351
|
Breaching the basement membrane: who, when and how? Trends Cell Biol 2008; 18:560-74. [DOI: 10.1016/j.tcb.2008.08.007] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 12/16/2022]
|
352
|
Alt-Holland A, Shamis Y, Riley KN, DesRochers TM, Fusenig NE, Herman IM, Garlick JA. E-cadherin suppression directs cytoskeletal rearrangement and intraepithelial tumor cell migration in 3D human skin equivalents. J Invest Dermatol 2008; 128:2498-507. [PMID: 18528437 PMCID: PMC2827766 DOI: 10.1038/jid.2008.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The link between loss of cell-cell adhesion, the activation of cell migration, and the behavior of intraepithelial (IE) tumor cells during the early stages of skin cancer progression is not well understood. The current study characterized the migratory behavior of a squamous cell carcinoma cell line (HaCaT-II-4) upon E-cadherin suppression in both 2D, monolayer cultures and within human skin equivalents that mimic premalignant disease. The migratory behavior of tumor cells was first analyzed in 3D tissue context by developing a model that mimics transepithelial tumor cell migration. We show that loss of cell adhesion enabled migration of single, IE tumor cells between normal keratinocytes as a prerequisite for stromal invasion. To further understand this migratory behavior, E-cadherin-deficient cells were analyzed in 2D, monolayer cultures and displayed altered cytoarchitecture and enhanced membrane protrusive activity that was associated with circumferential actin organization and induction of the nonmuscle, beta actin isoform. These features were associated with increased motility and random, individual cell migration in response to scrape-wounding. Thus, loss of E-cadherin-mediated adhesion led to the acquisition of phenotypic properties that augmented cell motility and directed the transition from the precancer to cancer in skin-like tissues.
Collapse
Affiliation(s)
- Addy Alt-Holland
- Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine Tufts University, Boston, Massachusetts, USA
| | - Yulia Shamis
- Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine Tufts University, Boston, Massachusetts, USA
| | - Kathleen N. Riley
- Cell and Molecular Physiology, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Teresa M. DesRochers
- Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine Tufts University, Boston, Massachusetts, USA
| | - Norbert E. Fusenig
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ira M. Herman
- Cell and Molecular Physiology, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Jonathan A. Garlick
- Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
353
|
Erler JT, Weaver VM. Three-dimensional context regulation of metastasis. Clin Exp Metastasis 2008; 26:35-49. [PMID: 18814043 PMCID: PMC2648515 DOI: 10.1007/s10585-008-9209-8] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/01/2008] [Indexed: 02/04/2023]
Abstract
Tumor progression ensues within a three-dimensional microenvironment that consists of cellular and non-cellular components. The extracellular matrix (ECM) and hypoxia are two non-cellular components that potently influence metastasis. ECM remodeling and collagen cross-linking stiffen the tissue stroma to promote transformation, tumor growth, motility and invasion, enhance cancer cell survival, enable metastatic dissemination, and facilitate the establishment of tumor cells at distant sites. Matrix degradation can additionally promote malignant progression and metastasis. Tumor hypoxia is functionally linked to altered stromal-epithelial interactions. Hypoxia additionally induces the expression of pro-migratory, survival and invasion genes, and up-regulates expression of ECM components and modifying enzymes, to enhance tumor progression and metastasis. Synergistic interactions between matrix remodeling and tumor hypoxia influence common mechanisms that maximize tumor progression and cooperate to drive metastasis. Thus, clarifying the molecular pathways by which ECM remodeling and tumor hypoxia intersect to promote tumor progression should identify novel therapeutic targets.
Collapse
Affiliation(s)
- Janine T. Erler
- Hypoxia and Metastasis Team, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK, e-mail:
| | - Valerie M. Weaver
- Departments of Surgery, Anatomy, Bioengineering and Therapeutic Sciences, Center for Bioengineering and Tissue Regeneration and Institute for Regenerative Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0456, USA, e-mail: ;
| |
Collapse
|
354
|
Sarkar S, Yong VW. Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. J Neurooncol 2008; 91:157-64. [PMID: 18802741 DOI: 10.1007/s11060-008-9695-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/01/2008] [Indexed: 01/16/2023]
Abstract
Glioma invasiveness is accomplished in part by matrix metalloproteinases (MMPs) which remodel the constraints of the three dimensional (3D) matrix of the brain parenchyma. Tissue culture studies have advanced knowledge of glioma invasiveness but the majority of studies have used a two dimensional (2D) monolayer culture system which does not reproduce the spatial constraints of invasiveness in vivo. Here, we have used a 3D matrix of type I collagen (CL) gel to address glioma invasiveness in vitro. We show that in 3D CL matrix, interleukin-1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), cytokines which are elevated in gliomas in vivo, increased glioma cell invasiveness with correspondent elevation of MMP-2 and MMP-9. Cytokine-stimulated glioma invasiveness was blocked by three pharmacological metalloproteinase inhibitors and by small interfering RNAs to MMP-2. Thus, in 3D matrix of CL, MMP-2 expression is modulated by inflammatory cytokines with the concomitant increase in glioma invasiveness.
Collapse
Affiliation(s)
- Susobhan Sarkar
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
355
|
Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys J 2008; 95:4077-88. [PMID: 18641063 DOI: 10.1529/biophysj.108.132738] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal cell migration through a three-dimensional (3D) matrix typically involves major matrix remodeling. The direction of matrix deformation occurs locally in all three dimensions, which cannot be measured by current techniques. To probe the local, 3D, real-time deformation of a collagen matrix during tumor cell migration, we developed an assay whereby matrix-embedded beads are tracked simultaneously in all three directions with high resolution. To establish a proof of principle, we investigated patterns of collagen I matrix deformation near fibrosarcoma cells in the absence and presence of inhibitors of matrix metalloproteinases and acto-myosin contractility. Our results indicate that migrating cells show patterns of local matrix deformation toward the cell that are symmetric in magnitude with respect to the axis of cell movement. In contrast, patterns of matrix release from the cell are asymmetric: the matrix is typically relaxed first at the back of the cell, allowing forward motion, and then at the cell's leading edge. Matrix deformation in regions of the matrix near the cell's leading edge is elastic and mostly reversible, but induces irreversible matrix rupture events near the trailing edge. Our results also indicate that matrix remodeling spatially correlates with protrusive activity. This correlation is mediated by myosin II and Rac1, and eliminated after inhibition of pericellular proteolysis or ROCK. We have developed an assay based on high-resolution 3D multiple-particle tracking that allows us to probe local matrix remodeling during mesenchymal cell migration through a 3D matrix and simultaneously monitor protrusion dynamics.
Collapse
|
356
|
Shi F, Sottile J. Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 2008; 121:2360-71. [PMID: 18577581 PMCID: PMC2587120 DOI: 10.1242/jcs.014977] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta1 integrins are major cell surface receptors for fibronectin. Some integrins, including beta1 integrins, are known to undergo constitutive endocytosis and recycling. Integrin endocytosis/recycling has been implicated in the regulation of cell migration. However, the mechanisms by which integrin endocytosis/recycling regulates cell migration, and other biological consequences of integrin trafficking are not completely understood. We previously showed that turnover of extracellular matrix (ECM) fibronectin occurs via receptor-mediated endocytosis. Here, we investigate the biological relevance of beta1 integrin endocytosis to fibronectin matrix turnover. First, we demonstrate that beta1 integrins, including alpha5beta1 play an important role in endocytosis and turnover of matrix fibronectin. Second, we show that caveolin-1 constitutively regulates endocytosis of alpha5beta1 integrins, and that alpha5beta1 integrin endocytosis can occur in the absence of fibronectin and fibronectin matrix. We also show that downregulation of caveolin-1 expression by siRNA results in marked reduction of beta1 integrin and fibronectin endocytosis. Hence, caveolin-1-dependent beta1 integrin and fibronectin endocytosis plays a critical role in fibronectin matrix turnover, and may contribute to abnormal ECM remodeling that occurs in fibrotic disorders.
