351
|
Jia S, Zhang R, Li Z, Li J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget 2017; 8:55632-55645. [PMID: 28903450 PMCID: PMC5589689 DOI: 10.18632/oncotarget.17184] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) has been the fourth leading cause of cancer-related mortality worldwide. Owing to clonal evolution and selection, CRC treatment needs multimodal therapeutic approaches and due monitoring of tumor progression and therapeutic efficacy. Liquid biopsy, involving the use of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes, may offer a promising noninvasive alternative for diagnosis and for real-time monitoring of tumor evolution and therapeutic response compared to traditional tissue biopsy. Monitoring of the disease processes can enable clinicians to readily adopt a strategy based on optimal therapeutic decision-making. This article provides an overview of the significant advances and the current clinical and biological significance of CTCs, ctDNA, and exosomes in CRC, as well as a comparison of the main merits and demerits of these three components. The hurdles that need to be resolved and potential directions to be followed with respect to liquid biopsies for detection and therapy of CRC are also discussed.
Collapse
Affiliation(s)
- Shiyu Jia
- Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Ziyang Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jinming Li
- Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| |
Collapse
|
352
|
Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y. Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology 2017; 92:360-370. [PMID: 28376502 DOI: 10.1159/000463387] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We clarified the predictive and prognostic value of circulating plasma exosomal microRNA-21 (miR-21) in each TNM stage of colorectal cancer (CRC) patients. METHODS The microRNA (miRNA) profiles of the plasma exosomes, primary tumor tissues, and liver metastasis tissues from the same CRC patients were examined using a microarray. For validation analysis, the plasma exosome samples from 326 CRC patients were measured by TaqMan miRNA assays. RESULTS In the miRNA microarray analyses, miR-21 showed the highest upregulation in exosomes, primary tumor tissues, and liver metastasis tissues. Significant correlations were demonstrated between exosomal miR-21 and tissue miR-21 levels. As for the relationship to the pathological condition, exosomal miR-21 showed a significant association with liver metastasis and TNM stage. The overall survival (OS) rates and disease-free survival (DFS) rates in high-exosomal-miR-21 patients were significantly worse than those in low-miR-21 patients. Exosomal miR-21 levels were an independent prognostic factor for OS and DFS in CRC patients with TNM stage II or III, and for OS in patients with TNM stage IV. CONCLUSION Plasma exosomal miR-21 levels are a useful biomarker for the prediction of recurrence and poor prognosis in CRC patients with TNM stage II, III, or IV.
Collapse
Affiliation(s)
- Mitsuo Tsukamoto
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
353
|
H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18030538. [PMID: 28257101 PMCID: PMC5372554 DOI: 10.3390/ijms18030538] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Biology, Faculty of Medicine, The University of Gaziantep, Gaziantep 27310, Turkey.
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Mohamed F Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Arturo Chavez-Reyes
- Centro de Investigación y Estudios Avanzados del IPN, Unidad Monterrey, Apodaca NL CP 66600, Mexico.
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
354
|
Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, Kelley KA, Lopez CD, Rana SR, Ruhl R, Tsikitis VL, Vaccaro GM, Wong MH, Mayo SC. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol Gastroenterol Hepatol 2017; 3:163-173. [PMID: 28275683 DOI: 10.1016/j.jcmgh.2017.01.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 05/25/2023]
Abstract
In patients with colorectal cancer (CRC) that metastasizes to the liver, there are several key goals for improving outcomes including early detection, effective prognostic indicators of treatment response, and accurate identification of patients at high risk for recurrence. Although new therapeutic regimens developed over the past decade have increased survival, there is substantial room for improvement in selecting targeted treatment regimens for the patients who will derive the most benefit. Recently, there have been exciting developments in identifying high-risk patient cohorts, refinements in the understanding of systemic vs localized drug delivery to metastatic niches, liquid biomarker development, and dramatic advances in tumor immune therapy, all of which promise new and innovative approaches to tackling the problem of detecting and treating the metastatic spread of CRC to the liver. Our multidisciplinary group held a state-of-the-science symposium this past year to review advances in this rapidly evolving field. Herein, we present a discussion around the issues facing treatment of patients with CRC liver metastases, including the relationship of discrete gene signatures with prognosis. We also discuss the latest advances to maximize regional and systemic therapies aimed at decreasing intrahepatic recurrence, review recent insights into the tumor microenvironment, and summarize advances in noninvasive multimodal biomarkers for early detection of primary and recurrent disease. As we continue to advance clinically and technologically in the field of colorectal tumor biology, our goal should be continued refinement of predictive and prognostic studies to decrease recurrence after curative resection and minimize treatment toxicity to patients through a tailored multidisciplinary approach to cancer care.
