301
|
Tian Z, Wang X, Duan Y, Zhao Y, Zhang W, Azad MAK, Wang Z, Blachier F, Kong X. Dietary Supplementation With Bacillus subtilis Promotes Growth and Gut Health of Weaned Piglets. Front Vet Sci 2021; 7:600772. [PMID: 33521080 PMCID: PMC7844206 DOI: 10.3389/fvets.2020.600772] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation with different types of Bacillus subtilis (B. subtilis) on the growth and gut health of weaned piglets. A total of 160 piglets were randomly assigned into four groups: control group (a basal diet), BS-A group (a basal diet supplemented with B. subtilis A at 1 × 106 CFU/g feed), BS-B group (a basal diet supplemented with B. subtilis B at 1 × 106 CFU/g feed), and BS-C group (a basal diet supplemented with B. subtilis C at 1 × 106 CFU/g feed). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, blood plasma and intestinal tissues and digesta samples were collected to determine plasma cytokine concentrations, intestinal morphology, gut microbiota community and metabolic activity, and the expression of genes related to gut physiology and metabolism. The results showed that dietary B. subtilis supplementation improved (P < 0.05) the body weight and average daily gain (in BS-B and BS-C groups) of weaned piglets and decreased (P < 0.05) the diarrhea rates (in BS-A, BS-B, and BS-C groups). In the intestinal morphology analysis, B. subtilis supplementation improved (P < 0.05) the size of villus height and villus height to crypt depth ratio in the ileum of weaned piglets. Firmicutes, Bacteroidetes, and Tenericutes were the most dominant microflora in piglets' colon whatever the trial group and time of analysis. Dietary BS-C supplementation increased (P < 0.05) the relative abundances of Anaerovibrio and Bulleidia and decreased (P < 0.05) the relative abundances of Clostridium and Coprococcus compared with the control group. In addition, dietary B. subtilis supplementation increased (P < 0.05) the indicators of intestinal health, including plasma levels of interleukin (IL)-2 and IL-10, as well as the colonic levels of short-chain fatty acids. Furthermore, dietary B. subtilis supplementation also up-regulated (P < 0.05) the expression of genes involved in metabolic pathways related to intestinal microbiota maturation. In conclusion, these findings suggest that a diet containing BS-B or BS-C can efficiently promote growth performance, decrease diarrhea incidence, and ameliorate several indicators of intestinal health through the modulation of gut microbiota composition and metabolic activity in weaned piglets.
Collapse
Affiliation(s)
- Zhilong Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaodan Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Zhao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | | | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhanbin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Francois Blachier
- University Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
302
|
Yoshio S, Kanto T. Macrophages as a source of fibrosis biomarkers for non-alcoholic fatty liver disease. Immunol Med 2021; 44:175-186. [PMID: 33444517 DOI: 10.1080/25785826.2020.1868664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) are becoming major liver diseases worldwide. Liver fibrosis and cirrhosis are among the most significant risk factors of hepatocellular carcinoma (HCC) and associated with the long-term prognosis of NAFLD patients. To stratify the risk of HCC in NAFLD patients clinically, the discovery of non-invasive fibrosis markers is needed urgently. Liver macrophages play critical roles in the regulation of inflammation and fibrosis by interacting with hepatic stellate cells (HSCs) and other immune cells. Thus, it is rational to explore feasible biomarkers for liver fibrosis by focusing on macrophage-related factors. We examined serum factors comprehensively in multiple cohorts of NAFLD/NASH patients to determine whether they were correlated with the biopsy-proven fibrosis stage. We found that the serum levels of interleukin (IL)-34, YKL-40 and soluble Siglec-7 (sSiglec7) were closely associated with liver fibrosis and served as diagnostic biomarkers in patients with NAFLD/NASH. In the NAFLD liver, IL-34 was produced by activated fibroblasts, and YKL-40 and sSiglec-7 were secreted from macrophages. The sensitivity and specificity of these markers to detect advanced liver fibrosis varied, supporting the notion that the combination of these markers with other modalities is an option for clinical application.
Collapse
Affiliation(s)
- Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
303
|
Zhou J, Tripathi M, Sinha RA, Singh BK, Yen PM. Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. HEPATOMA RESEARCH 2021; 7:11. [PMID: 33490737 PMCID: PMC7116620 DOI: 10.20517/2394-5079.2020.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder worldwide. It comprises a spectrum of conditions that range from steatosis to non-alcoholic steatohepatitis, with progression to cirrhosis and hepatocellular carcinoma. Currently, there is no FDA-approved pharmacological treatment for NAFLD. The pathogenesis of NAFLD involves genetic and environmental/host factors, including those that cause changes in intestinal microbiota and their metabolites. In this review, we discuss recent findings on the relationship(s) of microbiota signature with severity of NAFLD and the role(s) microbial metabolites in NAFLD progression. We discuss how metabolites may affect NAFLD progression and their potential to serve as biomarkers for NAFLD diagnosis or therapeutic targets for disease management.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Madhulika Tripathi
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Brijesh Kumar Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Paul M. Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
304
|
Knudsen C, Arroyo J, Even M, Cauquil L, Pascal G, Fernandez X, Lavigne F, Davail S, Combes S, Ricaud K. The intestinal microbial composition in Greylag geese differs with steatosis induction mode: spontaneous or induced by overfeeding. Anim Microbiome 2021; 3:6. [PMID: 33499980 PMCID: PMC7934468 DOI: 10.1186/s42523-020-00067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Relationships between microbial composition and steatosis are being extensively studied in mammals, and causal relations have been evidenced. In migratory birds the liver can transiently store lipids during pre-migratory and migratory phases, but little is known about the implications of the digestive microbiota in those mechanisms. The Landaise greylag goose (Anser anser) is a good model to study steatosis in migratory birds as it is domesticated, but is still, from a genetic point of view, close to its wild migratory ancestor. It also has a great ingestion capacity and a good predisposition for hepatic steatosis, whether spontaneous or induced by conventional overfeeding. The conventional (overfeeding) and alternative (spontaneous steatosis induction) systems differ considerably in duration and feed intake level and previous studies have shown that aptitudes to spontaneous steatosis are very variable. The present study thus aimed to address two issues: (i) evaluate whether microbial composition differs with steatosis-inducing mode; (ii) elucidate whether a digestive microbial signature could be associated with variable aptitudes to spontaneous liver steatosis. Results Performances, biochemical composition of the livers and microbiota differed considerably in response to steatosis stimulation. We namely identified the genus Romboutsia to be overrepresented in birds developing a spontaneous steatosis in comparison to those submitted to conventional overfeeding while the genera Ralstonia, Variovorax and Sphingomonas were underrepresented only in birds that did not develop a spontaneous steatosis compared to conventionally overfed ones, birds developing a spontaneous steatosis having intermediate values. Secondly, no overall differences in microbial composition were evidenced in association with variable aptitudes to spontaneous steatosis, although one OTU, belonging to the Lactobacillus genus, was overrepresented in birds having developed a spontaneous steatosis compared to those that had not. Conclusions Our study is the first to evaluate the intestinal microbial composition in association with steatosis, whether spontaneous or induced by overfeeding, in geese. Steatosis induction modes were associated with distinct digestive microbial compositions. However, unlike what can be observed in mammals, no clear microbial signature associated with spontaneous steatosis level was identified.
Collapse
Affiliation(s)
- Christelle Knudsen
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.
| | - Julien Arroyo
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, 24420, Coulaures, France
| | - Maxime Even
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Xavier Fernandez
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Franck Lavigne
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, 24420, Coulaures, France
| | - Stéphane Davail
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Karine Ricaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| |
Collapse
|
305
|
Song M, Yuan F, Li X, Ma X, Yin X, Rouchka EC, Zhang X, Deng Z, Prough RA, McClain CJ. Analysis of sex differences in dietary copper-fructose interaction-induced alterations of gut microbial activity in relation to hepatic steatosis. Biol Sex Differ 2021; 12:3. [PMID: 33407877 PMCID: PMC7789350 DOI: 10.1186/s13293-020-00346-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis. METHODS Male and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS). RESULTS Male and female rats exhibit similar trends of changes in the body weight gain and calorie intake in response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets. Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further, total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic steatosis. CONCLUSIONS Our data demonstrated sex differences in the alterations of gut microbial abundance, activities, and hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences in metabolic phenotypes and alterations of gut microbial activities remains elusive.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 USA
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
| | - Fang Yuan
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202 USA
- Department of Chemistry, University of Louisville, Louisville, KY 40208 USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208 USA
| | - Xiaohong Li
- KBRIN Bioinformatics Core, Louisville, KY 40292 USA
| | - Xipeng Ma
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202 USA
- Department of Chemistry, University of Louisville, Louisville, KY 40208 USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208 USA
| | - Xinmin Yin
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202 USA
- Department of Chemistry, University of Louisville, Louisville, KY 40208 USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208 USA
| | | | - Xiang Zhang
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202 USA
- Department of Chemistry, University of Louisville, Louisville, KY 40208 USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208 USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - Zhongbin Deng
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- Department of Microbiology & Immunology, Brown Cancer Center, University of Louisville, Louisville, KY 40202 USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202 USA
| | - Russell A. Prough
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 USA
- Hepatobiology&Toxicology Program, University of Louisville, Louisville, KY 40202 USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202 USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206 USA
| |
Collapse
|
306
|
Sharpton SR, Schnabl B, Knight R, Loomba R. Current Concepts, Opportunities, and Challenges of Gut Microbiome-Based Personalized Medicine in Nonalcoholic Fatty Liver Disease. Cell Metab 2021; 33:21-32. [PMID: 33296678 PMCID: PMC8414992 DOI: 10.1016/j.cmet.2020.11.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NALFD) is now a leading cause of chronic liver disease worldwide, in part, as a consequence of rapidly rising levels of obesity and metabolic syndrome and is a major risk factor for cirrhosis, hepatocellular carcinoma, and liver-related mortality. From NAFLD stems a myriad of clinical challenges related to both diagnosis and management. A growing body of evidence suggests an intricate linkage between the gut microbiome and the pathogenesis of NAFLD. We highlight how our current knowledge of the gut-liver axis in NAFLD may be leveraged to develop gut microbiome-based personalized approaches for disease management, including its use as a non-invasive biomarker for diagnosis and staging, as a target for therapeutic modulation, and as a marker of drug response. We will also discuss current limitations of these microbiome-based approaches. Ultimately, a better understanding of microbiota-host interactions in NAFLD will inform the development of novel preventative strategies and precise therapeutic targets.