Collapse
Affiliation(s)
- Feng Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 211 Bailey Road, West Henrietta, NY 14586, Phone: 585-276-9780, Fax: 585-276-9829
| | - Jane Sottile
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 211 Bailey Road, West Henrietta, NY 14586, Phone: 585-276-9780, Fax: 585-276-9829
| |
Collapse
|
357
|
MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev 2008; 27:289-302. [PMID: 18286233 DOI: 10.1007/s10555-008-9129-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane type-MMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines. Two members of the MT-MMP subfamily, MMP-17 (MT4-MMP) and MMP-25 (MT6-MMP), are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol (GPI) anchor, which confers these enzymes a unique set of regulatory and functional mechanisms that separates them from the rest of the MMP family. Discovered almost a decade ago, the body of work on GPI-MT-MMPs today is still surprisingly limited when compared to other MT-MMPs. However, new evidence shows that the GPI-MT-MMPs are highly expressed in human cancer, where they are associated with progression. Accumulating biochemical and functional evidence also highlights their distinct properties. In this review, we summarize the structural, biochemical, and biological properties of GPI-MT-MMPs and present an overview of their expression and role in cancer. We further discuss the potential implications of GPI-anchoring for enzyme function. Finally, we comment on the new scientific challenges that lie ahead to better understand the function and role in cancer of these intriguing but yet unique MMPs.
Collapse
|
358
|
Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis 2008; 26:289-98. [DOI: 10.1007/s10585-008-9190-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/10/2008] [Indexed: 12/14/2022]
|
359
|
Nyalendo C, Beaulieu E, Sartelet H, Michaud M, Fontaine N, Gingras D, Beliveau R. Impaired tyrosine phosphorylation of membrane type 1-matrix metalloproteinase reduces tumor cell proliferation in three-dimensional matrices and abrogates tumor growth in mice. Carcinogenesis 2008; 29:1655-64. [DOI: 10.1093/carcin/bgn159] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
360
|
Yang F, Wang Y, Zhang Z, Hsu B, Jabs EW, Elisseeff JH. The study of abnormal bone development in the Apert syndrome Fgfr2+/S252W mouse using a 3D hydrogel culture model. Bone 2008; 43:55-63. [PMID: 18407821 PMCID: PMC2743143 DOI: 10.1016/j.bone.2008.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 01/19/2008] [Accepted: 02/07/2008] [Indexed: 11/28/2022]
Abstract
Apert syndrome is caused by mutations in fibroblast growth factor receptor 2 (Fgfr2) and is characterized by craniosynostosis and other skeletal abnormalities. The Apert syndrome Fgfr2+/S252W mouse model exhibits perinatal lethality. A 3D hydrogel culture model, derived from tissue engineering strategies, was used to extend the study of the effect of the Fgfr2+/S252W mutation in differentiating osteoblasts postnatally. We isolated cells from the long bones of Apert Fgfr2+/S252W mice (n=6) and cells from the wild-type sibling mice (n=6) to be used as controls. During monolayer expansion, Fgfr2+/S252W cells demonstrated increased proliferation and ALP activity, as well as altered responses of these cellular functions in the presence of FGF ligands with different binding specificity (FGF2 or FGF10). To better mimic the in vivo disease development scenario, cells were also encapsulated in 3D hydrogels and their phenotype in 3D in vitro culture was compared to that of in vivo tissue specimens. After 4 weeks in 3D culture in osteogenic medium, Fgfr2+/S252W cells expressed 2.8-fold more collagen type I and 3.3-fold more osteocalcin than did wild-type controls (p<0.01). Meanwhile, Fgfr2+/S252W cells showed decreased bone matrix remodeling and expressed 87% less Metalloprotease-13 and 71% less Noggin (p<0.01). The S252W mutation also led to significantly higher production of collagen type I and II in 3D as shown by immunofluorescence staining. In situ hybridization and alizarin red S staining of postnatal day 0 (P0) mouse limb sections demonstrated significantly higher levels of osteopontin expression and mineralization in Fgfr2+/S252W mice. Complementary to in vivo findings, this 3D hydrogel culture system provides an effective in vitro venue to study the pathogenesis of Apert syndrome caused by the analogous mutation in humans.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 45 Carleton Street, E25-342, Cambridge, MA, 02142, USA.
| | - Yingli Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY, USA.
| | - Zijun Zhang
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N. Charles Street, Clark 106, Baltimore, MD, 21218, USA.
| | - Bryan Hsu
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N. Charles Street, Clark 106, Baltimore, MD, 21218, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY, USA.
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N. Charles Street, Clark 106, Baltimore, MD, 21218, USA.
| |
Collapse
|
361
|
Zhou X, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, Virtanen I, Chernousov MA, Weiss SJ. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 2008; 22:1231-43. [PMID: 18451110 DOI: 10.1101/gad.1643308] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During vasculogenesis and angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. While 3D-embedded endothelial cells establish adhesive interactions with surrounding ligands to optimally respond to soluble or matrix-bound agonists, the manner in which a randomly ordered ECM with diverse physico-mechanical properties is remodeled to support blood vessel formation has remained undefined. Herein, we demonstrate that endothelial cells initiate neovascularization by unfolding soluble fibronectin (Fn) and depositing a pericellular network of fibrils that serve to support cytoskeletal organization, actomyosin-dependent tension, and the viscoelastic properties of the embedded cells in a 3D-specific fashion. These results advance a new model wherein Fn polymerization serves as a structural scaffolding that displays adhesive ligands on a mechanically ideal substratum for promoting neovessel development.
Collapse
Affiliation(s)
- Xiaoming Zhou
- The Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:61-86. [PMID: 18454635 DOI: 10.1089/teb.2007.0150] [Citation(s) in RCA: 716] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditional methods of cell growth and manipulation on 2-dimensional (2D) surfaces have been shown to be insufficient for new challenges of cell biology and biochemistry, as well as in pharmaceutical assays. Advances in materials chemistry, materials fabrication and processing technologies, and developmental biology have led to the design of 3D cell culture matrices that better represent the geometry, chemistry, and signaling environment of natural extracellular matrix. In this review, we present the status of state-of-the-art 3D cell-growth techniques and scaffolds and analyze them from the perspective of materials properties, manufacturing, and functionality. Particular emphasis was placed on tissue engineering and in vitro modeling of human organs, where we see exceptionally strong potential for 3D scaffolds and cell-growth methods. We also outline key challenges in this field and most likely directions for future development of 3D cell culture over the period of 5-10 years.
Collapse
Affiliation(s)
- Jungwoo Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
363
|
Sun Q, Nawabi-Ghasimi F, Basile JR. Semaphorins in vascular development and head and neck squamous cell carcinoma-induced angiogenesis. Oral Oncol 2008; 44:523-31. [DOI: 10.1016/j.oraloncology.2007.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 10/28/2007] [Accepted: 10/10/2007] [Indexed: 01/01/2023]
|
364
|
Steffen A, Le Dez G, Poincloux R, Recchi C, Nassoy P, Rottner K, Galli T, Chavrier P. MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7. Curr Biol 2008; 18:926-31. [DOI: 10.1016/j.cub.2008.05.044] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 11/24/2022]
|
365
|
Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophys J 2008; 95:2203-18. [PMID: 18515372 DOI: 10.1529/biophysj.108.133199] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invadopodia are subcellular organelles thought to be critical for extracellular matrix (ECM) degradation and the movement of cells through tissues. Here we examine invadopodia generation, turnover, and function in relation to two structural aspects of the ECM substrates they degrade: cross-linking and fiber density. We set up a cellular automaton computational model that simulates ECM penetration and degradation by invadopodia. Experiments with denatured collagen (gelatin) were used to calibrate the model and demonstrate the inhibitory effect of ECM cross-linking on invadopodia degradation and penetration. Incorporation of dynamic invadopodia behavior into the model amplified the effect of cross-linking on ECM degradation, and was used to model feedback from the ECM. When the model was parameterized with spatial fibrillar dimensions that closely matched the organization, in real life, of native ECM collagen into triple-helical monomers, microfibrils, and macrofibrils, little or no inhibition of invadopodia penetration was observed in simulations of sparse collagen gels, no matter how high the degree of cross-linking. Experimental validation, using live-cell imaging of invadopodia in cells plated on cross-linked gelatin, was consistent with simulations in which ECM cross-linking led to higher rates of both invadopodia retraction and formation. Analyses of invadopodia function from cells plated on cross-linked gelatin and collagen gels under standard concentrations were consistent with simulation results in which sparse collagen gels provided a weak barrier to invadopodia. These results suggest that the organization of collagen, as it may occur in stroma or in vitro collagen gels, forms gaps large enough so as to have little impact on invadopodia penetration/degradation. By contrast, dense ECM, such as gelatin or possibly basement membranes, is an effective obstacle to invadopodia penetration and degradation, particularly when cross-linked. These results provide a novel framework for further studies on ECM structure and modifications that affect invadopodia and tissue invasion by cells.
