to the following 3 time points after the biopsy. Results. At hour 0 and hour 2, there was a significantly larger log dd-cfDNA mean score compared with the prebiopsy score (least square mean estimate 0.4 [0.17-0.63] and 0.39 [0.09-0.68], respectively). By 24–28 h postbiopsy, there was no significant difference in log dd-cfDNA mean score compared with the prebiopsy score (least square mean estimate −0.21 [−0.6 to 0.19]). Conclusions. Mechanical injury from a KT biopsy can transiently increase circulating dd-cfDNA. The increase resolves by 24–48 h after the biopsy. Providers should wait 48 h postbiopsy to obtain dd-cfDNA levels to establish the correct baseline to be used for monitoring.
Collapse
|
309
|
Paracchini L, D’Incalci M, Marchini S. Liquid Biopsy in the Clinical Management of High-Grade Serous Epithelial Ovarian Cancer-Current Use and Future Opportunities. Cancers (Basel) 2021; 13:2386. [PMID: 34069200 PMCID: PMC8156052 DOI: 10.3390/cancers13102386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The lack of a sensitive and specific biomarker and the limits relating to the single primary tumor sampling make it difficult to monitor high-grade serous epithelial ovarian cancer (HGS-EOC) over time and to capture those alterations that are potentially useful in guiding clinical decisions. To overcome these issues, liquid biopsy has emerged as a very promising tool for HGS-EOC. The analysis of circulating tumor DNA appears to be feasible and studies assessing specific pathogenic mutations (i.e., TP53) or copy number alterations have shown a sufficient degree of sensitivity and specificity to be realistically used to monitor the effectiveness of antitumor therapy. Liquid biopsy can also provide potential important information on the mechanisms of sensitivity and resistance, e.g., by the determination of the reversion of BRCA mutations. Perspective studies are needed to test whether the application of liquid biopsy will significantly improve HGS-EOC management and patients' survival.
Collapse
Affiliation(s)
- Lara Paracchini
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | | |
Collapse
|
310
|
Circulating Cell-Free DNA as a Prognostic Biomarker in Resectable Ampullary Cancer. Cancers (Basel) 2021; 13:cancers13102313. [PMID: 34065893 PMCID: PMC8151754 DOI: 10.3390/cancers13102313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Circulating cell-free DNA (cfDNA) in patients with ampullary cancer was measured to clarify the correlation between cfDNA and clinicopathological factors and the impact of cfDNA on survival outcomes. The level of cfDNA was significantly higher in patients with lymph node involvement, lymphovascular invasion, abnormal serum carcinoembryonic antigen level, and stage II and III cancer. The 1- and 5-year survival rates were 92.0% and 66.5%, respectively, for patients with low cfDNA levels ≤ 6687 copies/mL as compared with 84.0% and 49.9%, respectively, for patients with high cfDNA levels > 6687 copies/mL (p < 0.001). After multivariate analysis, only the cfDNA level and cancer stage were independent factors in determining the prognosis of the ampullary cancer. The cfDNA level could act as a surrogate marker of both disease extent and biological aggressiveness of ampullary cancer. Moreover, cfDNA plays a significant role in determining the prognosis of resectable ampullary cancer. Abstract Circulating cell-free DNA (cfDNA) in ampullary cancer patients was measured to clarify the correlation between cfDNA and clinicopathological factors and the impact of cfDNA on survival outcomes. Patients with ampullary cancer undergoing pancreaticoduodenectomy were included. Correlations between cfDNA and clinicopathological and prognostic factors were determined. The cfDNA levels in patients ranged from 1282 to 21,674 copies/mL, with a median of 6687 copies/mL. The cfDNA level was significantly higher in patients with lymph node involvement, lymphovascular invasion, abnormal serum carcinoembryonic antigen (CEA) level, and stage II and III cancer. Poor prognostic factors for ampullary cancer included high cfDNA > 6687 copies/mL, lymph node involvement, abnormal serum CEA > 5 ng/mL, and advanced stage II and III cancer. The 1- and 5-year survival rates were 92.0% and 66.5%, respectively, for patients with low cfDNA < 6687 copies/mL and 84.0% and 49.9%, respectively, for patients with high cfDNA > 6687 copies/mL (p < 0.001). After multivariate analysis, only the cfDNA level and stage were independent prognostic factors of ampullary cancer. Thus, the cfDNA level could act as a surrogate marker of both disease extent and biological aggressiveness of ampullary cancer. Moreover, cfDNA plays a significant role in the prognosis of resectable ampullary cancer.
Collapse
|
311
|
Comprehensive cell type decomposition of circulating cell-free DNA with CelFiE. Nat Commun 2021; 12:2717. [PMID: 33976150 PMCID: PMC8113516 DOI: 10.1038/s41467-021-22901-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) in the bloodstream originates from dying cells and is a promising noninvasive biomarker for cell death. Here, we propose an algorithm, CelFiE, to accurately estimate the relative abundances of cell types and tissues contributing to cfDNA from epigenetic cfDNA sequencing. In contrast to previous work, CelFiE accommodates low coverage data, does not require CpG site curation, and estimates contributions from multiple unknown cell types that are not available in external reference data. In simulations, CelFiE accurately estimates known and unknown cell type proportions from low coverage and noisy cfDNA mixtures, including from cell types composing less than 1% of the total mixture. When used in two clinically-relevant situations, CelFiE correctly estimates a large placenta component in pregnant women, and an elevated skeletal muscle component in amyotrophic lateral sclerosis (ALS) patients, consistent with the occurrence of muscle wasting typical in these patients. Together, these results show how CelFiE could be a useful tool for biomarker discovery and monitoring the progression of degenerative disease. Tissue damage and turnover lead to the release of DNA in the blood and can be used to monitor changes in tissue state. Here, the authors developed a tool to accurately estimate the proportion of cell types contributing to cell-free DNA in the blood, with an application to pregnant women and ALS patients.
Collapse
|
312
|
Koval AP, Blagodatskikh KA, Kushlinskii NE, Shcherbo DS. The Detection of Cancer Epigenetic Traces in Cell-Free DNA. Front Oncol 2021; 11:662094. [PMID: 33996585 PMCID: PMC8118693 DOI: 10.3389/fonc.2021.662094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Nucleic acid fragments found in blood circulation originate mostly from dying cells and carry signs pointing to specific features of the parental cell types. Deciphering these clues may be transformative for numerous research and clinical applications but strongly depends on the development and implementation of robust analytical methods. Remarkable progress has been achieved in the reliable detection of sequence alterations in cell-free DNA while decoding epigenetic information from methylation and fragmentation patterns requires more sophisticated approaches. This review discusses the currently available strategies for detecting and analyzing the epigenetic marks in the liquid biopsies.