Collapse
Affiliation(s)
- S R Sharpton
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - B Schnabl
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - R Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science & Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - R Loomba
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
307
|
Kwong EK, Puri P. Gut microbiome changes in Nonalcoholic fatty liver disease & alcoholic liver disease. Transl Gastroenterol Hepatol 2021; 6:3. [PMID: 33409398 DOI: 10.21037/tgh.2020.02.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are some of the most common liver diseases worldwide. The human gut microbiome is dynamic and shifts in bacterial composition have been implicated in many diseases. Studies have shown that there is a shift in bacterial overgrowth favoring pro-inflammatory mediators in patients with advanced disease progression such as cirrhosis. Further investigation demonstrated that the transplantation of gut microbiota from advanced liver disease patients can reproduce severe liver inflammation and injury in mice. Various techniques in manipulating the gut microbiota have been attempted including fecal transplantation and probiotics. This review focuses on the changes in the gut microbiota as well as emerging lines of microbiome work with respect to NAFLD and ALD.
Collapse
Affiliation(s)
- Eric K Kwong
- Department of Microbiology and Immunology, McGuire VA Medical Center, Richmond, VA, USA
| | - Puneet Puri
- Section of Gastroenterology, Hepatology and Nutrition, McGuire VA Medical Center, Richmond, VA, USA.,Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
308
|
Xie X, Zhang L, Yuan S, Li H, Zheng C, Xie S, Sun Y, Zhang C, Wang R, Jin Y. Val-Val-Tyr-Pro protects against non-alcoholic steatohepatitis in mice by modulating the gut microbiota and gut-liver axis activation. J Cell Mol Med 2021; 25:1439-1455. [PMID: 33400402 PMCID: PMC7875918 DOI: 10.1111/jcmm.16229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Val‐Val‐Tyr‐Pro (VVYP) peptide is one of the main active components of Globin digest (GD). Our previous studies indicated that VVYP could protect against acetaminophen and carbon tetrachloride‐induced acute liver failure in mice and decrease blood lipid level. However, the effects and underlying mechanisms of VVYP in the treatment of non‐alcoholic steatohepatitis (NASH) have not been discovered. Our present study was designed to investigate the preventive effect of VVYP on NASH and its underlying specific mechanisms. We found that VVYP inhibited the cytotoxicity and lipid accumulation in L‐02 cells that were exposed to a mixture of free fatty acid (FFA). VVYP effectively alleviated the liver injury induced by methionine‐choline‐deficient (MCD) diet, demonstrated by reducing the levels of serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST)/triglycerides (TG)/non‐esterified fatty acids (NEFA) and improving liver histology. VVYP decreased expression levels of lipid synthesis‐related genes and reduced levels of the proinflammation cytokines in the liver of mice fed by MCD diet. Moreover, VVYP inhibited the increased level of LPS and reversed the liver mitochondria dysfunction induced by MCD diet. Meanwhile, VVYP significantly increased the abundance of beneficial bacteria such as Eubacteriaceae, coriobacteriacease, Desulfovibrionaceae, S24‐7 and Bacteroidia in high‐fat diet (HFD)‐fed mice, however, VVYP reduced the abundance of Lactobacillus. Moreover, VVYP conferred the protective effect of intestinal barrier via promoting the expression of the mucins and tight junction (TJ)‐associated genes and inhibited subsequent liver inflammatory responses. These results indicated that the protective role of VVYP on NASH is mediated by modulating gut microbiota imbalance and related gut‐liver axis activation. VVYP might be a promising drug candidate for NASH.
Collapse
Affiliation(s)
- Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lang Zhang
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Shun Yuan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huilan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chaojun Zheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Changhua Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
309
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
310
|
Yu X, Xue M, Liu Y, Zhou Z, Jiang Y, Sun T, Liang H. Effect of nicotinamide riboside on lipid metabolism and gut microflora-bile acid axis in alcohol-exposed mice. Food Sci Nutr 2021; 9:429-440. [PMID: 33473304 PMCID: PMC7802554 DOI: 10.1002/fsn3.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is the most common complication of alcohol abuse, while we lack safe and effective treatment for ALD. This study aimed to explore the effects of nicotinamide riboside (NR) on lipid metabolism and gut microflora-bile acid axis in alcohol-exposed mice. NR significantly improved liver histopathological damage and abnormal liver function. NR as a provider of nicotinamide adenine dinucleotide (NAD+) increased the NAD+/NADH ratio. Meanwhile, NR inhibited the activation of the protein phosphatase 1 signaling pathway, decreased the liver triglyceride and total bile acid levels, and reduced lipid accumulation. According to the results of gut microflora species analysis, NR intervention changed the microbial community structure at the phylum, family and genus levels, and the species abundances returned to a level similar to these of the normal control group. Besides, the results of high-performance liquid chromatograph-mass spectrometry showed that NR intervention resulted in fecal bile acid levels tending to be normal with decreased chenodeoxycholic acid level and increased deoxycholic acid and hyocholic acid levels. Spearman's correlation analysis showed a correlation between gut microflora and bile acids. Therefore, NR supplementation has the potential to prevent ALD, and its mechanism may be related to regulating lipid metabolism disorders and the gut microflora-bile acid axis.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Human NutritionCollege of Public HealthQingdao UniversityQingdaoChina
| | - Meilan Xue
- Basic Medical CollegeQingdao University of MedicineQingdaoChina
| | - Ying Liu
- Basic Medical CollegeQingdao University of MedicineQingdaoChina
| | - Zhitong Zhou
- Food Science DepartmentUniversity of GuelphGuelphONCanada
| | - Yushan Jiang
- Department of Human NutritionCollege of Public HealthQingdao UniversityQingdaoChina
| | - Ting Sun
- Basic Medical CollegeQingdao University of MedicineQingdaoChina
| | - Hui Liang
- Department of Human NutritionCollege of Public HealthQingdao UniversityQingdaoChina
| |
Collapse
|
311
|
Ramos LF, Silva CM, Pansa CC, Moraes KCM. Non-alcoholic fatty liver disease: molecular and cellular interplays of the lipid metabolism in a steatotic liver. Expert Rev Gastroenterol Hepatol 2021; 15:25-40. [PMID: 32892668 DOI: 10.1080/17474124.2020.1820321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) affects ~25% of world population and cases have increased in recent decades. These anomalies have several etiologies; however, obesity and metabolic dysfunctions are the most relevant causes. Despite being considered a public health problem, no effective therapeutic approach to treat NAFLD is available. For that, a deep understanding of metabolic routes that support hepatic diseases is needed. AREAS COVERED This review covers aspects of the onset of NAFLD. Thereby, biochemistry routes as well as cellular and metabolic effects of the gut microbiota in body's homeostasis and epigenetics are contextualized. EXPERT OPINION Recently, the development of biological sciences has generated innovative knowledge, bringing new insights and perspectives to clarify the systems biology of liver diseases. A detailed comprehension of epigenetics mechanisms will offer possibilities to develop new therapeutic and diagnostic strategies for NAFLD. Different epigenetic processes have been reported that are modulated by the environment such as gut microbiota, suggesting strong interplays between cellular behavior and pathology. Thus, a more complete description of such mechanisms in hepatic diseases will help to clarify how to control the establishment of fatty liver, and precisely describe molecular interplays that potentially control NAFLD.
