301
|
Segregation of genetic variants of Anaplasma phagocytophilum circulating among wild ruminants within a Bohemian forest (Czech Republic). Int J Med Microbiol 2008. [DOI: 10.1016/j.ijmm.2008.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
302
|
Zhan L, CAO WC, de Vlas S, Xie SY, Zhang PH, WU XM, Dumler JS, Yang H, Richardus JH, Habbema JDF. A newly discovered Anaplasma phagocytophilum variant in rodents from southeastern China. Vector Borne Zoonotic Dis 2008; 8:369-80. [PMID: 18471056 DOI: 10.1089/vbz.2007.0211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum was detected by polymerase chain reaction in 13 (14.1%) of 92 rodents captured from a mountainous area of Zhejiang Province in southeastern China. The nucleotide sequences of 1442-bp, nearly entire 16S rRNA gene amplified from these rodents, had 100% identity, but varied from all known corresponding sequences of A. phagocytophilum deposited in GenBank. To further identify and classify the variant, fragments of 357-bp partial citrate synthase gene (gltA), 849-bp major surface protein 4 gene (msp4), and 443-bp groESL heat-shock operon gene, were amplified and analyzed. The nucleotide sequences of the partial gltA gene amplified from the rodents were identical to each other, but distinct from previously reported A. phagocytophilum sequences,as were msp4 and groESL. These findings indicate that the newly discovered agent represents a novel A. phagocytophilum variant.
Collapse
Affiliation(s)
- Lin Zhan
- Beijing Institute of Microbiology, and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, 20 Dong-Da Street, Fengtai District, Beijing 100071, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Masuzawa T, Kharitonenkov IG, Okamoto Y, Fukui T, Ohashi N. Prevalence of Anaplasma phagocytophilum and its coinfection with Borrelia afzelii in Ixodes ricinus and Ixodes persulcatus ticks inhabiting Tver Province (Russia) – a sympatric region for both tick species. J Med Microbiol 2008; 57:986-991. [DOI: 10.1099/jmm.0.47721-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Toshiyuki Masuzawa
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi 288-0025, Japan
| | - Igor G. Kharitonenkov
- Faculty of Basic Medicine, Moscow Lomonosov State University, Lomonosovsky Prospect 31, Korpus 5, 117192 Moscow, Russia
| | - Yoshihiro Okamoto
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi 288-0025, Japan
| | - Takashi Fukui
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi 288-0025, Japan
| | - Norio Ohashi
- Laboratory of Environmental Microbiology, Institute for Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| |
Collapse
|
304
|
Zhang L, Shan A, Mathew B, Yin J, Fu X, Zhang J, Lu J, Xu J, Dumler JS. Rickettsial Seroepidemiology among farm workers, Tianjin, People's Republic of China. Emerg Infect Dis 2008; 14:938-40. [PMID: 18507907 PMCID: PMC2600283 DOI: 10.3201/eid1406.071502] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
High seroprevalence rates for Anaplasma phagocytophilum (8.8%), Coxiella burnetii (6.4%), Bartonella henselae (9.6%), and Rickettsia typhi (4.1%) in 365 farm workers near Tianjin, People's Republic of China, suggest that human infections with these zoonotic bacteria are frequent and largely unrecognized. Demographic features of seropositive persons suggest distinct epidemiology, ecology, and risks.
Collapse
Affiliation(s)
- Lijuan Zhang
- National Institute of Communicable Disease Control and Prevention, Beijing, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Galindo RC, Ayoubi P, García-Pérez AL, Naranjo V, Kocan KM, Gortazar C, de la Fuente J. Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Vet Immunol Immunopathol 2008; 126:27-34. [PMID: 18640728 DOI: 10.1016/j.vetimm.2008.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum infects a wide variety of host species and causes the diseases tick-borne fever (TBF) in ruminants and granulocytic anaplasmosis in humans, horses and dogs. TBF in sheep has become one of the more prevalent tick-borne diseases in some regions of Europe. A. phagocytophilum infection modifies host gene expression and immune response. The objective of this research was to characterize differential gene expression in sheep experimentally and naturally infected with A. phagocytophilum by microarray hybridization and real-time RT-PCR. The results of these studies demonstrated in sheep the activation of inflammatory and innate immune pathways and the impairment of adaptive immunity during A. phagocytophilum infection. The characterization of the genes and their expression profiles in sheep in response to A. phagocytophilum infection advances our understanding of the molecular mechanisms of pathogen infection and the pathogenesis of TBF. Collectively, these results expand current information on the mammalian host response to A. phagocytophilum infection.
Collapse
Affiliation(s)
- Ruth C Galindo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | | | | | | | | | | | | |
Collapse
|
306
|
|
307
|
Reneer DV, Troese MJ, Huang B, Kearns SA, Carlyon JA. Anaplasma phagocytophilum PSGL-1-independent infection does not require Syk and leads to less efficient AnkA delivery. Cell Microbiol 2008; 10:1827-38. [PMID: 18485118 DOI: 10.1111/j.1462-5822.2008.01168.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause granulocytic anaplasmosis in humans and mammals. P-selectin glycoprotein ligand-1 (PSGL-1) and the tetrasaccharide sialyl Lewis x (sLe(x)), which caps the PSGL-1 N-terminus, are confirmed A. phagocytophilum receptors. A. phagocytophilum is capable of sLe(x)-modified PSGL-1-dependent and -independent infection. PSGL-1 N-terminus-mediated entry is dependent on spleen tyrosine kinase (Syk). Here, we determined that PSGL-1-independent entry does not alter bacterial replication and investigated whether it involves Syk using NCH-1A2, an enriched subpopulation of A. phagocytophilum NCH-1 obtained through cultivation in a sLe(x)-deficient HL-60 cell line, HL-60 A2. Pharmacological inhibition of Syk nearly abolishes NCH-1 infection, but does not alter NCH-1A2 invasion and only marginally reduces NCH-1A2 propagation. This phenomenon was confirmed by a competitive infection assay using PSGL-1-dependent and -independent A. phagocytophilum organisms transformed to express mCherry or green fluorescent protein respectively. We also assayed for delivery and tyrosine phosphorylation of the A. phagocytophilum effector, AnkA, following NCH-1or NCH-1A2 incubation with HL-60 or HL-60 A2 cells in the presence of PSGL-1 blocking antibody. PSGL-1 N-terminus recognition promotes optimal AnkA delivery while binding to sLe(x) or the unknown receptor is comparably less important for this process.