Collapse
|
366
|
Li XY, Ota I, Yana I, Sabeh F, Weiss SJ. Molecular dissection of the structural machinery underlying the tissue-invasive activity of membrane type-1 matrix metalloproteinase. Mol Biol Cell 2008; 19:3221-33. [PMID: 18495869 DOI: 10.1091/mbc.e08-01-0016] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) drives cell invasion through three-dimensional (3-D) extracellular matrix (ECM) barriers dominated by type I collagen or fibrin. Based largely on analyses of its impact on cell function under two-dimensional culture conditions, MT1-MMP is categorized as a multifunctional molecule with 1) a structurally distinct, N-terminal catalytic domain; 2) a C-terminal hemopexin domain that regulates substrate recognition as well as conformation; and 3) a type I transmembrane domain whose cytosolic tail controls protease trafficking and signaling cascades. The MT1-MMP domains that subserve cell trafficking through 3-D ECM barriers in vitro or in vivo, however, remain largely undefined. Herein, we demonstrate that collagen-invasive activity is not confined strictly to the catalytic, hemopexin, transmembrane, or cytosolic domain sequences of MT1-MMP. Indeed, even a secreted collagenase supports invasion when tethered to the cell surface in the absence of the MT1-MMP hemopexin, transmembrane, and cytosolic tail domains. By contrast, the ability of MT1-MMP to support fibrin-invasive activity diverges from collagenolytic potential, and alternatively, it requires the specific participation of MT-MMP catalytic and hemopexin domains. Hence, the tissue-invasive properties of MT1-MMP are unexpectedly embedded within distinct, but parsimonious, sequences that serve to tether the requisite matrix-degradative activity to the surface of migrating cells.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
367
|
Ardito CM, Briggs CD, Crawford HC. Targeting of extracellular proteases required for the progression of pancreatic cancer. Expert Opin Ther Targets 2008; 12:605-19. [PMID: 18410243 DOI: 10.1517/14728222.12.5.605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related death in the United States. Its lethality is due, in large part, to its resistance to traditional chemotherapeutics. As a result, there is an enormous effort being put into basic research to identify proteins that are required for PDA progression so that they may be specifically targeted for therapy. OBJECTIVE To compile and analyze the evidence that suggests that extracellular proteases are significant contributors to PDA progression. METHODS We focus on three different extracellular protease subclasses expressed in PDA: metalloproteases, serine proteases and cathepsins. Based on data from PDA and other cancers, we suggest their probable roles in PDA. RESULTS/CONCLUSIONS Of the proteases expressed in PDA, many appear to have overlapping functions, based on the substrates they process, making therapeutics complicated. Two protease families most likely to have unique, critical functions during tumor progression, and therefore strong potential as therapeutic targets, are the a disintegrin and metalloproteases (ADAMs) and the cathepsins.
Collapse
Affiliation(s)
- Christine M Ardito
- Stony Brook University, Department of Pharmacological Sciences, BST 8-140, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
368
|
Abstract
Metastasis is the result of cancer cell adaptation to a tissue microenvironment at a distance from the primary tumor. Metastatic cancer cells require properties that allow them not only to adapt to a foreign microenvironment but to subvert it in a way that is conducive to their continued proliferation and survival. Recent conceptual and technological advances have contributed to our understanding of the role of the host tissue stroma in promoting tumor cell growth and dissemination and have provided new insight into the genetic makeup of cancers with high metastatic proclivity.
Collapse
Affiliation(s)
- Marina Bacac
- Experimental Pathology Unit, Department of Pathology, University of Lausanne, Switzerland.
| | | |
Collapse
|
369
|
Itoh Y, Ito N, Nagase H, Seiki M. The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. J Biol Chem 2008; 283:13053-62. [PMID: 18337248 PMCID: PMC2442350 DOI: 10.1074/jbc.m709327200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/21/2008] [Indexed: 11/06/2022] Open
Abstract
Activation of proMMP-2 and cell surface collagenolysis are important activities of membrane-type 1 matrix metalloproteinase (MT1-MMP) to promote cell migration in tissue, and these activities are regulated by homodimerization of MT1-MMP on the cell surface. In this study, we have identified the transmembrane domain as a second dimer interface of MT1-MMP in addition to the previously identified hemopexin domain. Our analyses indicate that these two modes of dimerization have different roles; transmembrane-dependent dimerization is critical for proMMP-2 activation, whereas hemopexin-dependent dimerization is important for degradation of collagen on the cell surface. Our finding provides new insight into the potential molecular arrangement of MT1-MMP contributing to its function on the cell surface.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Department of Matrix Biology, Imperial College London, Hammersmith, London W6 8LH, UK.
| | | | | | | |
Collapse
|
370
|
Yang JG, Shen YH, Hong Y, Jin FH, Zhao SH, Wang MC, Shi XJ, Fang XX. Stir-baked Fructus gardeniae (L.) extracts inhibit matrix metalloproteinases and alter cell morphology. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:285-289. [PMID: 18342464 DOI: 10.1016/j.jep.2008.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 12/17/2007] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
Matrix metalloproteinases (MMPs) play vital roles in many pathological conditions, including cancer, cardiovascular disease, arthritis and inflammation. Modulating MMP activity may therefore be a useful therapeutic approach in treating these diseases. Qing-Kai-Ling is a popular Chinese anti-inflammatory formulation used to treat symptoms such as rheumatoid arthritis, acute hypertensive cerebral hemorrhage, hepatitis and upper respiratory tract infection. In this paper, we report that one of the components of Qing-Kai-Ling, Fructus gardeniae, strongly inhibits MMP activity. The IC50 values for the primary herbal extract and water extract against MMP-16 were 32 and 27 microg/ml, respectively. In addition, we show that the herbal extracts influence HT1080 human fibrosarcoma cell growth and morphology. These data may provide molecular mechanisms for the therapeutic effects of Qing-Kai-Ling and herbal medicinal Fructus gardeniae.
Collapse
Affiliation(s)
- Jin-gang Yang
- Key laboratory of Molecular Enzymology and Enzyme Engineering of Ministry Education, Jilin University, Changchun 130023, PR China
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Ouyang M, Lu S, Li XY, Xu J, Seong J, Giepmans BNG, Shyy JYJ, Weiss SJ, Wang Y. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. J Biol Chem 2008; 283:17740-8. [PMID: 18441011 DOI: 10.1074/jbc.m709872200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a critical role in cancer cell biology by proteolytically remodeling the extracellular matrix. Utilizing fluorescence resonance energy transfer (FRET) imaging, we have developed a novel biosensor, with its sensing element anchoring at the extracellular surface of cell membrane, to visualize MT1-MMP activity dynamically in live cells with subcellular resolution. Epidermal growth factor (EGF) induced significant FRET changes in cancer cells expressing MT1-MMP, but not in MT1-MMP-deficient cells. EGF-induced FRET changes in MT1-MMP-deficient cells could be restored after reconstituting with wild-type MT1-MMP, but not MMP-2, MMP-9, or inactive MT1-MMP mutants. Deletion of the transmembrane domain in the biosensor or treatment with tissue inhibitor of metalloproteinase-2, a cell-impermeable MT1-MMP inhibitor, abolished the EGF-induced FRET response, indicating that MT1-MMP acts at the cell surface to generate FRET changes. In response to EGF, active MT1-MMP was directed to the leading edge of migrating cells along micropatterned fibronectin stripes, in tandem with the local accumulation of the EGF receptor, via a process dependent upon an intact cytoskeletal network. Hence, the MT1-MMP biosensor provides a powerful tool for characterizing the molecular processes underlying the spatiotemporal regulation of this critical class of enzymes.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Cho JA, Osenkowski P, Zhao H, Kim S, Toth M, Cole K, Aboukameel A, Saliganan A, Schuger L, Bonfil RD, Fridman R. The inactive 44-kDa processed form of membrane type 1 matrix metalloproteinase (MT1-MMP) enhances proteolytic activity via regulation of endocytosis of active MT1-MMP. J Biol Chem 2008; 283:17391-405. [PMID: 18413312 DOI: 10.1074/jbc.m708943200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.