Collapse
Affiliation(s)
- Letícia F Ramos
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| | - Caio M Silva
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| | - Camila C Pansa
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| | - Karen C M Moraes
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| |
Collapse
|
312
|
Maroni L, Fianchi F, Miele L, Svegliati Baroni G. The pathophysiology of gut–liver connection. THE COMPLEX INTERPLAY BETWEEN GUT-BRAIN, GUT-LIVER, AND LIVER-BRAIN AXES 2021:97-122. [DOI: 10.1016/b978-0-12-821927-0.00002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
313
|
Raza S, Rajak S, Upadhyay A, Tewari A, Anthony Sinha R. Current treatment paradigms and emerging therapies for NAFLD/NASH. FRONT BIOSCI-LANDMRK 2021; 26:206-237. [PMID: 33049668 PMCID: PMC7116261 DOI: 10.2741/4892] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one the fastest emerging manifestations of the metabolic syndrome worldwide. Non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, may culminate into cirrhosis and hepatocellular cancer (HCC) and is presently a leading cause of liver transplant. Although a steady progress is seen in understanding of the disease epidemiology, pathogenesis and identifying therapeutic targets, the slowest advancement is seen in the therapeutic field. Currently, there is no FDA approved therapy for this disease and appropriate therapeutic targets are urgently warranted. In this review we discuss the role of lifestyle intervention, pharmacological agents, surgical approaches, and gut microbiome, with regard to therapy for NASH. In particular, we focus the role of insulin sensitizers, thyroid hormone mimetics, antioxidants, cholesterol lowering drugs, incretins and cytokines as therapeutic targets for NASH. We highlight these targets aiming to optimize the future for NASH therapy.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Aditya Upadhyay
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India,
| |
Collapse
|
314
|
Zhang Y, Jiang W, Xu J, Wu N, Wang Y, Lin T, Liu Y, Liu Y. E. coli NF73-1 Isolated From NASH Patients Aggravates NAFLD in Mice by Translocating Into the Liver and Stimulating M1 Polarization. Front Cell Infect Microbiol 2020; 10:535940. [PMID: 33363046 PMCID: PMC7759485 DOI: 10.3389/fcimb.2020.535940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The gut microbiota is associated with nonalcoholic fatty liver disease (NAFLD). We isolated the Escherichia coli strain NF73-1 from the intestines of a NASH patient and then investigated its effect and underlying mechanism. Methods 16S ribosomal RNA (16S rRNA) amplicon sequencing was used to detect bacterial profiles in healthy controls, NAFLD patients and NASH patients. Highly enriched E. coli strains were cultured and isolated from NASH patients. Whole-genome sequencing and comparative genomics were performed to investigate gene expression. Depending on the diet, male C57BL/6J mice were further grouped in normal diet (ND) and high-fat diet (HFD) groups. To avoid disturbing the bacterial microbiota, some of the ND and HFD mice were grouped as “bacteria-depleted” mice and treated with a cocktail of broad-spectrum antibiotic complex (ABX) from the 8th to 10th week. Then, E. coli NF73-1, the bacterial strain isolated from NASH patients, was administered transgastrically for 6 weeks to investigate its effect and mechanism in the pathogenic progression of NAFLD. Results The relative abundance of Escherichia increased significantly in the mucosa of NAFLD patients, especially NASH patients. The results from whole-genome sequencing and comparative genomics showed a specific gene expression profile in E. coli strain NF73-1, which was isolated from the intestinal mucosa of NASH patients. E. coli NF73-1 accelerates NAFLD independently. Only in the HFD-NF73-1 and HFD-ABX-NF73-1 groups were EGFP-labeled E. coli NF73-1 detected in the liver and intestine. Subsequently, translocation of E. coli NF73-1 into the liver led to an increase in hepatic M1 macrophages via the TLR2/NLRP3 pathway. Hepatic M1 macrophages induced by E. coli NF73-1 activated mTOR-S6K1-SREBP-1/PPAR-α signaling, causing a metabolic switch from triglyceride oxidation toward triglyceride synthesis in NAFLD mice. Conclusions E. coli NF73-1 is a critical trigger in the progression of NAFLD. E. coli NF73-1 might be a specific strain for NAFLD patients.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Weiwei Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China.,Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China.,Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Tianyu Lin
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
315
|
Ghosh S, Yang X, Wang L, Zhang C, Zhao L. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Comput Struct Biotechnol J 2020; 19:448-458. [PMID: 33510856 PMCID: PMC7806547 DOI: 10.1016/j.csbj.2020.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that prebiotics may induce weight loss and alleviate non-alcoholic fatty liver disease (NAFLD) via modulation of the gut microbiota. However, key members of the gut microbiota that may mediate the beneficial effects of prebiotics remain elusive. Here, we find that restricted prebiotic feeding during active phase (HF-ARP) induced weight-independent alleviation of liver steatosis and reduced serum cholesterol in high-fat diet (HF) fed mice more significantly than unrestricted feeding (HF-UP). HF-ARP mice also showed concomitantly altered gut microbiota structure that was different from HF-UP group along with significantly increased production of total short-chain fatty-acids (SCFAs). Amplicon sequence variants (ASVs) were clustered into co-abundant groups (CAGs) as potential functional groups that may respond distinctively to prebiotic consumption and prebiotic feeding regime. Prebiotic feeding induces significant alterations in CAG abundances by day 7. Eight of 32 CAGs were promoted by prebiotics, including CAG17 with the most abundant ASV from Parabacteroides, CAG22 with Bacteroides thetaiotamicron and CAG32 with Fecalibaculum and Akkermansia. Among the prebiotic-promoted CAGs, CAG20 with ASVs from Lachnospiraceae and CAG21 with ASVs from Bifidobacterium and Lachnospiraceae were significantly enhanced in HF-ARP compared to HF-UP. Moreover, most of the prebiotic-promoted CAGs were also significantly associated with improvements in hepatic steatosis, reduction in serum cholesterol and increased cecal propionate production. Together, these results suggest that the impact of prebiotics on weight-independent alleviation of liver steatosis and cholesterol-lowering effect can be optimized by restricting prebiotic intake to active phase and is associated with a distinct change of gut microbiota with increased SCFA production.
Collapse
Affiliation(s)
- Shreya Ghosh
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
316
|
LeBrun ES, Nighot M, Dharmaprakash V, Kumar A, Lo CC, Chain PSG, Ma TY. The Gut Microbiome and Alcoholic Liver Disease: Ethanol Consumption Drives Consistent and Reproducible Alteration in Gut Microbiota in Mice. Life (Basel) 2020; 11:7. [PMID: 33374112 PMCID: PMC7823357 DOI: 10.3390/life11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Phenotypic health effects, both positive and negative, have been well studied in association with the consumption of alcohol in humans as well as several other mammals including mice. Many studies have also associated these same health effects and phenotypes to specific members of gut microbiome communities. Here we utilized a chronic plus binge ethanol feed model (Gao-binge model) to explore microbiome community changes across three independent experiments performed in mice. We found significant and reproducible differences in microbiome community assemblies between ethanol-treated mice and control mice on the same diet absent of ethanol. We also identified significant differences in gut microbiota occurring temporally with ethanol treatment. Peak shift in communities was observed 4 days after the start of daily alcohol consumption. We quantitatively identified many of the bacterial genera indicative of these ethanol-induced shifts including 20 significant genera when comparing ethanol treatments with controls and 14 significant genera based on temporal investigation. Including overlap of treatment with temporal shifts, we identified 25 specific genera of interest in ethanol treatment microbiome shifts. Shifts coincide with observed presentation of fatty deposits in the liver tissue, i.e., Alcoholic Liver Disease-associated phenotype. The evidence presented herein, derived from three independent experiments, points to the existence of a common, reproducible, and characterizable "mouse ethanol gut microbiome".
Collapse
Affiliation(s)
- Erick S. LeBrun
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (E.S.L.); (A.K.); (C.-C.L.)
| | - Meghali Nighot
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA 17033, USA; (M.N.); (V.D.)
| | - Viszwapriya Dharmaprakash
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA 17033, USA; (M.N.); (V.D.)
| | - Anand Kumar
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (E.S.L.); (A.K.); (C.-C.L.)
| | - Chien-Chi Lo
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (E.S.L.); (A.K.); (C.-C.L.)
| | - Patrick S. G. Chain
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (E.S.L.); (A.K.); (C.-C.L.)
| | - Thomas Y. Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA 17033, USA; (M.N.); (V.D.)
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
317
|
Aging, Gut Microbiota and Metabolic Diseases: Management through Physical Exercise and Nutritional Interventions. Nutrients 2020; 13:nu13010016. [PMID: 33374578 PMCID: PMC7822442 DOI: 10.3390/nu13010016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota (GM) is involved in the maintenance of physiological homeostasis, thus the alteration of its composition and functionality has been associated with many pathologies such as metabolic diseases, and could also be linked with the progressive degenerative process in aging. Nowadays, life expectancy is continuously rising, so the number of elder people and the consequent related pathologies demand new strategies to achieve healthy aging. Besides, actual lifestyle patterns make metabolic diseases a global epidemic with increasing trends, responsible for a large mortality and morbidity in adulthood and also compromising the health status of later stages of life. Metabolic diseases and aging share a profile of low-grade inflammation and innate immunity activation, which may have disturbances of GM composition as the leading mechanism. Thus, GM emerges as a therapeutic target with a double impact in the elderly, counteracting both aging itself and the frequent metabolic diseases in this population. This review summarizes the role and compositional changes of the GM in aging and its modulation through nutritional interventions and physical exercise as a strategy to counteract the aging process and the related metabolic diseases.
Collapse
|
318
|
The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2020; 12:360-373. [PMID: 33346905 PMCID: PMC8106557 DOI: 10.1007/s13238-020-00814-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases, while in recent years, accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular disease and so on. Numerous microorganisms dwell in the gastrointestinal tract, which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances, thus acting as a link between the gut microbiome and its host. The gut microbiome is shaped by host genetics, immune responses and dietary factors. The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases. Therefore, targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future. This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut microbiome-derived metabolites and the pathogenesis of many metabolic diseases. Furthermore, recent advances in improving metabolic diseases by regulating the gut microbiome will be discussed.
Collapse
|
319
|
GC-TOF-MS-Based Metabolomics Analyses of Liver and Intestinal Contents in the Overfed vs. Normally-Fed Geese. Animals (Basel) 2020; 10:ani10122375. [PMID: 33322323 PMCID: PMC7763799 DOI: 10.3390/ani10122375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-alcoholic fatty liver disease has been considered as one of the most important causes of liver disease, and it is a threat to human and animal health worldwide. Interestingly, goose fatty liver can reach 8–10 times the weight of normal liver with no overt pathological symptoms, suggesting that there are some protective mechanisms. Scientists have indicated that gut microbiota participate in the formation of non-alcoholic fatty liver disease in human and mammalian animals. However, it is unclear whether gut microbiota and their metabolites contribute to goose fatty liver. The aim of the present study was to investigate the metabolomic analyses of liver and intestinal contents in overfed vs. normally fed geese. The results showed that the formation of goose fatty liver is accompanied by obvious changes in the metabolic profiles of liver and intestinal contents. The intestinal metabolites can affect the formation of goose fatty liver by affecting the metabolisms of glucose and fatty acid, oxidative stress, and inflammatory reactions. These findings provide a basis for future work addressing the relationship between intestinal metabolites and the development of non-alcoholic fatty liver disease. Abstract No overt pathological symptoms are observed in the goose liver with severe steatosis, suggesting that geese may host unique protective mechanisms. Gas chromatography time-of-flight mass spectrometry-based metabolomics analyses of liver and intestinal contents in overfed vs. normally fed geese (26 geese in each treatment) were investigated. We found that overfeeding significantly changed the metabolic profiles of liver and intestinal contents. The differential metabolites mainly belong to fatty acids, amino acids, organic acids, and amines. The differential metabolites were involved in glycolysis/gluconeogenesis, glycerolipid metabolism, the pentose phosphate pathway, fatty acid degradation, the sphingolipid signaling pathway, and the biosynthesis of unsaturated fatty acids. Moreover, we determined the biological effects of arachidonic acid (ARA) and tetrahydrocorticosterone (TD) in goose primary hepatocytes and intestinal cells. Data showed that the mRNA expression of arachidonate 5-lipoxygenase (ALOX5) in goose primary intestinal cells was significantly induced by 0.50 mM ARA treatment. Cytochrome P-450 27A1 (CYP27A1) mRNA expression was significantly inhibited in goose primary hepatocytes by 1 µM TD treatment. In conclusion, the formation of goose fatty liver is accompanied by significant changes in the metabolic profiles of liver and intestinal contents, and the changes are closely related to the metabolisms of glucose and fatty acids, oxidative stress, and inflammatory reactions.