Collapse
Affiliation(s)
- Anastasia P Koval
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin A Blagodatskikh
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nikolay E Kushlinskii
- Laboratory of Clinical Biochemistry, N.N. Blokhin Cancer Research Medical Center of Oncology, Moscow, Russia
| | - Dmitry S Shcherbo
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
313
|
Moradi-Marjaneh R, Asgharzadeh F, Khordad E, Marjaneh MM. The Clinical Impact of Quantitative Cell-free DNA, KRAS, and BRAF Mutations on Response to Anti-EGFR Treatment in Patients with Metastatic Colorectal Cancer. Curr Pharm Des 2021; 27:942-952. [PMID: 33030125 DOI: 10.2174/1381612826666201007163116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common leading causes of cancer death in the world. Although EGFR inhibitors have established efficacy in metastatic colorectal cancer (mCRC), some patients do not respond to this treatment. The EGFR inhibitors' failure and acquired resistance are partly due to KRAS and BRAF mutations. Thus, prognostic biomarkers that help to select eligible patients are highly in demand. To improve patient selection, assessment of mutational status in circulating cell free DNA (cfDNA), which possibly represents the dynamicity of tumor genetic status better than tumor tissue, could be advantageous. This review summarizes the current knowledge of the prognostic value of cfDNA in patients with mCRC treated with EGFR inhibitors with emphasis on the clinical importance of identification of KRAS and BRAF mutations.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | |
Collapse
|
314
|
Yuwono NL, Henry CE, Ford CE, Warton K. Total and endothelial cell-derived cell-free DNA in blood plasma does not change during menstruation. PLoS One 2021; 16:e0250561. [PMID: 33901234 PMCID: PMC8075187 DOI: 10.1371/journal.pone.0250561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Assays measuring cell-free DNA (cfDNA) in blood have widespread potential in modern medicine. However, a comprehensive understanding of cfDNA dynamics in healthy individuals is required to assist in the design of assays that maximise the signal driven by pathological changes, while excluding fluctuations that are part of healthy physiological processes. The menstrual cycle involves major remodelling of endometrial tissue and associated apoptosis, yet there has been little investigation of the impact of the menstrual cycle on cfDNA levels. Paired plasma samples were collected from 40 healthy women on menstruating (M) and non-menstruating (NM) days of their cycle. We measured total cfDNA by targeting ALU repetitive sequences and measured endothelial-derived cfDNA by methylation-specific qPCR targeting an endothelium-unique unmethylated CDH5 DNA region. CfDNA integrity and endothelial cfDNA concentration, but not total cfDNA, are consistent across time between NM and M. No significant changes in total (ALU-115 p = 0.273; ALU-247 p = 0.385) or endothelial cell specific (p = 0.301) cfDNA were observed, leading to the conclusion that menstrual status at the time of diagnostic blood collection should not have a significant impact on the quantitation of total cfDNA and methylation-based cancer assays.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Claire Elizabeth Henry
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
315
|
Mao X, Jakubovics NS, Bächle M, Buchalla W, Hiller KA, Maisch T, Hellwig E, Kirschneck C, Gessner A, Al-Ahmad A, Cieplik F. Colonization of Helicobacter pylori in the oral cavity - an endless controversy? Crit Rev Microbiol 2021; 47:612-629. [PMID: 33899666 DOI: 10.1080/1040841x.2021.1907740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is associated with chronic gastritis, gastric or duodenal ulcers, and gastric cancer. Since the oral cavity is the entry port and the first component of the gastrointestinal system, the oral cavity has been discussed as a potential reservoir of H. pylori. Accordingly, a potential oral-oral transmission route of H. pylori raises the question concerning whether close contact such as kissing or sharing a meal can cause the transmission of H. pylori. Therefore, this topic has been investigated in many studies, applying different techniques for detection of H. pylori from oral samples, i.e. molecular techniques, immunological or biochemical methods and traditional culture techniques. While molecular, immunological or biochemical methods usually yield high detection rates, there is no definitive evidence that H. pylori has ever been isolated from the oral cavity. The specificity of those methods may be limited due to potential cross-reactivity, especially with H. pylori-like microorganisms such as Campylobacter spp. Furthermore, the influence of gastroesophageal reflux has not been investigated so far. This review aims to summarize and critically discuss previous studies investigating the potential colonization of H. pylori in the oral cavity and suggest novel research directions for targeting this critical research question.
Collapse
Affiliation(s)
- Xiaojun Mao
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Bächle
- Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Center for Dental Medicine, University of Freiburg, Freiburg, Germany
| | | | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Center for Dental Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
316
|
Fernández-Domínguez IJ, Manzo-Merino J, Taja-Chayeb L, Dueñas-González A, Pérez-Cárdenas E, Trejo-Becerril C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol Ther 2021; 22:267-278. [PMID: 33858306 DOI: 10.1080/15384047.2021.1890319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nowadays, extracellular DNA or circulating cell-free DNA is considered to be a molecule with clinical applications (diagnosis, prognosis, monitoring of treatment responses, or patient follow-up) in diverse pathologies, especially in cancer. Nevertheless, because of its molecular characteristics, it can have many other functions. This review focuses on the participation of extracellular DNA (exDNA) in fundamental processes such as cell signaling, coagulation, immunity, evolution through horizontal transfer of genetic information, and adaptive response to inflammatory processes. A deeper understanding of its role in each of these processes will allow development of better tools to monitor and control pathologies, as well as helping to generate new therapeutic options, beyond the applicability of DNA in liquid biopsy.
Collapse
Affiliation(s)
| | | | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, México City
| | - Alfonso Dueñas-González
- Division of Basic Research, Instituto Nacional de Cancerología, México City.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
317
|
Perillo A, Agbaje Olufemi MV, De Robbio J, Mancuso RM, Roscigno A, Tirozzi M, Scognamiglio IR. Liquid biopsy in NSCLC: a new challenge in radiation therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:156-173. [PMID: 36046142 PMCID: PMC9400754 DOI: 10.37349/etat.2021.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.
Collapse
Affiliation(s)
- Annarita Perillo
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Mohamed Vincenzo Agbaje Olufemi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Jacopo De Robbio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Rossella Margherita Mancuso
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Anna Roscigno
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maddalena Tirozzi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Ida Rosalia Scognamiglio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
318
|
Andargie TE, Tsuji N, Seifuddin F, Jang MK, Yuen PS, Kong H, Tunc I, Singh K, Charya A, Wilkins K, Nathan S, Cox A, Pirooznia M, Star RA, Agbor-Enoh S. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight 2021; 6:147610. [PMID: 33651717 PMCID: PMC8119224 DOI: 10.1172/jci.insight.147610] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories. METHODS We conducted a multicenter prospective cohort study to enroll patients with COVID-19 and collect plasma samples. Plasma cfDNA was subject to bisulfite sequencing. A library of tissue-specific DNA methylation signatures was used to analyze sequence reads to quantitate cfDNA from different tissue types. We then determined the correlation of tissue-specific cfDNA measures to COVID-19 outcomes. Similar analyses were performed for healthy controls and a comparator group of patients with respiratory syncytial virus and influenza. RESULTS We found markedly elevated levels and divergent tissue sources of cfDNA in COVID-19 patients compared with patients who had influenza and/or respiratory syncytial virus and with healthy controls. The major sources of cfDNA in COVID-19 were hematopoietic cells, vascular endothelium, hepatocytes, adipocytes, kidney, heart, and lung. cfDNA levels positively correlated with COVID-19 disease severity, C-reactive protein, and D-dimer. cfDNA profile at admission identified patients who subsequently required intensive care or died during hospitalization. Furthermore, the increased cfDNA in COVID-19 patients generated excessive mitochondrial ROS (mtROS) in renal tubular cells in a concentration-dependent manner. This mtROS production was inhibited by a TLR9-specific antagonist. CONCLUSION cfDNA maps tissue injury that predicts COVID-19 outcomes and may mechanistically propagate COVID-19–induced tissue injury. FUNDING Intramural Targeted Anti–COVID-19 grant, NIH.
Collapse
Affiliation(s)
- Temesgen E Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA.,Department of Biology, Howard University, Washington DC, USA
| | - Naoko Tsuji
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Peter St Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Ilker Tunc
- Bioinformatics and Computation Core, NHLBI, Maryland, USA
| | - Komudi Singh
- Bioinformatics and Computation Core, NHLBI, Maryland, USA
| | - Ananth Charya
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | | | - Steven Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia, USA
| | - Andrea Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
319
|
Valenti F, Falcone I, Ungania S, Desiderio F, Giacomini P, Bazzichetto C, Conciatori F, Gallo E, Cognetti F, Ciliberto G, Morrone A, Guerrisi A. Precision Medicine and Melanoma: Multi-Omics Approaches to Monitoring the Immunotherapy Response. Int J Mol Sci 2021; 22:3837. [PMID: 33917181 PMCID: PMC8067863 DOI: 10.3390/ijms22083837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.