Collapse
Key Words
- 5-FU, fluorouracil
- Biomarkers
- CDX2, caudal-type homeobox transcription factor 2
- CEA, carcinoembryonic antigen
- CK, cytokeratin
- CRC, colorectal cancer
- CRLM, colorectal cancer liver metastasis
- CTC, circulating tumor cells
- Colorectal Cancer Liver Metastasis
- DFS, disease-free survival
- EGFR, epidermal growth factor receptor
- EpCAM, epithelial cell adhesion molecule
- HAI, hepatic arterial infusion
- Hepatic Arterial Infusion
- High-Risk Colorectal Cancer
- IL, interleukin
- LV, leucovorin
- MSI, microsatellite instability
- OS, overall survival
- PD, programmed death
- Recurrence
- TH, T-helper
- cfDNA, cell-free DNA
- dMMR, deficient mismatch repair
- miRNA, microRNA
Collapse
Affiliation(s)
- Luai R Zarour
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Sudarshan Anand
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Kevin G Billingsley
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - William H Bisson
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Andrea Cercek
- Department of Gastrointestinal Medical Oncology, Solid Tumor Division, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael F Clarke
- Stanford Institute for Stem Cell and Regenerative Medicine, Stanford University, Stanford, California; Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Lisa M Coussens
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Charles E Gast
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - Cristina B Geltzeiler
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Lissi Hansen
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; School of Nursing, Oregon Heath and Science University, Portland, Oregon
| | - Katherine A Kelley
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Charles D Lopez
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Shushan R Rana
- Department of Radiation Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Rebecca Ruhl
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - V Liana Tsikitis
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Gina M Vaccaro
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Melissa H Wong
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Skye C Mayo
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| |
Collapse
|
355
|
Chatterjee N, Rana S, Espinosa-Diez C, Anand S. MicroRNAs in Cancer: challenges and opportunities in early detection, disease monitoring, and therapeutic agents. CURRENT PATHOBIOLOGY REPORTS 2017; 5:35-42. [PMID: 28966883 PMCID: PMC5613763 DOI: 10.1007/s40139-017-0123-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to examine the usefulness of miRNAs as diagnostic and prognostic biomarkers for cancer and to evaluate the applicability of miRNAs as cancer therapeutics. RECENT FINDINGS Examination of miRNA milieu from body fluids offers a new alternative for quick, affordable and easy analysis of disease status in patients. Blood-based exosomal miRNAs have increased stability and are an excellent choice for clinical cancer diagnostics and prognostics. Currently, there are many miRNA signatures associated with cancer and progression but there is no consensus among multiple sera and tumor sample studies. Off-target and immunological effects remains an obstacle for use of miRNAs as novel chemotherapeutics in the clinic. Recent developments in nanotechnology and drug delivery systems which target the tumor microenvironment may provide an alternative therapeutic approach with decreased toxicity. SUMMARY This review critically evaluates the literature investigating the use of miRNAs as biomarkers and their future as potential therapeutics.
Collapse
Affiliation(s)
- Namita Chatterjee
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Shushan Rana
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Cristina Espinosa-Diez
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Sudarshan Anand
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
356
|
Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res 2017; 181:108-120. [PMID: 27810413 DOI: 10.1016/j.trsl.2016.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
More than 90% of the human genome is actively transcribed, but less than 2% of the total genome encodes protein-coding RNA, and thus, noncoding RNA (ncRNA) is a major component of the human transcriptome. Recently, ncRNA was demonstrated to play important roles in multiple biological processes by directly or indirectly interfering with gene expression, and the dysregulation of ncRNA is associated with a variety of diseases, including cancer. In this review, we summarize the function and mechanism of miRNA, long intergenic ncRNA, and some other types of ncRNAs, such as small nucleolar RNA, circular ncRNA, pseudogene RNA, and even protein-coding mRNA, in the progression of colorectal cancer (CRC). We also presented their clinical application in the diagnosis and prognosis of CRC. The summary of the current state of ncRNA in CRC will contribute to our understanding of the complex processes of CRC initiation and development and will help in the discovery of novel biomarkers and therapeutic targets for CRC diagnosis and treatment.
Collapse
|
357
|
Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: a systematic review. Int J Clin Oncol 2017; 22:413-420. [PMID: 28243946 DOI: 10.1007/s10147-017-1104-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Circulating non-coding RNAs, including microRNAs and long non-coding RNAs, and the protein components of extracellular vesicles are promising biomarkers for the non-invasive detection of cancer at an early stage. This systematic review discusses the increasing number of well-designed cancer biomarker-related studies that have been published worldwide. In many of these studies, high diagnostic accuracy, which is represented as the area under the receiver operating characteristic curve being >0.8, could be achieved using combinations of circulating microRNAs. In addition, similar diagnostic accuracies were reported using long non-coding RNAs or proteins present in extracellular vesicles, although these evidences were based on a limited number of studies.
Collapse
|
358
|
Fatima F, Nawaz M. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies. Noncoding RNA 2017; 3:ncrna3010010. [PMID: 29657282 PMCID: PMC5831998 DOI: 10.3390/ncrna3010010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil.
| |
Collapse
|
359
|
Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6037168. [PMID: 28271066 PMCID: PMC5320319 DOI: 10.1155/2017/6037168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/15/2017] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.
Collapse
|
360
|
Nedaeinia R, Manian M, Jazayeri MH, Ranjbar M, Salehi R, Sharifi M, Mohaghegh F, Goli M, Jahednia SH, Avan A, Ghayour-Mobarhan M. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther 2017; 24:48-56. [PMID: 27982021 DOI: 10.1038/cgt.2016.77] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/13/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
The most important biological function of exosomes is their possible use as biomarkers in clinical diagnosis. Compared with biomarkers identified in conventional specimens such as serum or urine, exosomal biomarkers provide the highest amount of sensitivity and specificity, which can be attributed to their excellent stability. Exosomes, which harbor different types of proteins, nucleic acids and lipids, are present in almost all bodily fluids. The molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), are promising as biomarkers in clinical diagnosis. This discovery that exosomes also contain messenger RNAs and miRNAs shows that they could be carriers of genetic information. Although the majority of RNAs found in exosomes are degraded RNA fragments with a length of <200 nucleotides, some full-length RNAs might be present that may affect protein production in the recipient cell. In addition, exosomal miRNAs have been found to be associated with certain diseases. Several studies have pointed out miRNA contents of circulating exosomes that are similar to those of originating cancer cells. In this review, the recent advances in circulating exosomal miRNAs as biomarkers in gastrointestinal cancers are discussed. These studies indicated that miRNAs can be detected in exosomes isolated from body fluids such as saliva, which suggests potential advantages of using exosomal miRNAs as noninvasive novel biomarkers.
