301
|
Sebastin R, Lee KJ, Cho GT, Shin MJ, Kim SH, Hyun DY, Lee JR. The complete chloroplast genome sequence of a Bolivian wild chili pepper, Capsicum eximium Hunz. (Solanaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1601533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Do Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| |
Collapse
|
302
|
Mitochondrial genome of Paruterina candelabraria (Cestoda: Paruterinidae), with implications for the relationships between the genera Cladotaenia and Paruterina. Acta Trop 2019; 189:1-5. [PMID: 30248315 DOI: 10.1016/j.actatropica.2018.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
The taxonomic concept for the family Paruterinidae is controversial, especially concerning the position of the genus Cladotaenia, since the latter genus has been placed sometimes in other families, i.e. in the Taeniidae or in the distinct family Cladotaeniidae; finding a solution based on morphological data is difficult and molecular data on paruterinids and related groups are scarce. In this study, the complete mitochondrial (mt) genome sequence of the type-species of the type-genus of the Paruterinidae, Paruterina candelabraria, was determined and annotated. Gene arrangements are identical with those of Cladotaenia vulturi but differing from those of species of the family Taeniidae by the order change between tRNA-SerUCN and tRNA-LeuCUN. Phylogenetic tree was constructed by Bayesian Inference (BI) analysis using the concatenated amino acid sequences of 12 protein-coding genes. The analysis clearly shows that the Paruterinidae and Taeniidae are sister-groups, and Cladotaenia is a sister taxon of Paruterina. This supports the position of the genus Cladotaenia in the family Paruterinidae and reveals the necessity for sequencing additional taxa of the Paruterinidae for better understanding of phylogenetic relationships within the group.
Collapse
|
303
|
Fanelli E, Troccoli A, De Luca F. Functional Variation of Two Novel Cellulases, Pv-eng-5 and Pv-eng-8, and the Heat Shock 90 Gene, Pv-hsp-90, in Pratylenchus vulnus and Their Expression in Response to Different Temperature Stress. Int J Mol Sci 2018; 20:E107. [PMID: 30597892 PMCID: PMC6337429 DOI: 10.3390/ijms20010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
Functional characterization of two novel endoglucanase genes, Pv-eng-5 and Pv-eng-8, of the root-lesion nematode Pratylenchus vulnus was carried out. In situ-hybridization experiments revealed that Pv-eng-8 transcript was localized in the pharyngeal glands. Silencing of Pv-eng-5 and Pv-eng-8 resulted in a significant reduction of expression level (52% and 67%, respectively). Furthermore, the silencing of Pv-eng-8 determined a reduction (41%) in nematode reproduction, suggesting that treated nematodes are much less able to process food. Surprisingly, no significant difference on reproduction rate was observed with Pv-eng-5 dsRNA nematodes, suggesting a neofunctionalization of Pv-eng-5 despite the high similarity with nematode endoglucanases. Pratylenchus species are poikilothermic organisms showing close relationships with the environmental temperature. The effects of different temperature ranges revealed that the reproductive potential of P. vulnus increased with increasing temperature from 23 °C to 28 °C, but no reproduction was observed at 33 °C. In real time, increasing temperature from 23 °C to 28 °C the heat shock gene Pv-hsp-90 was differentially expressed in adult stages, while the levels of the effector genes Pv-eng-1 and Pv-eng-8 in females showed no significant differences compared to those observed at 23 °C, only in males Pv-eng-8 level decreased (45%). The upregulation of Pv-hsp-90 in both adult stages suggests a protective mechanism in order to cope with unfavorable environmental conditions.
Collapse
Affiliation(s)
- Elena Fanelli
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| | - Alberto Troccoli
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| | - Francesca De Luca
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| |
Collapse
|
304
|
Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS One 2018; 13:e0209769. [PMID: 30592743 PMCID: PMC6310276 DOI: 10.1371/journal.pone.0209769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
The plant NAC transcription factors depict one of the largest plant transcription factor families. They regulate a wide range of different developmental processes and most probably played an important role in the evolutionary diversification of plants. This makes comparative studies of the NAC transcription factor family between individual species and genera highly relevant and such studies have in recent years been greatly facilitated by the increasing number of fully sequenced complex plant genomes. This study combines the characterization of the NAC transcription factors in the recently sequenced genome of the cereal crop barley with expression analysis and a comprehensive phylogenetic characterization of the NAC transcription factors in other monocotyledonous plant species. Our results provide evidence for the emergence of a NAC transcription factor subclade that is exclusively expressed in the grains of the Poaceae family of grasses. These notably comprise a number of cereal crops other than barley, such as wheat, rice, maize or millet, which are all cultivated for their starchy edible grains. Apparently, the grain specific subclade emerged from a well described subgroup of NAC transcription factors associated with the senescence process. A promoter exchange subsequently resulted in grain specific expression. We propose to designate this transcription factor subclade Grain-NACs and we discuss their involvement in programmed cell death as well as their potential role in the evolution of the Poaceae grain, which doubtlessly is of central importance for human nutrition.
Collapse
|
305
|
Liu D, Hur JS. Candelaria asiatica, an Ignored New Species from South Korea. MYCOBIOLOGY 2018; 46:305-310. [PMID: 30637138 PMCID: PMC6319464 DOI: 10.1080/12298093.2018.1538070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/14/2018] [Accepted: 08/18/2018] [Indexed: 06/09/2023]
Abstract
The genus Candelaria is characterized by a micro-foliose to micro-fruticose thallus and contains eight species, two of which were reported in South Korea. During the excursion of a Korean lichen flora investigation, some suspected Candelaria concolor specimens were collected, and their morphological, chemical, molecular phylogenetic, and geographic analyses were conducted. The samples eventually proved to be a new species, Candelaria asiatica, which can be recognized by a small, yellow lobate thallus with a pulverulent surface, and a fragile lobe margin with blastidia or phyllidia-like lobules.
Collapse
Affiliation(s)
- Dong Liu
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| |
Collapse
|
306
|
Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, Allen JM, Petersen M, Donath A, Walden KKO, Kozlov AM, Podsiadlowski L, Mayer C, Meusemann K, Vasilikopoulos A, Waterhouse RM, Cameron SL, Weirauch C, Swanson DR, Percy DM, Hardy NB, Terry I, Liu S, Zhou X, Misof B, Robertson HM, Yoshizawa K. Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci U S A 2018; 115:12775-12780. [PMID: 30478043 PMCID: PMC6294958 DOI: 10.1073/pnas.1815820115] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820;
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Frank Friedrich
- Institut für Zoologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Benjamin Wipfler
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
- Center of Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Ralph S Peters
- Center of Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Julie M Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Alexey M Kozlov
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
- Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation National Research Collections Australia, Acton, ACT 2601 Canberra, Australia
| | - Alexandros Vasilikopoulos
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, IN 47907
| | | | - Daniel R Swanson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Diana M Percy
- Department of Life Sciences, Natural History Museum, London, SW7 5BD United Kingdom
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nate B Hardy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Irene Terry
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Shanlin Liu
- BGI-Shenzhen, Shenzhen, 518083 Guangdong Province, People's Republic of China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | |
Collapse
|
307
|
Koutroumpa K, Theodoridis S, Warren BH, Jiménez A, Celep F, Doğan M, Romeiras MM, Santos‐Guerra A, Fernández‐Palacios JM, Caujapé‐Castells J, Moura M, Menezes de Sequeira M, Conti E. An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations. Ecol Evol 2018; 8:12397-12424. [PMID: 30619554 PMCID: PMC6308857 DOI: 10.1002/ece3.4553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/10/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023] Open
Abstract
Plumbaginaceae is characterized by a history of multiple taxonomic rearrangements and lacks a broad molecular phylogenetic framework. Limonium is the most species-rich genus of the family with ca. 600 species and cosmopolitan distribution. Its center of diversity is the Mediterranean region, where ca. 70% of all Limonium species are endemic. In this study, we sample 201 Limonium species covering all described infrageneric entities and spanning its wide geographic range, along with 64 species of other Plumbaginaceae genera, representing 23 out of 29 genera of the family. Additionally, 20 species of the sister family Polygonaceae were used as outgroup. Sequences of three chloroplast (trnL-F, matK, and rbcL) and one nuclear (ITS) loci were used to infer the molecular phylogeny employing maximum likelihood and Bayesian analyses. According to our results, within Plumbaginoideae, Plumbago forms a non-monophyletic assemblage, with Plumbago europaea sister to Plumbagella, while the other Plumbago species form a clade sister to Dyerophytum. Within Limonioideae, Ikonnikovia is nested in Goniolimon, rejecting its former segregation as genus distinct from Goniolimon. Limonium is divided into two major clades: Limonium subg. Pteroclados s.l., including L. sect. Pteroclados and L. anthericoides, and L. subg. Limonium. The latter is divided into three well-supported subclades: the monospecific L. sect. Limoniodendron sister to a clade comprising a mostly non-Mediterranean subclade and a Mediterranean subclade. Our results set the foundation for taxonomic proposals on sections and subsections of Limonium, namely: (a) the newly described L. sect. Tenuiramosum, created to assign L. anthericoides at the sectional rank; (b) the more restricted circumscriptions of L. sect. Limonium (= L. sect. Limonium subsect. Genuinae) and L. sect. Sarcophyllum (for the Sudano-Zambezian/Saharo-Arabian clade); (c) the more expanded circumscription of L. sect. Nephrophyllum (including species of the L. bellidifolium complex); and (d) the new combinations for L. sect. Pruinosum and L. sect. Pteroclados subsect. Odontolepideae and subsect. Nobiles.
