351
|
Shelp BJ, Mullen RT, Waller JC. Compartmentation of GABA metabolism raises intriguing questions. TRENDS IN PLANT SCIENCE 2012; 17:57-9. [PMID: 22226724 DOI: 10.1016/j.tplants.2011.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/11/2011] [Accepted: 12/20/2011] [Indexed: 05/21/2023]
Abstract
This synopsis covers the compartmentation of γ-aminobutyrate (GABA) metabolism, highlighting recent progress with Arabidopsis (Arabidopsis thaliana) and raising questions about mitochondrial GABA and succinic semialdehyde (SSA) transport, the fate of succinic semialdehyde once it exits mitochondria, and biochemical interactions between GABA metabolism and related processes such as photorespiration.
Collapse
Affiliation(s)
- Barry J Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | | | |
Collapse
|
352
|
Giraud E, Van Aken O, Uggalla V, Whelan J. REDOX regulation of mitochondrial function in plants. PLANT, CELL & ENVIRONMENT 2012; 35:271-80. [PMID: 21332513 DOI: 10.1111/j.1365-3040.2011.02293.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial components dynamically change in response to environmental and developmental cues. However, the regulatory pathways that underlie these changes are largely unknown. A global analysis of changes in mitochondrial components at the transcript, protein and metabolite levels was undertaken, to gain a greater insight into how mitochondrial functions are regulated and respond to various internal or external cues. At the transcript level, large-scale changes in groups of genes suggest the presence of co-regulatory mechanisms for these components. Furthermore, the pathways that regulate these changes appear to be integrated into regulatory pathways that alter a variety of functions in cells. However, the changes in transcripts are not always observed at the protein or the metabolite level. This is likely to be due to post-transcriptional levels of regulation and also the fact that in-depth profiles, which have been obtained for transcripts from a variety of studies, are currently not available for proteins and metabolites. Thus, while transcripts for genes give us a picture of what the cells are 'thinking' in relation to mitochondrial components, some of these responses may be lost in translation.
Collapse
Affiliation(s)
- Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
353
|
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1593-608. [PMID: 22291134 PMCID: PMC4359903 DOI: 10.1093/jxb/err460] [Citation(s) in RCA: 1041] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.
Collapse
Affiliation(s)
- Julia Krasensky
- GMI–Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Claudia Jonak
- GMI–Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
354
|
Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU. Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1773-84. [PMID: 22371326 DOI: 10.1093/jxb/ers053] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) is a free radical molecule involved in signalling and in hypoxic metabolism. This work used the nitrate reductase double mutant of Arabidopsis thaliana (nia) and studied metabolic profiles, aconitase activity, and alternative oxidase (AOX) capacity and expression under normoxia and hypoxia (1% oxygen) in wild-type and nia plants. The roots of nia plants accumulated very little NO as compared to wild-type plants which exhibited ∼20-fold increase in NO emission under low oxygen conditions. These data suggest that nitrate reductase is involved in NO production either directly or by supplying nitrite to other sites of NO production (e.g. mitochondria). Various studies revealed that NO can induce AOX in mitochondria, but the mechanism has not been established yet. This study demonstrates that the NO produced in roots of wild-type plants inhibits aconitase which in turn leads to a marked increase in citrate levels. The accumulating citrate enhances AOX capacity, expression, and protein abundance. In contrast to wild-type plants, the nia double mutant failed to show AOX induction. The overall induction of AOX in wild-type roots correlated with accumulation of glycine, serine, leucine, lysine, and other amino acids. The findings show that NO inhibits aconitase under hypoxia which results in accumulation of citrate, the latter in turn inducing AOX and causing a shift of metabolism towards amino acid biosynthesis.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str. 3, D-18059, Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Lehmann M, Laxa M, Sweetlove LJ, Fernie AR, Obata T. Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabolomics 2012; 8:143-153. [PMID: 22279429 PMCID: PMC3258409 DOI: 10.1007/s11306-011-0296-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/28/2011] [Indexed: 12/20/2022]
Abstract
To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with (13)C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0296-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Lehmann
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Miriam Laxa
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB UK
| | - Lee J. Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB UK
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
356
|
Häkkinen ST, Lackman P, Nygrén H, Oksman-Caldentey KM, Maaheimo H, Rischer H. Differential patterns of dehydroabietic acid biotransformation by Nicotiana tabacum and Catharanthus roseus cells. J Biotechnol 2012; 157:287-94. [PMID: 22178236 DOI: 10.1016/j.jbiotec.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 11/24/2022]
Abstract
The aim of this study was to use whole cell catalysts as tools for modification of selected resin acids in order to obtain value-added functional derivatives. The enzymatic bioconversion capacities of two plant species were tested towards dehydroabietic acid. Dehydroabietic acid (DHA) is an abundant resin acid in conifers, representing a natural wood protectant. It is also one of the constituents found in by-products of the kraft chemical pulping industry. DHA was fed to tobacco (Nicotiana tabacum) and Madagascar periwinkle (Catharanthus roseus) plant cell and tissue cultures and bioconversion product formation was monitored using NMR analysis. Both plant species took up DHA from culture medium, and various types of typical detoxification processes occurred in both cultures. In addition, diverse responses to DHA treatment were observed, including differences in uptake kinetics, chemical modification of added substrate and changes in overall metabolism of the cells. Interestingly, Catharanthus roseus, a host species for pharmaceutically valuable terpenoid indole alkaloids, exhibited a very different bioconversion pattern for exogenously applied DHA than tobacco, which does not possess a terpenoid indole pathway. In tobacco, DHA is readily glycosylated in the carbonyl group, whereas in periwinkle it is proposed that a cytochrome P450-catalyzed enzymatic detoxification reaction takes place before the formation of glycosylated product.
Collapse
Affiliation(s)
- Suvi T Häkkinen
- VTT Technical Research Centre of Finland, 02044-VTT, Finland.