Collapse
Affiliation(s)
- Jin-Ah Cho
- Department of Pathology and Proteases and Cancer Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Wilson TJ, Singh RK. Proteases as modulators of tumor-stromal interaction: primary tumors to bone metastases. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1785:85-95. [PMID: 18082147 PMCID: PMC2418859 DOI: 10.1016/j.bbcan.2007.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 12/11/2022]
Abstract
As cells undergo oncogenic transformation and as malignant cells arrive at metastatic sites, a complex interplay occurs with the surrounding stroma. This dialogue between the tumor and stroma ultimately dictates the success of the tumor cells in the given microenvironment. As a result, understanding the molecular mechanisms at work is important for developing new therapeutic modalities. Proteases are major players in the interaction between tumor and stroma. This review will focus on the role of proteases in modulating tumor-stromal interactions of both primary breast and prostate tumors as well as at bone metastatic sites in a way that favors tumor growth.
Collapse
Affiliation(s)
- Thomas J. Wilson
- Department of Pathology and Microbiology, The University of Nebraska Medical Center, 985845 Nebraska Medical Center, Omaha, NE 68198-5845
- Howard Hughes Medical Institute Research Training Fellow
| | - Rakesh K. Singh
- Department of Pathology and Microbiology, The University of Nebraska Medical Center, 985845 Nebraska Medical Center, Omaha, NE 68198-5845
| |
Collapse
|
374
|
Young EF, Marcantonio EE. A novel subcellular collagen organization process visualized by total internal reflection fluorescence microscopy. ACTA ACUST UNITED AC 2008; 14:169-80. [PMID: 18163228 DOI: 10.1080/15419060701755552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The alpha1beta1 and alpha2beta1 integrins belong to a family of cell-surface molecules involved in structural contacts and signal-transduction events across the cell membrane. Employing two-dimensional substrates coated with fluorescently labeled type I collagen, we have discovered a novel subcellular matrix remodeling event that is particular to cells that express the fibrillar collagen receptor alpha2beta1. Cells expressing alpha1beta1 also perform this collagen organization process, but less proficiently. This work will provide a basis for subsequent studies of cell-mediated collagen fibril assembly.
Collapse
Affiliation(s)
- Erik F Young
- Department of Pathology & Cell Biology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
375
|
David L, Dulong V, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater 2008; 4:256-63. [PMID: 17936097 DOI: 10.1016/j.actbio.2007.08.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 11/17/2022]
Abstract
The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. In order to investigate the sensitivity of cancer cells to antimitotic agents, we developed a cross-linked HA hydrogel, a three-dimensional matrix in which cells can invade and grow. We have studied three cell lines (SA87, NCI-H460 and H460M), from primary tumors and metastases, that migrated into the HA hydrogel and proliferated giving rise to clusters and colonies. Concurrently, we studied the growth of these cell lines in a usual monolayer culture system. In these two models, increasing concentrations of doxorubicin and 5-fluorouracil were evaluated for their ability to inhibit tumor cell growth and colony formation. Taken together, our data suggest that the cancer cells were more resistant in the three-dimensional model than in monolayer cell systems. The antimitotic drugs were efficient after 24h of treatment in the monolayer cultures, whereas they were significantly efficient only after one week of incubation in the HA hydrogels. Herein, we show that this cross-linked matrix provides a three-dimensional model particularly appropriate for investigating mechanisms involved in cancer cell line sensitivity to antimitotic drugs.
Collapse
Affiliation(s)
- Laurent David
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré (MERCI, UPRES EA 3829), Faculté de Médecine Pharmacie, Université de Rouen, 22 boulevard Gambetta, 76183 Rouen, France.
| | | | | | | | | | | |
Collapse
|
376
|
Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis 2008; 25:593-600. [PMID: 18286378 DOI: 10.1007/s10585-008-9143-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 02/02/2008] [Indexed: 01/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of more than 28 enzymes that were initially identified on the basis of their ability to cleave most elements of the extracellular matrix (ECM) but have subsequently been found to be upregulated in nearly every tumor type. As digestion of the ECM is essential for tumor invasion and metastasis, MMPs have been studied for their role in these later stages of tumor development. More recently, exposure to these enzymes has been found to impact cellular signaling pathways that stimulate cell growth at early stages of tumor progression. MMPs have also been found to cleave intracellular targets and so inducing mitotic abnormalities and genomic instability. Emerging evidence indicates that tumor-associated MMPs can also stimulate processes associated with epithelial-mesenchymal transition (EMT), a developmental process that is activated in tumor cells during cell invasion and metastasis. Investigations of potential therapeutic MMP inhibitors aimed at blocking the protumorigenic tissue alterations induced by MMPs have been complicated by the side effects associated with nonspecific inhibition of normal physiological processes; recent investigations have shown how delineation of the extracellular targets and intracellular signaling pathways by which MMP action on cancer cells can induce EMT provides insight into novel therapeutic targets. Here, we provide an overview of recent findings of MMP action in tumors and the mechanisms by which MMPs induce both phenotypic and genotypic alterations that facilitate tumor progression.
Collapse
|
377
|
Barbolina MV, Stack MS. Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol 2008; 19:24-33. [PMID: 17702616 PMCID: PMC2685078 DOI: 10.1016/j.semcdb.2007.06.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 06/29/2007] [Indexed: 01/12/2023]
Abstract
Enzymes in the matrix metalloproteinase (MMP) family have been linked to key events in developmental biology for almost 50 years. Biochemical, cellular and in vivo analyses have established that pericellular proteolysis contributes to numerous aspects of ontogeny including ovulation, fertilization, implantation, cellular migration, tissue remodeling and repair. Surface anchoring of proteinase activity provides spatial restrictions on substrate targeting. This review will utilize membrane type 1 MMP (MT1-MMP) as an example to highlight substrate diversity in pericellular proteolysis catalyzed by a membrane anchored MMP.
Collapse
Affiliation(s)
- Maria V. Barbolina
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - M. Sharon Stack
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia MO 65212
| |
Collapse
|
378
|
Cretu A, Brooks PC. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 2008; 213:391-402. [PMID: 17657728 DOI: 10.1002/jcp.21222] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the malignant phenotype of a given tumor is dependent not only on the intrinsic characteristics of tumor cells, but also on the cooperative interactions of non-neoplastic cells, soluble secreted factors and the non-cellular solid-state ECM network that comprise the tumor microenvironment. Given the ability of the tumor microenvironment to regulate the cellular phenotype, recent efforts have focused on understanding the molecular mechanisms by which cells sense, assimilate, interpret, and ultimately respond to their immediate surroundings. Exciting new studies are beginning to unravel the complex interactions between the numerous cell types and regulatory factors within the tumor microenvironment that function cooperatively to control tumor cell invasion and metastasis. Here, we will focus on studies concerning a common theme, which is the central importance of the non-cellular solid-state compartment as a master regulator of the malignant phenotype. We will highlight the non-cellular solid-state compartment as a relatively untapped source of therapeutic and imaging targets and how cellular interactions with these targets may regulate tumor metastasis.