Collapse
Affiliation(s)
- R Nedaeinia
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Manian
- Immunology Research Center, Department of Immunology, Iran University of Medical Science, Tehran, Iran
| | - M H Jazayeri
- Immunology Research Center, Department of Immunology, Iran University of Medical Science, Tehran, Iran
| | - M Ranjbar
- Deputy of Food and Drug, Department of Food Control Administration, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - F Mohaghegh
- Department of Radiotherapy, Arak University of Medical Sciences, Arak, Iran
| | - M Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - S H Jahednia
- Department of Immunology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - A Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Biochemistry of Nutrition Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
361
|
Lai X, Friedman A. Exosomal microRNA concentrations in colorectal cancer: A mathematical model. J Theor Biol 2017; 415:70-83. [DOI: 10.1016/j.jtbi.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022]
|
362
|
Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med 2017; 49:e285. [PMID: 28104913 PMCID: PMC5291842 DOI: 10.1038/emm.2016.153] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022] Open
Abstract
Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell–cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in exosomes have been implicated in physiological and pathological processes. Tumor-delivered miRs, interacting with stromal cells in the tumor microenvironment, modulate tumor progression, angiogenesis, metastasis and immune escape. Altered cell metabolism is one of the hallmarks of cancer. A number of different types of tumor rely on mitochondrial metabolism by triggering adaptive mechanisms to optimize their oxidative phosphorylation in relation to their substrate supply and energy demands. Exogenous exosomes can induce metabolic reprogramming by restoring the respiration of cancer cells and supress tumor growth. The exosomal miRs involved in the modulation of cancer metabolism may be potentially utilized for better diagnostics and therapy.
Collapse
|
363
|
Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, Kelley KA, Lopez CD, Rana SR, Ruhl R, Tsikitis VL, Vaccaro GM, Wong MH, Mayo SC. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol Gastroenterol Hepatol 2017; 3:163-173. [PMID: 28275683 PMCID: PMC5331831 DOI: 10.1016/j.jcmgh.2017.01.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
Abstract
In patients with colorectal cancer (CRC) that metastasizes to the liver, there are several key goals for improving outcomes including early detection, effective prognostic indicators of treatment response, and accurate identification of patients at high risk for recurrence. Although new therapeutic regimens developed over the past decade have increased survival, there is substantial room for improvement in selecting targeted treatment regimens for the patients who will derive the most benefit. Recently, there have been exciting developments in identifying high-risk patient cohorts, refinements in the understanding of systemic vs localized drug delivery to metastatic niches, liquid biomarker development, and dramatic advances in tumor immune therapy, all of which promise new and innovative approaches to tackling the problem of detecting and treating the metastatic spread of CRC to the liver. Our multidisciplinary group held a state-of-the-science symposium this past year to review advances in this rapidly evolving field. Herein, we present a discussion around the issues facing treatment of patients with CRC liver metastases, including the relationship of discrete gene signatures with prognosis. We also discuss the latest advances to maximize regional and systemic therapies aimed at decreasing intrahepatic recurrence, review recent insights into the tumor microenvironment, and summarize advances in noninvasive multimodal biomarkers for early detection of primary and recurrent disease. As we continue to advance clinically and technologically in the field of colorectal tumor biology, our goal should be continued refinement of predictive and prognostic studies to decrease recurrence after curative resection and minimize treatment toxicity to patients through a tailored multidisciplinary approach to cancer care.
Collapse
Key Words
- 5-FU, fluorouracil
- Biomarkers
- CDX2, caudal-type homeobox transcription factor 2
- CEA, carcinoembryonic antigen
- CK, cytokeratin
- CRC, colorectal cancer
- CRLM, colorectal cancer liver metastasis
- CTC, circulating tumor cells
- Colorectal Cancer Liver Metastasis
- DFS, disease-free survival
- EGFR, epidermal growth factor receptor
- EpCAM, epithelial cell adhesion molecule
- HAI, hepatic arterial infusion
- Hepatic Arterial Infusion
- High-Risk Colorectal Cancer
- IL, interleukin
- LV, leucovorin
- MSI, microsatellite instability
- OS, overall survival
- PD, programmed death
- Recurrence
- TH, T-helper
- cfDNA, cell-free DNA
- dMMR, deficient mismatch repair
- miRNA, microRNA
Collapse
Affiliation(s)
- Luai R. Zarour
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Sudarshan Anand
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Kevin G. Billingsley
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - William H. Bisson
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Andrea Cercek
- Department of Gastrointestinal Medical Oncology, Solid Tumor Division, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael F. Clarke
- Stanford Institute for Stem Cell and Regenerative Medicine, Stanford University, Stanford, California,Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Lisa M. Coussens
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Charles E. Gast
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - Cristina B. Geltzeiler
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Lissi Hansen
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,School of Nursing, Oregon Heath and Science University, Portland, Oregon
| | - Katherine A. Kelley
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Charles D. Lopez
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Shushan R. Rana
- Department of Radiation Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Rebecca Ruhl
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - V. Liana Tsikitis
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Gina M. Vaccaro
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Melissa H. Wong
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Skye C. Mayo
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Correspondence Address correspondence to: Skye C. Mayo, MD, Department of Surgery, Oregon Heath and Science University, 3181 SW Sam Jackson Park Road, Mailcode L223, Portland, Oregon 97239. fax: (503) 494–8884.Department of SurgeryOregon Heath and Science University3181 SW Sam Jackson Park Road, Mailcode L223PortlandOregon 97239
| |
Collapse
|
364
|
Sunkara V, Woo HK, Cho YK. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst 2017; 141:371-81. [PMID: 26535415 DOI: 10.1039/c5an01775k] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived nanovesicles, present in almost all types of body fluids, which play an important role in intercellular communication and are involved in the transport of biological signals for regulating diverse cellular functions. Due to the increasing clinical interest in the role of EVs in tumor promotion, various techniques for their isolation, detection, and characterization are being developed. In this review, we present an overview of the current EV isolation and characterization methods in addition to their applications and limitations. Furthermore, EVs as the potential emerging biomarkers in cancer management and their clinical implementation are briefly discussed.