| | | | | | | | | | | |
Collapse
|
357
|
Araújo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. PLANT, CELL & ENVIRONMENT 2012; 35:1-21. [PMID: 21477125 DOI: 10.1111/j.1365-3040.2011.02332.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Germany
| | | | | | | | | |
Collapse
|
358
|
Baldacci-Cresp F, Chang C, Maucourt M, Deborde C, Hopkins J, Lecomte P, Bernillon S, Brouquisse R, Moing A, Abad P, Hérouart D, Puppo A, Favery B, Frendo P. (Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula. PLoS Pathog 2012; 8:e1002471. [PMID: 22241996 PMCID: PMC3252378 DOI: 10.1371/journal.ppat.1002471] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/18/2011] [Indexed: 01/15/2023] Open
Abstract
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Christine Chang
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Mickaël Maucourt
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, Villenave d'Ornon, France
- Metabolome-Fluxome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, Villenave d'Ornon, France
| | - Catherine Deborde
- Metabolome-Fluxome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, Villenave d'Ornon, France
- INRA - UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, Villenave d'Ornon, France
| | - Julie Hopkins
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Philippe Lecomte
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Stéphane Bernillon
- Metabolome-Fluxome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, Villenave d'Ornon, France
- INRA - UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, Villenave d'Ornon, France
| | - Renaud Brouquisse
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Annick Moing
- Metabolome-Fluxome Facility of Bordeaux Functional Genomics Center, IBVM, Centre INRA de Bordeaux, Villenave d'Ornon, France
- INRA - UMR 1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, Villenave d'Ornon, France
| | - Pierre Abad
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Didier Hérouart
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Alain Puppo
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Bruno Favery
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| | - Pierre Frendo
- Interactions Biotiques et Santé Végétale UMR INRA 1301 -CNRS 6243-Université de Nice-Sophia Antipolis, Sophia Antipolis, France
| |
Collapse
|
359
|
Araújo WL, Tohge T, Nunes-Nesi A, Daloso DM, Nimick M, Krahnert I, Bunik VI, Moorhead GBG, Fernie AR. Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. FRONTIERS IN PLANT SCIENCE 2012; 3:114. [PMID: 22876250 PMCID: PMC3410613 DOI: 10.3389/fpls.2012.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/14/2012] [Indexed: 05/19/2023]
Abstract
Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Danilo M. Daloso
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Mhairi Nimick
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Victoria I. Bunik
- A.N. Belozersly Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| |
Collapse
|
360
|
Bazzini AA, Manacorda CA, Tohge T, Conti G, Rodriguez MC, Nunes-Nesi A, Villanueva S, Fernie AR, Carrari F, Asurmendi S. Metabolic and miRNA profiling of TMV infected plants reveals biphasic temporal changes. PLoS One 2011; 6:e28466. [PMID: 22174812 PMCID: PMC3236191 DOI: 10.1371/journal.pone.0028466] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration.
Collapse
Affiliation(s)
- Ariel A. Bazzini
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Carlos A. Manacorda
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Takayuki Tohge
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam-Golm, Germany
| | - Gabriela Conti
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Maria C. Rodriguez
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adriano Nunes-Nesi
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam-Golm, Germany
| | - Sofía Villanueva
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Alisdair R. Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam-Golm, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
361
|
Yang R, Chen H, Gu Z. Factors influencing diamine oxidase activity and γ-aminobutyric acid content of fava bean (Vicia faba L.) during germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11616-11620. [PMID: 21942768 DOI: 10.1021/jf202645p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Factors (germination time, spectra, temperature, pH, and chemical inhibitors) influencing diamine oxidase (DAO, EC 1.4.3.6) activity and γ-aminobutyric acid (GABA) content of fava bean (Vicia faba L.) during germination were investigated in this study. DAO activity significantly increased in germinating seeds but varied with different organs. The enzyme activity was higher in shoot than that in cotyledon, hypocotyl, and radicle. When seeds were germinated in the dark, DAO activity was 2.35-, 2.00-, 2.36-, 4.40-, and 1.67-fold of that under white, red, blue, green, and yellow spectra, respectively. The optimum germination temperature and pH value for increasing DAO activity were 30 °C and 3.0, respectively. The DAO activity was inhibited significantly by aminoguanidine and sodium ethylenediamine tetracetate, while it was activated by CuCl(2) and CaCl(2). Germinating at an appropriate temperature and pH, 30% of GABA formation was supplied by DAO. Calcium was related to the regulation of DAO activity and GABA accumulation.
Collapse
Affiliation(s)
- Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | | | | |
Collapse
|
362
|
Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. PLANT PHYSIOLOGY 2011; 157:1026-42. [PMID: 21921115 PMCID: PMC3252140 DOI: 10.1104/pp.111.179986] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/13/2011] [Indexed: 05/17/2023]
Abstract
In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.
Collapse
Affiliation(s)
- Aaron Fait
- French Associates Institute for Biotechnology and Agriculture of Dryland, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Midreshet Ben Gurion 84990, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Jacoby RP, Taylor NL, Millar AH. The role of mitochondrial respiration in salinity tolerance. TRENDS IN PLANT SCIENCE 2011; 16:614-23. [PMID: 21903446 DOI: 10.1016/j.tplants.2011.08.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 05/20/2023]
Abstract
NaCl is the most abundant salt in salinity-affected land. The ability of plants to sift the water table, limit NaCl uptake, compartmentalise Na⁺/Cl⁻ ions and prevent negative ionic and osmotic effects on cell function, are the foundations of salinity tolerance mechanisms. In this review, we show that although the quantitative response of respiratory rate to changes in salt concentration is complex, the properties of respiratory processes are crucial for tolerance during ion exclusion and tissue tolerance. We consider whole-plant gas exchange and carbon balance analysis alongside the salt responses of mitochondrial properties and genetic studies manipulating respiratory processes. We showcase the importance of efficient ATP generation, dampened reactive oxygen species and mitochondrial osmolytes for salinity tolerance in plants.
Collapse
Affiliation(s)
- Richard P Jacoby
- ARC Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
364
|
Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 2011; 10:3993-4004. [PMID: 21766870 DOI: 10.1021/pr2001918] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Flooding is a serious problem for soybeans because it reduces growth and grain yield. Proteomic and metabolomic techniques were used to examine whether mitochondrial function is altered in soybeans by flooding stress. Mitochondrial fractions were purified from the roots and hypocotyls of 4-day-old soybean seedlings that had been flooded for 2 days. Mitochondrial matrix and membrane proteins were separated by two-dimensional polyacrylamide gel electrophoresis and blue-native polyacrylamide gel electrophoresis, respectively. Differentially expressed proteins and metabolites were identified using mass spectrometry. Proteins and metabolites related to the tricarboxylic acid cycle and γ-amino butyrate shunt were up-regulated by flooding stress, while inner membrane carrier proteins and proteins related to complexes III, IV, and V of the electron transport chains were down-regulated. The amounts of NADH and NAD were increased; however, ATP was significantly decreased by flooding stress. These results suggest that flooding directly impairs electron transport chains, although NADH production increases in the mitochondria through the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | | | |
Collapse
|
365
|
Huang T, Jander G, de Vos M. Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. PHYTOCHEMISTRY 2011; 72:1531-7. [PMID: 21529857 DOI: 10.1016/j.phytochem.2011.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 05/20/2023]
Abstract
Chemical defense against herbivores is of utmost importance for plants. Primary and secondary metabolites, including non-protein amino acids, have been implicated in plant defense against insect pests. High levels of non-protein amino acids have been identified in certain plant families, including legumes and grasses, where they have been associated with resistance to insect herbivory. Non-protein amino acids can have direct toxic effects via several mechanisms, including misincorporation into proteins, obstruction of primary metabolism, and mimicking and interfering with insect neurological processes. Additionally, certain non-protein amino acids allow nitrogen to be stored in a form that is metabolically inaccessible to herbivores and, in some cases, may act as signals for further plant defense responses. Specialized insect herbivores often possess specific mechanisms to avoid or detoxify non-protein amino acids from their host plants. Although hundreds of non-protein amino acids have been found in nature, biosynthetic pathways and defensive functions have been elucidated in only a few cases. Next-generation sequencing technologies and the development of additional plant and insect model species will facilitate further research on the production of non-protein amino acids, a widespread but relatively uninvestigated plant defense mechanism.