Collapse
Affiliation(s)
- Dexter V Reneer
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
308
|
Manzano-Roman R, Almazán C, Naranjo V, Bloui EF, Kocan KM, de la Fuente J. Expression of perilipin in human promyelocytic cells in response to Anaplasma phagocytophilum infection results in modified lipid metabolism. J Med Microbiol 2008; 57:159-163. [PMID: 18201980 DOI: 10.1099/jmm.0.47504-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The obligate intracellular pathogen Anaplasma phagocytophilum is transmitted by ticks and causes human granulocytic anaplasmosis, tick-borne fever of ruminants, and equine and canine granulocytic anaplasmosis. In a previous study, the perilipin (PLIN) gene was identified as one of the genes differentially expressed in human promyelocytic HL-60 cells in response to infection with A. phagocytophilum. PLIN is a major adipocyte lipid droplet-associated phosphoprotein that plays a central role in lipolysis and cholesterol synthesis. Host cholesterol and other lipids are required by A. phagocytophilum for infection and multiplication in human cells. In this study, it was hypothesized that PLIN may be involved in infection of human HL-60 cells by A. phagocytophilum. To test this hypothesis, a combination of real-time RT-PCR, immunofluorescence and RNA interference was used to study the expression of PLIN. The results of these studies demonstrated that A. phagocytophilum modulates lipid metabolism by increasing PLIN mRNA levels and facilitates infection of HL-60 cells. The results of these studies expand our knowledge of the role of lipid metabolism in A. phagocytophilum infection and multiplication in HL-60 cells and suggest a mechanism by which A. phagocytophilum modulates lipid metabolism.
Collapse
Affiliation(s)
- Raúl Manzano-Roman
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Consuelo Almazán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000 Cd. Victoria, Tamaulipas, Mexico
| | - Victoria Naranjo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| | - Edmour F Bloui
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
309
|
Dynamic transmission of numerous Anaplasma phagocytophilum genotypes among lambs in an infected sheep flock in an area of anaplasmosis endemicity. J Clin Microbiol 2008; 46:1686-91. [PMID: 18367562 PMCID: PMC2395098 DOI: 10.1128/jcm.02068-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmission dynamics of Anaplasma phagocytophilum strains circulating within juvenile members of a sheep flock grazing on an Ixodes ricinus-infested pasture in southern Norway were monitored. PCR-based detection of the bacterial p44 fragments in the blood of 16 lambs sampled weekly for 16 weeks following their release into pasture revealed rickettsemia in all animals, with an increasing proportion of infected animals as the survey progressed. Comparison of partial msp4 sequences obtained from infected blood samples revealed 24 distinct genotypes, some of which were repeatedly encountered, occurring in up to six sheep over a 14-week period, whereas others were observed only once. Individual sheep were infected by up to five distinct genotypes, with a specific genotype being encountered for between one and three consecutive weeks, and in some sheep, genotypes detected early in the study were also present in later samples. In general, detection of A. phagocytophilum by PCR correlated well with the observation of infected neutrophils in blood smears. Together these results reveal a previously unrecognized diversity of A. phagocytophilum strains simultaneously circulating within an infected population in an area of endemicity and are consistent with a remarkably dynamic transmission of strains among infected animals.
Collapse
|
310
|
Graf PCF, Chretien JP, Ung L, Gaydos JC, Richards AL. Prevalence of seropositivity to spotted fever group rickettsiae and Anaplasma phagocytophilum in a large, demographically diverse US sample. Clin Infect Dis 2008; 46:70-7. [PMID: 18171216 DOI: 10.1086/524018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Most epidemiologic studies of tick-borne rickettsial diseases in the United States are small and have limited demographic scope, making broader risk assessment difficult. METHODS We conducted a seroprevalence study of spotted fever group rickettsiae and Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. Specimens were selected randomly from the Department of Defense Serum Repository for 10,000 diverse military personnel at various stages in their careers who were serving with active duty status in 1997. Antibody testing included enzyme-linked immunosorbent assay for Rickettsia rickettsii and A. phagocytophilum, and Western blot confirmation for A. phagocytophilum. Risk factors were assessed using logistic regression. RESULTS Subjects were mostly male and young and were diverse ethnically and geographically. Spotted fever group rickettsiae seropositivity was 6.0% (95% confidence interval, 5.5%-6.4%). In univariable logistic regression, seroprevalence was significantly higher among older subjects, men (6.5%, compared with 3.3% among women), black individuals (8.7%, compared with 5.6% among white individuals), subjects from states with above-average Rocky Mountain spotted fever incidence, and subjects in ground combat specialties. Associations remained significant in multivariable analysis for age, sex, black versus white race, home state with high incidence, and ground combat specialty. Among 696 subjects with serum samples obtained within 7 days after entering the military, the rate of seropositivity was 3.4% (95% confidence interval, 2.1%-4.8%). Seroprevalence was nonsignificantly lower in men (3.4%, compared with 3.7% in women ) and in black individuals (3.4%, compared with 4.1% in white individuals). A. phagocytophilum seropositivity, as determined by by enzyme-linked immunosorbent assay and Western blot, was 2.6% and 0.11% (95% confidence interval, 0.05%-0.18%), respectively. Western blot seropositivity was not significantly associated with subject characteristics in univariable analysis. CONCLUSIONS Spotted fever group rickettsiae exposure was common and A. phagocytophilum exposure was rare in a US population with broad demographic diversity.
Collapse
Affiliation(s)
- Paul C F Graf
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | | | | | | | | |
Collapse
|
311
|
Anaplasma phagocytophilum MSP2(P44)-18 predominates and is modified into multiple isoforms in human myeloid cells. Infect Immun 2008; 76:2090-8. [PMID: 18285495 PMCID: PMC2346672 DOI: 10.1128/iai.01594-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis. MSP2(P44), the bacterium's major surface protein, is encoded by a paralogous gene family and has been implicated in a variety of pathobiological processes, including antigenic variation, host adaptation, adhesion, porin activity, and structural integrity. The consensus among several studies performed at the DNA and RNA levels is that a heterogeneous mix of a limited number of msp2(p44) transcripts is expressed by A. phagocytophilum during in vitro cultivation. Such analyses have yet to be extended to the protein level. In this study, we used proteomic and molecular approaches to determine that MSP2(P44)-18 is the predominant if not the only paralog expressed and is modified into multiple 42- to 44-kDa isoforms by A. phagocytophilum strain HGE1 during infection of HL-60 cells. The msp2(p44) expression profile was homogeneous for msp2(p44)-18. Thus, MSP2(P44)-18 may have a fitness advantage in HL-60 cell culture in the absence of selective immune pressure. Several novel 22- to 27-kDa MSP2 isoforms lacking most of the N-terminal conserved region were also identified. A. phagocytophilum MSP2(P44) orthologs expressed by other pathogens in the family Anaplasmataceae are glycosylated. Gas chromatography revealed that recombinant MSP2(P44)-18 is modified by glucose, galactose, xylose, mannose, and trace amounts of other glycosyl residues. These data are the first to confirm differential modification of any A. phagocytophilum MSP2(P44) paralog and the first to provide evidence for expression of truncated versions of such proteins.