Collapse
Affiliation(s)
| | - Spyros Theodoridis
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Ben H. Warren
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Ares Jiménez
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Ferhat Celep
- Department of Biology, Faculty of Arts and SciencesKırıkkale UniversityKırıkkaleTurkey
| | - Musa Doğan
- Department of Biological SciencesMiddle East Technical UniversityCankaya, AnkaraTurkey
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF)Instituto Superior de Agronomia (ISA), Universidade de LisboaLisboaPortugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | | | - Jóse María Fernández‐Palacios
- Island Ecology and Biogeography Research Group, Universitario de Enfermedades Tropicales y Salud Publica de Canarias (IUETSPC)Universidad de La LagunaTenerifeSpain
| | - Juli Caujapé‐Castells
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada CSICCabildo de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Mónica Moura
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Azores GroupUniversidade dos AçoresPonta Delgada, AzoresPortugal
| | - Miguel Menezes de Sequeira
- InBio, Research Network in Biodiversity and Evolutionary Biology, CIBIO‐Azores, Madeira Botanical Group (GBM)Universidade da MadeiraFunchalPortugal
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
308
|
Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB, Malmstrom RR, Blanchard J, Woyke T. Hidden diversity of soil giant viruses. Nat Commun 2018; 9:4881. [PMID: 30451857 PMCID: PMC6243002 DOI: 10.1038/s41467-018-07335-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023] Open
Abstract
Known giant virus diversity is currently skewed towards viruses isolated from aquatic environments and cultivated in the laboratory. Here, we employ cultivation-independent metagenomics and mini-metagenomics on soils from the Harvard Forest, leading to the discovery of 16 novel giant viruses, chiefly recovered by mini-metagenomics. The candidate viruses greatly expand phylogenetic diversity of known giant viruses and either represented novel lineages or are affiliated with klosneuviruses, Cafeteria roenbergensis virus or tupanviruses. One assembled genome with a size of 2.4 Mb represents the largest currently known viral genome in the Mimiviridae, and others encode up to 80% orphan genes. In addition, we find more than 240 major capsid proteins encoded on unbinned metagenome fragments, further indicating that giant viruses are underexplored in soil ecosystems. The fact that most of these novel viruses evaded detection in bulk metagenomes suggests that mini-metagenomics could be a valuable approach to unearth viral giants.
Collapse
Affiliation(s)
- Frederik Schulz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| | - Lauren Alteio
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Danielle Goudeau
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Elizabeth M Ryan
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Feiqiao B Yu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rex R Malmstrom
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jeffrey Blanchard
- Department of Biology, University of Massachusetts, Amherst, MA, USA.
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| |
Collapse
|
309
|
Vaughan K, Xu X, Peters B, Sette A. Investigation of Outbreak-Specific Nonsynonymous Mutations on Ebolavirus GP in the Context of Known Immune Reactivity. J Immunol Res 2018; 2018:1846207. [PMID: 30581874 PMCID: PMC6276448 DOI: 10.1155/2018/1846207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The global response to the most recent EBOV outbreak has led to increased generation and availability of data, which can be globally analyzed to increase our understanding of immune responses to EBOV. We analyzed the published antibody epitope data to identify regions immunogenic for humans on the main GP antigenic target and determine sequence variance/nonsynonymous mutations between historical isolates and variants from the 2013-2016 outbreak. Approximately half of the GP sequence has been reported as targeted by antibody responses. Our results show an enrichment of nonsynonymous mutations (NSMs) within epitopic regions on GP (70%, p = 0.0133). Mapping NSMs to human epitope reactivity may be useful for future therapeutic and prophylaxis development as well as for our general understanding of immunity against EBOV.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Xiaojun Xu
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
310
|
Genetic and antigenic dynamics of influenza A viruses of swine on pig farms in Thailand. Arch Virol 2018; 164:457-472. [PMID: 30415389 DOI: 10.1007/s00705-018-4091-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022]
Abstract
Surveillance studies of influenza A virus of swine (IAV-S) have accumulated information regarding IAVs-S circulating in Thailand, but how IAVs-S evolve within a farm remains unclear. In the present study, we isolated 82 A(H1N1)pdm09 and 87 H3N2 viruses from four farms from 2011 through 2017. We then phylogenetically and antigenically analyzed the isolates to elucidate their evolution within each farm. Phylogenetic analysis demonstrated multiple introductions of A(H1N1)pdm09 viruses that resembled epidemic A(H1N1)pdm09 strains in humans in Thailand, and they reassorted with H3N2 viruses as well as other A(H1N1)pdm09 viruses. Antigenic analysis revealed that the viruses had acquired antigenic diversity either by accumulating substitutions in the hemagglutinin protein or through the introduction of IAV-S strains with different antigenicity. Our results, obtained through continuous longitudinal surveillance, revealed that IAV-S can be maintained on a pig farm over several years through the generation of antigenic diversity due to the accumulation of mutations, introduction of new strains, and reassortment events.
Collapse
|
311
|
Huang SK, Jeewon R, Hyde KD, Bhat DJ, Putarak Chomnunti, Wen TC. Beta-tubulin and Actin gene phylogeny supports Phaeoacremoniumovale as a new species from freshwater habitats in China. MycoKeys 2018; 41:1-15. [PMID: 30344440 PMCID: PMC6194140 DOI: 10.3897/mycokeys.41.27536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
A new species of Phaeoacremonium, P.ovale (Togniniaceae), was isolated during a diversity study of freshwater fungi from Yunnan Province in China. Morphological and cultural studies of the fungus were carried out and its sexual and asexual morphs (holomorph) are introduced herein. This species is characterised by peculiar long-necked, semi-immersed ascomata with oval to ellipsoid ascospores and ellipsoid to ovoid conidia. Phylogenetic analyses of a combined TUB and ACT gene dataset revealed that strains of P.ovale constitute a strongly supported independent lineage and are related to P.griseo-olivaceum and P.africanum. The number of nucleotide differences, across the genes analysed, also supports establishment of P.ovale as a new species.
Collapse
Affiliation(s)
- Shi-Ke Huang
- Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - D. Jayarama Bhat
- Azad Housing Society, No. 128/1-J, Curca, P.O. Goa Velha 403108, India
- Formerly, Department of Botany, Goa University, Goa, 403206, India
| | - Putarak Chomnunti
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ting-Chi Wen
- Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
312
|
Dominguez CV, Maestro JL. Expression of juvenile hormone acid O-methyltransferase and juvenile hormone synthesis in Blattella germanica. INSECT SCIENCE 2018; 25:787-796. [PMID: 28374493 DOI: 10.1111/1744-7917.12467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid synthetized by the insect corpora allata (CA), plays critical roles in metamorphosis and reproduction. Penultimate or last step of JH synthesis is catalyzed by juvenile hormone acid O-methyltransferase (JHAMT). Here we report the cloning and expression analysis of the JHAMT orthologue in the cockroach, Blattella germanica (L.) (BgJHAMT). BgJHAMT is mainly expressed in CA, with only expression traces in ovary. Three different isoforms, differing in the 3'-UTR sequence, were identified. Isoform A shows between 35 and 65 times higher expression than B and C in CA from penultimate nymphal instar and adult females. RNAi-triggered knock down of BgJHAMT produces a dramatic reduction of JH synthesis, concomitant with a decrease of fat body vitellogenin expression and basal follicle length. BgJHAMT mRNA levels in CA of females along the gonadotrophic cycle parallel, with a slight advancement, JH synthesis profile. BgJHAMT mRNA levels were reduced in starved females and in females in which we reduced nutritional signaling by knocking down insulin receptor and target of rapamycin (TOR). Results show that conditions that modify JH synthesis in adult B. germanica females show parallel changes of BgJHAMT mRNA levels and that the JH-specific branch of the JH synthesis pathway is regulated in the same way as the mevalonate branch. Furthermore, we demonstrate that nutrition and its signaling through the insulin receptor and TOR pathways are essential for activating BgJHAMT expression, which suggests that this enzyme can be a checkpoint for the regulation of JH production in relation to nutritional status.