Collapse
Affiliation(s)
- Tengfang Huang
- Boyce Thompson Institute for Plant Research, 1 Tower Road, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
366
|
Degu A, Hatew B, Nunes-Nesi A, Shlizerman L, Zur N, Katz E, Fernie AR, Blumwald E, Sadka A. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. PLANTA 2011; 234:501-13. [PMID: 21528417 DOI: 10.1007/s00425-011-1411-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/28/2011] [Indexed: 05/08/2023]
Abstract
Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline. It was previously hypothesized that the block in mitochondrial aconitase activity, inducing acid accumulation, is caused by citramalate. Here, we investigated the effect of citramalate and of another aconitase inhibitor, oxalomalate, on aconitase activity and regulation in callus originated from juice sacs. These compounds significantly increased citrate content and reduced the enzyme's activity, while slightly inducing its protein level. Citramalate inhibited the mitochondrial, but not cytosolic form of the enzyme. Its external application to mandarin fruits resulted in inhibition of aconitase activity, with a transient increase in fruit acidity detected a few weeks later. The endogenous level of citramalate was analyzed in five citrus varieties: its pattern of accumulation challenged the notion of its action as an endogenous inhibitor of mitochondrial aconitase. Metabolite profiling of oxalomalate-treated cells showed significant increases in a few amino acids and organic acids. The activities of alanine transaminase, aspartate transaminase and aspartate kinase, as well as these of two γ-aminobutyrate (GABA)-shunt enzymes, succinic semialdehyde reductase (SSAR) and succinic semialdehyde dehydrogenase (SSAD) were significantly induced in oxalomalate-treated cells. It is suggested that the increase in citrate, caused by aconitase inhibition, induces amino acid synthesis and the GABA shunt, in accordance with the suggested fate of citrate during the acid decline stage in citrus fruit.
Collapse
Affiliation(s)
- Asfaw Degu
- Department of Fruit Tree Sciences, ARO, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Michaeli S, Fait A, Lagor K, Nunes-Nesi A, Grillich N, Yellin A, Bar D, Khan M, Fernie AR, Turano FJ, Fromm H. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:485-98. [PMID: 21501262 DOI: 10.1111/j.1365-313x.2011.04612.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.
Collapse
Affiliation(s)
- Simon Michaeli
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Hay J, Schwender J. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:526-41. [PMID: 21501263 DOI: 10.1111/j.1365-313x.2011.04613.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.
Collapse
Affiliation(s)
- Jordan Hay
- Biology Department, Brookhaven National Laboratory, Bldg 463, Upton, NY 11973, USA.
| | | |
Collapse
|
369
|
Toyokura K, Watanabe K, Oiwaka A, Kusano M, Tameshige T, Tatematsu K, Matsumoto N, Tsugeki R, Saito K, Okada K. Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-abaxial axis. PLANT & CELL PHYSIOLOGY 2011; 52:1340-53. [PMID: 21690177 DOI: 10.1093/pcp/pcr079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polarity along the adaxial-abaxial axis of the leaf is essential for leaf development and morphogenesis. One of the genes that encodes a putative transcription factor regulating adaxial-abaxial polarity, FILAMENTOUS FLOWER (FIL), is expressed in the abaxial region of the leaf primordia. However, the molecular mechanisms controlling the polarized expression of FIL remain unclear. Here, we analyzed an enlarged fil expression domain1 (enf1) mutant of Arabidopsis, which forms both abaxialized leaves and adaxialized leaves. The ENF1 gene encodes SUCCINIC SEMIALDEHYDE DEHYDROGENASE (SSADH), which catalyzes the conversion of succinic semialdehyde (SSA) to succinate. The enf1 phenotype was suppressed by an additional mutation in GAMMA-AMINOBUTYRIC ACID AMINOTRANSFERASE1 (GABAT1), which encodes an SSA-producing enzyme, suggesting that SSA or its derivatives is the metabolite responsible for the defect in the adaxial-abaxial axis-dependent gene expression of enf1. In the shoot apical meristem, GABAT1 was expressed in the outermost layer but SSADH was not. Exogenous application of SSA induced adaxial characters on the abaxial side of the newly developed leaves. We suggest that a GABA shunt metabolite, SSA or its close derivatives, is involved in the robust leaf patterning and structure along the adaxial-abaxial axis.
Collapse
Affiliation(s)
- Koichi Toyokura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Kusano M, Jonsson P, Fukushima A, Gullberg J, Sjöström M, Trygg J, Moritz T. Metabolite Signature during Short-Day Induced Growth Cessation in Populus. FRONTIERS IN PLANT SCIENCE 2011; 2:29. [PMID: 22629261 PMCID: PMC3355535 DOI: 10.3389/fpls.2011.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/29/2011] [Indexed: 05/24/2023]
Abstract
The photoperiod is an important environmental signal for plants, and influences a wide range of physiological processes. For woody species in northern latitudes, cessation of growth is induced by short photoperiods. In many plant species, short photoperiods stop elongational growth after a few weeks. It is known that plant daylength detection is mediated by Phytochrome A (PHYA) in the woody hybrid aspen species. However, the mechanism of dormancy involving primary metabolism remains unclear. We studied changes in metabolite profiles in hybrid aspen leaves (young, middle, and mature leaves) during short-day-induced growth cessation, using a combination of gas chromatography-time-of-flight mass spectrometry, and multivariate projection methods. Our results indicate that the metabolite profiles in mature source leaves rapidly change when the photoperiod changes. In contrast, the differences in young sink leaves grown under long and short-day conditions are less distinct. We found short daylength induced growth cessation in aspen was associated with rapid changes in the distribution and levels of diverse primary metabolites. In addition, we conducted metabolite profiling of leaves of PHYA overexpressor (PHYAOX) and those of the control to find the discriminative metabolites between PHYAOX and the control under the short-day conditions. The metabolite changes observed in PHYAOX leaves, together with those in the source leaves, identified possible candidates for the metabolite signature (e.g., 2-oxo-glutarate, spermidine, putrescine, 4-amino-butyrate, and tryptophan) during short-day-induced growth cessation in aspen leaves.