Collapse
Affiliation(s)
- Fabio Valenti
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena Institute, 00144 Rome, Italy;
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Patrizio Giacomini
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Enzo Gallo
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Gennaro Ciliberto
- Scientific Direction IRCSS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Morrone
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Antonino Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| |
Collapse
|
320
|
Quantification of Circulating Cell Free Mitochondrial DNA in Extracellular Vesicles with PicoGreen™ in Liquid Biopsies: Fast Assessment of Disease/Trauma Severity. Cells 2021; 10:cells10040819. [PMID: 33917426 PMCID: PMC8067453 DOI: 10.3390/cells10040819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022] Open
Abstract
The analysis of circulating cell free DNA (ccf-DNA) is an emerging diagnostic tool for the detection and monitoring of tissue injury, disease progression, and potential treatment effects. Currently, most of ccf-DNA in tissue and liquid biopsies is analysed with real-time quantitative PCR (qPCR) that is primer- and template-specific, labour intensive and cost-inefficient. In this report we directly compare the amounts of ccf-DNA in serum of healthy volunteers, and subjects presenting with various stages of lung adenocarcinoma, and survivors of traumatic brain injury using qPCR and quantitative PicoGreen™ fluorescence assay. A significant increase of ccf-DNA in lung adenocarcinoma and traumatic brain injury patients, in comparison to the group of healthy human subjects, was found using both analytical methods. However, the direct correlation between PicoGreen™ fluorescence and qPCR was found only when mitochondrial DNA (mtDNA)-specific primers were used. Further analysis of the location of ccf-DNA indicated that the majority of DNA is located within lumen of extracellular vesicles (EVs) and is easily detected with mtDNA-specific primers. We have concluded that due to the presence of active DNases in the blood, the analysis of DNA within EVs has the potential of providing rapid diagnostic outcomes. Moreover, we speculate that accurate and rapid quantification of ccf-DNA with PicoGreen™ fluorescent probe used as a point of care approach could facilitate immediate assessment and treatment of critically ill patients.
Collapse
|
321
|
Chibuk J, Flory A, Kruglyak KM, Leibman N, Nahama A, Dharajiya N, van den Boom D, Jensen TJ, Friedman JS, Shen MR, Clemente-Vicario F, Chorny I, Tynan JA, Lytle KM, Holtvoigt LE, Murtaza M, Diaz LA, Tsui DWY, Grosu DS. Horizons in Veterinary Precision Oncology: Fundamentals of Cancer Genomics and Applications of Liquid Biopsy for the Detection, Characterization, and Management of Cancer in Dogs. Front Vet Sci 2021; 8:664718. [PMID: 33834049 PMCID: PMC8021921 DOI: 10.3389/fvets.2021.664718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of death in dogs, in part because many cases are identified at an advanced stage when clinical signs have developed, and prognosis is poor. Increased understanding of cancer as a disease of the genome has led to the introduction of liquid biopsy testing, allowing for detection of genomic alterations in cell-free DNA fragments in blood to facilitate earlier detection, characterization, and management of cancer through non-invasive means. Recent discoveries in the areas of genomics and oncology have provided a deeper understanding of the molecular origins and evolution of cancer, and of the "one health" similarities between humans and dogs that underlie the field of comparative oncology. These discoveries, combined with technological advances in DNA profiling, are shifting the paradigm for cancer diagnosis toward earlier detection with the goal of improving outcomes. Liquid biopsy testing has already revolutionized the way cancer is managed in human medicine - and it is poised to make a similar impact in veterinary medicine. Multiple clinical use cases for liquid biopsy are emerging, including screening, aid in diagnosis, targeted treatment selection, treatment response monitoring, minimal residual disease detection, and recurrence monitoring. This review article highlights key scientific advances in genomics and their relevance for veterinary oncology, with the goal of providing a foundational introduction to this important topic for veterinarians. As these technologies migrate from human medicine into veterinary medicine, improved awareness and understanding will facilitate their rapid adoption, for the benefit of veterinary patients.
Collapse
Affiliation(s)
| | | | | | - Nicole Leibman
- The Cancer Institute, Animal Medical Center, New York, NY, United States
| | | | | | | | | | | | - M. Richard Shen
- RS Technology Ventures LLC., Rancho Santa Fe, CA, United States
| | | | | | | | | | | | - Muhammed Murtaza
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | |
Collapse
|
322
|
Extracellular DNA in blood products and its potential effects on transfusion. Biosci Rep 2021; 40:222322. [PMID: 32150264 PMCID: PMC7098128 DOI: 10.1042/bsr20192770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/18/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Blood transfusions are sometimes necessary after a high loss of blood due to injury or surgery. Some people need regular transfusions due to medical conditions such as haemophilia or cancer. Studies have suggested that extracellular DNA including mitochondrial DNA present in the extracellular milieu of transfused blood products has biological actions that are capable of activating the innate immune systems and potentially contribute to some adverse reactions in transfusion. From the present work, it becomes increasingly clear that extracellular DNA encompassed mitochondrial DNA is far from being biologically inert in blood products. It has been demonstrated to be present in eligible blood products and thus can be transfused to blood recipients. Although the presence of extracellular DNA in human plasma was initially detected in 1948, some aspects have not been fully elucidated. In this review, we summarize the potential origins, clearance mechanisms, relevant structures, and potential role of extracellular DNA in the innate immune responses and its relationship with individual adverse reactions in transfusion.
Collapse
|
323
|
Wang SC, Liao LM, Ansar M, Lin SY, Hsu WW, Su CM, Chung YM, Liu CC, Hung CS, Lin RK. Automatic Detection of the Circulating Cell-Free Methylated DNA Pattern of GCM2, ITPRIPL1 and CCDC181 for Detection of Early Breast Cancer and Surgical Treatment Response. Cancers (Basel) 2021; 13:cancers13061375. [PMID: 33803633 PMCID: PMC8002961 DOI: 10.3390/cancers13061375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
Collapse
Affiliation(s)
- Sheng-Chao Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Shih-Yun Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, 101 Dickens Hall, 1116 Mid-Campus Drive N, Manhattan, KS 66506-0802, USA;
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
| | - Yu-Mei Chung
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Cai-Cing Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| | - Ruo-Kai Lin
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Clinical trial center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| |
Collapse
|
324
|
Toledano-Fonseca M, Cano MT, Inga E, Gómez-España A, Guil-Luna S, García-Ortiz MV, Mena-Osuna R, De la Haba-Rodriguez JR, Rodríguez-Ariza A, Aranda E. The Combination of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Liquid Biopsy Biomarkers Improves Prognosis Prediction in Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13061210. [PMID: 33802006 PMCID: PMC7998484 DOI: 10.3390/cancers13061210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly inflammatory microenvironment and liquid biopsy has emerged as a promising tool for the noninvasive analysis of this tumor. In this study, plasma was obtained from 58 metastatic PDAC patients, and neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), circulating cell-free DNA (cfDNA) concentration, and circulating RAS mutation were determined. We found that NLR was significantly associated with both overall survival (OS) and progression-free survival. Remarkably, NLR was an independent risk factor for poor OS. Moreover, NLR and PLR positively correlated, and combination of both inflammatory markers significantly improved the prognostic stratification of metastatic PDAC patients. NLR also showed a positive correlation with cfDNA levels and RAS mutant allelic fraction (MAF). Besides, we found that neutrophil activation contributed to cfDNA content in the plasma of metastatic PDAC patients. Finally, a multi-parameter prognosis model was designed by combining NLR, PLR, cfDNA levels, RAS mutation, RAS MAF, and CA19-9, which performs as a promising tool to predict the prognosis of metastatic PDAC patients. In conclusion, our study supports the idea that the use of systemic inflammatory markers along with circulating tumor-specific markers may constitute a valuable tool for the clinical management of metastatic PDAC patients.