Collapse
|
320
|
Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol 2020; 27:22-43. [PMID: 33291863 PMCID: PMC7820212 DOI: 10.3350/cmh.2020.0129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with a prevalence that is increasing in parallel with the global rise in obesity and type 2 diabetes mellitus. The pathogenesis of NAFLD is complex and multifactorial, involving environmental, genetic and metabolic factors. The role of the diet and the gut microbiome is gaining interest as a significant factor in NAFLD pathogenesis. Dietary factors induce alterations in the composition of the gut microbiome (dysbiosis), commonly reflected by a reduction of the beneficial species and an increase in pathogenic microbiota. Due to the close relationship between the gut and liver, altering the gut microbiome can affect liver functions; promoting hepatic steatosis and inflammation. This review summarises the current evidence supporting an association between NAFLD and the gut microbiome and dietary factors. The review also explores potential underlying mechanisms underpinning these associations and whether manipulation of the gut microbiome is a potential therapeutic strategy to prevent or treat NAFLD.
Collapse
Affiliation(s)
- Erica Jennison
- Department of Chemical Pathology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Christopher D Byrne
- Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| |
Collapse
|
321
|
Affiliation(s)
- Yu-Li Li
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Nen-Qun Xiao
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
322
|
Krolevets TS, Livzan MA, Mozgovoy SI. The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2020; 30:42-48. [DOI: 10.22416/1382-4376-2020-30-5-42-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Aim. To review available data on the role of the microbiome and intestinal mucosal barrier in the development and progression of non-alcoholic fatty liver disease (NAFLD).Key points. The role of the human microbiome in the development and progression of NAFLD is associated with its effects on the risk factors (obesity, insulin resistance, type 2 diabetes), permeability of the intestinal barrier and absorption of such substances as short-chain fatty acids, bile acids, choline and endogenous ethanol. Liver fibrosis constitutes the leading factor determining the prognosis of patients in NAFLD, including cases associated with cardiovascular complications. Changes in the microbiome composition were demonstrated for various degrees of fibrosis in NAFLD.Conclusion. The results of modern studies confirm the formation of a new concept in the pathophysiology of NAFLD, which encourages the development of new therapeutic strategies.
Collapse
|
323
|
Jiang L, Chu H, Gao B, Lang S, Wang Y, Duan Y, Schnabl B. Transcriptomic Profiling Identifies Novel Hepatic and Intestinal Genes Following Chronic Plus Binge Ethanol Feeding in Mice. Dig Dis Sci 2020; 65:3592-3604. [PMID: 32671585 PMCID: PMC7669632 DOI: 10.1007/s10620-020-06461-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alcohol-associated liver disease accounts for half of cirrhosis-related deaths worldwide. The spectrum of disease varies from simple steatosis to fibrosis, cirrhosis and ultimately hepatocellular carcinoma. Understanding the disease on a molecular level helps us to develop therapeutic targets. AIM We performed transcriptomic analysis in liver and ileum from chronic plus binge ethanol-fed mice, and we assessed the role of selected differentially expressed genes and their association with serum bile acids and gut microbiota. METHODS Wild-type mice were subjected to a chronic Lieber-DeCarli diet model for 8 weeks followed by one binge of ethanol. RNA-seq analysis was performed on liver and ileum samples. Associations between selected differentially regulated genes and serum bile acid profile or fecal bacterial profiling (16S rDNA sequencing) were investigated. RESULTS We provide a comprehensive transcriptomic analysis to identify differentially expressed genes, KEGG pathways, and gene ontology functions in liver and ileum from chronic plus binge ethanol-fed mice. In liver, we identified solute carrier organic anion transporter family, member 1a1 (Slco1a1; encoding for organic anion transporting polypeptides (OATP) 1A1), as the most down-regulated mRNA, and it is negatively correlated with serum cholic acid level. Prokineticin 2 (Prok2) mRNA, a cytokine-like molecule associated with gastrointestinal tract inflammation, was significantly down-regulated in ethanol-fed mice. Prok2 mRNA expression was negatively correlated with abundance of Allobaculum (genus), Coprococcus (genus), Lachnospiraceae (family), Lactococcus (genus), and Cobriobacteriaceae (family), while it positively correlated with Bacteroides (genus). CONCLUSIONS RNA-seq analysis revealed unique transcriptomic signatures in the liver and intestine following chronic plus binge ethanol feeding.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Huikuan Chu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
324
|
Lee JE, Lee SM, Jung J. Integrated omics analysis unraveled the microbiome-mediated effects of Yijin-Tang on hepatosteatosis and insulin resistance in obese mouse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153354. [PMID: 32992082 DOI: 10.1016/j.phymed.2020.153354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gut microbiota play important roles in insulin homeostasis and the pathogenesis of non-alcoholic fatty liver diseases (NAFLD). Yijin-Tang (YJT), a traditional Korean and Chinese medicine, is used in the treatment of gastrointestinal diseases and obesity-related disorders such as insulin resistance (IR) and NAFLD. PURPOSE Our aim was to identify the microbiome-mediated effects of YJT on IR and associated NAFLD by integrating metagenomics and hepatic lipid profile. METHODS C57BL/6J mice were fed a normal chow diet (NC) or high-fat/high-cholesterol (HFHC) diet with or without YJT treatment. Hepatic lipid profiles were analyzed using liquid chromatography/mass spectrometry, and the composition of gut microbiota was investigated using 16S rRNA sequencing. Then, hepatic lipid profiles, gut microbiome, and inflammatory marker data were integrated using multivariate analysis and bioinformatics tools. RESULTS YJT improved NAFLD, and 39 hepatic lipid metabolites were altered by YJT in a dose-dependent manner. YJT also altered the gut microbiome composition in HFHC-fed mice. In particular, Faecalibaculum rodentium and Bacteroides acidifaciens were altered by YJT in a dose-dependent manner. Also, we found significant correlation among hepatic phosphatidylglycerol metabolites, F. rodentium, and γδ-T cells. Moreover, interleukin (IL)-17, which is secreted by the γδ-T cell when it recognizes lipid antigens, were elevated in HFHC mice and decreased by YJT treatment. In addition, YJT increased the relative abundance of B. acidifaciens in NC or HFHC-fed mice, which is a gut microbiota that mediates anti-obesity and anti-diabetic effects by modulating the gut environment. We also confirmed that YJT ameliorated the gut tight junctions and increased short chain fatty acid (SCFA) levels in the intestine, which resulted in improved IR. CONCLUSION These data demonstrated that gut microbiome and hepatic lipid profiles are regulated by YJT, which improved the IR and NAFLD in mice with diet-induced obesity.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu 34054, Daejeon, Republic of Korea.
| | - So Min Lee
- Non-clinical Collaboration Team, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu 34054, Daejeon, Republic of Korea.
| | - Jeeyoun Jung
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu 34054, Daejeon, Republic of Korea.
| |
Collapse
|
325
|
Effect of Sheng-Jiang Powder on Gut Microbiota in High-Fat Diet-Induced NAFLD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6697638. [PMID: 33293992 PMCID: PMC7714571 DOI: 10.1155/2020/6697638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Background and Aims Nonalcoholic fatty liver disease (NAFLD) is an alarming global health problem that is predicted to be the major cause of cirrhosis, hepatocellular carcinoma, and liver transplantation by next decade. Gut microbiota have been revealed playing an important role in the pathogenesis of NAFLD. Sheng-Jiang Powder (SJP), an empirical Chinese medicine formula to treat NAFLD, showed great hepatoprotective properties, but the impact on gut microbiota has never been identified. Therefore, we performed this study to investigate the effect of SJP on gut microbiota in NAFLD mice. Methods NAFLD was induced by 12 weeks' high-fat diet (HFD) feeding. Mice were treated with SJP/normal saline daily for 6 weeks. Blood samples were obtained for serum biochemical indices and inflammatory cytokines measurement. Liver tissues were obtained for pathological evaluation and oil red O staining. The expression of lipid metabolism-related genes was quantified by RT-PCR and Western blotting. Changes in gut microbiota composition were analyzed by the 16s rDNA sequencing technique. Results HFD feeding induced significant increase in bodyweight and serum levels of TG, TC, ALT, and AST. The pathological examination revealed obvious hepatic steatosis in HFD feeding mice. Coadministration of SJP effectively protected against bodyweight increase and lipid accumulation in blood and liver. Increased expression of PPARγ mRNA was observed in HFD feeding mice, but a steady elevation of PPARγ protein level was only found in SJP-treated mice. Meanwhile, the expression of FASN was much higher in HFD feeding mice. Microbiome analysis revealed obvious changes in gut microbiota composition among diverse groups. SJP treatment modulated the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, including norank-f-Erysipelotrichaceae and Roseburia. Conclusions SJP is efficient in attenuating HFD-induced NAFLD, and it might be partly attributed to the regulation of gut microbiota.