Collapse
Affiliation(s)
- Miyako Kusano
- Metabolomics Research Division, RIKEN Plant Science CenterYokohama, Japan
| | - Pär Jonsson
- Computational Life Science Cluster, Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Atsushi Fukushima
- Metabolomics Research Division, RIKEN Plant Science CenterYokohama, Japan
| | - Jonas Gullberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Michael Sjöström
- Computational Life Science Cluster, Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Johan Trygg
- Computational Life Science Cluster, Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural SciencesUmeå, Sweden
| |
Collapse
|
371
|
Alves M, Chicau P, Matias H, Passarinho J, Pinheiro C, Ricardo CP. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency. PHYSIOLOGIA PLANTARUM 2011; 142:224-232. [PMID: 21338372 DOI: 10.1111/j.1399-3054.2011.01462.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We analysed the changes in the metabolites of Lupinus albus organs (leaf-blades, petioles, apexes, hypocotyls and roots) as a consequence of B deficiency. The deficiency did not affect malate concentration and induced only minor changes in the sugar content, suggesting that the carbohydrate metabolism is little affected by the deficiency. Contrarily, marked changes in the content of free amino acids were observed, with some specific variations associated with the different organs. These changes indicate that various aspects of metabolism implicated in the amino acid accumulation were affected by B deficiency. Most of the detected changes appear to have implications with some stress responses or signalling processes. Asparagine and proline that increase in many stresses also accumulated in petioles, apexes and hypocotyls. Accumulation of γ-aminobutyric acid shunt amino acids, indicative of production of reactive oxygen species, occurs in the same three organs and also the roots. The increase in the branched-chain amino acids, observed in all organs, suggests the involvement of B with the cytoskeleton, whereas glycine decrease in leaf-blades and active growing organs (apexes and roots) could be associated with the proposed role of this amino acids in plant signalling in processes that might be associated with the decreased growth rates observed in B deficiency. Despite the admitted importance of free amino acids in plant metabolism, the available information on this matter is scarce. So our results bring new information concerning the effects of B deficiency in the metabolism of the several L. albus organs.
Collapse
Affiliation(s)
- Marta Alves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
372
|
Araújo WL, Nunes-Nesi A, Fernie AR. Fumarate: Multiple functions of a simple metabolite. PHYTOCHEMISTRY 2011; 72:838-43. [PMID: 21440919 DOI: 10.1016/j.phytochem.2011.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 05/19/2023]
Abstract
Although much is now known about fumarate metabolism, our knowledge of some aspects of its biological function remain far from comprehensive. In this short review we begin with an introductory overview of the role of fumarate in both plant and non-plant systems. We next highlight the relative importance of fumarate in relation to cell type and circumstance in contrast to other chemically similar organic acids. Considerable cumulative evidence is suggestive of a role for fumarate in pH regulation during nitrate assimilation and that fumarate has similar effects as malate during stomatal movement. Indeed it is currently difficult to separate the biological function of fumarate from malate under certain circumstances. However, in other cases this can be easily performed. This physiological complexity notwithstanding it remains possible that the engineering of fumarate metabolism may provide opportunities to improve plant growth and performance.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
373
|
Pey J, Prada J, Beasley JE, Planes FJ. Path finding methods accounting for stoichiometry in metabolic networks. Genome Biol 2011; 12:R49. [PMID: 21619601 PMCID: PMC3219972 DOI: 10.1186/gb-2011-12-5-r49] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/14/2011] [Accepted: 05/27/2011] [Indexed: 01/30/2023] Open
Abstract
Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks.
Collapse
Affiliation(s)
- Jon Pey
- CEIT and TECNUN, University of Navarra, Manuel de Lardizabal 15, 20018 San Sebastian, Spain
| | | | | | | |
Collapse
|
374
|
Renault H, El Amrani A, Palanivelu R, Updegraff EP, Yu A, Renou JP, Preuss D, Bouchereau A, Deleu C. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2011; 52:894-908. [PMID: 21471118 PMCID: PMC3093128 DOI: 10.1093/pcp/pcr041] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/27/2011] [Indexed: 05/18/2023]
Abstract
GABA (γ-aminobutyric acid), a non-protein amino acid, is a signaling factor in many organisms. In plants, GABA is known to accumulate under a variety of stresses. However, the consequence of GABA accumulation, especially in vegetative tissues, remains poorly understood. Moreover, gene expression changes as a consequence of GABA accumulation in plants are largely unknown. The pop2 mutant, which is defective in GABA catabolism and accumulates GABA, is a good model to examine the effects of GABA accumulation on plant development. Here, we show that the pop2 mutants have pollen tube elongation defects in the transmitting tract of pistils. Additionally, we observed growth inhibition of primary root and dark-grown hypocotyl, at least in part due to cell elongation defects, upon exposure to exogenous GABA. Microarray analysis of pop2-1 seedlings grown in GABA-supplemented medium revealed that 60% of genes whose expression decreased encode secreted proteins. Besides, functional classification of genes with decreased expression in the pop2-1 mutant showed that cell wall-related genes were significantly enriched in the microarray data set, consistent with the cell elongation defects observed in pop2 mutants. Our study identifies cell elongation defects caused by GABA accumulation in both reproductive and vegetative tissues. Additionally, our results show that genes that encode secreted and cell wall-related proteins may mediate some of the effects of GABA accumulation. The potential function of GABA as a growth control factor under stressful conditions is discussed.
Collapse
Affiliation(s)
- Hugues Renault
- Amélioration des Plantes et Biotechnologies Végétales, UMR 118 INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A, Boyen C, Tonon T. Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. PLANT, CELL & ENVIRONMENT 2011; 34:629-42. [PMID: 21281312 DOI: 10.1111/j.1365-3040.2010.02268.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The model brown alga Ectocarpus siliculosus undergoes extensive transcriptomic changes in response to abiotic stress, many of them related to primary metabolism and particularly to amino acid biosynthesis and degradation. In this study we seek to improve our knowledge of the mechanisms underlying the stress tolerance of this alga, in particular with regard to compatible osmolytes, by examining the effects of these changes on metabolite concentrations. We performed extensive metabolic profiling (urea, amino acids, sugars, polyols, organic acids, fatty acids) of Ectocarpus samples subjected to short-term hyposaline, hypersaline and oxidative stress, and integrated the results with previously published transcriptomic data. The most pronounced changes in metabolite concentrations occurred under hypersaline stress: both mannitol and proline were accumulated, but their low final concentrations indicate that, in this stress condition, both compounds are not likely to significantly contribute to osmoregulation at the level of the entire cell. Urea and trehalose were not detected in any of our samples. We also observed a shift in fatty acid composition from n-3 to n-6 fatty acids under high salinities, and demonstrated the salt stress-induced accumulation of small amounts of γ-aminobutyric acid (GABA). GABA could be synthesized in E. siliculosus through a salt stress-induced putrescine-degradation pathway.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, F-29680, Roscoff, France
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Du H, Wang Z, Yu W, Liu Y, Huang B. Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C₄) and Poa Pratensis (C₃) to heat stress. PHYSIOLOGIA PLANTARUM 2011; 141:251-64. [PMID: 21114672 DOI: 10.1111/j.1399-3054.2010.01432.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool-season (C₃) and warm-season (C₄) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C₄ bermudagrass and C₃ Kentucky bluegrass by performing metabolite profile analysis using gas chromatography-mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis'Midnight') and hybrid bermudagrass (Cynodon transvaalensis x Cynodon dactylon'Tifdwarf') were grown under optimum temperature conditions (20/15 °C for Kentucky bluegrass and 30/25 °C for bermudagrass) or heat stress (35/30 °C for Kentucky bluegrass and 45/40 °C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat-responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long-term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ-aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C₃ Kentucky bluegrass and C₄ bermudagrass.