Collapse
Affiliation(s)
- Vijaya Sunkara
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| | - Hyun-Kyung Woo
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 689-798, Republic of Korea. and Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
365
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
366
|
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2017; 312:L110-L121. [PMID: 27881406 PMCID: PMC5283929 DOI: 10.1152/ajplung.00423.2016] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 01/10/2023] Open
Abstract
Exosomes are nanovesicles secreted by cells and contain various molecules including protein, lipid, and DNA/RNA. They are crucial mediators of the intercellular communication and serve as promising vehicles for drug delivery and gene therapy. Recently, accumulating evidence suggests that microRNAs (miRNAs) may serve as new and potentially powerful targets for therapeutic interventions against various human diseases. However, steadily and effectively delivering miRNA mimics or inhibitors to target cells remains a major obstacle. To enhance the efficacy of exosome-mediated delivery of miRNA molecules, it is crucial to develop a convenient and efficient method to enrich specific miRNAs or antisense oligos in isolated exosomes. Here we report a novel method to prepare specific miRNA molecule-loaded exosomes. Using a modified calcium chloride-mediated transfection method, we successfully enhanced the designated miRNA mimics or inhibitors in isolated exosomes directly, instead of transfecting their mother cells. We also compared this method with direct transfection of exosomes using electroporation. Both methods confirmed that exosomes can serve as cargos to deliver a robustly increased amount of selected miRNA mimic(s) or inhibitor(s) to the recipient cells. Delivery of these miRNA molecule enriched-exosomes subsequently results in highly efficient overexpression or deletion of the designated miRNAs in the recipient cells both in vivo and in vitro. Additionally, we confirmed that exosome-delivered miRNA mimics or inhibitors are functional in the recipient cells. Collectively, we developed a novel protocol to conveniently manipulate exosomal miRNAs with high efficiency and successfully deliver the exosomal miRNA molecules to recipient cells.
Collapse
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Ziwen Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Jasleen K Minhas
- Department of Medicine, North Shore Medical Center, Salem Hospital, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| |
Collapse
|
367
|
Cui C, Xu JM, Wang YL. Role of exosomes in diagnosis of digestive system cancers. Shijie Huaren Xiaohua Zazhi 2016; 24:4644-4651. [DOI: 10.11569/wcjd.v24.i35.4644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nanovesicles that are secreted by their host cells and distributed in the blood, saliva, urine, and other body fluids. Exosomes have emerged as a novel important mediator in facilitating intercellular communication by virtue of regulatory molecules in its cargo (nucleic acids and proteins) and inducing physiological and genetic changes in targeted cells. Exosomes can be released in many and perhaps all biological fluids, and tumor-derived or -associated exosomes are emerging as key players in intercellular communication between cancer cells and their microenvironment through horizontal transfer of information via their cargo. Exosomes could be serving as a novel means for tumor genetic detection and potential biomarkers for cancer diagnostics and prognostics. This article reviews recent progress in the understanding of the role of exosomes in diagnosis of digestive system cancers.
Collapse
|
368
|
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 2016; 30:836-848. [PMID: 27960084 PMCID: PMC5157696 DOI: 10.1016/j.ccell.2016.10.009] [Citation(s) in RCA: 1447] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/05/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are critical mediators of intercellular communication between tumor cells and stromal cells in local and distant microenvironments. Accordingly, EVs play an essential role in both primary tumor growth and metastatic evolution. EVs orchestrate multiple systemic pathophysiological processes, such as coagulation, vascular leakiness, and reprogramming of stromal recipient cells to support pre-metastatic niche formation and subsequent metastasis. Clinically, EVs may be biomarkers and novel therapeutic targets for cancer progression, particularly for predicting and preventing future metastatic development.