Collapse
Affiliation(s)
- Alexandra Cretu
- Department of Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
379
|
Takino T, Saeki H, Miyamori H, Kudo T, Sato H. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions. Cancer Res 2008; 67:11621-9. [PMID: 18089791 DOI: 10.1158/0008-5472.can-07-5251] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Takahisa Takino
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
380
|
Gu X, Coates PJ, Boldrup L, Nylander K. p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett 2008; 263:26-34. [PMID: 18194839 DOI: 10.1016/j.canlet.2007.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
The transcription factor p63 is commonly over-expressed in squamous cell carcinomas of the head and neck (SCCHN). By microarray analysis of p63-siRNA-treated SCCHN cells we identified 127 genes whose expression relies on over-expression of p63. More than 20% of these genes are involved in cell motility. Chromatin immunoprecipitation and reporter assay revealed PAI-1 and AQP3 as direct p63 transcriptional targets. In addition to PAI-1, most of the key cell motility-related molecules are up-regulated by p63, such as MMP14 and LGALS1. Our findings indicate a contribution by p63 in cell invasion and migration, supporting an oncogenic role for p63 in SCCHN.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Building 6M, 2nd floor, Umeå University, SE - 901 85 Umeå, Sweden
| | | | | | | |
Collapse
|
381
|
Abstract
The matrix metalloproteinase (MMP) family of extracellular proteinases have long been associated with cancer invasion and metastasis by virtue of their ability to collectively degrade all components of the extracellular matrix (ECM). The general belief that overexpression of a specific MMP, either by tumor cells or the surrounding stroma, is pro-tumorigenic led to the development of synthetic MMP inhibitors for the treatment of cancer. However, there is an increasing amount of literature demonstrating that the expression of certain MMPs, either at the primary or the metastatic site, provides a beneficial and protective effect in multiple stages of cancer progression. Here, we review the evidence for protective effects of MMPs and contrast this with pro-tumorigenic effects of either the same enzyme, or a different MMP of the same family. These studies highlight the importance of targeting specific MMPs for cancer treatment, and point to a potential reason why clinical trials of pharmaceutical inhibitors for MMPs were disappointing. In order to effectively target MMPs in cancer progression, a better understanding of both their pro- and anti-tumorigenic effects is required.
Collapse
Affiliation(s)
- Michelle D Martin
- Department of Cancer Biology, Vanderbilt University, 771 Preston Research Building, 23rd and Pierce Avenues, Nashville, TN 37232-6840, USA
| | | |
Collapse
|
382
|
Cao J, Chiarelli C, Richman O, Zarrabi K, Kozarekar P, Zucker S. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem 2008; 283:6232-40. [PMID: 18174174 DOI: 10.1074/jbc.m705759200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
By mining DNA microarray data bases at GenBank, we identified up-regulation of membrane type 1 matrix metalloproteinase (MT1-MMP) in human primary and metastatic prostate cancer specimens as compared with nonmalignant prostate tissues. To explore the role of up-regulated MT1-MMP in early stage cancer progression, we have employed a three-dimensional cell culture model. Minimally invasive human prostate cancer cells (LNCaP) were transfected with MT1-green fluorescent protein (GFP) chimeric cDNA as compared with GFP cDNA, and morphologic and phenotypic changes were characterized. GFP-expressing LNCaP cells formed multicellular spheroids with cuboidal-like epithelial morphology, whereas MT1-GFP-expressing cells displayed a fibroblast-like morphology and a scattered growth pattern in type I collagen gels. Cell morphologic changes were accompanied by decreased epithelial markers and enhanced mesenchymal markers, consistent with epithelial-to-mesenchymal transition. MT1-MMP-induced morphologic change and cell scattering were abrogated by target inhibition of either the catalytic domain or the hemopexin domain. We further demonstrated that MT1-MMP-induced phenotypic changes were dependent upon up-regulation of Wnt5a, which has been implicated in epithelial-to-mesenchymal transition. We conclude that MT1-MMP plays an important role in early cancer dissemination by converting epithelial cells to migratory mesenchymal-like cells.
Collapse
Affiliation(s)
- Jian Cao
- Department of Medicine, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
383
|
Wu Y, Munshi H, Snipas S, Salvesen G, Fridman R, Stack M. Activation-coupled membrane-type 1 matrix metalloproteinase membrane trafficking. Biochem J 2008; 407:171-7. [PMID: 17650075 PMCID: PMC2049019 DOI: 10.1042/bj20070552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transmembrane collagenase MT1-MMP (membrane-type 1 matrix metalloproteinase), also known as MMP-14, has a critical function both in normal development and in cancer progression, and is subject to extensive controls at the post-translational level which affect proteinase activity. As zymogen activation is crucial for MT1-MMP activity, an alpha1-PI (alpha1-proteinase inhibitor)-based inhibitor was designed by incorporating the MT1-MMP propeptide cleavage sequence into the alpha1-PI reactive-site loop (designated alpha1-PI(MT1)) and this was compared with wild-type alpha1-PI (alpha1-PI(WT)) and the furin inhibitory mutant alpha1-PI(PDX). Alpha1-PI(MT1) formed an SDS-stable complex with furin and inhibited proMT1-MMP activation. A consequence of the loss of MT1-MMP activity was the activation of proMMP-2 and the inhibition of MT1-MMP-mediated collagen invasion. alpha1-PI(MT1) expression also resulted in the intracellular accumulation of a glycosylated species of proMT1-MMP that was retained in the perinuclear region, leading to significantly decreased cell-surface accumulation of proMT1-MMP. These observations suggest that both the subcellular localization and the activity of MT1-MMP are regulated in a coordinated fashion, such that proMT1-MMP is retained intracellularly until activation of its zymogen, then proMT1-MMP traffics to the cell surface in order to cleave extracellular substrates.
Collapse
Affiliation(s)
- Yi I. Wu
- *Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
- †Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, U.S.A
| | - Hidayatullah G. Munshi
- †Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, U.S.A
- ‡Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
| | - Scott J. Snipas
- §Program in Apoptosis and Cell Death Research, Burnham Institute, La Jolla, CA 92037, U.S.A
| | - Guy S. Salvesen
- §Program in Apoptosis and Cell Death Research, Burnham Institute, La Jolla, CA 92037, U.S.A
| | - Rafael Fridman
- ∥Department of Pathology, Wayne State University, Detroit, MI 48202, U.S.A
| | - M. Sharon Stack
- *Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
- †Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, U.S.A
- ¶Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
384
|
Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 2008; 13:23-35. [PMID: 18167337 PMCID: PMC2245859 DOI: 10.1016/j.ccr.2007.12.004] [Citation(s) in RCA: 756] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 08/06/2007] [Accepted: 12/04/2007] [Indexed: 01/17/2023]
Abstract
Aberrant TGFbeta signaling is common in human cancers and contributes to tumor metastasis. Here, we demonstrate that Gr-1+CD11b+ myeloid cells are recruited into mammary carcinomas with type II TGF beta receptor gene (Tgfbr2) deletion and directly promote tumor metastasis. Gr-1+CD11b+ cells infiltrate into the invasive front of tumor tissues and facilitate tumor cell invasion and metastasis through a process involving metalloproteinase activity. This infiltration of Gr-1+CD11b+ cells also results in increased abundance of TGF beta 1 in tumors with Tgfbr2 deletion. The recruitment of Gr-1+CD11b+ cells into tumors with Tgfbr2 deletion involves two chemokine receptor axes, the SDF-1/CXCR4 and CXCL5/CXCR2 axes. Together, these data indicate that Gr-1+CD11b+ cells contribute to TGFbeta-mediated metastasis through enhancing tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Li Yang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Shi J, Son MY, Yamada S, Szabova L, Kahan S, Chrysovergis K, Wolf L, Surmak A, Holmbeck K. Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev Biol 2008; 313:196-209. [PMID: 18022611 PMCID: PMC2262846 DOI: 10.1016/j.ydbio.2007.10.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 10/06/2007] [Accepted: 10/16/2007] [Indexed: 01/02/2023]
Abstract
Peri-cellular remodeling of mesenchymal extracellular matrices is considered a prerequisite for cell proliferation, motility and development. Here we demonstrate that membrane-type 3 MMP, MT3-MMP, is expressed in mesenchymal tissues of the skeleton and in peri-skeletal soft connective tissue. Consistent with this localization, MT3-MMP-deficient mice display growth inhibition tied to a decreased viability of mesenchymal cells in skeletal tissues. We document that MT3-MMP works as a major collagenolytic enzyme, enabling cartilage and bone cells to cleave high-density fibrillar collagen and modulate their resident matrix to make it permissive for proliferation and migration. Collectively, these data uncover a novel extracellular matrix remodeling mechanism required for proper function of mesenchymal cells. The physiological significance of MT3-MMP is highlighted in mice double deficient for MT1-MMP and MT3-MMP. Double deficiency transcends the combined effects of the individual single deficiencies and leads to severe embryonic defects in palatogenesis and bone formation incompatible with life. These defects are directly tied to loss of indispensable collagenolytic activities required in collagen-rich mesenchymal tissues for extracellular matrix remodeling and cell proliferation during embryogenesis.