Collapse
Affiliation(s)
- Marta Toledano-Fonseca
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - M. Teresa Cano
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Elizabeth Inga
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Auxiliadora Gómez-España
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Silvia Guil-Luna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - María Victoria García-Ortiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Rafael Mena-Osuna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Juan R. De la Haba-Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Correspondence:
| | - Enrique Aranda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
325
|
Paul RS, Almokayad I, Collins A, Raj D, Jagadeesan M. Donor-derived Cell-free DNA: Advancing a Novel Assay to New Heights in Renal Transplantation. Transplant Direct 2021; 7:e664. [PMID: 33564715 PMCID: PMC7862009 DOI: 10.1097/txd.0000000000001098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite advances in transplant immunosuppression, long-term renal allograft outcomes remain suboptimal because of the occurrence of rejection, recurrent disease, and interstitial fibrosis with tubular atrophy. This is largely due to limitations in our understanding of allogeneic processes coupled with inadequate surveillance strategies. The concept of donor-derived cell-free DNA as a signal of allograft stress has therefore rapidly been adopted as a noninvasive monitoring tool. Refining it for effective clinical use, however, remains an ongoing effort. Furthermore, its potential to unravel new insights in alloimmunity through novel molecular techniques is yet to be realized. This review herein summarizes current knowledge and active endeavors to optimize cell-free DNA-based diagnostic techniques for clinical use in kidney transplantation. In addition, the integration of DNA methylation and microRNA may unveil new epigenetic signatures of allograft health and is also explored in this report. Directing research initiatives toward these aspirations will not only improve diagnostic precision but may foster new paradigms in transplant immunobiology.
Collapse
Affiliation(s)
- Rohan S. Paul
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ismail Almokayad
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ashte Collins
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Dominic Raj
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | | |
Collapse
|
326
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
327
|
Sin STK, Ji L, Deng J, Jiang P, Cheng SH, Heung MMS, Lau CSL, Leung TY, Chan KCA, Chiu RWK, Lo YMD. Characteristics of Fetal Extrachromosomal Circular DNA in Maternal Plasma: Methylation Status and Clearance. Clin Chem 2021; 67:788-796. [PMID: 33615350 DOI: 10.1093/clinchem/hvaa326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the characterization of cell-free extrachromosomal circular DNA (eccDNA) has gained much research interest, the methylation status of these molecules is yet to be elucidated. We set out to compare the methylation densities of plasma eccDNA of maternal and fetal origins, and between small and large molecules. The clearance of fetal eccDNA from maternal circulation was also investigated. METHODS We developed a sequencing protocol for eccDNA methylation analysis using tagmentation and enzymatic conversion approaches. A restriction enzyme-based approach was applied to verify the tagmentation results. The efficiency of cell-free fetal eccDNA clearance was investigated by fetal eccDNA fraction evaluations at various postpartum time points. RESULTS The methylation densities of fetal eccDNA (median: 56.3%; range: 40.5-67.6%) were lower than the maternal eccDNA (median: 66.7%; range: 56.5-75.7%) (P = 0.02, paired t-test). In addition, eccDNA molecules from the smaller peak cluster (180-230 bp) were of lower methylation levels than those from the larger peak cluster (300-450 bp). Both of these findings were confirmed using the restriction enzyme approach. We also observed comparable methylation densities between linear and eccDNA of both maternal and fetal origins. The average half-lives of fetal linear and eccDNA in the maternal blood were 30.2 and 29.7 min, respectively. CONCLUSIONS We found that fetal eccDNA in plasma was relatively hypomethylated compared to the maternal eccDNA. The methylation densities of eccDNA were positively correlated with their sizes. In addition, fetal eccDNA was found to be rapidly cleared from the maternal blood after delivery, similar to fetal linear DNA.
Collapse
Affiliation(s)
- Sarah T K Sin
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lu Ji
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiaen Deng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Suk Hang Cheng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Macy M S Heung
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Caitlyn S L Lau
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
328
|
Circulating Free DNA and Its Emerging Role in Autoimmune Diseases. J Pers Med 2021; 11:jpm11020151. [PMID: 33672659 PMCID: PMC7924199 DOI: 10.3390/jpm11020151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsies can be used to analyse tissue-derived information, including cell-free DNA (cfDNA), circulating rare cells, and circulating extracellular vesicles in the blood or other bodily fluids, representing a new way to guide therapeutic decisions in cancer. Among the new challenges of liquid biopsy, we found clinical application in nontumour pathologies, including autoimmune diseases. Since the discovery of the presence of high levels of cfDNA in patients with systemic lupus erythaematosus (SLE) in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and its association with disease activity. However, with technological advancements and the increasing understanding of the role of DNA sensing receptors in inflammation and autoimmunity, interest in cfDNA and autoimmune diseases has not expanded until recently. In this review, we provide an overview of the basic biology of cfDNA in the context of autoimmune diseases as a biomarker of disease activity, progression, and prediction of the treatment response. We discuss and integrate available information about these important aspects.
Collapse
|
329
|
Wallander K, Eisfeldt J, Lindblad M, Nilsson D, Billiau K, Foroughi H, Nordenskjöld M, Liedén A, Tham E. Cell-free tumour DNA analysis detects copy number alterations in gastro-oesophageal cancer patients. PLoS One 2021; 16:e0245488. [PMID: 33539436 PMCID: PMC7861431 DOI: 10.1371/journal.pone.0245488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Analysis of cell-free tumour DNA, a liquid biopsy, is a promising biomarker for cancer. We have performed a proof-of principle study to test the applicability in the clinical setting, analysing copy number alterations (CNAs) in plasma and tumour tissue from 44 patients with gastro-oesophageal cancer. METHODS DNA was isolated from blood plasma and a tissue sample from each patient. Array-CGH was applied to the tissue DNA. The cell-free plasma DNA was sequenced by low-coverage whole-genome sequencing using a clinical pipeline for non-invasive prenatal testing. WISECONDOR and ichorCNA, two bioinformatic tools, were used to process the output data and were compared to each other. RESULTS Cancer-associated CNAs could be seen in 59% (26/44) of the tissue biopsies. In the plasma samples, a targeted approach analysing 61 regions of special interest in gastro-oesophageal cancer detected cancer-associated CNAs with a z-score >5 in 11 patients. Broadening the analysis to a whole-genome view, 17/44 patients (39%) had cancer-associated CNAs using WISECONDOR and 13 (30%) using ichorCNA. Of the 26 patients with tissue-verified cancer-associated CNAs, 14 (54%) had corresponding CNAs in plasma. Potentially clinically actionable amplifications overlapping the genes VEGFA, EGFR and FGFR2 were detected in the plasma from three patients. CONCLUSIONS We conclude that low-coverage whole-genome sequencing without prior knowledge of the tumour alterations could become a useful tool for cell-free tumour DNA analysis of total CNAs in plasma from patients with gastro-oesophageal cancer.
Collapse
Affiliation(s)
- Karin Wallander
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Lindblad
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Kenny Billiau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hassan Foroughi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Agne Liedén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
330
|
Qasemi M, Mahdian R, Amidi F. Cell-free DNA discoveries in human reproductive medicine: providing a new tool for biomarker and genetic assays in ART. J Assist Reprod Genet 2021; 38:277-288. [PMID: 33421023 PMCID: PMC7884523 DOI: 10.1007/s10815-020-02038-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 02/02/2023] Open
Abstract
Cell-free DNAs (cfDNAs) are fragmented forms of DNA that are released into extracellular environments. Analyzing them, regarding either concentration or genetic/epigenetic status can provide helpful information about disorders, response to treatments, estimation of success rates, etc. Moreover, since they are presented in body fluids, evaluation of the aforementioned items would be achieved by less/non-invasive methods. In human reproduction field, it is required to have biomarkers for prediction of assisted reproduction techniques (ART) outcome, as well as some non-invasive procedures for genetic/epigenetic assessments. cfDNA is an appropriate candidate for providing the both approaches in ART. Recently, scientists attempted to investigate its application in distinct fields of reproductive medicine that resulted in discovering its applicability for biomarker and genetic/epigenetic analyses. However, due to some limitations, it has not reached to clinical administration yet. In this article, we have reviewed the current reported data with respect to advantages and limitations of cfDNA utilization in three fields of ART, reproduction of male and female, as well as in vitro developed embryos.