Collapse
Affiliation(s)
- Claudia V Dominguez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose L Maestro
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
313
|
|
314
|
Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE, Wu Q. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 2018; 19:688. [PMID: 30231855 PMCID: PMC6147030 DOI: 10.1186/s12864-018-5078-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sogatella furcifera is a migratory pest that damages rice plants and causes severe economic losses. Due to its ability to annually migrate long distances, S. furcifera has emerged as a major pest of rice in several Asian countries. Symbiotic relationships of inherited bacteria with terrestrial arthropods have significant implications. The genus Cardinium is present in many types of arthropods, where it influences some host characteristics. We present a report of a newly identified strain of the bacterial endosymbiont Cardinium cSfur in S. furcifera. RESULT From the whole genome of S. furcifera previously sequenced by our laboratory, we assembled the whole genome sequence of Cardinium cSfur. The sequence comprised 1,103,593 bp with a GC content of 39.2%. The phylogenetic tree of the Bacteroides phylum to which Cardinium cSfur belongs suggests that Cardinium cSfur is closely related to the other strains (Cardinium cBtQ1 and cEper1) that are members of the Amoebophilaceae family. Genome comparison between the host-dependent endosymbiont including Cardinium cSfur and free-living bacteria revealed that the endosymbiont has a smaller genome size and lower GC content, and has lost some genes related to metabolism because of its special environment, which is similar to the genome pattern observed in other insect symbionts. Cardinium cSfur has limited metabolic capability, which makes it less contributive to metabolic and biosynthetic processes in its host. From our findings, we inferred that, to compensate for its limited metabolic capability, Cardinium cSfur harbors a relatively high proportion of transport proteins, which might act as the hub between it and its host. With its acquisition of the whole operon related to biotin synthesis and glycolysis related genes through HGT event, Cardinium cSfur seems to be undergoing changes while establishing a symbiotic relationship with its host. CONCLUSION A novel bacterial endosymbiont strain (Cardinium cSfur) has been discovered. A genomic analysis of the endosymbiont in S. furcifera suggests that its genome has undergone certain changes to facilitate its settlement in the host. The envisaged potential reproduction manipulative ability of the new endosymbiont strain in its S. furcifera host has vital implications in designing eco-friendly approaches to combat the insect pest.
Collapse
Affiliation(s)
- Zhen Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Yating Fu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Dongyang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Yuxuan Wu
- Department of Computer Science, University of Nottingham Ningbo China, Zhejiang, 315100 China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
315
|
Mahato S, Nie J, Plachetzki DC, Zelhof AC. A mosaic of independent innovations involving eyes shut are critical for the evolutionary transition from fused to open rhabdoms. Dev Biol 2018; 443:188-202. [PMID: 30243673 DOI: 10.1016/j.ydbio.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
A fundamental question in evolutionary biology is how developmental processes are modified to produce morphological innovations while abiding by functional constraints. Here we address this question by investigating the cellular mechanism responsible for the transition between fused and open rhabdoms in ommatidia of apposition compound eyes; a critical step required for the development of visual systems based on neural superposition. Utilizing Drosophila and Tribolium as representatives of fused and open rhabdom morphology in holometabolous insects respectively, we identified three changes required for this innovation to occur. First, the expression pattern of the extracellular matrix protein Eyes Shut (EYS) was co-opted and expanded from mechanosensory neurons to photoreceptor cells in taxa with open rhabdoms. Second, EYS homologs obtained a novel extension of the amino terminus leading to the internalization of a cleaved signal sequence. This amino terminus extension does not interfere with cleavage or function in mechanosensory neurons, but it does permit specific targeting of the EYS protein to the apical photoreceptor membrane. Finally, a specific interaction evolved between EYS and a subset of Prominin homologs that is required for the development of open, but not fused, rhabdoms. Together, our findings portray a case study wherein the evolution of a set of molecular novelties has precipitated the origin of an adaptive photoreceptor cell arrangement.
Collapse
Affiliation(s)
- Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jing Nie
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David C Plachetzki
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Andrew C Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
316
|
He L, He P, Luo X, Li M, Yu L, Guo J, Zhan X, Zhu G, Zhao J. The MEP pathway in Babesia orientalis apicoplast, a potential target for anti-babesiosis drug development. Parasit Vectors 2018; 11:452. [PMID: 30081952 PMCID: PMC6090808 DOI: 10.1186/s13071-018-3038-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apicomplexan parasite Babesia orientalis, the causative agent of water buffalo babesiosis in China, is widespread in central and south China, resulting in a huge economic loss annually. Currently, there is no effective vaccine or drug against this disease. Babesia bovis and Plasmodium falciparum were reported to possess an apicoplast which contains the methylerythritol phosphate (MEP) pathway inhibitable by fosmidomycin, suggesting that the pathway could serve as a drug target for screening new drugs. However, it remains unknown in B. orientalis. METHODS Primers were designed according to the seven MEP pathway genes of Babesia microti and Babesia bovis. The genes were cloned, sequenced and analyzed. The open reading frames (ORFs) of the first two enzyme genes, 1-deoxy-D-xylulose 5-phosphate synthase (BoDXS) and 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (BoDXR), were cloned into the pET-32a expression vector and expressed as a Trx-tag fusion protein. Rabbit anti-rBoDXS and rabbit anti-rBoDXR antibodies were generated. Western blot was performed to identify the native proteins of BoDXS and BoDXR in B. orientalis. Fosmidomycin and geranylgeraniol were used for inhibition assay and rescue assay, respectively, in the in vitro cultivation of B. orientalis. RESULTS The seven enzyme genes of the B. orientalis MEP pathway (DXS, DXR, IspD, IspE, IspF, IspG and IspH) were cloned and sequenced, with a full length of 2094, 1554, 1344, 1521, 654, 1932 and 1056 bp, respectively. BoDXS and BoDXR were expressed as Trx-tag fusion proteins, with a size of 95 and 67 kDa, respectively. Western blot identified a 77 kDa band for the native BoDXS and a 49 kDa band for the native BoDXR. The drug assay results showed that fosmidomycin could inhibit the growth of B. orientalis, and geranylgeraniol could reverse the effect of fosmidomycin. CONCLUSIONS Babesia orientalis has the isoprenoid biosynthesis pathway, which could be a potential drug target for controlling and curing babesiosis. Considering the high price and instability of fosmidomycin, further studies should focus on the screening of stable and cheap drugs.
Collapse
Affiliation(s)
- Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas USA
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| |
Collapse
|
317
|
Wainaina JM, Ateka E, Makori T, Kehoe MA, Boykin LM. Phylogenomic relationship and evolutionary insights of sweet potato viruses from the western highlands of Kenya. PeerJ 2018; 6:e5254. [PMID: 30038869 PMCID: PMC6054865 DOI: 10.7717/peerj.5254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Sweet potato is a major food security crop within sub-Saharan Africa where 90% of Africa production occurs. One of the major limitations of sweet potato production are viral infections. In this study, we used a combination of whole genome sequences from a field isolate obtained from Kenya and those available in GenBank. Sequences of four sweet potato viruses: Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato chlorotic fleck virus (SPCFV) were obtained from the Kenyan sample. SPFMV sequences both from this study and from GenBank were found to be recombinant. Recombination breakpoints were found within the Nla-Pro, coat protein and P1 genes. The SPCSV, SPVC, and SPCFV viruses from this study were non-recombinant. Bayesian phylogenomic relationships across whole genome trees showed variation in the number of well-supported clades; within SPCSV (RNA1 and RNA2) and SPFMV two well-supported clades (I and II) were resolved. The SPCFV tree resolved three well-supported clades (I-III) while four well-supported clades were resolved in SPVC (I-IV). Similar clades were resolved within the coalescent species trees. However, there were disagreements between the clades resolved in the gene trees compared to those from the whole genome tree and coalescent species trees. However the coat protein gene tree of SPCSV and SPCFV resolved similar clades to the genome and coalescent species tree while this was not the case in SPFMV and SPVC. In addition, we report variation in selective pressure within sites of individual genes across all four viruses; overall all viruses were under purifying selection. We report the first complete genomes of SPFMV, SPVC, SPCFV, and a partial SPCSV from Kenya as a mixed infection in one sample. Our findings provide a snap shot on the evolutionary relationship of sweet potato viruses (SPFMV, SPVC, SPCFV, and SPCSV) from Kenya as well as assessing whether selection pressure has an effect on their evolution.