Collapse
Affiliation(s)
- Joanne Shi
- Matrix Metalloproteinase Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Drive, Bethesda MD 20892
| | - Mi-Young Son
- Matrix Metalloproteinase Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Drive, Bethesda MD 20892
| | - Susan Yamada
- Matrix Metalloproteinase Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Drive, Bethesda MD 20892
| | - Ludmila Szabova
- Matrix Metalloproteinase Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Drive, Bethesda MD 20892
| | | | | | | | - Andrew Surmak
- Matrix Metalloproteinase Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Drive, Bethesda MD 20892
| | - Kenn Holmbeck
- Matrix Metalloproteinase Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Drive, Bethesda MD 20892
| |
Collapse
|
386
|
MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 2007; 27:3274-81. [PMID: 18071307 DOI: 10.1038/sj.onc.1210982] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Membrane-type I matrix metalloproteinase (MT1-MMP) is associated with multiple forms of cancer including mammary cancer. To directly evaluate the significance of MT1-MMP expression in tumor progression and metastasis using a genetically induced cancer model, we crossed MT1-MMP-deficient mice to MMTV-polyoma virus middle T-antigen (PyMT) mice. Expression of PyMT in the MT1-MMP-deficient background consistently resulted in hyperplasia of the mammary gland as seen in wild-type PyMT littermates. Following orthotopic transplantation of PyMT+ glands into the cleared mammary fat pad of syngeneic recipient mice, MT1-MMP-deficient tumors were palpable earlier than wild-type tumors. Moreover, MT1-MMP-deficient tumors grew to the experimental end point size quicker than control tumors, but demonstrated markedly reduced ability to metastasize to the lungs of recipient mice. Accordingly, MT1-MMP-deficient mice displayed an overall reduction in metastasis count of 50%. MT1-MMP was expressed solely in the stroma of PyMT-induced tumors and those metastatic nodules that formed in the lungs were devoid of MT1-MMP expression. Stromal fibroblasts isolated from MT1-MMP-deficient tumors did not degrade type I collagen suggesting that efficient dissemination of tumor cells is dependent on stromal cell remodeling of the tumor environment. The data demonstrate directly that MT1-MMP-mediated proteolysis by stromal cells is important in the metastatic process.
Collapse
|
387
|
Golubkov VS, Chekanov AV, Shiryaev SA, Aleshin AE, Ratnikov BI, Gawlik K, Radichev I, Motamedchaboki K, Smith JW, Strongin AY. Proteolysis of the Membrane Type-1 Matrix Metalloproteinase Prodomain. J Biol Chem 2007; 282:36283-91. [DOI: 10.1074/jbc.m706290200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
388
|
D'Alessio S, Ferrari G, Cinnante K, Scheerer W, Galloway AC, Roses DF, Rozanov DV, Remacle AG, Oh ES, Shiryaev SA, Strongin AY, Pintucci G, Mignatti P. Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. J Biol Chem 2007; 283:87-99. [PMID: 17991754 DOI: 10.1074/jbc.m705492200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with a short cytoplasmic domain and an extracellular catalytic domain, controls a variety of physiological and pathological processes through the proteolytic degradation of extracellular or transmembrane proteins. MT1-MMP forms a complex on the cell membrane with its physiological protein inhibitor, tissue inhibitor of metalloproteinases-2 (TIMP-2). Here we show that, in addition to extracellular proteolysis, MT1-MMP and TIMP-2 control cell proliferation and migration through a non-proteolytic mechanism. TIMP-2 binding to MT1-MMP induces activation of ERK1/2 by a mechanism that does not require the proteolytic activity and is mediated by the cytoplasmic tail of MT1-MMP. MT1-MMP-mediated activation of ERK1/2 up-regulates cell migration and proliferation in vitro independently of extracellular matrix proteolysis. Proteolytically inactive MT1-MMP promotes tumor growth in vivo, whereas proteolytically active MT1-MMP devoid of cytoplasmic tail does not have this effect. These findings illustrate a novel role for MT1-MMP-TIMP-2 interaction, which controls cell functions by a mechanism independent of extracellular matrix degradation.
Collapse
Affiliation(s)
- Silvia D'Alessio
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016
| | - Giovanni Ferrari
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016
| | - Karma Cinnante
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016
| | - William Scheerer
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016
| | - Aubrey C Galloway
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016
| | - Daniel F Roses
- Department of Surgery, New York University School of Medicine, New York, New York 10016 and the Cancer Research Center
| | - Dmitri V Rozanov
- Burnham Institute for Medical Research, La Jolla, California 92037
| | - Albert G Remacle
- Burnham Institute for Medical Research, La Jolla, California 92037
| | - Eok-Soo Oh
- Burnham Institute for Medical Research, La Jolla, California 92037
| | | | - Alex Y Strongin
- Burnham Institute for Medical Research, La Jolla, California 92037
| | - Giuseppe Pintucci
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016
| | - Paolo Mignatti
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016; Department of Cell Biology, New York University School of Medicine, New York, New York 10016.
| |
Collapse
|
389
|
De Croos JNA, Jang B, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA. Membrane type-1 matrix metalloproteinase is induced following cyclic compression of in vitro grown bovine chondrocytes. Osteoarthritis Cartilage 2007; 15:1301-10. [PMID: 17548215 DOI: 10.1016/j.joca.2007.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/15/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if membrane type-1 matrix metalloproteinase (MT1-MMP) will respond to cyclic compression of chondrocytes grown in vitro and the regulatory mechanisms underlying this response. METHODS Cyclic compression (30min, 1kPa, 1Hz) was applied to bovine chondrocytes (6-9-month-old animals) grown on top of a biodegradable substrate within 3 days of initiating culture. Luciferase assays using bovine articular chondrocytes were undertaken to demonstrate the mechanosensitivity of MT1-MMP. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used to establish the time course of gene and protein upregulation in response to cyclic compression. The regulation of MT1-MMP was assessed by electrophoretic mobility shift assays, RT-PCR and western blot analysis. As well, an MT1-MMP decoy oligonucleotide and an extracellular signal-regulated kinase 1/2 (ERK1/2) pharmacological inhibitor were utilized to further characterize MT1-MMP regulation. RESULTS After cyclic compression, MT1-MMP showed a rapid and transient increase in gene expression. Elevated protein levels were detected within 2h of stimulation which returned to baseline by 6h. During cyclic compression, phosphorylation of the mitogen activated protein kinase ERK1/2 increased significantly. This was followed by increased gene and protein expression of the transcription factor; early growth factor-1 (Egr-1) and Egr-1 binding to the MT1-MMP promoter. Blocking Egr-1 DNA binding with a decoy MT1-MMP oligonucleotide, downregulated MT1-MMP gene expression. The ERK1/2 inhibitor U0126 also reduced Egr-1 DNA binding activity to MT1-MMP promoter sequences and subsequent transcription of MT1-MMP. CONCLUSIONS These data suggest that cyclic compression of chondrocytes in vitro upregulates MT1-MMP via ERK1/2 dependent activation of Egr-1 binding. Delineation of the regulatory pathways activated by mechanical stimulation will further our understating of the mechanisms influencing tissue remodeling.
Collapse
Affiliation(s)
- J N A De Croos
- CIHR BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, Canada
| | | | | | | | | | | |
Collapse
|
390
|
Chabottaux V, Noel A. Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 2007; 24:647-56. [PMID: 17968664 DOI: 10.1007/s10585-007-9113-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/10/2007] [Indexed: 12/14/2022]
Abstract
The restricted view of matrix metalloproteinases (MMPs) as simple destroyers of extracellular matrix components has largely ignored their substantial contribution in many aspects of cancer development and metastatic dissemination. Over the last few years, the relevance of MMPs in the processing of a large array of extracellular and cell surface-associated proteins has grown considerably. Our knowledge about the complex functions of MMPs and how their contribution may differ throughout cancer progression is rapidly expanding. These new findings provide several explanations for the lack of success of MMP inhibition in clinical trials. A complete understanding of MMP biology is needed before considering them, their substrates or their products as therapeutic targets. In this review, we explore the different faces of MMP implication in breast cancer progression by considering both clinical and fundamental aspects.