Collapse
|
312
|
Laskay T, van Zandbergen G, Solbach W. Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: apoptosis as infection-promoting factor. Immunobiology 2008; 213:183-91. [PMID: 18406366 DOI: 10.1016/j.imbio.2007.11.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/19/2007] [Accepted: 11/21/2007] [Indexed: 11/29/2022]
Abstract
Polymorphonuclear neutrophil granulocytes (PMN) are primary antimicrobial effector cells of the innate immune system and serve to destroy invading pathogens. Although most ingested microorganisms are killed readily inside PMN, several obligate or facultative intracellular pathogens survive even in this hostile environment. Extension of the life span of neutrophils is a general escape mechanism of pathogens residing in PMN. However, after 2-4 days, even infected neutrophils become apoptotic and are phagocytosed by macrophages. Since microbes entering macrophages via the uptake of infected apoptotic PMN may survive and multiply in macrophages, apoptotic neutrophils can serve as "Trojan horses" for certain pathogens. Interfering with activating signaling pathways appears to be another potent mechanism by which intracellular microorganisms suppress cellular activation in neutrophils. In addition to provide a short overview of the topic, the present review aims to summarize our own findings regarding the interaction between human neutrophils and intracellular pathogens as well as regarding the disease promoting role of apoptotic cells after infection with Leishmania major.
Collapse
Affiliation(s)
- Tamás Laskay
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | |
Collapse
|
313
|
Abstract
Joppe Hovius and colleagues review anticoagulant and immunosuppressive proteins present in tick saliva, and discuss how immunologically targeting such molecules could prevent transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Joppe W R Hovius
- Center for Experimental and Molecular Medicine, Department of Internal Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
314
|
Pedra JHF, Mattner J, Tao J, Kerfoot SM, Davis RJ, Flavell RA, Askenase PW, Yin Z, Fikrig E. c-Jun NH2-terminal kinase 2 inhibits gamma interferon production during Anaplasma phagocytophilum infection. Infect Immun 2008; 76:308-316. [PMID: 17998313 PMCID: PMC2223674 DOI: 10.1128/iai.00599-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/15/2007] [Accepted: 10/29/2007] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon (IFN-gamma) plays a critical role in the early eradication of Anaplasma phagocytophilum. However, the mechanisms that regulate IFN-gamma production upon infection remain poorly understood. Here we show that c-Jun NH2-terminal kinase 2 (JNK2) inhibits IFN-gamma production during A. phagocytophilum infection. jnk2-null mice were more refractory to infection with A. phagocytophilum and produced increased levels of IFN-gamma after challenge with the pathogen. The resistance of jnk2-null mice to A. phagocytophilum infection was due to elevated levels of IFN-gamma secreted by conventional and natural killer (NK) T cells. The administration of alpha-galactosylceramide, a strong NK T-cell agonist, increased IFN-gamma release and protected mice from A. phagocytophilum, further demonstrating the inhibitory effect of JNK2 on IFN-gamma production. Collectively, these findings provide strong evidence that JNK2 is an important regulatory protein for IFN-gamma secretion upon challenge with A. phagocytophilum.
Collapse
Affiliation(s)
- Joao H F Pedra
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Sarkar M, Reneer DV, Carlyon JA. Sialyl-Lewis x-independent infection of human myeloid cells by Anaplasma phagocytophilum strains HZ and HGE1. Infect Immun 2007; 75:5720-5. [PMID: 17893131 PMCID: PMC2168341 DOI: 10.1128/iai.00905-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/07/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that infects neutrophils and neutrophil precursors. Bacterial recognition of P-selectin glycoprotein ligand-1 (PSGL-1) and the alpha2,3-sialylated- and alpha1,3-fucosylated-moiety sialyl-Lewis x (sLe(x)), which modifies the PSGL-1 N terminus, is important for adhesion to and invasion of myeloid cells. We have previously demonstrated that A. phagocytophilum organisms of the NCH-1 strain that utilize an sLe(x)-modified PSGL-1-independent means of entry can be enriched for by cultivation in undersialylated HL-60 cells that are unable to construct sLe(x). Because it was unknown whether other A. phagocytophilum isolates share this ability, we extended our studies to the geographically diverse strains HZ and HGE1. HL-60 A2 is a clonal cell line that is defective for sialylation and alpha1,3-fucosyltransferase. HL-60 A2 cell surfaces, therefore, not only lack sLe(x) but also are virtually devoid of any other sialic acid- and/or alpha1,3-fucose-modified glycan. By cultivating HZ and HGE1 in HL-60 A2 cells, we enriched for bacterial subpopulations (termed HZA2 and HGE1A2) that bind and/or infect myeloid cells in the absence of sialic acid and alpha1,3-fucose and in the presence of antibody that blocks the N terminus of PSGL-1. Thus, multiple A. phagocytophilum isolates share the ability to use sLe(x)-modified PSGL-1-dependent and -independent routes of entry into myeloid cells. HZA2 and HGE1A2 represent enriched bacterial populations that will aid dissection of the complexities of the interactions between A. phagocytophilum and host myeloid cells.