Collapse
Affiliation(s)
- James M. Wainaina
- School of Molecular Sciences/ARC CoE Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Monica A. Kehoe
- Plant Pathology, Department of Primary Industries and Regional Development Diagnostic Laboratory Service, South Perth, WA, Australia
| | - Laura M. Boykin
- School of Molecular Sciences/ARC CoE Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
318
|
Molecular evidence linking the larval and adult stages of Mexiconema cichlasomae (Dracunculoidea: Daniconematidae) from Mexico, with notes on its phylogenetic position among Dracunculoidea. J Helminthol 2018; 93:580-588. [PMID: 29986776 DOI: 10.1017/s0022149x18000524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe the larval developmental stages and life cycle of the dracunculid nematode Mexiconema cichlasomae in both the intermediate, Argulus yucatanus (Crustacea: Branchiura), and definitive hosts, Cichlasoma urophthalmus (Perciformes: Cichlidae), from the Celestun tropical coastal lagoon, Yucatan, Mexico. The morphological analyses showed significant differences between the total length of L1 found in M. cichlasomae gravid female and L2-L3 in A. yucatanus. This result indicates that the M. cichlasomae larval development occurs in the intermediate host. We obtained sequences from the small subunit (SSU) ribosomal marker from larval stages of M. cichlasomae in A. yucatanus and adult nematodes in C. urophthalmus. Our morphological and molecular results support conspecificity between M. cichlasomae larvae in A. yucatanus and the adult stages in C. urophthalmus. We briefly discuss the phylogenetic position of M. cichlasomae among the Daniconematidae, and provide evidence of the monophyly of the daniconematids associated with branchiurid intermediate hosts. Based on the phylogenetic results, we support the transfer of the Mexiconema genus to the family Skrjabillanidae and do not support the lowering of family Daniconematidae to subfamily.
Collapse
|
319
|
Abstract
Genome and transcript sequences are composed of long strings of nucleotide monomers (A, C, G, and T/U) that require different quantities of nitrogen atoms for biosynthesis. Here, it is shown that the strength of selection acting on transcript nitrogen content is influenced by the amount of nitrogen plants require to conduct photosynthesis. Specifically, plants that require more nitrogen to conduct photosynthesis experience stronger selection on transcript sequences to use synonymous codons that cost less nitrogen to biosynthesize. It is further shown that the strength of selection acting on transcript nitrogen cost constrains molecular sequence evolution such that genes experiencing stronger selection evolve at a slower rate. Together these findings reveal that the plant molecular clock is set by photosynthetic efficiency, and provide a mechanistic explanation for changes in plant speciation rates that occur concomitant with improvements in photosynthetic efficiency and changes in the environment such as light, temperature, and atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
320
|
Sebastin R, Lee GA, Lee KJ, Shin MJ, Cho GT, Lee JR, Ma KH, Chung JW. The complete chloroplast genome sequences of little millet ( Panicum sumatrense Roth ex Roem. and Schult.) (Poaceae). Mitochondrial DNA B Resour 2018; 3:719-720. [PMID: 33474296 PMCID: PMC7800850 DOI: 10.1080/23802359.2018.1483771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Little millet, Panicum sumatrense Roth ex Roem. & Schult., is an important cultivated species under the tribe Paniceae, sub-family Panicoideae and family Poaceae. In this study, for the first time we sequenced the complete chloroplast (cp) genome of P. sumatrense to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence of P. sumatrense is 139,384 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (22,723 bp) separated by a small single-copy region (12,583 bp) and a large single-copy region (81,355 bp). The P. sumatrense cp genome encodes 125 unique genes, which include 91 protein-coding genes, 4 rRNA genes, 30 tRNA genes, and 20 genes were duplicated in the inverted repeat region. This newly determined cp genome (P. sumatrense) could be valuable information for the breeding programs of this cereal crops in the family Poaceae.
Collapse
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
321
|
Huang SK, Jeewon R, Hyde KD, Bhat DJ, Wen TC. Novel Taxa within Nectriaceae:Cosmosporellagen. nov. andAquanectriasp. nov. from Freshwater Habitats in China. CRYPTOGAMIE MYCOL 2018. [DOI: 10.7872/crym/v39.iss2.2018.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shi-Ke Huang
- Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizohu University, Guiyang 550025, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P.R. China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - D. Jayarama Bhat
- Azad Housing Society, No. 128/1-J, Curca, P.O. Goa Velha 403108, India
- Formerly, Department of Botany, Goa University, Goa, 403206, India
| | - Ting-Chi Wen
- Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizohu University, Guiyang 550025, China
| |
Collapse
|
322
|
Shao L, Li S. Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Mol Phylogenet Evol 2018; 127:146-155. [PMID: 29803949 DOI: 10.1016/j.ympev.2018.05.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganization significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrence of spiders in amber deposit. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification.
Collapse
Affiliation(s)
- Lili Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
323
|
Yano H, Iwamoto T, Nishiuchi Y, Nakajima C, Starkova DA, Mokrousov I, Narvskaya O, Yoshida S, Arikawa K, Nakanishi N, Osaki K, Nakagawa I, Ato M, Suzuki Y, Maruyama F. Population Structure and Local Adaptation of MAC Lung Disease Agent Mycobacterium avium subsp. hominissuis. Genome Biol Evol 2018; 9:2403-2417. [PMID: 28957464 PMCID: PMC5622343 DOI: 10.1093/gbe/evx183] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial species responsible for chronic lung disease in humans. Despite increasing worldwide incidence, little is known about the genetic mechanisms behind the population evolution of MAH. To elucidate the local adaptation mechanisms of MAH, we assessed genetic population structure, the mutual homologous recombination, and gene content for 36 global MAH isolates, including 12 Japanese isolates sequenced in the present study. We identified five major MAH lineages and found that extensive mutual homologous recombination occurs among them. Two lineages (MahEastAsia1 and MahEastAsia2) were predominant in the Japanese isolates. We identified alleles unique to these two East Asian lineages in the loci responsible for trehalose biosynthesis (treS and mak) and in one mammalian cell entry operon, which presumably originated from as yet undiscovered mycobacterial lineages. Several genes and alleles unique to East Asian strains were located in the fragments introduced via recombination between East Asian lineages, suggesting implication of recombination in local adaptation. These patterns of MAH genomes are consistent with the signature of distribution conjugative transfer, a mode of sexual reproduction reported for other mycobacterial species.
Collapse
Affiliation(s)
- Hirokazu Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | | | - Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Olga Narvskaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Ken Osaki
- TOMY Digital Biology Co. Ltd, Taito-Ku, Tokyo, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
324
|
Cheng TY, Chen Z, Li ZB, Liu GH. First Report of Ixodes nipponensis Infection in Goats in China. Vector Borne Zoonotic Dis 2018; 18:575-578. [PMID: 29741996 DOI: 10.1089/vbz.2017.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ticks are obligate blood-sucking ectoparasites that infect a wide range of animals and humans, causing a variety of both human and animal diseases around the world. Ixodes nipponensis is the most commonly reported tick in Korea and Japan, but it is very rare in China. In this study, six I. nipponensis samples were collected from three black goats in Hunan province, China. Ticks identified morphologically as I. nipponensis were then examined by PCR with two different molecular markers: mitochondrial cox1 and the second internal transcribed spacer of ribosomal DNA genes. Sequence comparison and phylogenetic analysis of the cox1 sequences confirmed that all of the examined hard Ixodes ticks represented I. nipponensis. This finding indicates a potential risk of zoonotic I. nipponensis infection in humans and animals in China. To our knowledge, this is the first report documenting the occurrence of I. nipponensis infection in goats in China.