Collapse
Affiliation(s)
- Vincent Chabottaux
- Laboratory of Tumor and Developmental Biology, Center for Experimental Cancer Research (CRCE), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liege, Tour de Pathologie (B23), Sart-Tilman, Liege, 4000, Belgium
| | | |
Collapse
|
391
|
Lee M, Villegas-Estrada A, Celenza G, Boggess B, Toth M, Kreitinger G, Forbes C, Fridman R, Mobashery S, Chang M. Metabolism of a highly selective gelatinase inhibitor generates active metabolite. Chem Biol Drug Des 2007; 70:371-82. [PMID: 17927722 DOI: 10.1111/j.1747-0285.2007.00577.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
(4-Phenoxyphenylsulfonyl)methylthiirane (inhibitor 1) is a highly selective inhibitor of gelatinases (matrix metalloproteinases 2 and 9), which is showing considerable promise in animal models for cancer and stroke. Despite demonstrated potent, selective, and effective inhibition of gelatinases both in vitro and in vivo, the compound is rapidly metabolized, implying that the likely activity in vivo is due to a metabolite rather than the compound itself. To this end, metabolism of inhibitor 1 was investigated in in vitro systems. Four metabolites were identified by LC/MS-MS and the structures of three of them were further validated by comparison with authentic synthetic samples. One metabolite, 4-(4-thiiranylmethanesulfonylphenoxy)phenol (compound 21), was generated by hydroxylation of the terminal phenyl group of 1. This compound was investigated in kinetics of inhibition of several matrix metalloproteinases. This metabolite was a more potent slow-binding inhibitor of gelatinases (matrix metalloproteinase-2 and matrix metalloproteinase-9) than the parent compound 1, but it also served as a slow-binding inhibitor of matrix metalloproteinase-14, the upstream activator of matrix metalloproteinase-2.
Collapse
Affiliation(s)
- Mijoon Lee
- Department of Chemistry and Biochemistry and the Walther Cancer Research Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Abstract
MT1-MMP is a key integral membrane protease, which regulates tumor growth by cleaving extracellular matrix components, activating growth factors and receptors, and consequently, triggering downstream signals. To study what genes or pathways are mediated by endogenous MT1-MMP during tumor growth in vivo, we stably suppressed endogenous MT1-MMP in human tumor cells using RNA interference (RNAi). Tumor growth was significantly reduced in tumors derived from MT1-MMP-suppressed cells relative to control cells; the effect was rescued in cells engineered to re-express MT1-MMP expression. Gene expression profiling of cultured and tumor-derived cells by DNA microarray and real-time RT-PCR revealed that Smad1 expression was upregulated in MT1-MMP-expressing cells and rapidly growing tumors; this was confirmed in 4 additional tumor cell lines. Furthermore, tumor growth of MT1-MMP-expressing cells was reduced when Smad1 was suppressed by RNAi. We also found that the active form, but not the latent form, of TGF-beta was capable in promoting Smad1 expression and 3D cell proliferation in MT1-MMP-suppressed cells. In addition, a dominant-negative form of the TGF-beta Type II receptor reduced Smad1 expression in MT1-MMP-expressing cells. Thus, we propose that MT1-MMP functions, in part, to promote tumor growth by inducing the expression of Smad1 via TGF-beta signaling.
Collapse
Affiliation(s)
| | - Wen-Tien Chen
- To whom requests for reprints should be addressed, at Department of Medicine, HSC T15, Rm. 053, Stony Brook University, Stony Brook, NY 11794-8151. Phone: (631) 444-6948; Fax: (631) 444-7530;
| |
Collapse
|
393
|
Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 2007; 121:1463-72. [PMID: 17546601 DOI: 10.1002/ijc.22874] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The omentum is a major site of ovarian cancer metastasis. Our goal was to establish a three-dimensional (3D) model of the key components of the omental microenvironment (mesothelial cells, fibroblasts and extracellular matrices) to study ovarian cancer cell adhesion and invasion. The 3D model comprised of primary human fibroblasts extracted from normal human omentum, mixed with ECM and covered by a layer of primary human mesothelial cells, also from normal human omentum. After addition of ovarian cancer cells, the histological appearance of the 3D culture mimicked microscopic metastases to the omentum from patients with ovarian cancer. When ovarian cancer cells, SKOV3ip.1 and HeyA8, were applied to the 3D omental culture, 60% and 68% of all cells attached, respectively, but only 18% and 25% were able to invade. Ovarian cancer cells preferentially adhered to and invaded collagen I, followed by binding to collagen IV, fibronectin, vitronectin, laminin 10 and 1. Omental mesothelial cells significantly inhibited ovarian cancer cell adhesion and invasion, while omental fibroblasts induced adhesion and invasion. This effect is clearly mediated by direct cell-cell contact, since conditioned medium from mesothelial cells or fibroblasts has a minimal, or no, effect on ovarian cancer cell adhesion and invasion. In summary, we have established a 3D model to study the early steps of ovarian cancer metastasis to the human omentum, and found that omental mesothelial cells inhibit, while omental fibroblasts and the ECM enhance, the attachment and invasion of ovarian cancer cells.
Collapse
Affiliation(s)
- Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
394
|
Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol 2007; 26:587-96. [PMID: 17669641 PMCID: PMC2246078 DOI: 10.1016/j.matbio.2007.07.001] [Citation(s) in RCA: 450] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 02/08/2023]
Abstract
As their name implies, MMPs were first described as proteases that degrade extracellular matrix proteins, such as collagens, elastin, proteoglycans, and laminins. However, studies of MMP function in vivo have revealed that these proteinases act on a variety of extracellular protein substrates, often to activate latent forms of effector proteins, such as antimicrobial peptides and cytokines, or to alter protein function, such as shedding of cell-surface proteins. Because their substrates are diverse, MMPs are involved in variety of homeostatic functions, such as bone remodeling, wound healing, and several aspects of immunity. However, MMPs are also involved in a number of pathological processes, such as tumor progression, fibrosis, chronic inflammation, tissue destruction, and more. A key step in regulating MMP proteolysis is the conversion of the zymogen into an active proteinase. Several proMMPs are activated in the secretion pathway by furin proprotein convertases, but for most the activation mechanisms are largely not known. In this review, we discuss both authentic and potential mechanisms of proMMP activation.
Collapse
Affiliation(s)
- Hyun-Jeong Ra
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
395
|
Partridge JJ, Madsen MA, Ardi VC, Papagiannakopoulos T, Kupriyanova TA, Quigley JP, Deryugina EI. Functional analysis of matrix metalloproteinases and tissue inhibitors of metalloproteinases differentially expressed by variants of human HT-1080 fibrosarcoma exhibiting high and low levels of intravasation and metastasis. J Biol Chem 2007; 282:35964-77. [PMID: 17895241 DOI: 10.1074/jbc.m705993200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of tumor-derived matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in cancer cell dissemination was analyzed by employing two variants of human HT-1080 fibrosarcoma, HT-hi/diss and HT-lo/diss, which differ by 50-100-fold in their ability to intravasate and metastasize in the chick embryo. HT-hi/diss and HT-lo/diss were compared by quantitative reverse transcription-PCR and Western blot analyses for mRNA and protein expression of nine MMPs (MMP-1, -2, -3, -7, -8, -9, -10, -13, and -14) and three TIMPs (TIMP-1, -2, and -3) in cultured cells in vitro and in primary tumors in vivo. MMP-1 and MMP-9 were more abundant in the HT-hi/diss variant, both in cultures and in tumors, whereas the HT-lo/diss variant consistently expressed higher levels of MMP-2, TIMP-1, and TIMP-2. Small interfering RNA-mediated down-regulation of MMP-2 and TIMP-2 increased intravasation of HT-lo/diss cells. Coordinately, treatment of the developing HT-hi/diss tumors with recombinant TIMP-1 and TIMP-2 significantly reduced HT-hi/diss cell intravasation. However, a substantial increase of HT-hi/diss dissemination was observed upon small interfering RNA-mediated down-regulation of three secreted MMPs, including the interstitial collagenase MMP-1 and the two gelatinases, MMP-2 and MMP-9, but not the membrane-tethered MMP-14. The addition of recombinant pro-MMP-9 protein to the HT-hi/diss tumors reversed the increased intravasation of HT-hi/diss cells, in which MMP-9 was stably down-regulated by short hairpin RNA interference. This rescue did not occur if the pro-MMP-9 was stoichiometrically complexed with TIMP-1, pointing to a direct role of the MMP-9 enzyme in regulation of HT-hi/diss intravasation. Collectively, these findings demonstrate that tumor-derived MMPs may have protective functions in cancer cell intravasation, i.e. not promoting but rather catalytically interfering with the early stages of cancer dissemination.