Collapse
Affiliation(s)
- Madhubanti Sarkar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | |
Collapse
|
316
|
Stuen S. Anaplasma phagocytophilum - the most widespread tick-borne infection in animals in Europe. Vet Res Commun 2007; 31 Suppl 1:79-84. [PMID: 17682851 DOI: 10.1007/s11259-007-0071-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The bacterium Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) may cause infection in several animal species including human. The disease in domestic ruminants is also called tick-borne fever (TBF), and has been known for at least 200 years. In Europe, clinical manifestations due to A. phagocytophilum have been recorded in sheep, goat, cattle, horse, dog, cat, roe deer, reindeer and human. However, seropositive and PCR-positive mammalian have been detected in several other species. Investigations indicate that the infection is prevalent in Ixodes ricinus areas in most countries in Europe. A. phagocytophilum infection may cause high fever, cytoplasmatic inclusions in phagocytes and severe neutropenia, but is seldom fatal unless complicated by other infections. Complications may include abortions, and impaired spermatogenesis for several months. However, the most important aspect of the infection at least in sheep is its implication as a predisposing factor for other infections. Factors such as climate, management, other infections, individual conditions etc. are important for the outcome of the infection. A. phagocytophilum may cause persistent infection in several species. Based on the 16S rRNA gene sequences several variants exist. Different variants may exist within the same herd and even simultaneously in the same animal. Variants may behave differently and interact in the mammalian host.
Collapse
Affiliation(s)
- S Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, Sandnes, Norway.
| |
Collapse
|
317
|
Pedra JHF, Sutterwala FS, Sukumaran B, Ogura Y, Qian F, Montgomery RR, Flavell RA, Fikrig E. ASC/PYCARD and caspase-1 regulate the IL-18/IFN-gamma axis during Anaplasma phagocytophilum infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:4783-91. [PMID: 17878377 DOI: 10.4049/jimmunol.179.7.4783] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anaplasma phagocytophilum is an obligate intracellular pathogen that resides within neutrophils and can cause fever, pancytopenia, or death. IFN-gamma plays a critical role in the control of A. phagocytophilum; however, the mechanisms that regulate IFN-gamma production remain unclear. In this study, we demonstrate that apoptotic specklike protein with a caspase-activating recruiting domain (ASC)/PYCARD, a central adaptor molecule in the Nod-like receptor (NLR) pathway, regulates the IL-18/IFN-gamma axis during A. phagocytophilum infection through its effect on caspase-1. Caspase-1- and asc-null mice were more susceptible than control animals to A. phagocytophilum infection due to the absence of IL-18 secretion and reduced IFN-gamma levels in the peripheral blood. Moreover, caspase-1 and ASC deficiency reduced CD4+ T cell-mediated IFN-gamma after in vitro restimulation with A. phagocytophilum. The NLR family member IPAF/NLRC4, but not NALP3/NLRP3, was partially required for IFN-gamma production in response to A. phagocytophilum. Taken together, our data demonstrate that ASC and caspase-1 are critical for IFN-gamma-mediated control of A. phagocytophilum infection.
Collapse
Affiliation(s)
- Joao H F Pedra
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Grab DJ, Nyarko E, Barat NC, Nikolskaia OV, Dumler JS. Anaplasma phagocytophilum-Borrelia burgdorferi coinfection enhances chemokine, cytokine, and matrix metalloprotease expression by human brain microvascular endothelial cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1420-4. [PMID: 17898182 PMCID: PMC2168173 DOI: 10.1128/cvi.00308-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Borrelia burgdorferi and Anaplasma phagocytophilum coinfect and are transmitted by Ixodes species ticks. Clinical indicators suggest that A. phagocytophilum coinfection contributes to the severity, dissemination, and, possibly, sequelae of Lyme disease. Previous in vitro studies showed that spirochete penetration through human brain microvascular endothelial cells of the blood-brain barrier is facilitated by endothelial cell-derived matrix metalloproteases (MMPs). A. phagocytophilum-infected neutrophils continuously release MMPs and other vasoactive biomediators. We examined B. burgdorferi infection of brain microvascular barriers during A. phagocytophilum coinfection and showed that coinfection enhanced reductions in transendothelial electrical resistance and enhanced or synergistically increased production of MMPs (MMP-1, -3, -7, -8, and -9), cytokines (interleukin 6 [IL-6], IL-10, and tumor necrosis factor alpha), and chemokines (IL-8 and macrophage inflammatory protein 1alpha) known to affect vascular permeability and inflammatory responses.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3147, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
319
|
de la Fuente J, Manzano-Roman R, Blouin EF, Naranjo V, Kocan KM. Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells. BMC Infect Dis 2007; 7:110. [PMID: 17883869 PMCID: PMC2039740 DOI: 10.1186/1471-2334-7-110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/20/2007] [Indexed: 11/26/2022] Open
Abstract
Background The tick-borne intracellular pathogen, Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) causes human granulocytic anaplasmosis after infection of polymorphonuclear leucocytes. The human Sp110 gene is a member of the nuclear body (NB) components that functions as a nuclear hormone receptor transcriptional coactivator and plays an important role in immunoprotective mechanisms against pathogens in humans. In this research, we hypothesized that Sp110 may be involved in the infection of human promyelocytic HL-60 cells with A. phagocytophilum. Methods The human Sp110 and A. phagocytophilum msp4 mRNA levels were evaluated by real-time RT-PCR in infected human HL-60 cells sampled at 0, 12, 24, 48, 72 and 96 hours post-infection. The effect of Sp110 expression on A. phagocytophilum infection was determined by RNA interference (RNAi). The expression of Sp110 was silenced in HL-60 cells by RNAi using pre-designed siRNAs using the Nucleofector 96-well shuttle system (Amaxa Biosystems, Gaithersburg, MD, USA). The A. phagocytophilum infection levels were evaluated in HL-60 cells after RNAi by real-time PCR of msp4 and normalizing against human Alu sequences. Results While Sp110 mRNA levels increased concurrently with A. phagocytophilum infections in HL-60 cells, the silencing of Sp110 expression by RNA interference resulted in decreased infection levels. Conclusion These results demonstrated that Sp110 expression is required for A. phagocytophilum infection and multiplication in HL-60 cells, and suggest a previously undescribed mechanism by which A. phagocytophilum modulates Sp110 mRNA levels to facilitate establishment of infection of human HL-60 cells.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| | - Raúl Manzano-Roman
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edmour F Blouin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Victoria Naranjo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
320
|
Dhand A, Nadelman RB, Aguero-Rosenfeld M, Haddad FA, Stokes DP, Horowitz HW. Human Granulocytic Anaplasmosis During Pregnancy: Case Series and Literature Review. Clin Infect Dis 2007; 45:589-93. [PMID: 17682993 DOI: 10.1086/520659] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/27/2007] [Indexed: 11/03/2022] Open
Abstract
We describe the clinical and laboratory manifestations and pregnancy outcomes of 6 women who received a diagnosis of human granulocytic ehrlichiosis during pregnancy. Human granulocytic ehrlichiosis did not seem to present in a fulminant fashion, and all treated patients had excellent responses to rifampin or doxycycline therapy. Perinatal transmission was documented in 1 neonate, who responded well to treatment. There do not appear to be any long-term adverse sequelae in children born from these pregnancies (mean follow-up duration, 21 months).