Collapse
Affiliation(s)
- Annette Becker
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Basant Kumar Thakur
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Pediatric Clinic III, University Clinic of Essen, Hufelandstrasse-55, Essen 45147, Germany
| | - Joshua Mitchell Weiss
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Han Sang Kim
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Yonsei Cancer Center, Division of Medical Oncology, Departments of Internal Medicine, and Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hector Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
369
|
Colangelo T, Polcaro G, Muccillo L, D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino L, Colantuoni V. Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:1-18. [PMID: 27864070 DOI: 10.1016/j.bbcan.2016.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; present address: Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Casa Sollievo della Sofferenza-IRCCS, 71013 San Giovanni Rotondo (FG), Italy
| | - Giovanna Polcaro
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Giovanna D'Agostino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Valeria Rosato
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Pamela Ziccardi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo (FG), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| |
Collapse
|
370
|
Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A, Chang GJ, Rodriguez-Bigas MA, Li Y, Chang P, Mao Y, Hassan MM, Wang F, Li D. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget 2016; 7:76250-76260. [PMID: 27788488 PMCID: PMC5342811 DOI: 10.18632/oncotarget.12841] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The study was aimed to evaluate the prognostic or predictive value of serum exosomal microRNAs (miRNAs) for tumor recurrence and response to adjuvant therapy in stage II and stage III colon cancer. RESULTS 145 differentially expressed mature miRNAs were identified (P<0.05) and 10 top hits were carried forward in validation test. MiR-4772-3p was significantly under-expressed in 27 patients with recurrence compared to in 57 patients without recurrence (P=0.002). The reduced expression was significantly related to increased risk of tumor recurrence and risk of death. As a predictor for tumor recurrence, ROC analysis revealed the AUC (95% CI) was 0.72 (0.59-0.85, P=0.001) for lower level of miR-4772-3p compared to 0.63 (0.51-0.75, P=0.062) for tumor site and 0.65 (0.51-0.78,P=0.034) for lymph node status. Among 66/84 patients who received FOLFOX adjuvant therapy, 9/10 (90%) patients with a lower level and 10/56 (18%) patients with a higher level of miR-4772-3p had tumor recurrence (P<0.001). MATERIALS AND METHODS Blood samples were prospectively collected from84 patients with stage II/III colon cancer after tumor resection and before adjuvant therapy. Serum exosomal miRNA profiles were determined by RNA sequencing. Differentially expressed mature miRNAs were identified between patients with or without tumor recurrence. The top hits were validated in individual RNA samples using quantitative real-time reverse transcription PCR. CONCLUSIONS Reduced expression of serum exosomal miR-4772-3p is a prognostic biomarker for tumor recurrence in stage II and stage III colon cancer patients. The predictive value of this marker for response to FOLFOX adjuvant therapy needs further investigation.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Gastroenterology and Hepatology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Amir Mehdizadeh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George J. Chang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Miguel A. Rodriguez-Bigas
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yixiang Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manal M. Hassan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
371
|
Uratani R, Toiyama Y, Kitajima T, Kawamura M, Hiro J, Kobayashi M, Tanaka K, Inoue Y, Mohri Y, Mori T, Kato T, Goel A, Kusunoki M. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS One 2016; 11:e0160722. [PMID: 27760147 PMCID: PMC5070810 DOI: 10.1371/journal.pone.0160722] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although there is a growing interest in developing circulating microRNA (miRNA) as noninvasive diagnostic biomarkers for the detection of high-risk colorectal adenomas and early-stage CRCs, but the comparative diagnostic significance of serum vs. exosomal miRNAs remains unexplored. METHODS Based upon published literature, we performed an initial discovery step by investigating the expression of a miRNA panel in 20 normal colonic mucosa, 27 adenomas, and 19 CRC tissues. We performed subsequent validation by quantifying expression of candidate miRNAs in total serum and in exosomes from 26 adenoma patients and 47 healthy controls, and evaluated their clinical significance and potential diagnostic value in colorectal adenomas. RESULTS We observed that the expression of four miRNAs, miR-21, miR-29a, miR-92a, and miR-135b, was significantly higher in colorectal adenomas vs. normal colonic mucosa. During validation, expression of miR-21, miR-29a and miR-92a in serum was significantly higher in adenomas vs. healthy controls, significantly correlated with adenoma size and total adenoma number within the colorectum, and significantly discriminated patients with advanced adenomas. In contrast, although exosomal miR-21 and miR-29a levels in adenoma patients were significantly higher than those of healthy volunteers, only exosomal miR-21 significantly correlated with adenoma size and total adenoma number, and could discriminate patients with high-risk adenomas. CONCLUSION Compared to exosomal miRNAs, serum levels of miR-21, miR-29a and miR-92a are superior diagnostic biomarkers in patients with high-risk adenomatous polyps.
Collapse
Affiliation(s)
- Ryo Uratani
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
- * E-mail: (YT); (AG)
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Minako Kobayashi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| | - Takao Mori
- Moriei Hospital, Kuwana city, Mie 511–0038, Japan
| | - Toshio Kato
- Tohyama Hospital, Tsu city, Mie 514–0043, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research & Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, 75246–2017, United States of America
- * E-mail: (YT); (AG)
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514–8507, Japan
| |
Collapse
|
372
|
Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS One 2016. [PMID: 27760147 DOI: 10.1371/jourmal.pone.0160722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although there is a growing interest in developing circulating microRNA (miRNA) as noninvasive diagnostic biomarkers for the detection of high-risk colorectal adenomas and early-stage CRCs, but the comparative diagnostic significance of serum vs. exosomal miRNAs remains unexplored. METHODS Based upon published literature, we performed an initial discovery step by investigating the expression of a miRNA panel in 20 normal colonic mucosa, 27 adenomas, and 19 CRC tissues. We performed subsequent validation by quantifying expression of candidate miRNAs in total serum and in exosomes from 26 adenoma patients and 47 healthy controls, and evaluated their clinical significance and potential diagnostic value in colorectal adenomas. RESULTS We observed that the expression of four miRNAs, miR-21, miR-29a, miR-92a, and miR-135b, was significantly higher in colorectal adenomas vs. normal colonic mucosa. During validation, expression of miR-21, miR-29a and miR-92a in serum was significantly higher in adenomas vs. healthy controls, significantly correlated with adenoma size and total adenoma number within the colorectum, and significantly discriminated patients with advanced adenomas. In contrast, although exosomal miR-21 and miR-29a levels in adenoma patients were significantly higher than those of healthy volunteers, only exosomal miR-21 significantly correlated with adenoma size and total adenoma number, and could discriminate patients with high-risk adenomas. CONCLUSION Compared to exosomal miRNAs, serum levels of miR-21, miR-29a and miR-92a are superior diagnostic biomarkers in patients with high-risk adenomatous polyps.