Collapse
|
326
|
The Gut Microbiota: How Does It Influence the Development and Progression of Liver Diseases. Biomedicines 2020; 8:biomedicines8110501. [PMID: 33207562 PMCID: PMC7697996 DOI: 10.3390/biomedicines8110501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The gut–liver axis plays important roles in both the maintenance of a healthy liver and the pathogenesis of liver diseases, where the gut microbiota acts as a major determinant of this relationship. Gut bacteria-derived metabolites and cellular components are key molecules that affect the function of the liver and modulate the pathology of liver diseases. Accumulating evidence showed that gut microbiota produces a myriad of molecules, including lipopolysaccharide, lipoteichoic acid, peptidoglycan, and DNA, as well as short-chain fatty acids, bile acids, trimethylamine, and indole derivatives. The translocation of these components to the liver exerts beneficial or pathogenic effects by interacting with liver immune cells. This is a bidirectional relationship. Therefore, the existence of crosstalk between the gut and liver and its implications on host health and diseases are essential for the etiology and treatment of diseases. Several mechanisms have been proposed for the pathogenesis of liver diseases, but still, the mechanisms behind the pathogenic role of gut-derived components on liver pathogenesis remain elusive and not understandable. This review discusses the current progress on the gut microbiota and its components in terms of the progression of liver diseases, and in turn, how liver diseases indirectly affect the intestinal function and induce intestinal inflammation. Moreover, this paper highlights the current therapeutic and preventive strategies used to restore the gut microbiota composition and improve host health.
Collapse
|
327
|
Mu H, Zhou Q, Yang R, Zeng J, Li X, Zhang R, Tang W, Li H, Wang S, Shen T, Huang X, Dou L, Dong J. Naringin Attenuates High Fat Diet Induced Non-alcoholic Fatty Liver Disease and Gut Bacterial Dysbiosis in Mice. Front Microbiol 2020; 11:585066. [PMID: 33281780 PMCID: PMC7691324 DOI: 10.3389/fmicb.2020.585066] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising annually, and emerging evidence suggests that the gut bacteria plays a causal role in NAFLD. Naringin, a natural flavanone enriched in citrus fruits, is reported to reduce hepatic lipid accumulation, but to date, no investigations have examined whether the benefits of naringin are associated with the gut bacteria. Thus, we investigated whether the antilipidemic effects of naringin are related to modulating the gut bacteria and metabolic functions. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, then fed an HFD with or without naringin administration for another 8 weeks. Naringin intervention reduced the body weight gain, liver lipid accumulation, and lipogenesis and attenuated plasma biochemical parameters in HFD-fed mice. Gut bacteria analysis showed that naringin altered the community compositional structure of the gut bacteria characterized by increased benefits and fewer harmful bacteria. Additionally, Spearman’s correlation analysis showed that at the genus level, Allobaculum, Alloprevotella, Butyricicoccus, Lachnospiraceae_NK4A136_group, Parasutterella and uncultured_bacterium_f_Muribaculaceae were negatively correlated and Campylobacter, Coriobacteriaceae_UCG-002, Faecalibaculum and Fusobacterium were positively correlated with serum lipid levels. These results strongly suggest that naringin may be used as a potential agent to prevent gut dysbiosis and alleviate NAFLD.
Collapse
Affiliation(s)
- Hongna Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Zeng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianghui Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ranran Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
328
|
Kim MH, Yun KE, Kim J, Park E, Chang Y, Ryu S, Kim HL, Kim HN. Gut microbiota and metabolic health among overweight and obese individuals. Sci Rep 2020; 10:19417. [PMID: 33173145 PMCID: PMC7655835 DOI: 10.1038/s41598-020-76474-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Although obesity is associated with numerous diseases, the risks of disease may depend on metabolic health. Associations between the gut microbiota, obesity, and metabolic syndrome have been reported, but differences in microbiomes according to metabolic health in the obese population have not been explored in previous studies. Here, we investigated the composition of gut microbiota according to metabolic health status in obese and overweight subjects. A total of 747 overweight or obese adults were categorized by metabolic health status, and their fecal microbiota were profiled using 16S ribosomal RNA gene sequencing. We classified these adults into a metabolically healthy group (MH, N = 317) without any components of metabolic syndrome or a metabolically unhealthy group (MU, N = 430) defined as having at least one metabolic abnormality. The phylogenetic and non-phylogenetic alpha diversity for gut microbiota were lower in the MU group than the MH group, and there were significant differences in gut microbiota bacterial composition between the two groups. We found that the genus Oscillospira and the family Coriobacteriaceae were associated with good metabolic health in the overweight and obese populations. This is the first report to describe gut microbial diversity and composition in metabolically healthy and unhealthy overweight and obese individuals. Modulation of the gut microbiome may help prevent metabolic abnormalities in the obese population.
Collapse
Affiliation(s)
- Mi-Hyun Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Eun Yun
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jimin Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunkyo Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han-Na Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea.
| |
Collapse
|
329
|
Fructose-Induced Intestinal Microbiota Shift Following Two Types of Short-Term High-Fructose Dietary Phases. Nutrients 2020; 12:nu12113444. [PMID: 33182700 PMCID: PMC7697676 DOI: 10.3390/nu12113444] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
High consumption of fructose and high-fructose corn syrup is related to the development of obesity-associated metabolic diseases, which have become the most relevant diet-induced diseases. However, the influences of a high-fructose diet on gut microbiota are still largely unknown. We therefore examined the effect of short-term high-fructose consumption on the human intestinal microbiota. Twelve healthy adult women were enrolled in a pilot intervention study. All study participants consecutively followed four different diets, first a low fructose diet (< 10 g/day fructose), then a fruit-rich diet (100 g/day fructose) followed by a low fructose diet (10 g/day fructose) and at last a high-fructose syrup (HFS) supplemented diet (100 g/day fructose). Fecal microbiota was analyzed by 16S rRNA sequencing. A high-fructose fruit diet significantly shifted the human gut microbiota by increasing the abundance of the phylum Firmicutes, in which beneficial butyrate producing bacteria such as Faecalibacterium, Anareostipes and Erysipelatoclostridium were elevated, and decreasing the abundance of the phylum Bacteroidetes including the genus Parabacteroides. An HFS diet induced substantial differences in microbiota composition compared to the fruit-rich diet leading to a lower Firmicutes and a higher Bacteroidetes abundance as well as reduced abundance of the genus Ruminococcus. Compared to a low-fructose diet we observed a decrease of Faecalibacterium and Erysipelatoclostridium after the HFS diet. Abundance of Bacteroidetes positively correlated with plasma cholesterol and LDL level, whereas abundance of Firmicutes was negatively correlated. Different formulations of high-fructose diets induce distinct alterations in gut microbiota composition. High-fructose intake by HFS causes a reduction of beneficial butyrate producing bacteria and a gut microbiota profile that may affect unfavorably host lipid metabolism whereas high consumption of fructose from fruit seems to modulate the composition of the gut microbiota in a beneficial way supporting digestive health and counteracting harmful effects of excessive fructose.
Collapse
|
330
|
Demir M, Lang S, Martin A, Farowski F, Wisplinghoff H, Vehreschild MJGT, Krawczyk M, Nowag A, Scholz CJ, Kretzschmar A, Roderburg C, Lammert F, Goeser T, Kasper P, Steffen HM. Phenotyping non-alcoholic fatty liver disease by the gut microbiota: Ready for prime time? J Gastroenterol Hepatol 2020; 35:1969-1977. [PMID: 32267559 DOI: 10.1111/jgh.15071] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Several studies observed alterations in the gut microbiota in patients with non-alcoholic fatty liver disease (NAFLD). However, analyzed patient populations and methods strongly differ among these studies. The aim of this study was to prove the reproducibility of published results and to provide a detailed overview of all findings in our NAFLD cohort using next generation sequencing methods. METHODS The individual taxonomic microbiota composition of fecal samples from 90 NAFLD patients and 21 healthy controls was analyzed using 16S rRNA gene sequencing. Study participants were grouped according to their disease stage and compared regarding their gut microbiota composition. Studies were identified from PubMed listed publications, and the results were compared with the findings in our cohort. RESULTS Results from 13 identified studies were compared with our data. A decreased abundance of the Bacteroidetes and Ruminococcaceae as well as an increased abundance of Lactobacillaceae and Veillonellaceae and Dorea were the most frequently reported changes among NAFLD patients in 4/13, 5/13, 4/13, 2/13, and 3/13 studies, respectively. Even though these alterations in the gut microbiota composition were also observed in our patient cohort, the majority of published differences could not be reproduced, neither in our own nor in other NAFLD cohort studies. CONCLUSION Despite repeatedly reproduced abundance patterns of specific bacteria, the heterogeneous study results did not reveal a consistent disease specific gut microbiota signature. Further prospective studies with homogenous patient cohorts and standardized methods are necessary to phenotype NAFLD by the gut microbiota.