Collapse
Affiliation(s)
- Hongmei Du
- College of Agricultural and Biological Science, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
377
|
Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS One 2010; 5:e14101. [PMID: 21124901 PMCID: PMC2990718 DOI: 10.1371/journal.pone.0014101] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/02/2010] [Indexed: 12/15/2022] Open
Abstract
In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C) affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further supported by our demonstration of impaired cold acclimation in a circadian mutant.
Collapse
|
378
|
Chen F, He G, He H, Chen W, Zhu X, Liang M, Chen L, Deng XW. Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:971-80. [PMID: 20977655 DOI: 10.1111/j.1744-7909.2010.00985.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heterosis, or hybrid vigor, is the phenomenon whereby progeny of two inbred lines exhibit superior agronomic performance compared with either parent. We analyzed the expression of miRNAs and highly expressed small RNAs (defined according to Solexa sequencing results) in two rice (Oryza sativa) subspecies (japonica cv. Nipponbare and indica cv. 93-11) and their reciprocal hybrids using microarrays. We found that of all the 1141 small RNAs tested, 140 (12%, 140 of 1141) and 157 (13%, 157 of 1141) were identified being significantly differentially expressed in two reciprocal hybrids, respectively. All possible modes of action, including additive, high- and low- parent, above high- and below low-parent modes were exhibited. Both F1 hybrids showed non-additive expression patterns, with downregulation predominating. Interestingly, 15 miRNAs displayed stark opposite expression trends relative to mid-parent in reciprocal hybrids. Computational prediction of targets of differentially expressed miRNAs showed that they participated in multifaceted developmental pathways, and were not distinguishable from the targets of non-differentially expressed miRNAs. Together, our findings reveal that small RNAs play roles in heterosis and add a new layer in the understanding and exploitation of molecular mechanisms of heterosis.
Collapse
Affiliation(s)
- Fangfang Chen
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Liu C, Hao F, Hu J, Zhang W, Wan L, Zhu L, Tang H, He G. Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. J Proteome Res 2010; 9:6774-85. [PMID: 20936879 DOI: 10.1021/pr100970q] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brown planthopper (BPH) is a notorious pest of rice plants attacking leaf sheaths and seriously affecting global rice production. However, how rice plants respond against BPH remains to be fully understood. To understand systems metabolic responses of rice plants to BPH infestation, we analyzed BPH-induced metabolic changes in leaf sheaths of both BPH-susceptible and resistant rice varieties using NMR-based metabonomics and measured expression changes of 10 relevant genes using quantitative real-time PCR. Our results showed that rice metabonome was dominated by more than 30 metabolites including sugars, organic acids, amino acids, and choline metabolites. BPH infestation caused profound metabolic changes for both BPH-susceptible and resistant rice plants involving transamination, GABA shunt, TCA cycle, gluconeogenesis/glycolysis, pentose phosphate pathway, and secondary metabolisms. BPH infestation caused more drastic overall metabolic changes for BPH-susceptible variety and more marked up-regulations for key genes regulating GABA shunt and biosynthesis of secondary metabolites for BPH-resistant variety. Such observations indicated that activation of GABA shunt and shikimate-mediated secondary metabolisms was vital for rice plants to resist BPH infestation. These findings filled the gap of our understandings in the mechanistic aspects of BPH resistance for rice plants and demonstrated the combined metabonomic and qRT-PCR analysis as an effective approach for understanding plant-herbivore interactions.
Collapse
Affiliation(s)
- Caixiang Liu
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Molina-Rueda JJ, Pascual MB, Cánovas FM, Gallardo F. Characterization and developmental expression of a glutamate decarboxylase from maritime pine. PLANTA 2010; 232:1471-1483. [PMID: 20859639 DOI: 10.1007/s00425-010-1268-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/28/2010] [Indexed: 05/29/2023]
Abstract
Glutamate decarboxylase (GAD, EC 4.1.1.15) is a key enzyme in the synthesis of γ-aminobutyric acid (GABA) in higher plants. A complete cDNA encoding glutamate decarboxylase (GAD, EC 4.1.1.15) was characterized from Pinus pinaster Ait, and its expression pattern was studied to gain insight into the role of GAD in the differentiation of the vascular system. Pine GAD contained a C-terminal region with conserved residues and a predicted secondary structure similar to the calmodulin (CaM)-binding domains of angiosperm GADs. The enzyme was able to bind to a bovine CaM-agarose column and GAD activity was higher at acidic pH, suggesting that the pine GAD can be regulated in vivo by Ca(2+)/CaM and pH. A polyclonal antiserum was prepared against the pine protein. GAD expression was studied at activity, protein, and mRNA level and was compared with the expression of other genes during the differentiation of the hypocotyl and induction of reaction wood. In seedling organs, GABA levels closely matched GAD expression, with high levels in the root and during lignification of the hypocotyl. GAD expression was also induced in response to the production of compression wood and its expression matched the pattern of other genes involved in ethylene and 2-oxoglutarate synthesis. The results suggest of a role of GAD in hypocotyl and stem development in pine.
Collapse
Affiliation(s)
- Juan Jesús Molina-Rueda
- Departmento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Instituto Andaluz de Biotecnología, 29071, Málaga, Spain
| | | | | | | |
Collapse
|
381
|
Park DH, Mirabella R, Bronstein PA, Preston GM, Haring MA, Lim CK, Collmer A, Schuurink RC. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:318-30. [PMID: 21070411 DOI: 10.1111/j.1365-313x.2010.04327.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.
Collapse
Affiliation(s)
- Duck Hwan Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Abstract
Elementary-modes analysis has become a well-established theoretical tool in metabolic pathway analysis. It allows one to decompose complex metabolic networks into the smallest functional entities, which can be interpreted as biochemical pathways. This analysis has, in medium-size metabolic networks, led to the successful theoretical prediction of hitherto unknown pathways. For illustration, we discuss the example of the phosphoenolpyruvate-glyoxylate cycle in Escherichia coli. Elementary-modes analysis meets with the problem of combinatorial explosion in the number of pathways with increasing system size, which has hampered scaling it up to genome-wide models. We present a novel approach to overcoming this obstacle. That approach is based on elementary flux patterns, which are defined as sets of reactions representing the basic routes through a particular subsystem that are compatible with admissible fluxes in a (possibly) much larger metabolic network. The subsystem can be made up by reactions in which we are interested in, for example, reactions producing a certain metabolite. This allows one to predict novel metabolic pathways in genome-scale networks.