Collapse
Affiliation(s)
- Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
331
|
Murillo Carrasco A, Acosta O, Ponce J, Cotrina J, Aguilar A, Araujo J, Rebaza P, Pinto JA, Fujita R, Buleje J. PUM1 and RNase P genes as potential cell-free DNA markers in breast cancer. J Clin Lab Anal 2021; 35:e23720. [PMID: 33522650 PMCID: PMC8059717 DOI: 10.1002/jcla.23720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) is used in clinical research to identify biomarkers for diagnosis of and follow-up on cancer. Here, we propose a fast and innovative approach using traditional housekeeping genes as cfDNA targets in a copy number analysis. We focus on the application of highly sensitive technology such as digital PCR (dPCR) to differentiate breast cancer (BC) patients and controls by quantifying regions of PUM1 and RPPH1 (RNase P) in plasma samples. METHODS We conducted a case-control study with 82 BC patients and 82 healthy women. cfDNA was isolated from plasma using magnetic beads and quantified by spectrophotometry to estimate total cfDNA. Then, both PUM1 and RPPH1 genes were specifically quantified by dPCR. Data analysis was calibrated using a reference genomic DNA in different concentrations. RESULTS We found RNase P and PUM1 values were correlated in the patient group (intraclass correlation coefficient [ICC] = 0.842), but they did not have any correlation in healthy women (ICC = 0.519). In dPCR quantification, PUM1 showed the capacity to distinguish early-stage patients and controls with good specificity (98.67%) and sensitivity (100%). Conversely, RNase P had lower cfDNA levels in triple-negative BC patients than luminal subtypes (p < 0.025 for both), confirming their utility for patient classification. CONCLUSION We propose the PUM1 gene as a cfDNA marker for early diagnosis of BC and RNase P as a cfDNA marker related to hormonal status and subtype classification in BC. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Alexis Murillo Carrasco
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| | - Oscar Acosta
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú.,Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jaime Ponce
- Oncosalud-AUNA, Unidad de la Mama, Lima, Perú
| | - José Cotrina
- Departamento de Cirugía de Mamas, Instituto Nacional de Enfermedades Neoplásicas-INEN, Lima, Perú
| | - Alfredo Aguilar
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | - Jhajaira Araujo
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | | | - Joseph A Pinto
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | - Ricardo Fujita
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| | - José Buleje
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| |
Collapse
|
332
|
Papagoras C, Chrysanthopoulou A, Mitsios A, Ntinopoulou M, Tsironidou V, Batsali AK, Papadaki HA, Skendros P, Ritis K. IL-17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone-forming cells in ankylosing spondylitis. Eur J Immunol 2021; 51:930-942. [PMID: 33340091 DOI: 10.1002/eji.202048878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease characterized by excessive bone formation. We investigated the presence of neutrophil extracellular traps (NETs) in AS and how they are involved in the osteogenic capacity of bone marrow mesenchymal stem cells (MSCs) through interleukin-17A (IL-17A). Peripheral neutrophils and sera were obtained from patients with active AS and healthy controls. NET formation and neutrophil/NET-associated proteins were studied using immunofluorescence, immunoblotting, qPCR, and ELISA. In vitro co-culture systems of AS NET structures and MSCs isolated from controls were deployed to examine the role of NETs in the differentiation of MSCs toward osteogenic cells. Analysis was performed using specific staining and qPCR. Neutrophils from patients with AS were characterized by enhanced formation of NETs carrying bioactive IL-17A and IL-1β. IL-17A-enriched AS NETs mediated the differentiation of MSCs toward bone-forming cells. The neutrophil expression of IL-17A was positively regulated by IL-1β. Blocking IL-1β signaling on neutrophils with anakinra or dismantling NETs using DNase-I disrupted osteogenesis driven by IL-17A-bearing NETs. These findings propose a novel role of neutrophils in AS-related inflammation, linking IL-17A-decorated NETs with the differentiation of MSCs toward bone-forming cells. Moreover, IL-1β triggers the expression of IL-17A on NETs offering an additional therapeutic target in AS.
Collapse
Affiliation(s)
- Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Ntinopoulou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aristea K Batsali
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A Papadaki
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece.,Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
333
|
Young GP, Symonds EL, Nielsen HJ, Ferm L, Christensen IJ, Dekker E, van der Vlugt M, Mallant-Hent RC, Boulter N, Yu B, Chan M, Tevz G, LaPointe LC, Pedersen SK. Evaluation of a panel of tumor-specific differentially-methylated DNA regions in IRF4, IKZF1 and BCAT1 for blood-based detection of colorectal cancer. Clin Epigenetics 2021; 13:14. [PMID: 33478584 PMCID: PMC7818774 DOI: 10.1186/s13148-020-00999-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Differentially-methylated regions (DMRs) are characteristic of colorectal cancer (CRC) and some occur more frequently than common mutations. This study aimed to evaluate the clinical utility of assaying circulating cell-free DNA for methylation in BCAT1, IKZF1 and IRF4 for detection of CRC. METHODS A multiplexed real-time PCR assay targeting DMRs in each of the three genes was developed. Assay accuracy was explored in plasma specimens banked from observational cross-sectional trials or from volunteers scheduled for colonoscopy or prior to CRC surgery. RESULTS 1620 specimens were suitable for study inclusion including 184 and 616 cases with CRC and adenomas, respectively, and 820 cases without neoplasia (overall median age, 63.0 years; 56% males). Combining the PCR signals for all targeted DMRs returned the best sensitivity for CRC (136/184, 73.9%, 95% CI 67.1-79.7), advanced adenomas (53/337, 15.7%, 95% CI 12.0-20.1) and high-grade dysplastic (HGD) adenomas (9/35, 25.7%, 95% CI 14.0-42.3) with a 90.1%, specificity for neoplasia (739/820, 95% CI 87.9-92.0, p < 0.01). Detection of methylation in all three genes were more likely in CRC cases than those without it (OR 28.5, 95% CI 7.3-121.2, p < 0.0001). Of the 81 positive cases without neoplasia, 62 (76.5%) were positive by a single PCR replicate only and predominantly due to detection of methylated BCAT1 (53.2%). Single replicate positivity was significantly higher than that in CRC (26/136, 19.1%, p < 0.0001), and single BCAT1 replicate positivity was more likely in cases without neoplasia than in CRC (OR 17.7, 95% CI 6.6-43.3, p < 0.0001). When a positive result was limited to those with ≥ 1 PCR replicate positive for either IKZF1 or IRF4, or at least two replicates positive for BCAT1, the multi-panel test maintained a high sensitivity for CRC (131/184, 71.2%, 95% CI 64.3-77.3) and HGD adenomas (8/35, 22.9%, 95% CI 11.8-39.3, p = 0.029) but improved specificity significantly (772/820, 94.1%, 95% CI 92.3-95.6, p < 0.0001 vs. any PCR replicate positive). CONCLUSION The multi-panel methylation assay differentiates cases with CRC from those without it and does so with high specificity when criteria for BCAT1 detection are applied. The marker panel is flexible and studies in those at average risk for CRC are now warranted to determine which panel configuration best suits screening goals. TRIAL REGISTRATION ACTRN12611000318987. Registered 25 March 2011, https://www.anzctr.org.au/ ACTRN12611000318987.