Collapse
|
373
|
Xu W, Yang Z, Lu N. From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:156. [PMID: 27686593 PMCID: PMC5043625 DOI: 10.1186/s13046-016-0429-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Exosomes are nanoscale extracellular membrane vesicles that are created by the fusion of an intracellular multivesicular body with the cell membrane. They are widely distributed in serum, urine, saliva and other biological fluids. As important transfer vectors for intercellular communication and genetic material, exosomes can stimulate target cells directly via receptor-mediated interactions or via the transfer of various bioactive molecules, such as cell membrane receptors, proteins, mRNAs and microRNAs, thus exerting their biological functions. This review focuses on the biological characteristics of exosomes, as well as their role and underlying mechanisms of action in the evolution of tumor formation, metastasis, drug resistance and other malignant behaviors. Additionally, this review emphasizes the potential applications of exosomes in the treatment of tumors. Further research may provide new ideas and methods to establish effective, exosome-based strategies for the early diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
374
|
Manne U, Jadhav T, Putcha BDK, Samuel T, Soni S, Shanmugam C, Suswam EA. Molecular Biomarkers of Colorectal Cancer and Cancer Disparities: Current Status and Perspective. CURRENT COLORECTAL CANCER REPORTS 2016. [PMID: 28626361 DOI: 10.1007/s11888-016-0338-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review provides updates on the efforts for the development of prognostic and predictive markers in colorectal cancer based on the race/ethnicity of patients. Since the clinical consequences of genetic and molecular alterations differ with patient race and ethnicity, the usefulness of these molecular alterations as biomarkers needs to be evaluated in different racial/ethnic groups. To accomplish personalized patient care, a combined analysis of multiple molecular alterations in DNA, RNA, microRNAs (miRNAs), metabolites, and proteins in a single test is required to assess disease status in a precise way. Therefore, a special emphasis is placed on issues related to utility of recently identified genetic and molecular alterations in genes, miRNAs, and various "-omes" (e.g., proteomes, kinomes, metabolomes, exomes, methylomes) as candidate molecular markers to determine cancer progression (disease recurrence/relapse and metastasis) and to assess the efficacy of therapy in colorectal cancer in relation to patient race and ethnicity. This review will be useful for oncologists, pathologists, and basic and translational researchers.
Collapse
Affiliation(s)
- Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, Wallace Tumor Institute, University of Alabama at Birmingham, Room # 420A, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Trafina Jadhav
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Wallace Tumor Institute, University of Alabama at Birmingham, Room # 430A, 1530 3rd Avenue South, Birmingham, AL 35294, USA.,Present address: Division of Cardiovascular Medicine, Vanderbilt University, 1215 21st Avenue South, Medical Center East, Suite 5050, Nashville, TN 37232-8802, USA
| | - Balananda-Dhurjati Kumar Putcha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Wallace Tumor Institute, University of Alabama at Birmingham, Room # 430A, 1530 3rd Avenue South, Birmingham, AL 35294, USA.,Present address: 2502 East Woodlands, Saint Joseph, MO 64506, USA
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL 36088, USA
| | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Room # 325, Life Science Building, 1627, Hall Street, Montgomery, AL 36104, USA
| | - Chandrakumar Shanmugam
- Wallace Tumor Institute, University of Alabama at Birmingham, Room # 430A, 1530 3rd Avenue South, Birmingham, AL 35294, USA.,Present address: Department of Pathology, ESIC Medical College and Hospital, Sanathnagar, Hyderabad, Telangana 500 038, India
| | - Esther A Suswam
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, Wallace Tumor Institute, University of Alabama at Birmingham, 1720 2nd Avenue South, # 410C, Birmingham, AL 35294-3300, USA
| |
Collapse
|
375
|
Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Blick KE, Dooley WC, Ding WQ. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 2016; 18:90. [PMID: 27608715 PMCID: PMC5016889 DOI: 10.1186/s13058-016-0753-x] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring. METHODS Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. RESULTS Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels. CONCLUSIONS Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.
Collapse
Affiliation(s)
- Bethany N. Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - Yvonne D. Trigoso
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Cameron L. Calloway
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Y. Daniel Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - David H. Lum
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 USA
| | - Zhizhuang J. Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - Kenneth E. Blick
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - William C. Dooley
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - W. Q. Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
376
|
Cui S, Chang PY. Current understanding concerning intestinal stem cells. World J Gastroenterol 2016; 22:7099-7110. [PMID: 27610020 PMCID: PMC4988314 DOI: 10.3748/wjg.v22.i31.7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.
Collapse
|
377
|
Mehta R, Otgonsuren M, Younoszai Z, Allawi H, Raybuck B, Younossi Z. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease. BMJ Open Gastroenterol 2016; 3:e000096. [PMID: 27493762 PMCID: PMC4964159 DOI: 10.1136/bmjgast-2016-000096] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/25/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and coronary artery disease (CAD) is the cardiac manifestation of metabolic syndrome. NAFLD is strongly linked to CAD and hepatic steatosis is an independent risk factor for CAD and cardiac mortality. The pathogenic mechanism underlying this association remains poorly understood. In this study, we explored expression of circulating microRNAs (miRNAs) in patients with NAFLD and associated CAD. Results When compared to patients with NAFLD without CAD, patients with NAFLD and CAD had lower circulating levels of miR-132 (0.24±0.16 vs 0.30±0.11, p=0.03), while the circulating levels of miR-143 were higher (0.96±0.90 vs 0.64±0.77, p=0.02). The levels in circulation demonstrated trends opposite to previously observed intracellular levels in patients with CAD. In obese patients with NAFLD, lower circulating levels of miR-145 (1.42±1.00 vs 2.41±1.80), miR-211 (41.26±20.40 vs 57.56±25.45), miR-146a (2.13±1.40 vs 2.90±1.36) and miR-30c (6.92±4.99 vs 11.0±6.92) were detected when compared to lean patients with NAFLD. For miR-161 (0.59±1.19 vs 0.15±0.14) and miR-241 (0.28±0.29 vs 0.16±0.13), higher circulatory levels were detected in the obese patients with NAFLD. These observations suggest altered circulating levels of miRNAs that may serve to balance intracellular levels of miRNA in target tissues. Additional studies examining paired samples of target and producing tissues as well as respective plasma samples will help delineate the regulatory circuits governing the secretion and the uptake of miRNA in multitissue diseases.