Collapse
|
383
|
Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG. Not just a circle: flux modes in the plant TCA cycle. TRENDS IN PLANT SCIENCE 2010; 15:462-70. [PMID: 20554469 DOI: 10.1016/j.tplants.2010.05.006] [Citation(s) in RCA: 521] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/09/2010] [Accepted: 05/17/2010] [Indexed: 05/20/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the iconic pathways in metabolism. The cycle is commonly thought of in terms of energy metabolism, being responsible for the oxidation of respiratory substrates to drive ATP synthesis. However, the reactions of carboxylic acid metabolism are embedded in a larger metabolic network and the conventional TCA cycle is only one way in which the component reactions can be organised. Recent evidence from labelling studies and metabolic network models suggest that the organisation of carboxylic acid metabolism in plants is highly dependent on the metabolic and physiological demands of the cell. Thus, alternative, non-cyclic flux modes occur in leaves in the light, in some developing oilseeds, and under specific physiological circumstances such as anoxia.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX13RB, UK.
| | | | | | | | | |
Collapse
|
384
|
Sugimoto M, Goto H, Otomo K, Ito M, Onuma H, Suzuki A, Sugawara M, Abe S, Tomita M, Soga T. Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8418-25. [PMID: 20593783 DOI: 10.1021/jf101471d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Its high nutritional content and sensory characteristics make edamame a popular vegetable bean. However, because of its short shelf-life, it is important to optimize the storage conditions to maintain its quality during distribution to consumers. We focused on storage conditions to investigate the temporal changes in the metabolic profiles and sensory characteristics of edamame during transportation from the site of harvest to the site of purchase/consumption. We conducted metabolomic analysis and sensory evaluation tests of edamame stored for different lengths and at different temperatures. Charged metabolites were profiled by capillary electrophoresis-mass spectrometry, and free sugars were quantified by liquid chromatography-tandem mass spectrometry. In comparison to the gradual decrease in its sensory characteristics over time, the changes in metabolite profiles manifested four different patterns. In particular, changes in amino acid levels were related to sensory attributes. The downstream metabolites of shikimate as well as phospholipids and gamma-aminobutyric acid increased with increasing storage temperatures.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata , Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. THE PLANT CELL 2010; 22:1549-63. [PMID: 20501910 PMCID: PMC2899879 DOI: 10.1105/tpc.110.075630] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 05/17/2023]
Abstract
The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Adriano Nunes-Nesi
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5YW, United Kingdom
| | - Takayuki Tohge
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Ina Krahnert
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sandra Witt
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Toshihiro Obata
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Nicolas Schauer
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | - Alisdair R. Fernie
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
- Address correspondence to
| |
Collapse
|
386
|
Angelovici R, Galili G, Fernie AR, Fait A. Seed desiccation: a bridge between maturation and germination. TRENDS IN PLANT SCIENCE 2010; 15:211-8. [PMID: 20138563 DOI: 10.1016/j.tplants.2010.01.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 05/22/2023]
Abstract
The development of orthodox seeds concludes by a desiccation phase. The dry seeds then enter a phase of dormancy, also called the after-ripening phase, and become competent for germination. We discuss physiological processes as well as gene expression and metabolic programs occurring during the desiccation phase in respect to their contribution to the desiccation tolerance, dormancy competence and successful germination of the dry seeds. The transition of developing seeds from the phase of reserve accumulation to desiccation is associated with distinct gene expression and metabolic switches. Interestingly, a significant proportion of the gene expression and metabolic signatures of seed desiccation resemble those characterizing seed germination, implying that the preparation of the seeds for germination begins already during seed desiccation.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Department of Plant Science, the Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
387
|
Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. PLANT PHYSIOLOGY 2010; 152:1501-13. [PMID: 20089769 PMCID: PMC2832266 DOI: 10.1104/pp.109.150045] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
The role of nitrogen metabolism in the survival of prolonged periods of waterlogging was investigated in highly flood-tolerant, nodulated Lotus japonicus plants. Alanine production revealed to be a critical hypoxic pathway. Alanine is the only amino acid whose biosynthesis is not inhibited by nitrogen deficiency resulting from RNA interference silencing of nodular leghemoglobin. The metabolic changes that were induced following waterlogging can be best explained by the activation of alanine metabolism in combination with the modular operation of a split tricarboxylic acid pathway. The sum result of this metabolic scenario is the accumulation of alanine and succinate and the production of extra ATP under hypoxia. The importance of alanine metabolism is discussed with respect to its ability to regulate the level of pyruvate, and this and all other changes are discussed in the context of current models concerning the regulation of plant metabolism.
Collapse
|
388
|
Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC PLANT BIOLOGY 2010; 10:20. [PMID: 20122158 PMCID: PMC2825238 DOI: 10.1186/1471-2229-10-20] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 02/01/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND GABA (gamma-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in Arabidopsis thaliana at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress. RESULTS We identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene POP2 and demonstrated that the previously isolated loss-of-function pop2-1 mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na+ and Cl- but mutant showed a slight decrease in K+. To bring insights into POP2 function, a promoter-reporter gene strategy was used and showed that POP2 was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of pop2-1 mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content. CONCLUSIONS GABA metabolism was overall up-regulated in response to NaCl in Arabidopsis. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of Arabidopsis salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots.
Collapse
Affiliation(s)
- Hugues Renault
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
- CNRS - Université de Rennes 1, UMR 6553 EcoBio, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Valérie Roussel
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
- UMR 7208 BOREA, Station de Biologie Marine, Muséum National d'Histoire Naturelle, Place de la Croix, F-29900 Concarneau, France
| | - Abdelhak El Amrani
- CNRS - Université de Rennes 1, UMR 6553 EcoBio, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Matthieu Arzel
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
| | - David Renault
- CNRS - Université de Rennes 1, UMR 6553 EcoBio, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Alain Bouchereau
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
| | - Carole Deleu
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
| |
Collapse
|
389
|
Garnica M, Houdusse F, Zamarreño AM, Garcia-Mina JM. Nitrate modifies the assimilation pattern of ammonium and urea in wheat seedlings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:357-369. [PMID: 20355054 DOI: 10.1002/jsfa.3811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND In certain plant species, ammonium or urea nutrition can cause negative effects on plant development which can result in toxic symptoms. Some authors suggest that the presence of nitrate can alleviate these symptoms by increasing ammonium and urea assimilation, avoiding its accumulation. In order to study this hypothesis, wheat (Triticum aestivum L.) seedlings were grown with various nitrogen supplies containing the main nitrogen forms (ammonium, nitrate and urea). Amino acids content and the activity of the three main enzymes involved in nitrogen assimilation (nitrate reductase, glutamine synthetase and urease) were studied. RESULTS The application of nitrate along with urea and/or ammonium was not associated with a time-sustained increase in the activity of glutamine synthetase and urease. Amino acid analysis revealed that nitrate induced changes in amino acid metabolism enhancing its concentration. Likewise the content of protein was also higher in nitrate-treated plants. CONCLUSION These results suggest that the effect of nitrate is compatible with a rapid and transient increase in the activity of glutamine synthetase and urease during the first hour after the onset of treatments. Nevertheless, a possible effect of nitrate reducing ammonium accumulation through the activation of alternative metabolic pathways different from that involving glutamine synthetase cannot be ruled out. Finally, nitrate effects on amino acid concentration indicate that, whereas ammonium assimilation takes place principally in the root, urea and nitrate assimilation occurred in the shoot, under the conditions of the experiment.