Collapse
Affiliation(s)
- Graeme P Young
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Erin L Symonds
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
- Bowel Health Service, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Linnea Ferm
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Ib J Christensen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Manon van der Vlugt
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Nicky Boulter
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | - Betty Yu
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | - Michelle Chan
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | - Gregor Tevz
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | | | | |
Collapse
|
334
|
Shandilya R, Bunkar N, Kumari R, Bhargava A, Chaudhury K, Goryacheva IY, Mishra PK. Immuno-cytometric detection of circulating cell free methylated DNA, post-translationally modified histones and micro RNAs using semi-conducting nanocrystals. Talanta 2021; 222:121516. [PMID: 33167226 DOI: 10.1016/j.talanta.2020.121516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
The diagnostic potential of cell free epigenomic signatures is largely driven by the fact that manifold quantities of methylated DNA, post-translationally modified histones and micro RNAs are released into systemic circulation in various non-communicable diseases. However, the time-consuming and specificity-related complications of conventional analytical procedures necessitate the development of a method which is rapid, selective and sensitive in nature. The present work illustrates a novel; prompt; "mix and measure" cytometric-based nano-biosensing system that offers direct quantification of cell-free circulating (ccf) epigenomic signatures (methylated ccf-DNA, tri-methylated histone H3 at lysine {4, 9, 27 & 36} and argonaute 2 protein-bound ccf-micro RNAs) using triple nano-assemblies in a single tube format. Each assembly with unique structural and spectral properties comprised of n-type semiconducting nanocrystals conjugated to a specific monoclonal antibody. Our results suggested that the developed combinatorial approach may offer simultaneous detection of three distinct yet biologically interrelated signatures with high selectivity and sensitivity using flow cytometry and fluorometry in the enriched and test samples. The proposed novel nano-assembly based detection system has a considerable potential of emerging as a minimal invasive easy-to-use method that could possibly permit real-time, rapid and reproducible monitoring of epigenomic markers in clinical and field settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
335
|
Martuszewski A, Paluszkiewicz P, Król M, Banasik M, Kepinska M. Donor-Derived Cell-Free DNA in Kidney Transplantation as a Potential Rejection Biomarker: A Systematic Literature Review. J Clin Med 2021; 10:jcm10020193. [PMID: 33430458 PMCID: PMC7827757 DOI: 10.3390/jcm10020193] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney transplantation (KTx) is the best treatment method for end-stage kidney disease. KTx improves the patient's quality of life and prolongs their survival time; however, not all patients benefit fully from the transplantation procedure. For some patients, a problem is the premature loss of graft function due to immunological or non-immunological factors. Circulating cell-free DNA (cfDNA) is degraded deoxyribonucleic acid fragments that are released into the blood and other body fluids. Donor-derived cell-free DNA (dd-cfDNA) is cfDNA that is exogenous to the patient and comes from a transplanted organ. As opposed to an invasive biopsy, dd-cfDNA can be detected by a non-invasive analysis of a sample. The increase in dd-cfDNA concentration occurs even before the creatinine level starts rising, which may enable early diagnosis of transplant injury and adequate treatment to avoid premature graft loss. In this paper, we summarise the latest promising results related to cfDNA in transplant patients.
Collapse
Affiliation(s)
- Adrian Martuszewski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Patrycja Paluszkiewicz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Magdalena Król
- Students Scientific Association, Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-0171
| |
Collapse
|
336
|
Mondelo-Macía P, García-González J, León-Mateos L, Castillo-García A, López-López R, Muinelo-Romay L, Díaz-Peña R. Current Status and Future Perspectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021; 9:48. [PMID: 33430290 PMCID: PMC7825645 DOI: 10.3390/biomedicines9010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Approximately 19% of all cancer-related deaths are due to lung cancer, which is the leading cause of mortality worldwide. Small cell lung cancer (SCLC) affects approximately 15% of patients diagnosed with lung cancer. SCLC is characterized by aggressiveness; the majority of SCLC patients present with metastatic disease, and less than 5% of patients are alive at 5 years. The gold standard of SCLC treatment is platinum and etoposide-based chemotherapy; however, its effects are short. In recent years, treatment for SCLC has changed; new drugs have been approved, and new biomarkers are needed for treatment selection. Liquid biopsy is a non-invasive, rapid, repeated and alternative tool to the traditional tumor biopsy that could allow the most personalized medicine into the management of SCLC patients. Circulating tumor cells (CTCs) and cell-free DNA (cfDNA) are the most commonly used liquid biopsy biomarkers. Some studies have reported the prognostic factors of CTCs and cfDNA in SCLC patients, independent of the stage. In this review, we summarize the recent SCLC studies of CTCs, cfDNA and other liquid biopsy biomarkers, and we discuss the future utility of liquid biopsy in the clinical management of SCLC.
Collapse
Affiliation(s)
- Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
| | - Jorge García-González
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis León-Mateos
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - Rafael López-López
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Roberto Díaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
337
|
Del Real A, Perez-Campo FM, Perez-Nuñez MI, Sañudo C, Santurtun A, Garcia-Ibarbia C, Garcia-Unzueta MT, Fraga MF, Fernandez AF, Valero MC, Laguna E, Riancho JA. Methylation of the Sclerostin (SOST) Gene in Serum Free DNA: A New Bone Biomarker? Genet Test Mol Biomarkers 2021; 25:42-47. [PMID: 33372860 DOI: 10.1089/gtmb.2020.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cell-free DNA (cfDNA) methylation is an important molecular biomarker, which provides information about the regulation of gene expression in the tissue of origin. There is an inverse correlation between SOST gene methylation and expression levels. Methods: We analyzed SOST promoter methylation in cfDNA from serum, and compared it with DNA from blood and bone cells from patients undergoing hip replacement surgery. We also measured cfDNA methylation in 28 osteoporotic patients at baseline and after 6 months of antiosteoporotic therapy (alendronate, teriparatide, or denosumab). Results: SOST gene promoter methylation levels in serum cfDNA were very similar to those of bone-derived DNA (79% ± 12% and 82% ± 7%, respectively), but lower than methylation levels in blood cell DNA (87% ± 10%). Furthermore, there was a positive correlation between an individual's SOST DNA methylation values in serum and bone. No differences in either serum sclerostin levels or SOST methylation were found after 6-months of therapy with antiosteoporotic drugs. Conclusions: Our results suggest that serum cfDNA does not originate from blood cells, but rather from bone. However, since we did not confirm changes in this marker after therapy with bone-active drugs, further studies examining the correlation between bone changes of SOST expression and SOST methylation in cfDNA are needed to confirm its potential role as a bone biomarker.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Flor M Perez-Campo
- Department of Molecular Biology, University of Cantabria-IDIVAL, Santander, Spain
| | | | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Ana Santurtun
- Unit of Legal Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - M Teresa Garcia-Unzueta
- Service of Clinical Biochemistry, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Asturias, Spain
| | - Agustin F Fernandez
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA. Fundación para la Investigación Biosanitaria de Asturias (FINBA), Asturias, Spain
| | - Maria Carmen Valero
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Esther Laguna
- Department of Molecular Biology, University of Cantabria-IDIVAL, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| |
Collapse
|
338
|
Keller L, Belloum Y, Wikman H, Pantel K. Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br J Cancer 2021; 124:345-358. [PMID: 32968207 PMCID: PMC7852556 DOI: 10.1038/s41416-020-01047-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-free DNA (cfDNA) derived from tumours is present in the plasma of cancer patients. The majority of currently available studies on the use of this circulating tumour DNA (ctDNA) deal with the detection of mutations. The analysis of cfDNA is often discussed in the context of the noninvasive detection of mutations that lead to resistance mechanisms and therapeutic and disease monitoring in cancer patients. Indeed, substantial advances have been made in this area, with the development of methods that reach high sensitivity and can interrogate a large number of genes. Interestingly, however, cfDNA can also be used to analyse different features of DNA, such as methylation status, size fragment patterns, transcriptomics and viral load, which open new avenues for the analysis of liquid biopsy samples from cancer patients. This review will focus on the new perspectives and challenges of cfDNA analysis from mutation detection in patients with solid malignancies.
Collapse
Affiliation(s)
- Laura Keller
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Yassine Belloum
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany.
| |
Collapse
|
339
|
Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2020; 252-253:48-63. [PMID: 33387935 DOI: 10.1016/j.cancergen.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
This study reviews the possible origins, functional roles, and diagnostic applications of 'extracellular genetic material' (EGM), a novel term introduced to cover DNA, RNA, and DNA/RNA-related molecules released from all types of cells into the extracellular region. The literature on EGMs shows them to play a dual role in diverse, fine-tuning mechanisms involved in both homeostasis and pathological events, including cancerogenesis and genometastasis. Recent developments in the next-generation technology have provided successful applications of low quantities of genomic materials into the diagnostic field, yielding high sensitivity and specificity in test results. Also, the successful application of EGMs into diagnostics has afforded promising outcomes for researchers and clinicians. This study of EGM provides a deeper understanding of the subject as an area of interest, especially cell-free DNA, aiming toward the eventual development of new therapeutic applications and diagnostic strategies.