Collapse
Affiliation(s)
- Abhay Dhand
- Department of Medicine, Division of Infectious Diseases, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | |
Collapse
|
321
|
Ge Y, Rikihisa Y. Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J Bacteriol 2007; 189:7819-28. [PMID: 17766422 PMCID: PMC2168727 DOI: 10.1128/jb.00866-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis (HGA), one of the major tick-borne zoonoses in the United States. The surface of A. phagocytophilum plays a crucial role in subverting the hostile host cell environment. However, except for the P44/Msp2 outer membrane protein family, the surface components of A. phagocytophilum are largely unknown. To identify the major surface proteins of A. phagocytophilum, a membrane-impermeable, cleavable biotin reagent, sulfosuccinimidyl-2-[biotinamido]ethyl-1,3-dithiopropionate (Sulfo-NHS-SS-Biotin), was used to label intact bacteria. The biotinylated bacterial surface proteins were isolated by streptavidin agarose affinity purification and then separated by electrophoresis, followed by capillary liquid chromatography-nanospray tandem mass spectrometry analysis. Among the major proteins captured by affinity purification were five A. phagocytophilum proteins, Omp85, hypothetical proteins APH_0404 (designated Asp62) and APH_0405 (designated Asp55), P44 family proteins, and Omp-1A. The surface exposure of Asp62 and Asp55 was verified by immunofluorescence microscopy. Recombinant Asp62 and Asp55 proteins were recognized by an HGA patient serum. Anti-Asp62 and anti-Asp55 peptide sera partially neutralized A. phagocytophilum infection of HL-60 cells in vitro. We found that the Asp62 and Asp55 genes were cotranscribed and conserved among members of the family Anaplasmataceae. With the exception of P44-18, all of the proteins were newly revealed major surface-exposed proteins whose study should facilitate understanding the interaction between A. phagocytophilum and the host. These proteins may serve as targets for development of chemotherapy, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Yan Ge
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | |
Collapse
|
322
|
Dumler JS, Madigan JE, Pusterla N, Bakken JS. Ehrlichioses in humans: epidemiology, clinical presentation, diagnosis, and treatment. Clin Infect Dis 2007; 45 Suppl 1:S45-51. [PMID: 17582569 DOI: 10.1086/518146] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human ehrlichioses are emerging tickborne infections. "Human ehrlichiosis" describes infections with at least 5 separate obligate intracellular bacteria in 3 genera in the family Anaplasmataceae. Since 1986, these agents and infections (human monocytic ehrlichiosis [HME], caused by Ehrlichia chaffeensis; human granulocytic anaplasmosis [HGA], caused by Anaplasma phagocytophilum; and human ewingii ehrlichiosis, caused by Ehrlichia ewingii) are the causes of most human ehrlichioses. Their prevalence and incidence are increasing where the appropriate tick vectors are found. The diseases generally present as undifferentiated fever, but thrombocytopenia, leukopenia, and increased serum transaminase activities are important laboratory features. Despite clinical similarities, each disease has unique features: a greater severity and a higher case-fatality rate for HME and a higher prevalence of opportunistic infections for HGA. Once an ehrlichiosis is suspected on historical and clinical grounds, doxycycline treatment should be initiated concurrently with attempts at etiologic confirmation using laboratory methods such as blood smear examination, polymerase chain reaction, culture, and serologic tests.
Collapse
Affiliation(s)
- J Stephen Dumler
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
323
|
Choi KS, Dumler JS. Mitogenic component in polar lipid-enriched Anaplasma phagocytophilum membranes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1260-5. [PMID: 17687112 PMCID: PMC2168108 DOI: 10.1128/cvi.00204-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human granulocytic anaplasmosis is an emerging tick-borne disease caused by Anaplasma phagocytophilum. A. phagocytophilum cells activate Toll-like receptor 2 signaling and possess mitogenic activity, and A. phagocytophilum infection in vivo activates NKT cells unrelated to major surface protein 2 (Msp2) hypervariable region expression. Thus, we hypothesized that lipoprotein or glycolipid components of A. phagocytophilum membranes could be important triggers of the innate immune response and immunopathology. A. phagocytophilum membranes depleted of Msp2 and protein antigens enhanced the proliferation of naïve mouse splenocytes beyond that of untreated membranes. Protein-depleted and polar lipid-enriched membranes from low-passage A. phagocytophilum cultures enhanced naïve splenocyte lymphoproliferation to a much greater degree than did these fractions from high-passage cultures of bacterial membranes (1.8- to 3.7-fold for protein-depleted fractions and 4.8- to > or =17.7-fold for polar lipid-enriched fractions). These results support the hypothesis that components that are enriched among polar lipids in the A. phagocytophilum membrane stimulate innate immune cell proliferation, possibly activating NKT cells that link innate and adaptive immunity, and immunopathology.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- College of Life Sciences and Natural Resources, Department of Animal Science, Sangju National University, Sangju 742-711, Korea
| | | |
Collapse
|
324
|
Abstract
Animal skin separates the inner world of the body from the largely hostile outside world and is actively involved in the defence against microbes. However, the skin is no perfect defence barrier and many microorganisms have managed to live on or within the skin as harmless passengers or as disease-causing pathogens. Microbes have evolved numerous strategies that allow them to gain access to the layers underneath the epidermis where they either multiply within the dermis or move to distant destinations within the body for replication. A number of viruses, bacteria and parasites use arthropod vectors, like ticks or mosquitoes, to deliver them into the dermis while taking their blood meal. Within the dermis, successful pathogens subvert the function of a variety of skin resident cells or cells of the innate immune system that rush to the site of infection. In this review several interactions with cells of the skin by medically relevant vector-borne pathogens are discussed to highlight the different ways in which these pathogens have come to survive within the skin and to usurp the defence mechanisms of the host for their own ends.