Collapse
Affiliation(s)
- Juneth J Partridge
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
396
|
Iida J, McCarthy JB. Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-beta. Melanoma Res 2007; 17:205-13. [PMID: 17625450 DOI: 10.1097/cmr.0b013e3282a660ad] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumor cell invasion through basement membranes and into stromal tissue are key steps for promoting growth and metastasis. Tumor cells express various extracellular-matrix-degrading enzymes such as matrix metalloproteinases (MMPs) to degrade extracellular matrix components to facilitate tumor migration and invasion. Histological and clinical studies suggest a role for MMP-1 (collagenase-1) in malignant melanoma invasion. In this study, we evaluated MMP-1 in regulating malignant phenotypes of human melanoma cells by generating human melanoma cells stably transfected with pro-MMP-1 cDNA. The transfectants expressed the active form of MMP-1 associated with cells and showed enhanced invasive and growth abilities in type I collagen gel. Furthermore, MMP-1 expression promoted anchorage-independent growth, which was inhibited in the presence of type II transforming growth factor (TGF)-beta receptor:Fc fusion protein that scavenges TGF-beta receptors. Finally, we demonstrated that MMP-1 directly generated active TGF-beta from its latent form. Thus, these results suggest that MMP-1 produced from melanoma cells would play a role in tumor progression by both degrading matrix proteins and generating active growth factors such as TGF-beta in vivo.
Collapse
Affiliation(s)
- Joji Iida
- Department of Laboratory Medicine and Pathology, University of Minnesota, Comprehensive Cancer Center, Minneapolis 55455, USA.
| | | |
Collapse
|
397
|
Wagenaar-Miller RA, Engelholm LH, Gavard J, Yamada SS, Gutkind JS, Behrendt N, Bugge TH, Holmbeck K. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo. Mol Cell Biol 2007; 27:6309-22. [PMID: 17620416 PMCID: PMC2099620 DOI: 10.1128/mcb.00291-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/10/2007] [Accepted: 06/27/2007] [Indexed: 11/20/2022] Open
Abstract
Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these two pathways is unclear and even controversial. Here we show that intracellular and pericellular collagen turnover pathways have complementary roles in vivo. Individual deficits in intracellular collagen degradation (urokinase plasminogen activator receptor-associated protein/Endo180 ablation) or pericellular collagen degradation (membrane type 1-matrix metalloproteinase ablation) were compatible with development and survival. Their combined deficits, however, synergized to cause postnatal death by severely impairing bone formation. Interestingly, this was mechanistically linked to the proliferative failure and poor survival of cartilage- and bone-forming cells within their collagen-rich microenvironment. These findings have important implications for the use of pharmacological inhibitors of collagenase activity to prevent connective tissue destruction in a variety of diseases.
Collapse
MESH Headings
- Alleles
- Animals
- Animals, Newborn
- Bone Density
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/metabolism
- Collagen/analysis
- Collagen/classification
- Collagen/metabolism
- Eosine Yellowish-(YS)/metabolism
- Hematoxylin/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Matrix Metalloproteinase 14/genetics
- Matrix Metalloproteinase 14/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred Strains
- Mice, Knockout
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Osteogenesis/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Receptors, Urokinase Plasminogen Activator
- Skull/cytology
- Tomography, X-Ray Computed
Collapse
Affiliation(s)
- Rebecca A Wagenaar-Miller
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
398
|
Raeber GP, Lutolf MP, Hubbell JA. Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomater 2007; 3:615-29. [PMID: 17572164 DOI: 10.1016/j.actbio.2007.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 03/19/2007] [Accepted: 03/27/2007] [Indexed: 01/30/2023]
Abstract
The elucidation of molecular cell-extracellular matrix (ECM) interactions regulating tissue dynamics necessitates straightforward model systems that can dissect the associated physiological complexity into a smaller number of distinct interactions. Here we employ a previously developed artificial ECM model system to study dynamic cell-matrix interactions involved in proteolytic three-dimensional (3-D) migration and matrix remodeling at the level of single cells. Quantitative time-lapse microscopy of primary human fibroblasts exposed to exogenous physiological matrix metalloproteinase (MMP) inhibitors revealed that 3-D migration is dependent on cell seeding density and occurred via highly localized MMP- and tissue inhibitor of metalloproteinases-2-dependent processes. Stimulation of cells by tumor necrosis factor alpha led to a striking augmentation in fibroblast migration that was accompanied by induction of alphaVbeta3 integrin expression. In long-term cultures, extensive localized cellular matrix remodeling resulted in the morphogenesis of single cells into interconnected multicellular networks. Therefore, these tailor-made artificial ECMs can replicate complex 3-D cell-matrix interactions involved in tissue development and regeneration, an important step in the design of next-generation synthetic biomaterials for tissue engineering.
Collapse
Affiliation(s)
- G P Raeber
- Institute of Bioengineering and Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
399
|
Wu M, Shi Y, Xi L, Li Q, Liao GN, Han ZQ, Lu YP, Ma D. Construction of antisense MT1-MMP vector and its inhibitory effects on invasion of human ovarian cancer cells. ACTA ACUST UNITED AC 2007; 25:715-7. [PMID: 16696335 DOI: 10.1007/bf02896180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) plays crucial roles in tumor cell growth, invasion, and angiogenesis. To clarify whether the endogenously expressed MT1-MMP in metastatic human ovarian carcinoma cell lines SKOV3 plays a critical role in tumor cell invasiveness, antisense MT1-MMP cloned in eukaryotic expression vector pMMP14as was transferred into SKOV3 cells. 48h after transfection, decreased expression of endogenous MT1-MMP protein was detected in pMMP14as-transfected SKOV3 cells and the activation of pro-MMP2 was inhibited markedly. The mean percentage of invasive cells was (62.50 +/- 5.30) % in pMMP14as-transfected cells, which was obviously less than that (97.20 +/- 6.90) % in the control. Thus, antisense MT1-MMP effectively inhibited the endogenous MT1-MMP expression and the invasiveness in SKOV3 cells, suggesting that MT1-MMP may be a therapeutic target molecule for human invasive ovarian cancers.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Oldberg Å, Kalamajski S, Salnikov AV, Stuhr L, Mörgelin M, Reed RK, Heldin NE, Rubin K. Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci U S A 2007; 104:13966-71. [PMID: 17715296 PMCID: PMC1955775 DOI: 10.1073/pnas.0702014104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Research on the biology of the tumor stroma has the potential to lead to development of more effective treatment regimes enhancing the efficacy of drug-based treatment of solid malignancies. Tumor stroma is characterized by distorted blood vessels and activated connective tissue cells producing a collagen-rich matrix, which is accompanied by elevated interstitial fluid pressure (IFP), indicating a transport barrier between tumor tissue and blood. Here, we show that the collagen-binding proteoglycan fibromodulin controls stroma structure and fluid balance in experimental carcinoma. Gene ablation or inhibition of expression by anti-inflammatory agents showed that fibromodulin promoted the formation of a dense stroma and an elevated IFP. Fibromodulin-deficiency did not affect vasculature but increased the extracellular fluid volume and lowered IFP. Our data suggest that fibromodulin controls stroma matrix structure that in turn modulates fluid convection inside and out of the stroma. This finding is particularly important in relation to the demonstration that targeted modulations of the fluid balance in carcinoma can increase the response to cancer therapeutic agents.
Collapse
Affiliation(s)
- Åke Oldberg
- *Department of Experimental Medical Sciences, BMC, B-12, and
| | | | - Alexei V. Salnikov
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden
- Oncology Clinic, University Hospital Lund, SE-221 85 Lund, Sweden
| | - Linda Stuhr
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway and
| | - Matthias Mörgelin
- Department of Clinical Sciences, BMC B14, University of Lund, SE-221 84 Lund, Sweden
| | - Rolf K. Reed
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway and
| | - Nils-Erik Heldin
- **Department of Genetics and Pathology, Uppsala University Hospital, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | - Kristofer Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|