Collapse
Affiliation(s)
- Tian-Yin Cheng
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
- 2 Hunan Co-Innovation Center of Animal Production Safety , Changsha, Hunan Province, People's Republic of China
| | - Zhen Chen
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
| | - Zhong-Bo Li
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
| | - Guo-Hua Liu
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
- 2 Hunan Co-Innovation Center of Animal Production Safety , Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
325
|
Jose D, Harikrishnan M. Evolutionary history of genus Macrobrachium inferred from mitochondrial markers: a molecular clock approach. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:92-100. [PMID: 29661047 DOI: 10.1080/24701394.2018.1462347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Caridea, an infraorder of shrimps coming under Pleocyemata was first reported from the oceans before 417 million years followed by their radiation recorded during the Permian period. Hitherto, about 3877 extant caridean species were accounted within which one quarter constitute freshwater species. Freshwater prawns of genus Macrobrachium (Infraorder Caridea; Family Palaemonidae), with more than 240 species are inhabitants of diverse aquatic habitats like coastal lagoons, lakes, tropical streams, ponds and rivers. Previous studies on Macrobrachium relied on the highly variable morphological characters which were insufficient for accurate diagnosis of natural species groups. Present study focuses on the utility of molecular markers (viz. COI and 16S rRNA) for resolving the evolutionary history of genus Macrobrachium using a combination of phylogeny and timescale components. It is for the first time a molecular clock approach had been carried out towards genus Macrobrachium in a broad aspect with the incorporation of congeners inhabiting diverse geographical realms including endemic species M. striatum from South West coast of India. Molecular results obtained revealed the phylogenetic relationships between congeners of genus Macrobrachium at intra/inter-continental level along with the corresponding evolutionary time estimates.
Collapse
Affiliation(s)
- Deepak Jose
- a School of Industrial Fisheries , Cochin University of Science and Technology , Kochi , India
| | - Mahadevan Harikrishnan
- a School of Industrial Fisheries , Cochin University of Science and Technology , Kochi , India
| |
Collapse
|
326
|
Guo Y, Song Z, Luo L, Wang Q, Zhou G, Yang D, Zhong D, Zheng X. Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup? Parasit Vectors 2018; 11:228. [PMID: 29618379 PMCID: PMC5885320 DOI: 10.1186/s13071-018-2814-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/25/2018] [Indexed: 11/22/2022] Open
Abstract
Background Aedes (Stegomyia) albopictus (Skuse) is an indigenous species and the predominant vector of dengue fever in China. Understanding of genetic diversity and structure of the mosquito would facilitate dengue prevention and vector control. Sympatric cryptic species have been identified in the Ae. albopictus subgroup in Southeast Asia; however, little is known about the presence and distribution of cryptic species in China. This study aimed to examine the genetic diversity, evaluate potential new cryptic sibling species, and assess the prevalence of Wolbachia infections in field populations. Methods Aedes adult female specimens were collected from five provinces in southern and central China during 2015–2016. Morphological identification was performed under dissection microscope. The mitochondrial DNA cytochrome c oxidase subunit 1 (cox1, DNA barcoding) locus and the ribosomal DNA internal transcribed spacer region 2 (ITS2) marker were used to examine the genetic variation, evaluate cryptic sibling species, and population structure in the field populations. Screening for the presence of Wolbachia was performed using multiplex PCR. Results A total of 140 individual specimens with morphological characteristics similar to Ae. albopictus were sequenced for DNA barcoding. Among these, 129 specimens (92.1%) were confirmed and identified as Ae. albopictus. The remaining 11 specimens, from 2 provinces, were identified as 2 distinct sequence groups, which were confirmed by ITS2 marker sequencing, suggesting the existence of potential cryptic species of Ae. albopictus. In Ae. albopictus, we found significant genetic differentiation and population structure between populations collected from different climate zones. Medium to high frequencies of Wolbachia infections were observed in natural Ae. albopictus populations, whereas Wolbachia was infrequent or absent in cryptic species populations. Conclusions Our findings highlight the population differentiation by climate zone and the presence of novel, cryptic Aedes species in China. The low prevalence of Wolbachia infections in cryptic species populations could reflect either a recent invasion of Wolbachia in Ae. albopictus or different host immune responses to this symbiont in the cryptic species. The study provides useful information for vector control and host-symbiont coevolution. Further study is needed to investigate the potential for arbovirus infection and disease transmission in the emerged cryptic species. Electronic supplementary material The online version of this article (10.1186/s13071-018-2814-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhangyao Song
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Luo
- Department of Disinfection and Pesticide of Center for Disease Control and Prevention of Guangzhou, Guangzhou, Guangdong, China
| | - Qingmin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guofa Zhou
- Program in Public Health School of Medicine, University of California, Irvine, California, USA
| | - Dizi Yang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Zhong
- Program in Public Health School of Medicine, University of California, Irvine, California, USA
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
327
|
Abstract
Morphological and molecular techniques were used to investigate the presence of hemogregarines and haemosporidians in biological samples of free-living Geoffroy's side-necked turtles (Phrynops geoffroanus) and Giant Amazon turtles (Podocnemis expansa) from Brazil. No evolutionary form of haemosporidians or hemogregarines were observed in the blood smears of 83 P. geoffroanus samples, and there were no meronts in the histological sections of 31 necropsied P. geoffroanus samples. All DNA samples extracted from P. geoffroanus tissues and blood aliquots were negative in haemosporidian PCR assays (based on the mitochondrial cytochrome b gene) and hemogregarine PCR assays (based on the 18S rRNA gene). In the analysis of blood smears of all seven Podocnemis expansa evaluated, gametocytes of hemogregarines were observed. The seven P. expansa were negative in the haemosporidian PCR assays. Moreover, hemogregarine DNA was detected in blood samples from all of the sampled P. expansa. The phylogenetic maximum likelihood inference and probabilistic Bayesian inference revealed five closely related genotypes that formed a monophyletic group. There was also a sister group to the lineage that consisted of Haemogregarina spp. of freshwater turtles from Canada, Italy, Mozambique, Kenya, Gabon, Vietnam, and China. The findings suggest that free-living P. expansa were parasitized by a new genotype or even a possible new species of the genus Haemogregarina. Haemosporidians and hemogregarines are not frequently found in P. geoffroanus in the studied region under the local conditions of that period.
Collapse
|
328
|
Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu J, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018. [DOI: 10.3897/mycokeys.32.23670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The authors established the taxonomic status of endophytic fungi associated with leaves of Pandanaceae collected from southern Thailand. Morphotypes were initially identified based on their characteristics in culture and species level identification was done based on both morphological characteristics and phylogenetic analyses of DNA sequence data. Twenty-two isolates from healthy leaves were categorised into eight morphotypes. Appropriate universal primers were used to amplify specific gene regions and phylogenetic analyses were performed to identify these endophytes and established relationships with extant fungi. The authors identified both ascomycete and basidiomycete species, including one new genus, seven new species and nine known species. Morphological descriptions, colour plates and phylogenies are given for each taxon.
Collapse
|
329
|
Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu J, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018; 33:25-67. [PMID: 30532625 PMCID: PMC6283267 DOI: 10.3897/mycokeys.33.23670] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 02/01/2023] Open
Abstract
The authors established the taxonomic status of endophytic fungi associated with leaves of Pandanaceae collected from southern Thailand. Morphotypes were initially identified based on their characteristics in culture and species level identification was done based on both morphological characteristics and phylogenetic analyses of DNA sequence data. Twenty-two isolates from healthy leaves were categorised into eight morphotypes. Appropriate universal primers were used to amplify specific gene regions and phylogenetic analyses were performed to identify these endophytes and established relationships with extant fungi. The authors identified both ascomycete and basidiomycete species, including one new genus, seven new species and nine known species. Morphological descriptions, colour plates and phylogenies are given for each taxon.
Collapse
Affiliation(s)
- Saowaluck Tibpromma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D. Hyde
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jayarama D. Bhat
- Formerly, Department of Botany, Goa University, Taleigão, Goa, India
- No. 128/1-J, Azad Housing Society, Curca, Goa Velha, India
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
| | - Jianchu Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Mingkwan Doilom
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Alvin M. C. Tang
- Division of Applied Science, College of International Education, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Samantha C. Karunarathna
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
330
|
Morphological and molecular taxonomy of Jahnula dianchia sp. nov. (Jahnulales) from submerged wood in Dianchi Lake, Yunnan China. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1390-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
331
|
Barros-García D, Froufe E, Bañón R, Carlos Arronte J, de Carlos A. Phylogenetic analysis shows the general diversification pattern of deep-sea notacanthiforms (Teleostei: Elopomorpha). Mol Phylogenet Evol 2018; 124:192-198. [PMID: 29551524 DOI: 10.1016/j.ympev.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/02/2018] [Accepted: 03/07/2018] [Indexed: 11/26/2022]
Abstract
The Notacanthiformes is an ancient group of deep-sea ray-finned fishes comprising 27 species in two families; Halosauridae and Notacanthidae. Although many studies have tried to reconstruct the phylogenetic relationships among the major clades of Elopomorpha, little is known about the evolutionary history of notacanthiforms. Molecular and morphological data were used to test previous hypotheses regarding the phylogenetic relationships among notacanthiform taxa, and to unravel the origin and evolution of this group. The molecular analyses of notacanthids showed similar results to those previously obtained employing osteological data, which proposed the existence of the Lipogenyinae (Lipogenys) and Notacanthinae (Notacanthus + Polyacanthonotus) subfamilies. Nevertheless, when the external morphology data is considered Lipogenys is more related to Notacanthus than Polyacanthonotus. The analyses could not fully resolve the inner relationships of the halosaurids. The time-calibrated tree of the order Notacanthiformes shows a long process of diversification spanning from the upper Cretaceous, to 50 million years after the K-Pg extinction, with the gradual emergence of all the modern families and genera of the group. This is the first specific phylogeny of the order Notacanthiformes, combining different analyses and data in order to obtain a wider perspective of the evolution and diversification of this group of fishes.