Collapse
Affiliation(s)
- Freddy Frischknecht
- Department of Parasitology, Hygiene Institute, Heidelberg University School of Medicine, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
325
|
Dumler JS, Barat NC, Barat CE, Bakken JS. Human granulocytic anaplasmosis and macrophage activation. Clin Infect Dis 2007; 45:199-204. [PMID: 17578779 DOI: 10.1086/518834] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 03/29/2007] [Indexed: 11/03/2022] Open
Abstract
Patients with human granulocytic anaplasmosis present with fever, thrombocytopenia, leukopenia, and an elevated aspartate transaminase level. Clinical and histopathologic features of severe disease suggest macrophage activation. Twenty-nine patients with human granulocytic anaplasmosis had higher ferritin, interleukin-10, interleukin-12 p70, and interferon- gamma levels than did control subjects matched for age and sex; severity correlated with triglyceride, ferritin, and interleukin-12 p70 levels. Several severely affected patients had cases that fulfilled macrophage activation syndrome diagnostic criteria. Macrophage activation and excessive cytokine production may belie tissue injury associated with Ananplasma phagocytophilum infection.
Collapse
Affiliation(s)
- J Stephen Dumler
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
326
|
Bown KJ, Lambin X, Ogden NH, Petrovec M, Shaw SE, Woldehiwet Z, Birtles RJ. High-resolution genetic fingerprinting of European strains of Anaplasma phagocytophilum by use of multilocus variable-number tandem-repeat analysis. J Clin Microbiol 2007; 45:1771-6. [PMID: 17442796 PMCID: PMC1933113 DOI: 10.1128/jcm.00365-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/27/2007] [Accepted: 04/09/2007] [Indexed: 12/14/2022] Open
Abstract
Anaplasma phagocytophilum is a widely distributed tick-borne pathogen of humans, livestock, and companion animals. We used in silico methods to identify 10 variable-number tandem-repeat (VNTR) loci within the genome sequence of the A. phagocytophilum HZ strain and used these data to develop a multilocus VNTR-based typing scheme for the species. Having confirmed the stability of four of the loci in replicates of the A. phagocytophilum strain that had been subjected to different numbers of passages through cell cocultures in vitro, we then used this typing scheme to discriminate between 20 A. phagocytophilum strains of diverse geographical and host provenances. Extensive diversity was found at each of the four loci studied, with total allele numbers ranging from 13 to 18 and Hunter-Gaston discriminatory index values ranging from 0.93 to 0.99. Only 2 of the 20 strains examined shared alleles at all four loci. The discriminatory power of VNTR analysis was found to be greater than that of either partial msp4 or 16S rRNA gene sequence comparison. The extremely high sensitivity of this novel approach to the genetic fingerprinting of A. phagocytophilum strains should serve well in molecular epidemiological studies of infection transmission, particularly when fine-scale strain delineation is required.
Collapse
Affiliation(s)
- Kevin J Bown
- Infectious Disease Ecology Group, Faculty of Veterinary Science, University of Liverpool, Leahurst, Neston, Cheshire, CH64 7TE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
327
|
Pedra JHF, Tao J, Sutterwala FS, Sukumaran B, Berliner N, Bockenstedt LK, Flavell RA, Yin Z, Fikrig E. IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis. ACTA ACUST UNITED AC 2007; 50:401-10. [PMID: 17521390 DOI: 10.1111/j.1574-695x.2007.00270.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.
Collapse
Affiliation(s)
- Joao H F Pedra
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Choi KS, Webb T, Oelke M, Scorpio DG, Dumler JS. Differential innate immune cell activation and proinflammatory response in Anaplasma phagocytophilum infection. Infect Immun 2007; 75:3124-30. [PMID: 17403880 PMCID: PMC1932852 DOI: 10.1128/iai.00098-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human granulocytic anaplasmosis (HGA) is caused by the obligate intracellular bacterium Anaplasma phagocytophilum. The critical role of gamma interferon (IFN-gamma) for induction of severe inflammatory histopathology, even in the absence of a significant bacterial load, was previously demonstrated in a murine model of HGA. We hypothesized that NK, NKT, and possibly CD8(+) cytotoxic T cells participate in the development of histopathologic lesions with A. phagocytophilum infection. Mice were mock infected or infected with low- or high-passage A. phagocytophilum and assayed for hepatic histopathology and splenocyte immunophenotype during the first 21 days after infection. Compared to high-passage A. phagocytophilum-infected mice, low-passage A. phagocytophilum-infected mice had more severe hepatic lesions and increased apoptosis. The hepatic histopathology severity in low-passage A. phagocytophilum-infected mice peaked on day 2 at the time of peak plasma IFN-gamma levels and gradually decreased through day 21. Low-passage A. phagocytophilum-infected mice also showed significantly increased levels of lymphocyte NK1.1/FasL expression on days 4 to 7 corresponding to early, severe hepatic inflammation, whereas the levels of NKT cells were substantially lower on day 4, suggesting that there was NKT cell involvement. This result supports the concept that NK1.1(+) cells, including NK and NKT cells, are major components in the early pathogenesis of A. phagocytophilum infection.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 624, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
329
|
Thomas V, Fikrig E. Anaplasma phagocytophilum specifically induces tyrosine phosphorylation of ROCK1 during infection. Cell Microbiol 2007; 9:1730-7. [PMID: 17346310 DOI: 10.1111/j.1462-5822.2007.00908.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum, an obligate intracellular pathogen that persists within polymorphonuclear leucocytes, is the second most common tick-borne agent in North America. We now show that infection of a promyelocytic cell line and neutrophils with A. phagocytophilum results in pathogen-specific tyrosine phosphorylation of ROCK1. Phosphorylation is associated with PSGL-1 and Syk, because PSGL-1 blocking antibodies and siRNA targeting Syk interfere with ROCK1 phosphorylation in A. phagocytophilum-infected cells. Knockdown of either Syk or ROCK1 also markedly impaired A. phagocytophilum infection. These data demonstrate a role for A. phagocytophilum-mediated ROCK1 phosphorylation in infection, and suggests that inhibiting this pathway may lead to new, non-antibiotic strategies to treat human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Venetta Thomas
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
330
|
Torina A, Vicente J, Alongi A, Scimeca S, Turlá R, Nicosia S, Di Marco V, Caracappa S, de la Fuente J. Observed Prevalence of Tick-borne Pathogens in Domestic Animals in Sicily, Italy during 2003?2005. Zoonoses Public Health 2007; 54:8-15. [PMID: 17359441 DOI: 10.1111/j.1863-2378.2007.00989.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to characterize the observed prevalence of tick-borne pathogens (TBP) in domestic animals in Sicily, Italy during 2003-2005. Serological (competitive ELISA and indirect immunofluorescence antibody, n = 3299) and DNA tests (polymerase chain reaction and reverse line blot, n = 2565) were conducted on horse, donkey, cattle, sheep, goat, pig and dog samples. Pathogens analysed included Anaplasma, Ehrlichia, Rickettsia, Babesia and Theileria species, and Coxiella burnetii. The most prevalent TBP were Anaplasma and Babesia species. The results reported herein suggested that cattle could serve as the major reservoir for Babesia and Theileria spp. while for Anaplasma spp. cattle, dogs, sheep and goats may be the most important reservoir species. These results expanded our knowledge about the prevalence of TBP in Sicily and provided information to understand the epidemiology of tick-borne diseases and may help to implement measures to diagnose, treat and control transmission to humans and animals in this region.