Collapse
Affiliation(s)
- Rohini Mehta
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus , Falls Church, Virginia , USA
| | - Munkzhul Otgonsuren
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus , Falls Church, Virginia , USA
| | - Zahra Younoszai
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus , Falls Church, Virginia , USA
| | - Hussain Allawi
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus , Falls Church, Virginia , USA
| | - Bryan Raybuck
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus , Falls Church, Virginia , USA
| | - Zobair Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Fairfax Medical Campus , Falls Church, Virginia , USA
| |
Collapse
|
378
|
Occhipinti G, Giulietti M, Principato G, Piva F. The choice of endogenous controls in exosomal microRNA assessments from biofluids. Tumour Biol 2016; 37:11657-11665. [PMID: 27438704 DOI: 10.1007/s13277-016-5164-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 01/02/2023] Open
Abstract
The assessment of differentially expressed microRNAs in patients and healthy controls is important to identify potential tumor biomarkers. Recently, it has been shown that the microRNA levels in exosomes are more correlated with the clinical-pathological variables than vesicle-free microRNAs (miRNAs) in biofluids; therefore, there is an increasing interest in these specific evaluations. However, these measurements can be affected by experimental problems that not always are evaluated and/or by inadequate procedural choices. In particular, exosome isolation and miRNA extraction procedures are crucial to avoid contaminations, and even the choice of the most suitable purity controls is important. Moreover, a stable endogenous RNA should be used for normalization of miRNA expression obtained by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) in order to make these measures comparable among different samples. A rushed choice of the endogenous control can bias study conclusions without revealing inconsistencies. Unfortunately, a few studies systematically identified the best normalizer for their specific experimental context. Instead, sometimes, the normalization procedures were performed in a disputable way or the normalizer choices simply based on the previous literature. Here, we reviewed the studies where the exosomal miRNA profiling was assessed in human biofluids to point out the adopted procedures and the specific endogenous controls chosen for normalization.
Collapse
Affiliation(s)
- G Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - M Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - F Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
379
|
Kinoshita T, Yip KW, Spence T, Liu FF. MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet 2016; 62:67-74. [PMID: 27383658 DOI: 10.1038/jhg.2016.87] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EV) are small membrane-bound structures that are secreted by various cell types, including tumor cells. Recent studies have shown that EVs are important for cell-to-cell communication, locally and distantly; horizontally transferring DNA, mRNA, microRNA (miRNA), proteins and lipids. In the context of cancer biology, tumor-derived EVs are capable of modifying the microenvironment, promoting tumor progression, immune evasion, angiogenesis and metastasis. miRNAs contained within EVs are functionally associated with cancer progression, metastasis and aggressive tumor phenotypes. These factors, along with their stability in bodily fluids, have led to extensive investigations on the potential role of circulating EV-derived miRNAs as tumor biomarkers. In this review, we summarize the current understanding of circulating EV miRNAs in human cancer, and discuss their clinical utility and challenges in functioning as biomarkers.
Collapse
Affiliation(s)
- Takashi Kinoshita
- Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Kenneth W Yip
- Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Tara Spence
- Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fei-Fei Liu
- Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
380
|
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol Res 2016; 111:487-500. [PMID: 27394168 DOI: 10.1016/j.phrs.2016.07.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
Abstract
Exosomes are naturally secreted nanovesicles that have recently aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. These 30-100nm sized vesicles are released from the cells into the extracellular space and ultimately into biofluids in a tightly regulated way. Their molecular composition reflects their cells of origin, may confer specific cell or tissue tropism and underlines their biological activity. Exosomes and other extracellular vesicles (EVs) carry specific sets of proteins, nucleic acids (DNA, mRNA and regulatory RNAs), lipids and metabolites that represent an appealing source of novel noninvasive markers through biofluid biopsies. Exosome-shuttled molecules maintain their biological activity and are capable of modulating and reprogramming recipient cells. This multi-faceted nature of exosomes hold great promise for improving cancer treatment featuring them as novel diagnostic sensors as well as therapeutic effectors and drug delivery vectors. Natural biological activity including the therapeutic payload and targeting behavior of EVs can be tuned via genetic and chemical engineering. In this review we describe the properties that EVs share with conventional synthetic nanoparticles, including size, liposome-like membrane bilayer with customizable surface, and multifunctional capacity. We also highlight unique characteristics of EVs, which possibly allow them to circumvent some limitations of synthetic nanoparticle systems and facilitate clinical translation. The latter are in particular correlated with their innate stability, ability to cross biological barriers, efficiently deliver bioactive cargos or evade immune recognition. Furthermore, we discuss the potential roles for EVs in diagnostics and theranostics, and highlight the challenges that still need to be overcome before EVs can be applied to routine clinical practice.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natasa Zarovni
- HansaBioMed OU Tallinn, Estonia and Exosomics Siena S.p.A, Siena, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
381
|
Izzotti A, Carozzo S, Pulliero A, Zhabayeva D, Ravetti JL, Bersimbaev R. Extracellular MicroRNA in liquid biopsy: applicability in cancer diagnosis and prevention. Am J Cancer Res 2016; 6:1461-1493. [PMID: 27508091 PMCID: PMC4969398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023] Open
Abstract