Collapse
Affiliation(s)
- Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Sonja Lang
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Anna Martin
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Fedja Farowski
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn/Cologne.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hilmar Wisplinghoff
- Wisplinghoff Laboratories, Cologne, Germany.,University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany.,Institute for Virology and Medical Microbiology, University Witten/Herdecke, Witten, Germany
| | - Maria J G T Vehreschild
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn/Cologne.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Angela Nowag
- Wisplinghoff Laboratories, Cologne, Germany.,University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | | | | | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Tobias Goeser
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Philipp Kasper
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Hans-Michael Steffen
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| |
Collapse
|
331
|
Li P, Yan K, Chang X, Chen X, Wang R, Fan X, Tang T, Zhan D, Qi K. Sex-specific maternal calcium requirements for the prevention of nonalcoholic fatty liver disease by altering the intestinal microbiota and lipid metabolism in the high-fat-diet-fed offspring mice. Gut Microbes 2020; 11:1590-1607. [PMID: 32576050 PMCID: PMC7524148 DOI: 10.1080/19490976.2020.1768645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The significance of maternal appropriate calcium intakes for energy metabolism in the offspring has been recognized. Nonalcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome. So in this study, we proposed that there were long-term effects of maternal calcium status on the progress of NAFLD by altering the intestinal microbiota and lipid metabolism with attention to potential sex differences among the mouse offspring. Thirty-four-week female C57BL/6 J mice were subjected to obtain low, normal and high calcium reproductive diets throughout the gestation and lactation. After weaning, both the male and female mouse offspring were fed with the high-fat diet for 16 weeks, with the normal diet as control. Biochemical indicators in the plasma and hepatic tissue were measured using ELISA or enzymatic methods. The expression of lipid metabolism, inflammatory and fibrosis related genes was determined by RT-PCR. The intestinal microbiota was analyzed by 16S rRNA high-throughput sequencing. Maternal normal and low calcium intake could, respectively, inhibit the progress of high-fat diet induced NAFLD in the male and female mouse offspring, which was characterized by the least lipid droplets, inflammatory infiltration and fibrosis, the lowest concentrations of free fatty acids and triglyceridethe lowest expression of genes involving in de novo lipogenesis and the highest expression of genes related to lipid oxidation and hydrolysis, inflammatory, and fibrosis. Pyrosequencing of 16S rRNA genes revealed that the male mouse offspring with maternal normal calcium intake and the female mouse offspring with maternal low calcium intake, after the high-fat diet feeding, had distinct intestinal microbiota, which was closer to thosein mice with the normal diet feeding. Analysis of the functional features for the different microbiota was compatible with the expression of genes associated with lipogenesis, lipid oxidation and hydrolysis. Thus, there is a sex-specific manner for maternal calcium requirement to inhibit the progress of offspring NAFLD, that might be less for the female offspring and more for the male offspring.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Kesong Yan
- Animal Laboratory Center, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Xuelian Chang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaoyu Chen
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Dawei Zhan
- Animal Laboratory Center, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China,CONTACT Kemin Qi Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No.56 Nan-li-shi Road, Beijing100045, China
| |
Collapse
|
332
|
Kassaian N, Feizi A, Rostami S, Aminorroaya A, Yaran M, Amini M. The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial. Nutrition 2020; 79-80:110854. [PMID: 32615392 DOI: 10.1016/j.nut.2020.110854] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The evidence of 16S rRNA genes in the gut microbiota distinguished a higher Firmicutes-to-Bacteroidetes ratio in individuals who were obese and had diabetes than in a healthy cohort. So, it seems that the modulation of intestinal microbial ecology by pro-/pre-/synbiotics may contribute to the progression and prevention of metabolic diseases. The aim of this study was to assess the effects of probiotics and synbiotic supplementation on the modification of the intestinal microbiome in adults with prediabetes. METHODS In a randomized, double-blinded, placebo-controlled clinical trial, 120 patients with prediabetes were randomly assigned to consume 6 g/d of either a placebo containing maltodextrin (control) or multispecies probiotic or inulin-based synbiotic for 6 mo. Fecal samples were obtained at baseline and after 6 mo of supplementation. Dietary intake was assessed throughout the study (at baseline and after 3 and 6 mo). Total energy, macronutrients, and dietary fiber were calculated using a dietary program Nutritionist 4. DNA was extracted from fecal samples and the numbers of Clostridium perfringens (the represent of phylum Firmicutes), Bacteroides fragilis (the representative of Bacteroidetes) and Escherichia coli (as universal bacteria) were determined by quantitative real-time polymerase chain reactions (qPCR). The changes in the relative abundance of the two fecal bacteria before and after supplementation were analyzed and compared within and between groups. RESULTS There were no significant changes in dietary intake during the study. Six mo of supplementation with probiotics resulted in a statistically significant increase in the abundance of the B. fragilis-to-E.coli ratio (mean difference [MD] ± SE 0.47 ± 0.37, P = 0.04) and decrease of the relative proportion of Firmicutes-to-Bacteroidetes representatives (MD ± SE -118.8 ± 114.6, P = 0.02). Synbiotic had no significant effect on the changes in the bacteria. There were no significant differences between the three groups. CONCLUSION The results of this study suggest that manipulation of the human gut microbiome by using probiotics could provide a potential therapeutic approach in the prevention and management of obesity and metabolic disorders such as diabetes.
Collapse
Affiliation(s)
- Nazila Kassaian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Awat Feizi
- Isfahan Endocrine and Metabolism Research Center and Department of Biostatistics and Epidemiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Soodabeh Rostami
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ashraf Aminorroaya
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Majid Yaran
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Masoud Amini
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
333
|
Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, Gao B, Wisplinghoff H, Kasper P, Roderburg C, Tacke F, Steffen HM, Goeser T, Abraldes JG, Tu XM, Loomba R, Stärkel P, Pride D, Fouts DE, Schnabl B. Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 159:1839-1852. [PMID: 32652145 PMCID: PMC8404510 DOI: 10.1053/j.gastro.2020.07.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alterations in the gut microbiome have been associated with the severity of nonalcoholic fatty liver disease (NAFLD). Previous studies focused exclusively on the bacteria in the microbiome; we investigated changes in the viral microbiome (virome) in patients with NAFLD. METHODS In a prospective, cross-sectional, observational study, we extracted RNA and DNA virus-like particles from fecal samples from 73 patients with NAFLD: 29 patients had an NAFLD Activity Score (NAS) of 0-4, 44 patients had an NAS of 5-8 or liver cirrhosis (LCI), 37 patients had F0-F1 fibrosis, and 36 patients had F2-F4 fibrosis. As controls, 9 individuals without liver disease and 13 patients with mild primary biliary cholangitis were included in the analysis. We performed shotgun metagenomic sequencing of virus-like particles. RESULTS Patients with NAFLD and NAS 5-8/LCI had a significant decrease in intestinal viral diversity compared with patients with NAFLD and NAS 0-4 or control individuals. The presence of more advanced NAFLD was associated with a significant reduction in the proportion of bacteriophages compared with other intestinal viruses. Using multivariate logistic regression analysis with leave-1-out cross validation, we developed a model, including a viral diversity index and simple clinical variables, that identified patients with NAS 5-8/LCI with an area under the curve of 0.95 (95% confidence interval, 0.91-0.99) and F2-F4 fibrosis with an area under the curve of 0.88 (95% confidence interval, 0.80-0.95). Addition of data on viral diversity significantly improved multivariate models, including those based on only clinical parameters or bacterial diversity. CONCLUSIONS In a study of fecal viromes from patients with NAFLD and control individuals, we associated histologic markers of NAFLD severity with significant decreases in viral diversity and proportion of bacteriophages. We developed a model based on fecal viral diversity and clinical data that identifies patients with severe NAFLD and fibrosis more accurately than models based only on clinical or bacterial data.
Collapse
Affiliation(s)
- Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Anna Martin
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hilmar Wisplinghoff
- Wisplinghoff Laboratories, Cologne, Germany,Institute for Virology and Medical Microbiology, University Witten/Herdecke, Witten, Germany,University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Philipp Kasper
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Hans-Michael Steffen
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Tobias Goeser
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Juan G. Abraldes
- Division of Gastroenterology (Liver Unit). Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xin M. Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - David Pride
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Pathology, University of California San Diego, La Jolla, CA, USA,Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California; Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, California.
| |
Collapse
|
334
|
Lensu S, Pariyani R, Mäkinen E, Yang B, Saleem W, Munukka E, Lehti M, Driuchina A, Lindén J, Tiirola M, Lahti L, Pekkala S. Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats. Nutrients 2020; 12:nu12113225. [PMID: 33105554 PMCID: PMC7690286 DOI: 10.3390/nu12113225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitzii prevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic β-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM.
Collapse
Affiliation(s)
- Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Raghunath Pariyani
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (R.P.); (B.Y.)
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (R.P.); (B.Y.)
| | - Wisam Saleem
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland; (W.S.); (L.L.)
| | - Eveliina Munukka
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland;
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Anastasiia Driuchina
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Jere Lindén
- Veterinary Pathology and Parasitology, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland;
| | - Leo Lahti
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland; (W.S.); (L.L.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
- Correspondence: ; Tel.: +358-45-358-28-98
| |
Collapse
|
335
|
Jadhav K, Cohen TS. Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Front Endocrinol (Lausanne) 2020; 11:592157. [PMID: 33193105 PMCID: PMC7641624 DOI: 10.3389/fendo.2020.592157] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disorders, ranging from fatty liver to a more insulin resistant, inflammatory and fibrotic state collectively termed non-alcoholic steatohepatitis (NASH). In the United States, 30%-40% of the adult population has fatty liver and 3%-12% has NASH, making it a major public health concern. Consumption of diets high in fat, obesity and Type II diabetes (T2D) are well-established risk factors; however, there is a growing body of literature suggesting a role for the gut microbiome in the development and progression of NAFLD. The gut microbiota is separated from the body by a monolayer of intestinal epithelial cells (IECs) that line the small intestine and colon. The IEC layer is exposed to luminal contents, participates in selective uptake of nutrients and acts as a barrier to passive paracellular permeability of luminal contents through the expression of tight junctions (TJs) between adjacent IECs. A dysbiotic gut microbiome also leads to decreased gut barrier function by disrupting TJs and the gut vascular barrier (GVB), thus exposing the liver to microbial endotoxins. These endotoxins activate hepatic Toll-like receptors (TLRs), further promoting the progression of fatty liver to a more inflammatory and fibrotic NASH phenotype. This review will summarize major findings pertaining to aforementioned gut-liver interactions and its role in the pathophysiology of NAFLD.