Collapse
Affiliation(s)
- A Torina
- Instituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no. 3, 90129 Palermo, Sicily, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Koci J, Movila A, Taragel'ová V, Toderas I, Uspenskaia I, Derdáková M, Labuda M. First report of Anaplasma phagocytophilum and its co-infections with Borrelia burgdorferi sensu lato in Ixodes ricinus ticks (Acari: Ixodidae) from Republic of Moldova. EXPERIMENTAL & APPLIED ACAROLOGY 2007; 41:147-52. [PMID: 17342346 DOI: 10.1007/s10493-007-9048-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 01/03/2007] [Indexed: 05/14/2023]
Abstract
We examined 198 questing Ixodes ricinus ticks collected in Chisinau City, Republic of Moldova by PCR assays for Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and co-infection of both pathogens, which were detected in 9%, 25.2% and 2.5% of tested ticks, respectively. B. burgdorferi s.l. genotyping revealed the presence of five genospecies with dominance of B. garinii. Our preliminary study provides evidence about occurrence of both pathogens in this populated area, which represent a potential health risk for inhabitants.
Collapse
Affiliation(s)
- Juraj Koci
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84245, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
332
|
Huang H, Wang X, Kikuchi T, Kumagai Y, Rikihisa Y. Porin activity of Anaplasma phagocytophilum outer membrane fraction and purified P44. J Bacteriol 2006; 189:1998-2006. [PMID: 17172334 PMCID: PMC1855737 DOI: 10.1128/jb.01548-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, an obligatory intracellular bacterium that causes human granulocytic anaplasmosis, has significantly less coding capacity for biosynthesis and central intermediary metabolism than do free-living bacteria. Thus, A. phagocytophilum needs to usurp and acquire various compounds from its host. Here we demonstrate that the isolated outer membrane of A. phagocytophilum has porin activity, as measured by a liposome swelling assay. The activity allows the diffusion of L-glutamine, the monosaccharides arabinose and glucose, the disaccharide sucrose, and even the tetrasaccharide stachyose, and this diffusion could be inhibited with an anti-P44 monoclonal antibody. P44s are the most abundant outer membrane proteins and neutralizing targets of A. phagocytophilum. The P44 protein demonstrates characteristics consistent with porins of gram-negative bacteria, including detergent solubility, heat modifiability, a predicted structure of amphipathic and antiparallel beta-strands, an abundance of polar residues, and a C-terminal phenylalanine. We purified native P44s under two different nondenaturing conditions. When reconstituted into proteoliposomes, both purified P44s exhibited porin activity. P44s are encoded by approximately 100 p44 paralogs and go through extensive antigenic variation. The 16-transmembrane-domain beta-strands consist of conserved P44 N- and C-terminal regions. By looping out the hypervariable region, the porin structure is conserved among diverse P44 proteins yet enables antigenic variation for immunoevasion. The tricarboxylic acid (TCA) cycle of A. phagocytophilum is incomplete and requires the exogenous acquisition of L-glutamine or L-glutamate for function. Efficient diffusion of L-glutamine across the outer membrane suggests that the porin feeds the Anaplasma TCA cycle and that the relatively large pore size provides Anaplasma with the necessary metabolic intermediates from the host cytoplasm.
Collapse
Affiliation(s)
- Haibin Huang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
333
|
Foley J, Nieto N. Anaplasma phagocytophilum subverts tick salivary gland proteins. Trends Parasitol 2006; 23:3-5. [PMID: 17092773 DOI: 10.1016/j.pt.2006.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/25/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
Anaplasma phagocytophilum is a bacterium that is transmitted by Ixodes spp. ticks, in which it resides in salivary glands. Ticks inoculate the pathogen into hosts together with an array of salivary molecules that reduce host anti-tick inflammation. Sukumaran et al. recently showed that A. phagocytophilum uses a tick salivary protein, Salp16, to enhance its uptake from the host and into the salivary gland. Occupation and exploitation of tick salivary glands have implications for the maintenance and detection of A. phagocytophilum in its vector and early pathogen interactions with its hosts.