Collapse
Affiliation(s)
- Maria Garnica
- CIPAV-Roullier Group, Poligono Arazuri-Orcoyen, C/C N degrees 32, 31160 Orcoyen, Navarra, Spain
| | | | | | | |
Collapse
|
390
|
Structure and regulation of the gab gene cluster, involved in the gamma-aminobutyric acid shunt, are controlled by a sigma54 factor in Bacillus thuringiensis. J Bacteriol 2010; 192:346-55. [PMID: 19854901 DOI: 10.1128/jb.01038-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and regulation of the gab gene cluster, involved in gamma-aminobutyric acid (GABA) shunt, were studied by characterizing gabT and gabD genes cloned from Bacillus thuringiensis. Deletions of the gabT and gabD genes in B. thuringiensis strain HD-73 did not affect the growth of mutant strains in rich culture media, but the growth of a gabT deletion mutant strain was reduced in basic media (containing 0.2% GABA). Genome analysis indicates that the structure of the gab gene cluster in B. thuringiensis HD-73 is different from that in Escherichia coli and Bacillus subtilis but is common in strains of the Bacillus cereus group. This suggests that the gene cluster involved in GABA shunt is specific to the B. cereus group. Based on reverse transcription-PCR and transcriptional fusion analysis, we confirmed that the gabT and gabD genes belong to different transcriptional units, while the gabD and gabR genes form an operon. We also demonstrated that the gabR gene plays a positive regulatory role in gabD and gabT expression. The GabR protein may be a sigma(54)-dependent transcriptional activator, according to a conserved domain search in the NCBI database, and it is highly conserved in the B. cereus group. The -24/-12 consensus sequence of a promoter upstream from gabT suggests that the promoter can be recognized by a sigma(54) factor. Further analysis of the genetic complementation studies also suggests that the expression of the gabT gene is controlled by a sigma(54) factor. Thus, the expression of the gab cluster is regulated by a sigma(54) factor by way of the transcription activator GabR.
Collapse
|
391
|
Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. PLANT PHYSIOLOGY 2009; 151:2058-72. [PMID: 19783646 PMCID: PMC2785976 DOI: 10.1104/pp.109.145631] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/23/2009] [Indexed: 05/18/2023]
Abstract
In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.
Collapse
|
392
|
Marchive C, Yehudai-Resheff S, Germain A, Fei Z, Jiang X, Judkins J, Wu H, Fernie AR, Fait A, Stern DB. Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:905-24. [PMID: 19710229 PMCID: PMC2754633 DOI: 10.1104/pp.109.145144] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/19/2009] [Indexed: 05/18/2023]
Abstract
A prominent enzyme in organellar RNA metabolism is the exoribonuclease polynucleotide phosphorylase (PNPase), whose reversible activity is governed by the nucleotide diphosphate-inorganic phosphate ratio. In Chlamydomonas reinhardtii, PNPase regulates chloroplast transcript accumulation in response to phosphorus (P) starvation, and PNPase expression is repressed by the response regulator PSR1 (for PHOSPHORUS STARVATION RESPONSE1) under these conditions. Here, we investigated the role of PNPase in the Arabidopsis (Arabidopsis thaliana) P deprivation response by comparing wild-type and pnp mutant plants with respect to their morphology, metabolite profiles, and transcriptomes. We found that P-deprived pnp mutants develop aborted clusters of lateral roots, which are characterized by decreased auxin responsiveness and cell division, and exhibit cell death at the root tips. Electron microscopy revealed that the collapse of root organelles is enhanced in the pnp mutant under P deprivation and occurred with low frequency under P-replete conditions. Global analyses of metabolites and transcripts were carried out to understand the molecular bases of these altered P deprivation responses. We found that the pnp mutant expresses some elements of the deprivation response even when grown on a full nutrient medium, including altered transcript accumulation, although its total and inorganic P contents are not reduced. The pnp mutation also confers P status-independent responses, including but not limited to stress responses. Taken together, our data support the hypothesis that the activity of the chloroplast PNPase is involved in plant acclimation to P availability and that it may help maintain an appropriate balance of P metabolites even under normal growth conditions.
Collapse
Affiliation(s)
- Chloe Marchive
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Abstract
Molecular modelling suggests that a group of proteins in plants known as the β-hydroxyacid dehydrogenases, or the hydroxyisobutyrate dehydrogenase superfamily, includes enzymes that reduce succinic semialdehyde and glyoxylate to γ-hydroxybutyrate and glycolate respectively. Recent biochemical and expression studies reveal that NADPH-dependent cytosolic (termed GLYR1) and plastidial (termed GLYR2) isoforms of succinic semialdehyde/glyoxylate reductase exist in Arabidopsis. Succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, γ-aminobutyrate and glycolate respectively. In the present review, it is proposed that the GLYRs function in the detoxification of both aldehydes during stress and contribute to redox balance. Outstanding questions are highlighted in a scheme for the subcellular organization of the detoxification mechanism in Arabidopsis.
Collapse
|
394
|
Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J. Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. PLANT PHYSIOLOGY 2009; 151:306-22. [PMID: 19571305 PMCID: PMC2736006 DOI: 10.1104/pp.109.142026] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/25/2009] [Indexed: 05/17/2023]
Abstract
Analysis reveals that there is limited overlap in the sets of transcripts that show significant changes in abundance during anaerobiosis in different plant species. This may be due to the fact that a combination of primary effects, changes due to the presence or absence of oxygen, and secondary effects, responses to primary changes or tissue and developmental responses, are measured together and not differentiated from each other. In order to dissect out these responses, the effect of the presence or absence of oxygen was investigated using three different experimental designs using rice (Oryza sativa) as a model system. A total of 110 metabolites and 9,596 transcripts were found to change significantly in response to oxygen availability in at least one experiment. However, only one-quarter of these showed complementary responses to oxygen in all three experiments, allowing the core response to oxygen availability to be defined. A total of 10 metabolites and 1,136 genes could be defined as aerobic responders (up-regulated in the presence of oxygen and down-regulated in its absence), and 13 metabolites and 730 genes could be defined as anaerobic responders (up-regulated in the absence of oxygen and down-regulated in its presence). Defining core sets of transcripts that were sensitive to oxygen provided insights into alterations in metabolism, specifically carbohydrate and lipid metabolism and the putative regulatory mechanisms that allow rice to grow under anaerobic conditions. Transcript abundance of a specific set of transcription factors was sensitive to oxygen availability during all of the different experiments conducted, putatively identifying primary regulators of gene expression under anaerobic conditions. Combined with the possibility of selective transcript degradation, these transcriptional processes are involved in the core response of rice to anaerobiosis.