Collapse
Affiliation(s)
- Cemal Çağıl Koçana
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
340
|
Rungkamoltip P, Temisak S, Piboonprai K, Japrung D, Thangsunan P, Chanpanitkitchot S, Chaowawanit W, Chandeying N, Tangjitgamol S, Iempridee T. Rapid and ultrasensitive detection of circulating human papillomavirus E7 cell-free DNA as a cervical cancer biomarker. Exp Biol Med (Maywood) 2020; 246:654-666. [PMID: 33307803 DOI: 10.1177/1535370220978899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has attracted attention as a non-invasive biomarker for diagnosing and monitoring various cancers. Given that human papillomavirus (HPV) DNA integration and overexpression of E6/E7 oncogenes are pivotal events for carcinogenesis, we sought to determine if HPV E7 cfDNA could serve as a specific biomarker for cervical cancer detection. We applied droplet digital PCR (ddPCR) to quantify HPV16/18 E7 cfDNA from the serum of patients with cervical cancer, cervical intraepithelial neoplasia, and controls. HPV16/18 E7 cfDNA was highly specific for cervical cancer, displaying 30.77% sensitivity, 100% specificity, and an area under the curve of 0.65. Furthermore, we developed a sensitive isothermal detection of HPV16/18 E7 and the PIK3CA WT reference gene based on recombinase polymerase amplification combined with a lateral flow strip (RPA-LF). The assay took less than 30 min and the detection limit was 5-10 copies. RPA-LF exhibited 100% sensitivity and 88.24% specificity towards HPV16/18 E7 cfDNA in clinical samples. The agreement between RPA-LF and ddPCR was 83.33% (κ = 0.67) for HPV16 E7 and 100% (κ = 1.0) for HPV18 E7, indicating a good correlation between both tests. Therefore, we conclude that HPV E7 cfDNA represents a potential tumor marker with excellent specificity and moderate sensitivity for minimally invasive cervical cancer monitoring. Moreover, the RPA-LF assay provides an affordable, rapid, and ultrasensitive tool for detecting HPV cfDNA in resource-limited settings.
Collapse
Affiliation(s)
- Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sasithon Temisak
- Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani 12120, Thailand
| | - Kitiya Piboonprai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.,Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pattanapong Thangsunan
- Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani 12120, Thailand
| | - Saranya Chanpanitkitchot
- Department of Obstetrics and Gynecology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok 10400, Thailand
| | - Woraphot Chaowawanit
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand
| | - Nutthaporn Chandeying
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand
| | - Siriwan Tangjitgamol
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand.,Obstetrics and Gynecology Section, MedPark Hospital, Bangkok 10110, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
341
|
Galardi F, De Luca F, Romagnoli D, Biagioni C, Moretti E, Biganzoli L, Di Leo A, Migliaccio I, Malorni L, Benelli M. Cell-Free DNA-Methylation-Based Methods and Applications in Oncology. Biomolecules 2020; 10:E1677. [PMID: 33334040 PMCID: PMC7765488 DOI: 10.3390/biom10121677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy based on cell-free DNA (cfDNA) enables non-invasive dynamic assessment of disease status in patients with cancer, both in the early and advanced settings. The analysis of DNA-methylation (DNAm) from cfDNA samples holds great promise due to the intrinsic characteristics of DNAm being more prevalent, pervasive, and cell- and tumor-type specific than genomics, for which established cfDNA assays already exist. Herein, we report on recent advances on experimental strategies for the analysis of DNAm in cfDNA samples. We describe the main steps of DNAm-based analysis workflows, including pre-analytics of cfDNA samples, DNA treatment, assays for DNAm evaluation, and methods for data analysis. We report on protocols, biomolecular techniques, and computational strategies enabling DNAm evaluation in the context of cfDNA analysis, along with practical considerations on input sample requirements and costs. We provide an overview on existing studies exploiting cell-free DNAm biomarkers for the detection and monitoring of cancer in early and advanced settings, for the evaluation of drug resistance, and for the identification of the cell-of-origin of tumors. Finally, we report on DNAm-based tests approved for clinical use and summarize their performance in the context of liquid biopsy.
Collapse
Affiliation(s)
- Francesca Galardi
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Francesca De Luca
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Dario Romagnoli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
| | - Chiara Biagioni
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Erica Moretti
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Laura Biganzoli
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Angelo Di Leo
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Ilenia Migliaccio
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Luca Malorni
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
| |
Collapse
|
342
|
Thakral D, Gupta R, Sahoo RK, Verma P, Kumar I, Vashishtha S. Real-Time Molecular Monitoring in Acute Myeloid Leukemia With Circulating Tumor DNA. Front Cell Dev Biol 2020; 8:604391. [PMID: 33363162 PMCID: PMC7759522 DOI: 10.3389/fcell.2020.604391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The clonal evolution of acute myeloid leukemia (AML), an oligoclonal hematological malignancy, is driven by a plethora of cytogenetic abnormalities, gene mutations, abnormal epigenetic patterns, and aberrant gene expressions. These alterations in the leukemic blasts promote clinically diverse manifestations with common characteristics of high relapse and drug resistance. Defining and real-time monitoring of a personalized panel of these predictive genetic biomarkers is rapidly being adapted in clinical setting for diagnostic, prognostic, and therapeutic decision-making in AML. A major challenge remains the frequency of invasive biopsy procedures that can be routinely performed for monitoring of AML disease progression. Moreover, a single-site biopsy is not representative of the tumor heterogeneity as it is spatially and temporally constrained and necessitates the understanding of longitudinal and spatial subclonal dynamics in AML. Hematopoietic cells are a major contributor to plasma cell-free DNA, which also contain leukemia-specific aberrations as the circulating tumor-derived DNA (ctDNA) fraction. Plasma cell-free DNA analysis holds immense potential as a minimally invasive tool for genomic profiling at diagnosis as well as clonal evolution during AML disease progression. With the technological advances and increasing sensitivity for detection of ctDNA, both genetic and epigenetic aberrations can be qualitatively and quantitatively evaluated. However, challenges remain in validating the utility of liquid biopsy tools in clinics, and universal recommendations are still awaited towards reliable diagnostics and prognostics. Here, we provide an overview on the scope of ctDNA analyses for prognosis, assessment of response to treatment and measurable residual disease, prediction of disease relapse, development of acquired resistance and beyond in AML.
Collapse
Affiliation(s)
- Deepshi Thakral
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Indresh Kumar
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Vashishtha
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
343
|
Ray SK, Mukherjee S. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in Cancer- An evolving aspect in Medical Biotechnology. Curr Pharm Biotechnol 2020; 23:112-122. [PMID: 33308128 DOI: 10.2174/1389201021666201211102710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
344
|
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J 2020; 11:603-627. [PMID: 33144898 PMCID: PMC7594983 DOI: 10.1007/s13167-020-00226-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Interest in the use of cell-free nucleic acids (CFNAs) as clinical non-invasive biomarker panels for prediction and prevention of multiple diseases has greatly increased over the last decade. Indeed, circulating CFNAs are attributable to many physiological and pathological processes such as imbalanced stress conditions, physical activities, extensive apoptosis of different origin, systemic hypoxic-ischemic events and tumour progression, amongst others. This article highlights the involvement of circulating CFNAs in local and systemic processes dealing with the question, whether specific patterns of CFNAs in blood, their detection, quantity and quality (such as their methylation status) might be instrumental to predict a disease development/progression and could be further utilised for accompanying diagnostics, targeted prevention, creation of individualised therapy algorithms, therapy monitoring and prognosis. Presented considerations conform with principles of 3P medicine and serve for improving individual outcomes and cost efficacy of medical services provided to the population.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
345
|
Gandini S, Zanna I, De Angelis SP, Cocorocchio E, Queirolo P, Lee JH, Carlino MS, Mazzarella L, Achutti Duso B, Palli D, Raimondi S, Caini S. Circulating tumour DNA and melanoma survival: A systematic literature review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103187. [PMID: 33276181 DOI: 10.1016/j.critrevonc.2020.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
We reviewed and meta-analysed the available evidence (until December 2019) about circulating tumour DNA (ctDNA) levels and melanoma patients survival. We included twenty-six studies (>2000 patients overall), which included mostly stage III-IV cutaneous melanoma patients and differed widely in terms of systemic therapy received and somatic mutations that were searched. Patients with detectable ctDNA before treatment had worse progression-free survival (PFS) (summary hazard ratio (SHR) 2.47, 95 % confidence intervals (CI) 1.85-3.29) and overall survival (OS) (SHR 2.98, 95 % CI 2.26-3.92), with no difference by tumour stage. ctDNA detectability during follow-up was associated with poorer PFS (SHR 4.27, 95 %CI 2.75-6.63) and OS (SHR 3.91, 95 %CI 1.97-7.78); in the latter case, the association was stronger (p = 0.01) for stage IV vs. III melanomas. Between-estimates heterogeneity was low for all pooled estimates. ctDNA is a strong prognostic biomarker for advanced-stage melanoma patients, robust across tumour (e.g. genomic profile) and patients (e.g. systemic therapy) characteristics.