Collapse
Affiliation(s)
| | - Taylor S. Cohen
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
336
|
Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H. Microbial Metabolites: Critical Regulators in NAFLD. Front Microbiol 2020; 11:567654. [PMID: 33117316 PMCID: PMC7575719 DOI: 10.3389/fmicb.2020.567654] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease throughout the world. The relationship between gut microbiota and NAFLD has been extensively investigated. The gut microbiota is involved in the regulation of NAFLD by participating in the fermentation of indigestible food, interacting with the intestinal mucosal immune system, and influencing the intestinal barrier function, leading to signaling alteration. Meanwhile, the microbial metabolites not only affect the signal transduction pathway in the gut but also reach the liver far away from gut. In this review, we focus on the effects of certain key microbial metabolites such as short-chain fatty acids, trimethylamine-N-oxide, bile acids, and endogenous ethanol and indole in NAFLD, and also summarize several potential therapies targeting the gut-liver axis and modulation of gut microbiota metabolites including antibiotics, prebiotics, probiotics, bile acid regulation, and fecal microbiota transplantation. Understanding the complex interactions between microbial metabolites and NAFLD may provide crucial insight into the pathogenesis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yun Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
337
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|
338
|
Li S, Yan C, Liu T, Xu C, Wen K, Liu L, Zhao M, Zhang J, Geng T, Gong D. Research Note: Increase of bad bacteria and decrease of good bacteria in the gut of layers with vs. without hepatic steatosis. Poult Sci 2020; 99:5074-5078. [PMID: 32988545 PMCID: PMC7598321 DOI: 10.1016/j.psj.2020.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS), usually occurring in hens in the late laying period, can lower egg yield and even cause death. Similar to nonalcoholic fatty liver disease in humans, FLHS may begin with simple hepatic steatosis. It is known that gut microbiota is important to the development of nonalcoholic fatty liver disease, but the relationship between FLHS and gut bacteria remains unclear. In this study, bacteria compositions in the ileum and cecum were determined by 16S rDNA sequencing analysis in the groups of hens with vs. without hepatic steatosis (average liver fat contents were 0.34 mmol/g protein or 2.6% vs. 0.84 mmol/g protein or 6.0%). These hens were in the 2 tails of the liver fat content distribution with each tail accounting for 10% of the test population containing 90 66-wk-old healthy Rhode Island Red laying hens raised under routine feeding regimen. The results showed that liver weight but not the weights of the body, heart and abdominal fat were significantly different between the groups. Moreover, bacterial diversity was not significantly different between the groups, but bacterial diversity in the cecum was higher than that in the ileum. Proteobacteria was the most dominant phylum in the ileum, whereas Proteobacteria, Firmicutes, and Bacteroidetes were the most dominant phyla in the cecum. Some bacteria were common to the ileum and cecum, but some were unique. Furthermore, some bacteria were significantly different in abundance between the groups, that is the group without hepatic steatosis had more bacteria inhibiting host energy absorption or benefiting intestinal health, whereas the group with hepatic steatosis had more conditionally pathogenic or harmful bacteria. In conclusion, hepatic steatosis in laying hens is associated with intestinal bacterial composition (bacterial abundance) but not bacterial diversity. The identified common and unique bacteria are related to the functional characteristics of the ileum and cecum. The decrease of beneficial bacteria and the increase of harmful bacteria in the intestine of laying hens may increase FLHS incidence by promoting hepatic steatosis.
Collapse
Affiliation(s)
- Shuo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunchi Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
339
|
Van Hul M, Karnik K, Canene-Adams K, De Souza M, Van den Abbeele P, Marzorati M, Delzenne NM, Everard A, Cani PD. Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. Am J Physiol Endocrinol Metab 2020; 319:E779-E791. [PMID: 32830554 DOI: 10.1152/ajpendo.00108.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary fibers are essential components of a balanced diet and have beneficial effects on metabolic functions. To gain insight into their impact on host physiology and gut microbiota, we performed a direct comparison of two specific prebiotic fibers in mice. During an 8-wk follow up, mice fed a high-fat diet (HFD) were compared with mice on a normal diet (basal condition, controls) and to mice fed the HFD but treated with one of the following prebiotics: fructooligosaccharides (FOS) or soluble corn fiber (SCF). Both prebiotic fibers led to a similar reduction of body weight and fat mass, lower inflammation and improved metabolic parameters. However, these health benefits were the result of different actions of the fibers, as SCF impacted energy excretion, whereas FOS did not. Interestingly, both fibers had very distinct gut microbial signatures with different short-chain fatty acid profiles, indicating that they do not favor the growth of the same bacterial communities. Although the prebiotic potential of different fibers may seem physiologically equivalent, our data show that the underlying mechanisms of action are different, and this by targeting different gut microbes. Altogether, our data provide evidence that beneficial health effects of specific dietary fibers must be documented to be considered a prebiotic and that studies devoted to understanding how structures relate to specific microbiota modulation and metabolic effects are warranted.
Collapse
Affiliation(s)
- Matthias Van Hul
- Université Catholique de Louvain, Université Catholique de Louvain, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Kavita Karnik
- Innovation and Commercial Development, Tate & Lyle Ingredients Americas, Hoffman Estates, Illinois
| | - Kirstie Canene-Adams
- Innovation and Commercial Development, Tate & Lyle Ingredients Americas, Hoffman Estates, Illinois
| | - Mervyn De Souza
- Innovation and Commercial Development, Tate & Lyle Ingredients Americas, Hoffman Estates, Illinois
| | | | - Massimo Marzorati
- ProDigest, Ghent, Belgium
- Ghent University, Faculty of Bioscience Engineering, Center of Microbial Ecology and Technology, Ghent, Belgium
| | - Nathalie M Delzenne
- Université Catholique de Louvain, Université Catholique de Louvain, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Amandine Everard
- Université Catholique de Louvain, Université Catholique de Louvain, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, Université Catholique de Louvain, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| |
Collapse
|
340
|
High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact 2020; 330:109199. [DOI: 10.1016/j.cbi.2020.109199] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
341
|
Beraza N. Fibrosis and the intestinal microbiome; a focus on chronic liver disease. Curr Opin Pharmacol 2020; 49:76-81. [PMID: 31670055 DOI: 10.1016/j.coph.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
The role of the microbiome in progression of liver disease is an exciting area of research that is advancing rapidly supported by the development of next-generation sequencing and bioinformatics tools that simultaneously identify the composition and function of the microbiome. Changes in the microbiome are associated with pathogenesis of chronic liver disease; specifically, changes in microbiome composition predict disease severity and specific microbial signatures can be used to distinguish between mild disease, advanced fibrosis and cirrhosis. Future work combining functional metagenomic analysis with preclinical mechanistic studies will be key to advancing our understanding of how the microbiome affects the pathogenesis of different chronic liver disease aetiologies and to identify personalised therapeutics based on modulation of the microbiome and its function.
Collapse
Affiliation(s)
- Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.
| |
Collapse
|
342
|
Guohong-Liu, Qingxi-Zhao, Hongyun-Wei. Characteristics of intestinal bacteria with fatty liver diseases and cirrhosis. Ann Hepatol 2020; 18:796-803. [PMID: 31558417 DOI: 10.1016/j.aohep.2019.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) are significant health burdens worldwide with a substantial rise in prevalence. Both can progress to liver cirrhosis. Recent studies have shown that the gut microbiome was associated with NAFLD/AFLD development and progression. The present review focuses on the characteristics of bacteria in NAFLD, AFLD and liver cirrhosis. The similarities and differences of intestinal bacteria are discussed. This study reviews the existing literatures on the microbiota, fatty liver disease, and liver cirrhosis based on Pubmed database. The study showed NAFLD was characterized by increased amounts of Lachnospiraceae from the phylum Firmicutes and Roseburia from the Lachnospiraceae family, and the proportion of Enterobacteria and Proteobacteria was increased after alcohol intake. Reduced Bacteroidetes was observed in cirrhosis. Microbiota can improve or aggravate the above liver diseases through several mechanisms, like increasing liver lipid metabolism, increasing alcohol production, increasing intestinal permeability, bacterial translocation, intestinal bacterial overgrowth, enteric dysbiosis, and impairing bile secretion. Different hepatic diseases owned different intestinal bacterial characters. Microbiota can improve or aggravate three kinds of liver diseases through several mechanisms. However, the depletion of these bacteria is needed to verify their role in liver disease.
Collapse
Affiliation(s)
- Guohong-Liu
- Department of Gastroenterology, the Affiliated hospital of Qingdao University, Qingdao, Shandong Province, PR China
| | - Qingxi-Zhao
- Department of Gastroenterology, the Affiliated hospital of Qingdao University, Qingdao, Shandong Province, PR China
| | - Hongyun-Wei
- Department of Gastroenterology, the Affiliated hospital of Qingdao University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
343
|
Dogra SK, Doré J, Damak S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front Microbiol 2020; 11:572921. [PMID: 33042082 PMCID: PMC7522446 DOI: 10.3389/fmicb.2020.572921] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is a new frontier in health and disease. Not only many diseases are associated with perturbed microbiota, but an increasing number of studies point to a cause-effect relationship. Defining a healthy microbiota is not possible at the current state of our knowledge mostly because of high interindividual variability. A resilient microbiota could be used as surrogate for healthy microbiota. In addition, the gut microbiota is an “organ” with frontline exposure to environmental changes and insults. During the lifetime of an individual, it is exposed to challenges such as unhealthy diet, medications and infections. Impaired ability to bounce back to the pre-challenge baseline may lead to dysbiosis. It is therefore legitimate to postulate that maintaining a resilient microbiota may be important for health. Here we review the concept of resilience, what is known about the characteristics of a resilient microbiota, and how to assess microbiota resilience experimentally using a model of high fat diet challenge in humans. Interventions to maintain microbiota resilience can be guided by the knowledge of what microbial species or functions are perturbed by challenges, and designed to replace diminished species with probiotics, when available, or boost them with prebiotics. Fibers with multiple structures and composition can also be used to increase microbiota diversity, a characteristic of the microbiota that may be associated with resilience. We finally discuss some open questions and knowledge gaps.