Collapse
Affiliation(s)
- Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | |
Collapse
|
395
|
Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J. Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:723-37. [PMID: 19453445 DOI: 10.1111/j.1365-313x.2009.03912.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanisms by which biotrophic and hemi-biotrophic fungal pathogens simultaneously subdue plant defences and sequester host nutrients are poorly understood. Using metabolite fingerprinting, we show that Magnaporthe grisea, the causal agent of rice blast disease, dynamically re-programmes host metabolism during plant colonization. Identical patterns of metabolic change occurred during M. grisea infections in barley, rice and Brachypodium distachyon. Targeted metabolite profiling by GC-MS confirmed the modulation of a conserved set of metabolites. In pre-symptomatic tissues, malate and polyamines accumulated, rather than being utilized to generate defensive reactive oxygen species, and the levels of metabolites associated with amelioration of redox stress in various cellular compartments increased dramatically. The activity of NADP-malic enzyme and generation of reactive oxygen species were localized to pathogen penetration sites, and both appeared to be suppressed in compatible interactions. Early diversion of the shikimate pathway to produce quinate was observed, as well as accumulation of non-polymerized lignin precursors. These data are consistent with modulation of defensive phenylpropanoid metabolism by M. grisea and the inability of susceptible hosts to mount a hypersensitive reaction or produce lignified papillae (both involving reactive oxygen species) to restrict pathogen invasion. Rapid proliferation of M. grisea hyphae in plant tissue after 3 days was associated with accelerated nutrient acquisition and utilization by the pathogen. Conversion of photoassimilate into mannitol and glycerol for carbon sequestration and osmolyte production appear to drive hyphal growth. Taken together, our results suggest that fungal pathogens deploy a common metabolic re-programming strategy in diverse host species to suppress plant defence and colonize plant tissue.
Collapse
Affiliation(s)
- David Parker
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 2009; 422:405-21. [PMID: 19698086 DOI: 10.1042/bj20090722] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanism-based inhibitors and both forward and reverse genetics have proved to be essential tools in revealing roles for specific enzymatic processes in cellular function. Here, we review experimental studies aimed at assessing the impact of OG (2-oxoglutarate) oxidative decarboxylation on basic cellular activities in a number of biological systems. After summarizing the catalytic and regulatory properties of the OGDHC (OG dehydrogenase complex), we describe the evidence that has been accrued on its cellular role. We demonstrate an essential role of this enzyme in metabolic control in a wide range of organisms. Targeting this enzyme in different cells and tissues, mainly by its specific inhibitors, effects changes in a number of basic functions, such as mitochondrial potential, tissue respiration, ROS (reactive oxygen species) production, nitrogen metabolism, glutamate signalling and survival, supporting the notion that the evolutionary conserved reaction of OG degradation is required for metabolic adaptation. In particular, regulation of OGDHC under stress conditions may be essential to overcome glutamate excitotoxicity in neurons or affect the wound response in plants. Thus, apart from its role in producing energy, the flux through OGDHC significantly affects nitrogen assimilation and amino acid metabolism, whereas the side reactions of OGDHC, such as ROS production and the carboligase reaction, have biological functions in signalling and glyoxylate utilization. Our current view on the role of OGDHC reaction in various processes within complex biological systems allows us a far greater fundamental understanding of metabolic regulation and also opens up new opportunities for us to address both biotechnological and medical challenges.
Collapse
|
397
|
Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 2009; 9:2503-28. [PMID: 19343710 DOI: 10.1002/pmic.200800158] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry tissues and water-deficit to wine quality traits, a survey of tissue-specific differences in protein and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from vines grown under well-watered and water-deficit stress conditions. Of 1047 proteins surveyed from pericarp by 2-D PAGE, 90 identified proteins showed differential expression between the skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that the seed and pericarp proteomes were nearly completely distinct from one another. Water-deficit stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed protein expression. Comparison of protein and available mRNA expression patterns showed that 32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating that protein accumulation patterns are strongly influenced by post-transcriptional processes. About half of the 32 metabolites surveyed showed tissue-specific differences in abundance with water-deficit stress affecting the accumulation of seven of these compounds. These results provide novel insights into the likely tissue-specific origins and the influence of water-deficit stress on the accumulation of key flavor and aroma compounds in wine.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557-0200, USA
| | | | | | | | | | | |
Collapse
|
398
|
Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4089-103. [PMID: 19666960 PMCID: PMC2755029 DOI: 10.1093/jxb/erp243] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 05/30/2023]
Abstract
Plants show varied cellular responses to salinity that are partly associated with maintaining low cytosolic Na(+) levels and a high K(+)/Na(+) ratio. Plant metabolites change with elevated Na(+), some changes are likely to help restore osmotic balance while others protect Na(+)-sensitive proteins. Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity tolerance under the experimental conditions used. After 3 weeks of salt treatment, Clipper ceased growing whereas Sahara resumed growth similar to the control plants. Compared with Clipper, Sahara had significantly higher leaf Na(+) levels and less leaf necrosis, suggesting they are more tolerant to accumulated Na(+). Metabolite changes in response to the salt treatment also differed between the two cultivars. Clipper plants had elevated levels of amino acids, including proline and GABA, and the polyamine putrescine, consistent with earlier suggestions that such accumulation may be correlated with slower growth and/or leaf necrosis rather than being an adaptive response to salinity. It is suggested that these metabolites may be an indicator of general cellular damage in plants. By contrast, in the more tolerant Sahara plants, the levels of the hexose phosphates, TCA cycle intermediates, and metabolites involved in cellular protection increased in response to salt. These solutes remain unchanged in the more sensitive Clipper plants. It is proposed that these responses in the more tolerant Sahara are involved in cellular protection in the leaves and are involved in the tolerance of Sahara leaves to high Na(+).
Collapse
Affiliation(s)
- Widodo
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, 3010 VIC, Australia
| | - John H. Patterson
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, 3010 VIC, Australia
| | - Ed Newbigin
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, 3010 VIC, Australia
| | - Mark Tester
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, 5064 SA, Australia
| | - Antony Bacic
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, 3010 VIC, Australia
| | - Ute Roessner
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, 3010 VIC, Australia
| |
Collapse
|
399
|
Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 2009; 38:1117-29. [DOI: 10.1007/s00726-009-0322-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/30/2009] [Indexed: 11/27/2022]
|
400
|
Kaleta C, de Figueiredo LF, Schuster S. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res 2009; 19:1872-83. [PMID: 19541909 DOI: 10.1101/gr.090639.108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Elementary modes represent a valuable concept in the analysis of metabolic reaction networks. However, they can only be computed in medium-size systems, preventing application to genome-scale metabolic models. In consequence, the analysis is usually constrained to a specific part of the known metabolism, and the remaining system is modeled using abstractions like exchange fluxes and external species. As we show by the analysis of a model of the central metabolism of Escherichia coli that has been previously analyzed using elementary modes, the choice of these abstractions heavily impacts the pathways that are detected, and the results are biased by the knowledge of the metabolic capabilities of the network by the user. In order to circumvent these problems, we introduce the concept of elementary flux patterns, which explicitly takes into account possible steady-state fluxes through a genome-scale metabolic network when analyzing pathways through a subsystem. By being similar to elementary mode analysis, our concept now allows for the application of many elementary-mode-based tools to genome-scale metabolic networks. We present an algorithm to compute elementary flux patterns and analyze a model of the tricarboxylic acid cycle and adjacent reactions in E. coli. Thus, we detect several pathways that can be used as alternative routes to some central metabolic pathways. Finally, we give an outlook on further applications like the computation of minimal media, the development of knockout strategies, and the analysis of combined genome-scale networks.
Collapse
Affiliation(s)
- Christoph Kaleta
- Department of Bioinformatics, Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|