Collapse
Affiliation(s)
- Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Simone Pietro De Angelis
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Emilia Cocorocchio
- Division of Medical Oncology of Melanoma, Sarcoma and Rare Tumors, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Paola Queirolo
- Division of Medical Oncology of Melanoma, Sarcoma and Rare Tumors, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Jenny H Lee
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Matteo S Carlino
- Department of Clinical Oncology, Westmead and Blacktown Hospitals, Melanoma Institute of Australia and the University of Sydney, Sydney, Australia
| | - Luca Mazzarella
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Bruno Achutti Duso
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.
| |
Collapse
|
346
|
Sastre-Garau X, Harlé A. Pathology of HPV-Associated Head and Neck Carcinomas: Recent Data and Perspectives for the Development of Specific Tumor Markers. Front Oncol 2020; 10:528957. [PMID: 33312940 PMCID: PMC7701329 DOI: 10.3389/fonc.2020.528957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
A significant subset of carcinomas developed in the head and neck (H&NCs) are associated with specific human papillomaviruses (HPV) genotypes. In particular, 40–60% of oropharyngeal carcinoma cases are linked to HPV. Epidemiological studies have demonstrated that HPV oral infections are predominantly sexually transmitted and are more frequent among men (10–18%) than women (3.6–8.8%). Although there is a large diversity of HPV genotypes associated with H&NCs, HPV16 lineage represents 83% of the reported cases. The prognostic value of HPV as a biological parameter is well recognized. However, the use of HPV DNA as a diagnostic and/or predictive marker is not fully developed. Recent data reporting the physical state of the HPV genome in tumors have shown that HPV DNA integration into the tumor cell genome could lead to the alteration of cellular genes implicated in oncogenesis. Most importantly, HPV DNA corresponds to a tumor marker that can be detected in the blood of patients. Profile of the HPV DNA molecular patterns in tumor cells using New Genome Sequencing-based technologies, allows the identification of highly specific tumor markers valuable for the development of innovative diagnostic and therapeutic approaches. This review will summarize recent epidemiological data concerning HPV-associated H&NCs, the genomic characterization of these tumors, including the presence of HPV DNA in tumor cells, and will propose perspectives for developing improved care of patients with HPV-associated H&NCs, based on the use of viral sequences as personalized tumor markers and, over the longer term, as a therapeutic target.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Service de Pathologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alexandre Harlé
- Université de Lorraine, CNRS UMR7039 CRAN, service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
347
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
348
|
Arechederra M, Ávila MA, Berasain C. Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200009. [PMID: 37361495 PMCID: PMC10197281 DOI: 10.1515/almed-2020-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 06/28/2023]
Abstract
The term liquid biopsy is used in contraposition to the traditional "solid" tissue biopsy. In the oncology field it has opened a new plethora of clinical opportunities as tumor-derived material is shedded into the different biofluids from where it can be isolated and analyzed. Common biofluids include blood, urine, saliva, cerebrospinal fluid (CSF), pleural effusion or bile. Starting from these biological specimens several analytes can be isolated, among which we will review the most widely used: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), proteins, metabolites, and exosomes. Regarding the nature of the biomarkers it will depend on the analyte, the type of tumor and the clinical application of the liquid biopsy and it includes, somatic point mutations, deletions, amplifications, gene-fusions, DNA-methylated marks, tumor-specific miRNAs, proteins or metabolites. Here we review the characteristics of the analytes and the methodologies used for their isolation. We also describe the applications of the liquid biopsy in the management of patients with cancer, from the early detection of cancers to treatment guidance in patients with advanced tumors. Finally, we also discuss some current limitations and still open questions.
Collapse
Affiliation(s)
- María Arechederra
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Matías A. Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Berasain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| |
Collapse
|
349
|
Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: A broad overview. Crit Rev Oncol Hematol 2020; 155:103109. [PMID: 33049662 DOI: 10.1016/j.critrevonc.2020.103109] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor DNA (ctDNA) in fluids has gained attention because ctDNA seems to identify tumor-specific abnormalities, which could be used for diagnosis, follow-up of treatment, and prognosis: the so-called liquid biopsy. Liquid biopsy is a minimally invasive approach and presents the sum of ctDNA from primary and secondary tumor sites. It has been possible not only to quantify the amount of ctDNA but also to identify (epi)genetic changes. Specific mutations in genes have been identified in the plasma of patients with several types of cancer, which highlights ctDNA as a possible cancer biomarker. However, achieving detectable concentrations of ctDNA in body fluids is not an easy task. ctDNA fragments present a short half-life, and there are no cut-off values to discriminate high and low ctDNA concentrations. Here, we discuss the use of ctDNA as a cancer biomarker, the main methodologies, the inherent difficulties, and the clinical predictive value of ctDNA.
Collapse
Affiliation(s)
- Luciana Santos Pessoa
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil; Center for Experimental Surgery, Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
350
|
Truszewska A, Wirkowska A, Gala K, Truszewski P, Krzemień-Ojak Ł, Perkowska-Ptasińska A, Mucha K, Pączek L, Foroncewicz B. Cell-free DNA profiling in patients with lupus nephritis. Lupus 2020; 29:1759-1772. [DOI: 10.1177/0961203320957717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Increased level of cell-free DNA (cf-DNA) is associated with systemic lupus erythematosus (SLE) and might be related to disease activity. The aim of this study was to evaluate whether cfDNA integrity, size distribution and concentration of different cfDNA fractions is associated with lupus activity and kidney involvement. Methods Blood samples were collected from 43 SLE patients and 50 healthy controls. Nuclear and mitochondrial fractions of cfDNA and intracellular DNA were quantified by real-time qPCR. Sizing and quantification of total cfDNA level was performed on Bioanalyzer. Results We determined four parameters that characterized cfDNA profile: fragmentation index, ratio of intra- to extracellular mtDNA copy number, cfDNA concentration, and presence of 54–149 bp and 209–297 bp fragments. Patients with healthy-like cfDNA profile had higher eGFR ( P = 0.009) and more often no indications for kidney biopsy or less advanced lupus nephritis (LN) ( P = 0.037). In contrary, SLE patients with distinct cfDNA profile (characterized by increased cfDNA concentration and fragmentation, higher discrepancy between intra- to extracellular mtDNA copy number, and the presence of 54–149 bp and 209–297 bp fragments) had lower eGFR ( P = 0.005) and more often advanced LN or history of renal transplantation ( P = 0.001). Conclusions We showed that cfDNA profiling may help to distinguish SLE patients with renal involvement and severe disease course from patients with more favorable outcomes. We suggest cfDNA profile a promising SLE biomarker.
Collapse
Affiliation(s)
- Anna Truszewska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wirkowska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Gala
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Truszewski
- Department of Orthopedics and Traumatology of Musculoskeletal System, Baby Jesus Clinical Hospital, Warsaw, Poland
| | - Łucja Krzemień-Ojak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, Warsaw, Poland
| | | | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|