Collapse
Affiliation(s)
| | - Joel Doré
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, MetaGenoPolis, AgroParisTech, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France
| | - Sami Damak
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
344
|
Houttu V, Boulund U, Grefhorst A, Soeters MR, Pinto-Sietsma SJ, Nieuwdorp M, Holleboom AG. The role of the gut microbiome and exercise in non-alcoholic fatty liver disease. Therap Adv Gastroenterol 2020; 13:1756284820941745. [PMID: 32973925 PMCID: PMC7495942 DOI: 10.1177/1756284820941745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 02/04/2023] Open
Abstract
In recent years, the human gut microbiome has been found to influence a multitude of non-communicable diseases such as cardiovascular disease and metabolic syndrome, with its components type 2 diabetes mellitus and obesity. It is recognized to be mainly influenced by environmental factors, such as lifestyle, but also genetics may play a role. The interaction of gut microbiota and obesity has been widely studied, but in regard to non-alcoholic fatty liver disease (NAFLD) as a manifestation of obesity and insulin resistance, the causal role of the gut microbiome has not been fully established. The mechanisms by which the gut microbiome influences lipid accumulation, inflammatory responses, and occurrence of fibrosis in the liver are a topic of active research. In addition, the influence of exercise on gut microbiome composition is also being investigated. In clinical trials, exercise reduced hepatic steatosis independently of weight reduction. Other studies indicate that exercise may modulate the gut microbiome. This puts forward the question whether exercise could mediate its beneficial effects on NAFLD via changes in gut microbiome. Yet, the specific mechanisms underlying this potential connection are largely unknown. Thus, associative evidence from clinical trials, as well as mechanistic studies in vivo are called for to elucidate the relationship between exercise and the gut microbiome in NAFLD. Here, we review the current literature on exercise and the gut microbiome in NAFLD.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G. Holleboom
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
345
|
Ferro D, Baratta F, Pastori D, Cocomello N, Colantoni A, Angelico F, Del Ben M. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020; 12:2762. [PMID: 32927776 PMCID: PMC7551294 DOI: 10.3390/nu12092762] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The intricate NAFLD pathogenesis is summarized by the multiple-hits hypothesis, which combines all the environmental and genetic factors that promote the development of NAFLD into a single scenario. Among these, bacterial lipopolysaccharides (LPS) are derived from the overgrowth of Gram-negative bacteria and translocated mainly as a consequence of enhanced intestinal permeability. Furthermore, oxidative stress is increased in NAFLD as a consequence of reactive oxygen species (ROS) overproduction and a shortage of endogenous antioxidant molecules, and it is promoted by the interaction between LPS and the Toll-like receptor 4 system. Interestingly, oxidative stress, which has previously been described as being overexpressed in cardiovascular disease, could represent the link between LPS and the increased cardiovascular risk in NAFLD subjects. To date, the only effective strategy for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH) is the loss of at least 5% body weight in overweight and/or obese subjects. However, the dose-dependent effects of multispecies probiotic supplementation on the serum LPS level and cardiometabolic profile in obese postmenopausal women were demonstrated. In addition, many antibiotics have regulatory effects on intestinal microbiota and were able to reduce serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor alpha (TNF-α) in NASH animal models. Regarding the oxidant status, a Mediterranean diet has been reported to reduce oxidant stress, while vitamin E at high daily dosages induced the resolution of NASH in 36% of treated patients. Silymarin had the positive effect of reducing transaminase levels in NAFLD patients and long-term treatment may also decrease fibrosis and slow liver disease progression in NASH. Finally, the influence of nutraceuticals on gut microbiota and oxidant stress in NAFLD patients has not yet been well elucidated and there are insufficient data either to support or refuse their use in these subjects.
Collapse
Affiliation(s)
- Domenico Ferro
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Francesco Baratta
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Daniele Pastori
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Nicholas Cocomello
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Alessandra Colantoni
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Del Ben
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| |
Collapse
|
346
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
347
|
Bluemel S, Wang Y, Lee S, Schnabl B. Tumor necrosis factor alpha receptor 1 deficiency in hepatocytes does not protect from non-alcoholic steatohepatitis, but attenuates insulin resistance in mice. World J Gastroenterol 2020; 26:4933-4944. [PMID: 32952340 PMCID: PMC7476178 DOI: 10.3748/wjg.v26.i33.4933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND End-stage liver disease caused by non-alcoholic steatohepatitis (NASH) is the second leading indication for liver transplantation. To date, only moderately effective pharmacotherapies exist to treat NASH. Understanding the pathogenesis of NASH is therefore crucial for the development of new therapies. The inflammatory cytokine tumor necrosis factor alpha (TNF-α) is important for the progression of liver disease. TNF signaling via TNF receptor 1 (TNFR1) has been hypothesized to be important for the development of NASH and hepatocellular carcinoma in whole-body knockout animal models.
AIM To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis development in a mouse model of diet-induced NASH.
METHODS NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 in hepatocytes (TNFR1ΔHEP) and their wild-type littermates (TNFR1fl/fl). Glucose tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding. After 20 wk mice were assessed for features of NASH and the metabolic syndrome such as liver weight, liver steatosis, liver fibrosis and markers of liver inflammation.
RESULTS Obesity, liver injury, inflammation, steatosis and fibrosis was not different between TNFR1ΔHEP and TNFR1fl/fl mice. However, Tnfr1 deficiency in hepatocytes protected against glucose intolerance and insulin resistance.
CONCLUSION Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not protect from diet-induced NASH. However, improved insulin resistance in this model strengthens the role of the liver in glucose homeostasis.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, United States
| | - Suhan Lee
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
348
|
Abstract
Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.
Collapse
|
349
|
Ke W, Bonilla-Rosso G, Engel P, Wang P, Chen F, Hu X. Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota. J Nutr 2020; 150:2364-2374. [PMID: 32510156 DOI: 10.1093/jn/nxaa159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The root of Platycodon grandiflorus (PG) has a long-standing tradition in the Asian diet and herbal medicine, because of its anti-inflammatory and antiobesity effects. Changes in the gut microbiota can have dietary effects on host health, which suggests a relation between the 2. OBJECTIVES The aim of our study was to investigate the relation between PG-mediated suppression of obesity and the composition and functioning of the gut microbiota. METHODS Six-week-old male C57BL/6J mice were fed either a control diet (CON, 10% kcal from fat), a high-fat diet (HFD, 60% kcal from fat), or a PG-supplemented HFD for 18 wk. PG was administered by oral gavage at 2 g · kg body weight-1 · d-1. Body weight and food intake were monitored. Lipid metabolism, inflammation, and intestinal barrier function were determined. Amplicon sequencing of the bacterial 16S ribosomal RNA gene was used to explore gut microbiota structure, and nontargeted metabolomics analysis was performed to investigate metabolite concentrations in fecal samples. RESULTS We found that PG significantly ameliorated HFD-induced inflammation, recovered intestinal barrier integrity (reduced permeability by 39% , P = 0.008), reduced fat accumulation by 26% (P = 0.009), and changed the expression of key genes involved in the development of white adipose tissue (P < 0.05) in HFD-fed mice to similar levels in CON mice. Moreover, PG attenuated HFD-induced changes in the gut microbiota; it especially increased Allobaculum (7.3-fold, P = 0.002) relative to HFD, whereas CON was 15.2-fold of HFD (P = 0.002). These changes by PG were associated with an increase in the production of SCFAs (butyrate and propionate, P < 0.001) and other carbohydrate-related metabolites known to have a major role in disease suppression. CONCLUSIONS Our study demonstrated that PG beneficially changed the gut microbiota and the gut metabolome in HFD-fed mice, and suggests that the antiobesity effects of PG may be mediated via changes in gut microbiota composition and metabolic activity.
Collapse
Affiliation(s)
- Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
350
|
Yang Y, Gao H, Li X, Cao Z, Li M, Liu J, Qiao Y, Ma L, Zhao Z, Pan H. Correlation analysis of muscle amino acid deposition and gut microbiota profile of broilers reared at different ambient temperatures. Anim Biosci 2020; 34:93-101. [PMID: 32898964 PMCID: PMC7888499 DOI: 10.5713/ajas.20.0314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Temperature could influence protein and amino acid deposition as well as gut microbiota profile and composition. However, the specific effects of ambient temperature on amino acids deposition and gut microbiota composition remain insufficiently understood. Methods A total of 300 one-day-old Avian broilers were randomly divided into three groups and reared at high, medium, and low temperature (HT, MT, and LT), respectively. Breast muscle and fecal samples were collected for amino acid composition analysis and 16S rRNA gene sequence analysis. Results Our data showed that compared to the MT group, there was a decrease of muscle leucine and tyrosine (p<0.05), as well as an increase of methionine in the HT group (p<0.05) and a decrease of serine in the LT group. Examination of microbiota shift revealed that at genus level, the relative abundance of Turicibacter and Parabacteroides was increased in the HT group (p<0.05) and that the relative abundances of Pandoraea, Achromobacter, Prevotella, Brevundimonas, and Stenotrophomonas in the LT group were higher than those in the MT group (p<0.05). In addition, there were substantial correlations between microbes and amino acids. In the HT group. Turicibacter was negatively correlated with aspartic acid and tyrosine, whereas Parabacteroides was positively correlated with methionine (p<0.05). In the LT group, there were multiple positive correlations between Achromobacter and arginine, isoleucine or tyrosine; between Prevotella and cysteine or phenylalanine; between Brevundimonas and cysteine; and between Stenotrophomonas and cysteine as well as a negative correlation between Stenotrophomonas and serine. Conclusion Our findings demonstrated that amino acid content of breast muscle and intestinal microbiota profile was affected by different ambient temperatures. Under heat exposure, augmented abundance of Parabacteroides was correlated with elevated methionine. Low temperature treatment may affect muscle tyrosine content through the regulation of Achromobacter.
Collapse
Affiliation(s)
- Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Huan Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Xing Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Meiquan Li
- Department of Animal Husbandry and Veterinary Medicine, College of Agriculture, Kunming University, Kunming 650201, China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingying Qiao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Li Ma
- Yunnan Vocational and Technical College of Agriculture, Kunming 650201, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming 650201, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| |
Collapse
|