Collapse
Affiliation(s)
- David Barros-García
- Department of Biochemistry, Genetics and Immunology, University of Vigo, C/Fonte das Abelleiras s/n, 36310 Vigo, Spain; Programa de Doctorado en Metodología y Aplicaciones en Ciencias de la Vida, Facultad de Biología. Universidad de Vigo, C/Fonte das Abelleiras s/n, 36310 Vigo, Spain.
| | - Elsa Froufe
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal.
| | - Rafael Bañón
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), C/ Eduardo Cabello, 6, 36208 Vigo, Spain; Grupo de Estudos do Medio Mariño (GEMM), Puerto Deportivo s/n, 15960 Ribeira, A Coruña, Spain.
| | - Juan Carlos Arronte
- Instituto de Hidráulica Ambiental (IH Cantabria), Universidad de Cantabria, PCTCAN, C/Isabel Torres no 15, 390011 Santander, Spain.
| | - Alejandro de Carlos
- Department of Biochemistry, Genetics and Immunology, University of Vigo, C/Fonte das Abelleiras s/n, 36310 Vigo, Spain.
| |
Collapse
|
332
|
Sebastin R, Lee KJ, Shin MJ, Cho GT, Ma KH, Lee JR, Lee GA, Chung JW. The complete chloroplast genome sequence of wild oat, Avena sterilis L. (Poaceae) and its phylogeny. Mitochondrial DNA B Resour 2018; 3:311-312. [PMID: 33474156 PMCID: PMC7799852 DOI: 10.1080/23802359.2018.1444518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022] Open
Abstract
Wild oat, Avena sterilis L. is a stout broad-leaved annual grass resembling cultivated oats in general appearance. In this study, we sequenced the complete chloroplast (cp) genome sequence of A. sterilis for the first time to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence is 135,887 bp in length with 38.5% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (21,603 bp) separated by a small single-copy region (12,575 bp) and a large single-copy region (80,106). The cp genome encodes 111 unique genes, 76 of which are protein-coding genes, four rRNA genes, 30 tRNA genes, and 18 duplicated genes in the inverted repeat region. The phylogenetic analysis indicated A. sterilis closely clustered with the cultivated oat, A. sativa L.
Collapse
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
333
|
Rather SA, Subramaniam S, Danda S, Pandey AK. Discovery of two new species of Crotalaria (Leguminosae, Crotalarieae) from Western Ghats, India. PLoS One 2018; 13:e0192226. [PMID: 29447200 PMCID: PMC5813922 DOI: 10.1371/journal.pone.0192226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
Two new species of Fabaceae-Papilionoideae are described and illustrated. Crotalaria suffruticosa from Karul Ghat region of Maharashtra is morphologically close to C. albida and C. epunctata. C. multibracteata from Panhala region of Maharashtra resembles C. vestita. C. suffruticosa differs from C. albida and C. epunctata in its habit, leaf, inflorescence, callosity, keel type, stigma, style morphology and number of seeds/pod. To test if the new species differ from their morphologically most similar species, we measured various traits and performed a Principal Component Analysis (PCA). This analysis shows that the new species differs from similar species in gross morphology for several diagnostic traits and showed correlations between the variables or distance among groups and estimated the contribution of each character. Phylogenetic analyses were also conducted based on nuclear (ITS) and plastid (matK) markers. The analyses revealed nucleotide differences between the new species and their close allies attributing to their distinctiveness. A map and key including all species of Crotalaria from Maharashtra state are provided. Conservation status of the two new species have also been assessed.
Collapse
Affiliation(s)
- Shabir A. Rather
- Plant Systematics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Shweta Subramaniam
- Plant Systematics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Shagun Danda
- Plant Systematics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Arun K. Pandey
- Plant Systematics Laboratory, Department of Botany, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
334
|
Hashimoto S, Gonzalez G, Harada S, Oosako H, Hanaoka N, Hinokuma R, Fujimoto T. Recombinant type Human mastadenovirus D85 associated with epidemic keratoconjunctivitis since 2015 in Japan. J Med Virol 2018; 90:881-889. [PMID: 29396992 DOI: 10.1002/jmv.25041] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022]
Abstract
The aim of this study was to report the emergence of a recombinant human mastadenovirus (HAdV) type 85 (HAdV-85) and to describe its genomic and clinical characteristics. The strains were detected and identified in Japan in cases of adenoviral conjunctivitis including epidemic keratoconjunctivitis (EKC). The type was designated as HAdV-85 based on the novel combination of penton base (P = HAdV-37), hexon (H = HAdV-19), and fiber (F = HAdV-8). The whole genome sequence determined for HAdV-85 was compared against sequences of other types in the same species. The results of the phylogenetic analysis suggested a recombinant origin between HAdV-53 and HAdV-64, which have been two major causes of adenoviral EKC in Japan over the past decade. During the period between 2008 and 2016 in Kumamoto city, southwest of Japan, 311 cases diagnosed with conjunctivitis were diagnosed as being the consequence of adenoviral infections. Among them, 11 cases were determined to have been caused by HAdV-85 since 2015. Thus, HAdV-85 could be an emerging causative agent of adenoviral conjunctivitis.
Collapse
Affiliation(s)
- Shintaro Hashimoto
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Kumamoto, Japan
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Seiya Harada
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Kumamoto, Japan
| | - Hideo Oosako
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Kumamoto, Japan
| | - Nozomu Hanaoka
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tsuguto Fujimoto
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
335
|
Oliveira JPD, André MR, Alves Júnior JRF, Lustosa APG, Werther K. Molecular detection of hemogregarines and haemosporidians in Brazilian free-living testudines. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:75-84. [PMID: 30050752 PMCID: PMC6058349 DOI: 10.1016/j.ijppaw.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Morphological and molecular techniques were used to investigate the presence of hemogregarines and haemosporidians in biological samples of free-living Geoffroy's side-necked turtles (Phrynops geoffroanus) and Giant Amazon turtles (Podocnemis expansa) from Brazil. No evolutionary form of haemosporidians or hemogregarines were observed in the blood smears of 83 P. geoffroanus samples, and there were no meronts in the histological sections of 31 necropsied P. geoffroanus samples. All DNA samples extracted from P. geoffroanus tissues and blood aliquots were negative in haemosporidian PCR assays (based on the mitochondrial cytochrome b gene) and hemogregarine PCR assays (based on the 18S rRNA gene). In the analysis of blood smears of all seven Podocnemis expansa evaluated, gametocytes of hemogregarines were observed. The seven P. expansa were negative in the haemosporidian PCR assays. Moreover, hemogregarine DNA was detected in blood samples from all of the sampled P. expansa. The phylogenetic maximum likelihood inference and probabilistic Bayesian inference revealed five closely related genotypes that formed a monophyletic group. There was also a sister group to the lineage that consisted of Haemogregarina spp. of freshwater turtles from Canada, Italy, Mozambique, Kenya, Gabon, Vietnam, and China. The findings suggest that free-living P. expansa were parasitized by a new genotype or even a possible new species of the genus Haemogregarina. Haemosporidians and hemogregarines are not frequently found in P. geoffroanus in the studied region under the local conditions of that period. Hemogregarines was detected in blood samples of free-living Brazilian testudines. Gametocytes of hemogregarines were observed in Podocnemis expansa blood smears. Hemogregarines DNA fragments based on the 18S rRNA gene were detected in P. expansa. We propose that P. expansa were parasitized by a new genotype of Haemogregarina. Haemosporidians was not observed in either P. expansa or Phrynops geoffroanus samples.