Collapse
Affiliation(s)
- Janet Foley
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
334
|
Abstract
Many microbial pathogens evolved to circumvent the attack of neutrophils, which are essential effector cells of the innate immune system. Here we review six major strategies that pathogenic bacteria and fungi use to evade neutrophil defences: (i) turning on survival and stress responses, (ii) avoiding contact, (iii) preventing phagocytosis, (iv) surviving intracellularly, (v) inducing cell death and (vi) evading killing by neutrophil extracellular traps. For each category we give examples and further focus on one particular pathogenic microbe in more detail. Pathogens include Candida albicans, Cryptococcus neoformans, Yersinia ssp., Helicobacter pylori, Staphylococcus aureus, Streptococcus pyogenes and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Constantin F Urban
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
335
|
Wielinga PR, Gaasenbeek C, Fonville M, de Boer A, de Vries A, Dimmers W, Akkerhuis Op Jagers G, Schouls LM, Borgsteede F, van der Giessen JWB. Longitudinal analysis of tick densities and Borrelia, Anaplasma, and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Environ Microbiol 2006; 72:7594-601. [PMID: 17028227 PMCID: PMC1694262 DOI: 10.1128/aem.01851-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From 2000 to 2004, ticks were collected by dragging a blanket in four habitat areas in The Netherlands: dunes, heather, forest, and a city park. Tick densities were calculated, and infection with Borrelia burgdorferi and Anaplasma and Ehrlichia species was investigated by reverse line blot analysis. The lowest tick density was observed in the heather area (1 to 8/100 m2). In the oak forest and city park, the tick densities ranged from 26 to 45/100 m2. The highest tick density was found in the dune area (139 to 551/100 m2). The infection rates varied significantly for the four study areas and years, ranging from 0.8 to 11. 5% for Borrelia spp. and 1 to 16% for Ehrlichia or Anaplasma (Ehrlichia/Anaplasma) spp. Borrelia infection rates were highest in the dunes, followed by the forest, the city park, and heather area. In contrast, Ehrlichia/Anaplasma was found most often in the forest and less often in the city park. The following Borrelia species were found: Borrelia sensu lato strains not identified to the species level (2.5%), B. afzelii (2.5%), B. valaisiana (0.9%), B. burgdorferi sensu stricto (0.13%), and B. garinii (0.13%). For Ehrlichia/Anaplasma species, Ehrlichia and Anaplasma spp. not identified to the species level (2.5%), Anaplasma schotti variant (3.5%), Anaplasma phagocytophilum variant (0.3%), and Ehrlichia canis (0.19%) were found. E. canis is reported for the first time in ticks in The Netherlands in this study. Borrelia lusitaniae, Ehrlichia chaffeensis, and the human granylocytic anaplasmosis agent were not detected. About 1.6% of the ticks were infected with both Borrelia and Ehrlichia/Anaplasma, which was higher than the frequency predicted from the individual infection rates, suggesting hosts with multiple infections or a possible selective advantage of coinfection.
Collapse
Affiliation(s)
- Peter R Wielinga
- Microbiological Laboratory for Health Protection, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, Krause PJ, Bakken JS, Strle F, Stanek G, Bockenstedt L, Fish D, Dumler JS, Nadelman RB. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2006; 43:1089-134. [PMID: 17029130 DOI: 10.1086/508667] [Citation(s) in RCA: 1303] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 12/19/2022] Open
Abstract
Evidence-based guidelines for the management of patients with Lyme disease, human granulocytic anaplasmosis (formerly known as human granulocytic ehrlichiosis), and babesiosis were prepared by an expert panel of the Infectious Diseases Society of America. These updated guidelines replace the previous treatment guidelines published in 2000 (Clin Infect Dis 2000; 31[Suppl 1]:1-14). The guidelines are intended for use by health care providers who care for patients who either have these infections or may be at risk for them. For each of these Ixodes tickborne infections, information is provided about prevention, epidemiology, clinical manifestations, diagnosis, and treatment. Tables list the doses and durations of antimicrobial therapy recommended for treatment and prevention of Lyme disease and provide a partial list of therapies to be avoided. A definition of post-Lyme disease syndrome is proposed.
Collapse
Affiliation(s)
- Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Barbet AF, Lundgren AM, Alleman AR, Stuen S, Bjöersdorff A, Brown RN, Drazenovich NL, Foley JE. Structure of the expression site reveals global diversity in MSP2 (P44) variants in Anaplasma phagocytophilum. Infect Immun 2006; 74:6429-37. [PMID: 16966408 PMCID: PMC1695497 DOI: 10.1128/iai.00809-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, a recently reclassified bacteria in the order Rickettsiales, infects many different animal species and causes an emerging tick-borne disease of humans. The genome contains a large number of related genes and gene fragments encoding partial or apparently full-length outer membrane protein MSP2 (P44). Previous data using strains isolated from humans in the United States suggest that antigenic diversity results from RecF-mediated conversion of a single MSP2 (P44) expression site by partially homologous donor sequences. However, whether similar mechanisms operate in naturally infected animal species and the extent of global diversity in MSP2 (P44) are unknown. We analyzed the structure and diversity of the MSP2 (P44) expression site in strains derived from the United States and Europe and from infections of different animal species, including wildlife reservoirs. The results show that a syntenic expression site is present in all strains of A. phagocytophilum investigated. This genomic locus contained diverse MSP2 (P44) variants in all infected animals sampled, and variants also differed at different time points during infection. Although similar variants were found among different populations of U.S. origin, there was little sequence identity between U.S. strain variants (including genomic copies from a completely sequenced U.S. strain) and expression site variants infecting sheep and dogs in Norway and Sweden. Finally, the possibility that combinatorial mechanisms can generate additional diversity beyond the basic donor sequence repertoire is supported by the observation of shared sequence blocks throughout the MSP2 (P44) hypervariable region in reservoir hosts. These data suggest similar genetic mechanisms for A. phagocytophilum variation in all hosts but worldwide diversity of the MSP2 (P44) outer membrane protein.
Collapse
Affiliation(s)
- Anthony F Barbet
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611-0880, USA, and Department of Clinical Microbiology, Kalmar County Hospital, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
338
|
Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, Eisen J, Seshadri R, Ren Q, Wu M, Utterback TR, Smith S, Lewis M, Khouri H, Zhang C, Niu H, Lin Q, Ohashi N, Zhi N, Nelson W, Brinkac LM, Dodson RJ, Rosovitz MJ, Sundaram J, Daugherty SC, Davidsen T, Durkin AS, Gwinn M, Haft DH, Selengut JD, Sullivan SA, Zafar N, Zhou L, Benahmed F, Forberger H, Halpin R, Mulligan S, Robinson J, White O, Rikihisa Y, Tettelin H. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2006; 2:e21. [PMID: 16482227 PMCID: PMC1366493 DOI: 10.1371/journal.pgen.0020021] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022] Open
Abstract
Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens. Ehrlichiosis is an acute disease that triggers flu-like symptoms in both humans and animals. It is caused by a range of bacteria transmitted by ticks or flukes. Because these bacteria are difficult to culture, however, the organisms are poorly understood. The genomes of three emerging human pathogens causing ehrlichiosis were sequenced. A database was designed to allow the comparison of these three genomes to sixteen other bacteria with similar lifestyles. Analysis from this database reveals new species-specific and disease-specific genes indicating niche adaptations, pathogenic traits, and other features. In particular, one of the organisms contains more than 100 copies of a single gene involved in interactions with the host(s). These comparisons also enabled a reconstruction of the metabolic potential of five representative genomes from these bacteria and their close relatives. With this work, scientists can study these emerging pathogens in earnest.
Collapse
|