Collapse
Affiliation(s)
- Juliana Paula de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| | | | - Ana Paula Gomes Lustosa
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), National Center for Research and Conservation of Reptiles and Amphibians (RAN), Rua 229, n 95, Setor Leste Universitário, 74.605-090, Goiânia, GO, Brazil
| | - Karin Werther
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| |
Collapse
|
336
|
Levy Karin E, Shkedy D, Ashkenazy H, Cartwright RA, Pupko T. Inferring Rates and Length-Distributions of Indels Using Approximate Bayesian Computation. Genome Biol Evol 2018; 9:1280-1294. [PMID: 28453624 PMCID: PMC5438127 DOI: 10.1093/gbe/evx084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 02/07/2023] Open
Abstract
The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates. We study the performance of our methodology and show that it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C ++ program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.
Collapse
Affiliation(s)
- Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.,Department of Molecular Biology & Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Dafna Shkedy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Haim Ashkenazy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| |
Collapse
|
337
|
Moskalev AА, Kudryavtseva AV, Graphodatsky AS, Beklemisheva VR, Serdyukova NA, Krutovsky KV, Sharov VV, Kulakovskiy IV, Lando AS, Kasianov AS, Kuzmin DA, Putintseva YA, Feranchuk SI, Shaposhnikov MV, Fraifeld VE, Toren D, Snezhkina AV, Sitnik VV. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evol Biol 2017; 17:258. [PMID: 29297306 PMCID: PMC5751776 DOI: 10.1186/s12862-017-1103-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a “living fossil”. It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. Results In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. Conclusions This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions. Electronic supplementary material The online version of this article (doi: 10.1186/s12862-017-1103-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey А Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russian Federation.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | | | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russian Federation
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Department of Ecosystem Science and Management, Texas A&M University, College Station, 77843-2138, TX, USA
| | - Vadim V Sharov
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russian Federation
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Andrey S Lando
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Dmitry A Kuzmin
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russian Federation
| | - Yuliya A Putintseva
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation
| | - Sergey I Feranchuk
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation.,Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033, Russian Federation
| | - Mikhail V Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russian Federation
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Dmitri Toren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Anastasia V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Vasily V Sitnik
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| |
Collapse
|
338
|
Martínez-Aquino A, Vidal-Martínez VM, Aguirre-Macedo ML. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea). PeerJ 2017; 5:e4158. [PMID: 29250471 PMCID: PMC5729820 DOI: 10.7717/peerj.4158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.
Collapse
Affiliation(s)
- Andrés Martínez-Aquino
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Victor M. Vidal-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - M. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
339
|
Kazlauskas D, Sezonov G, Charpin N, Venclovas Č, Forterre P, Krupovic M. Novel Families of Archaeo-Eukaryotic Primases Associated with Mobile Genetic Elements of Bacteria and Archaea. J Mol Biol 2017; 430:737-750. [PMID: 29198957 PMCID: PMC5862659 DOI: 10.1016/j.jmb.2017.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/15/2022]
Abstract
Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase–polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase–polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages. Primases of the archaeo-eukaryotic primase (AEP) superfamily are widespread in bacteria. We describe five new AEP families in bacteria belonging to 12 diverse phyla. The new AEP families display a conserved signature motif likely involved in nucleotide binding. The primase domains are fused to diverse functional domains, revealing new families of putative helicases. The novel primases are encoded within highly diverse integrated mobile genetic elements.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Guennadi Sezonov
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7138 Evolution Paris Seine-Institut de Biologie Paris Seine, Paris 75005, France
| | - Nicole Charpin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania.
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| |
Collapse
|
340
|
Bank S, Sann M, Mayer C, Meusemann K, Donath A, Podsiadlowski L, Kozlov A, Petersen M, Krogmann L, Meier R, Rosa P, Schmitt T, Wurdack M, Liu S, Zhou X, Misof B, Peters RS, Niehuis O. Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Mol Phylogenet Evol 2017; 116:213-226. [DOI: 10.1016/j.ympev.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/17/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
341
|
Lai J, Ghaemi Z, Luthey-Schulten Z. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains. Biochemistry 2017; 56:5972-5979. [PMID: 29045140 DOI: 10.1021/acs.biochem.7b00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. We show that the transition free energy is minimal along a non-intuitive pathway that involves "separation" of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domain 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. We also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.
Collapse
Affiliation(s)
- Jonathan Lai
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zhaleh Ghaemi
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
342
|
Okamoto-Shibayama K, Sekino J, Yoshikawa K, Saito A, Ishihara K. Antimicrobial susceptibility profiles of oral Treponema species. Anaerobe 2017; 48:242-248. [PMID: 29030100 DOI: 10.1016/j.anaerobe.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/23/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Treponemes occur in the microflora of the dental plaque. Certain Treponema species that are frequently isolated from chronic periodontitis lesions are involved in its initiation and progression. In addition to mechanical instrumentation, antimicrobial agents are used as an adjunctive treatment modality for periodontitis. Despite its importance for successful antimicrobial treatment, information about susceptibility is limited for Treponema species. The aim of this study was to assess the susceptibility of Treponema denticola strains, Treponema socranskii, and Treponema vincentii to eleven antimicrobial agents. The minimum inhibitory and minimum bactericidal concentrations of these antimicrobial agents revealed strain-specific variation. Doxycycline, minocycline, azithromycin, and erythromycin were effective against all Treponema species tested in this study, whereas fluoroquinolones only exhibited an equivalent effectiveness on T. socranskii. The susceptibility of one T. denticola strain, T. socranskii, and T. vincentii to kanamycin was influenced by prior exposure to aerobic conditions. The susceptibility to quinolone drugs varied among strains of T. denticola, although they share an amino acid sequence identity of greater than 99% for DNA gyrase (type II topoisomerase) subunit A. In addition, an ATP-binding cassette (ABC) transporter inhibitor assay for T. denticola indicated that the transport of quinolone drugs is partially related to this transporter, although there may be parallel transport mechanisms. Our results provide important insights into antimicrobial agent-Treponema dynamics and establish a basis for developing an appropriate adjunctive therapy for periodontal disease.
Collapse
Affiliation(s)
- Kazuko Okamoto-Shibayama
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Jin Sekino
- Tokyo Metropolitan Center for Oral Health of Persons with Disabilities, Central Plaza 8F·9F, Kaguragashi, Shinjuku-ku, Tokyo 162-0823, Japan; Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kouki Yoshikawa
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
| |
Collapse
|
343
|
Swain TD. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference. Mol Phylogenet Evol 2017; 118:1-12. [PMID: 28919505 DOI: 10.1016/j.ympev.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA.
Collapse
Affiliation(s)
- Timothy D Swain
- Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
344
|
Affiliation(s)
- Chuan-Gen Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
345
|
Bouer A, André MR, Gonçalves LR, Luzzi MDC, Oliveira JPD, Rodrigues AC, Varani ADM, Miranda VFOD, Perles L, Werther K, Machado RZ. Hepatozoon caimani in Caiman crocodilus yacare (Crocodylia, Alligatoridae) from North Pantanal, Brazil. ACTA ACUST UNITED AC 2017; 26:352-358. [PMID: 28902260 DOI: 10.1590/s1984-29612017041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022]
Abstract
Hepatozoon species are the most common intracellular hemoparasite found in reptiles. Hepatozoon caimani, whose vectors are Culex mosquitoes, has been detected in a high prevalence among caimans in Brazil by blood smears examinations. The present work aimed to detect and characterize the Hepatozoon spp. found in 33 caimans (24 free-ranging and 9 captive; 28 males and 5 females) (Caiman crocodilus yacare) sampled at Poconé, North Pantanal, state of Mato Grosso, Brazil, using blood smears examinations and molecular techniques. Hepatozoon spp.-gametocytes were found in 70.8% (17/24) and 88.8% (8/9) of blood smears from free-ranging and captive caimans, respectively. Hepatozoon spp. 18S rRNA DNA was found in 79.2% (19/24) and 88.8% (8/9) of free-ranging and captive caimans, respectively. Comparative analysis of parasitized and non-parasitized erythrocytes showed that all analyzed features were significantly different (P<0.05) for both linear and area dimensions. Phylogenetic analysis based on 18S rRNA sequences grouped the Hepatozoon spp. sequences detected in the present study together with H. caimani, recently detected in caimans in southern Pantanal.
Collapse
Affiliation(s)
- Andréa Bouer
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Marcos Rogério André
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Luiz Ricardo Gonçalves
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Mayara de Cássia Luzzi
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Juliana Paula de Oliveira
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Adriana Carlos Rodrigues
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Alessandro de Melo Varani
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | - Lívia Perles
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Karin Werther
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
346
|
Hippmann AA, Schuback N, Moon KM, McCrow JP, Allen AE, Foster LJ, Green BR, Maldonado MT. Contrasting effects of copper limitation on the photosynthetic apparatus in two strains of the open ocean diatom Thalassiosira oceanica. PLoS One 2017; 12:e0181753. [PMID: 28837661 PMCID: PMC5570362 DOI: 10.1371/journal.pone.0181753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/06/2017] [Indexed: 11/25/2022] Open
Abstract
There is an intricate interaction between iron (Fe) and copper (Cu) physiology in diatoms. However, strategies to cope with low Cu are largely unknown. This study unveils the comprehensive restructuring of the photosynthetic apparatus in the diatom Thalassiosira oceanica (CCMP1003) in response to low Cu, at the physiological and proteomic level. The restructuring results in a shift from light harvesting for photochemistry—and ultimately for carbon fixation—to photoprotection, reducing carbon fixation and oxygen evolution. The observed decreases in the physiological parameters Fv/Fm, carbon fixation, and oxygen evolution, concomitant with increases in the antennae absorption cross section (σPSII), non-photochemical quenching (NPQ) and the conversion factor (φe:C/ηPSII) are in agreement with well documented cellular responses to low Fe. However, the underlying proteomic changes due to low Cu are very different from those elicited by low Fe. Low Cu induces a significant four-fold reduction in the Cu-containing photosynthetic electron carrier plastocyanin. The decrease in plastocyanin causes a bottleneck within the photosynthetic electron transport chain (ETC), ultimately leading to substantial stoichiometric changes. Namely, 2-fold reduction in both cytochrome b6f complex (cytb6f) and photosystem II (PSII), no change in the Fe-rich PSI and a 40- and 2-fold increase in proteins potentially involved in detoxification of reactive oxygen species (ferredoxin and ferredoxin:NADP+ reductase, respectively). Furthermore, we identify 48 light harvesting complex (LHC) proteins in the publicly available genome of T. oceanica and provide proteomic evidence for 33 of these. The change in the LHC composition within the antennae in response to low Cu underlines the shift from photochemistry to photoprotection in T. oceanica (CCMP1003). Interestingly, we also reveal very significant intra-specific strain differences. Another strain of T. oceanica (CCMP 1005) requires significantly higher Cu concentrations to sustain both its maximal and minimal growth rate compared to CCMP 1003. Under low Cu, CCMP 1005 decreases its growth rate, cell size, Chla and total protein per cell. We argue that the reduction in protein per cell is the main strategy to decrease its cellular Cu requirement, as none of the other parameters tested are affected. Differences between the two strains, as well as differences between the well documented responses to low Fe and those presented here in response to low Cu are discussed.
Collapse
Affiliation(s)
- Anna A. Hippmann
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (AAH); (MTM)
| | - Nina Schuback
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John P. McCrow
- Department of Microbial & Environmental Genomics, J. Craig Venter Institute, La Jolla, California, United States of America
| | - Andrew E. Allen
- Department of Microbial & Environmental Genomics, J. Craig Venter Institute, La Jolla, California, United States of America
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beverley R. Green
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria T. Maldonado
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (AAH); (MTM)
| |
Collapse
|
347
|
Reduction of Mosquito Survival in Mice Vaccinated with Anopheles stephensi Glucose Transporter. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3428186. [PMID: 28804714 PMCID: PMC5540378 DOI: 10.1155/2017/3428186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023]
Abstract
Despite the fact that recent efforts to control/eradicate malaria have contributed to a significant decrease in the number of cases and deaths, the disease remains a global health challenge. Vaccines based on mosquito salivary gland antigens are a potential approach for reducing vector populations and malaria parasites. The Anopheles AGAP007752 gene encodes for a glucose transporter that is upregulated during Plasmodium infection, and its knockdown decreases the number of sporozoites in mosquito salivary glands. These results together with the fact that glucose is a vital source of energy suggested that a glucose transporter is a candidate protective antigen for the control of mosquito infestations and Plasmodium infection. To address this hypothesis, herein we investigate the effect of mice vaccination with an immunogenic peptide from mosquito glucose transporter on Anopheles stephensi fitness and Plasmodium berghei infection. We showed that vaccination with a peptide of glucose transporter reduced mosquito survival by 5% when compared to controls. However, the reduction in Plasmodium infection was not significant in mosquitoes fed on vaccinated mice. The effect of the peptide vaccination on mosquito survival is important to reduce infestation by malaria vectors. These results support further research on developing glucose transporter-based vaccines to reduce mosquito fitness.
Collapse
|
348
|
Matsui T, Yoshikawa G, Mihara T, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase. Front Microbiol 2017; 8:1010. [PMID: 28659872 PMCID: PMC5468394 DOI: 10.3389/fmicb.2017.01010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanacearum phages ΦRP12 and ΦRP31 are jumbo phages isolated in Thailand. Here we show that they exhibit similar virion morphology, genome organization and host range. Genome comparisons as well as phylogenetic and proteomic tree analyses support that they belong to the group of ΦKZ-related phages, with their closest relatives being R. solanacearum phages ΦRSL2 and ΦRSF1. Compared with ΦRSL2 and ΦRSF1, ΦRP12 and ΦRP31 possess larger genomes (ca. 280 kbp, 25% larger). The replication of ΦRP12 and ΦRP31 was not affected by rifampicin treatment (20 μg/ml), suggesting that phage-encoded RNAPs function to start and complete the infection cycle of these phages without the need of host-encoded RNAPs. In contrast, ΦRSL2 and ΦRSF1, encoding the same set of RNAPs, did not produce progeny phages in the presence of rifampicin (5 μg/ml). This observation opens the possibility that some ΦRP12/ΦRP31 factors that are absent in ΦRSL2 and ΦRSF1 are involved in their host-independent transcription.
Collapse
Affiliation(s)
- Takeru Matsui
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDAPathum Thani, Thailand.,Center for Agricultural Biotechnology, Kasetsart UniversityNakhon Pathom, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| |
Collapse
|
349
|
Sun J, Gao Z, Zhang X, Zou X, Cao L, Wang J. Transcriptome analysis of Phytophthora litchii reveals pathogenicity arsenals and confirms taxonomic status. PLoS One 2017; 12:e0178245. [PMID: 28570700 PMCID: PMC5453482 DOI: 10.1371/journal.pone.0178245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
Litchi downy blight, caused by Peronophythora litchii, is one of the major diseases of litchi and has caused severe economic losses. P. litchii has the unique ability to produce downy mildew like sporangiophores under artificial culture. The pathogen had been placed in a new family Peronophytophthoraceae by some authors. In this study, the whole transcriptome of P. litchii from mycelia, sporangia, and zoospores was sequenced for the first time. A set of 23637 transcripts with an average length of 1284 bp was assembled. Using six open reading frame (ORF) predictors, 19267 representative ORFs were identified and were annotated by searching against several public databases. There were 4666 conserved gene families and various sets of lineage-specific genes among P. litchii and other four closely related oomycetes. In silico analyses revealed 490 pathogen-related proteins including 128 RXLR and 22 CRN effector candidates. Based on the phylogenetic analysis of 164 single copy orthologs from 22 species, it is validated that P. litchii is in the genus Phytophthora. Our work provides valuable data to elucidate the pathogenicity basis and ascertain the taxonomic status of P. litchii.
Collapse
Affiliation(s)
- Jinhua Sun
- The Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Zhaoyin Gao
- The Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xinchun Zhang
- The Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xiaoxiao Zou
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Lulu Cao
- The Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Jiabao Wang
- The Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- * E-mail:
| |
Collapse
|
350
|
Liu D, Wang H, Park JS, Hur JS. The Genus Chlorociboria, Blue-Green Micromycetes in South Korea. MYCOBIOLOGY 2017; 45:57-63. [PMID: 28781537 PMCID: PMC5541149 DOI: 10.5941/myco.2017.45.2.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The species of the genus Chlorociboria Seaver are very common on the forest floor, and can be easily distinguished by small and numerous blue-green fruitbody, especially the blue substrate dyed with xylindein produced by this group. This genus has rather high species diversity in the Southern Hemisphere, while a little attention was paid to this group in East Asia area. During a field survey in South Korea, several Chlorociboria specimens were collected. Based on morphological and phylogenetic analyses, three species of Chlorociboria were reported, including one new record in South Korea and one new record in Jeju Island. The key to the species of Chlorociboria from South Korea is provided.
Collapse
Affiliation(s)
- Dong Liu
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon 57922, Korea
| | - Huan Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agriculture University, Changchun 130118, China
| | - Jung Shin Park
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon 57922, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|