One of the goals of contemporary cancer research is the development of new markers that facilitate earlier and non-invasive diagnosis. MicroRNAs are non-coding RNA molecules that regulate gene expression; studies have shown that their expression levels are altered in cancer. Recently, extra-cellular microRNAs have been detected in biological fluids and studied as possible cancer markers that can be detected by noninvasive procedures. In this review, we analyze the current understanding of extracellular miRNAs based on clinical studies to establish their possible use for the prevention of the most common tumors. Despite discrepancies among different studies of the same cancers, panels of specific extracellular microRNAs are emerging as a new tool for the secondary (selection of high-risk individuals to undergo screening) and tertiary (relapse) prevention of cancer.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of GenoaItaly
- IRCCS AOU San Martino ISTGenoa Italy
| | | | | | - Dinara Zhabayeva
- Department of General Biology and Genomics, Inst. of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | | | - Rakhmet Bersimbaev
- Department of General Biology and Genomics, Inst. of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| |
Collapse
|
382
|
de Vries NL, Swets M, Vahrmeijer AL, Hokland M, Kuppen PJK. The Immunogenicity of Colorectal Cancer in Relation to Tumor Development and Treatment. Int J Mol Sci 2016; 17:ijms17071030. [PMID: 27367680 PMCID: PMC4964406 DOI: 10.3390/ijms17071030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Although most cancer types have been viewed as immunologically silent until recently, it has become increasingly clear that the immune system plays key roles in the course of tumor development. Remarkable progress towards understanding cancer immunogenicity and tumor-immune system interactions has revealed important implications for the design of novel immune-based therapies. Natural immune responses, but also therapeutic interventions, can modulate the tumor phenotype due to selective outgrowth of resistant subtypes. This is the result of heterogeneity of tumors, with genetic instability as a driving force, and obviously changes the immunogenicity of tumors. In this review, we discuss the immunogenicity of colorectal cancer (CRC) in relation to tumor development and treatment. As most tumors, CRC activates the immune system in various ways, and is also capable of escaping recognition and elimination by the immune system. Tumor-immune system interactions underlie the balance between immune control and immune escape, and may differ in primary tumors, in the circulation, and in liver metastases of CRC. Since CRC immunogenicity varies between tumors and individuals, novel immune-based therapeutic strategies should not only anticipate the molecular profile, but also the immunological profile of a specific tumor.
Collapse
Affiliation(s)
- Natasja L de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, DK-8000 Aarhus, Denmark.
| | - Marloes Swets
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, DK-8000 Aarhus, Denmark.
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
383
|
Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbecks Arch Surg 2016; 401:1097-1110. [PMID: 27342853 DOI: 10.1007/s00423-016-1468-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Amongst all cancer subtypes, gastrointestinal tumours are responsible for most cancer-related deaths. In most of the cases, the limitation of the prognosis of patients with malignant gastrointestinal tumours can be attributed to delayed diagnosis of the disease. In the last decade, secondary prevention strategies, in particular tumour screenings, have been identified to significantly improve the identification of patients with early-stage disease, leading to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches may lead to an increase in progression-free and overall survival rates. PURPOSE Exosomes are small microvesicles with a size of 50-150 nm. They are formed in the endosomal system of many different cell types, where they are packed with nucleotides and proteins from the parental cell. After their release into the extracellular space, exosomes can deliver their cargo into recipient cells. By this mechanism, tumour cells can recruit and manipulate the adjacent and systemic microenvironment in order to support invasion and dissemination. Cancer-derived exosomes in the blood may provide detailed information about the tumour biology of each individual patient. Moreover, tumour-derived exosomes can be used as targetable factors and drug delivery agents in clinical practice. CONCLUSION In this review, we summarise new aspects about novel implications in the diagnosis and treatment of gastrointestinal cancer and show how circulating exosomes have come into the spotlight of research as a high potential source of 'liquid biopsies'.
Collapse
|
384
|
Barger JF, Rahman MA, Jackson D, Acunzo M, Nana-Sinkam SP. Extracellular miRNAs as biomarkers in cancer. Food Chem Toxicol 2016; 98:66-72. [PMID: 27311798 DOI: 10.1016/j.fct.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide. Despite significant progress in the field leading to identification of molecular signatures of individual tumors and the development of targeted therapies, early cancer diagnosis remains a clinical challenge. The emerging era of personalized medicine has intensified research towards biomarkers that can be obtained via noninvasive means. The recent discovery of extracellular vesicles (EVs), nano-vesicles secreted by the cell, in circulation has stimulated interest in their clinical utility as cancer biomarkers. EVs are secreted from all types of cells and their contents reflect the physiological and pathological state of the cell. Multiple clinical trials are underway investigating the clinical potential of EV content to serve as biomarkers and therapeutics. However, much work remains to translate EV content into clinical application.
Collapse
Affiliation(s)
- Jennifer F Barger
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Mohammad A Rahman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Devine Jackson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mario Acunzo
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - S Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA; Division of Medical Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
385
|
Clinical Trial Watch: Reports from the Liver Meeting®, AASLD, San Francisco, November 2015. J Hepatol 2016; 64:1428-45. [PMID: 26902945 DOI: 10.1016/j.jhep.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 01/14/2023]
|
386
|
Zhou J, Huang A, Yang XR. Liquid Biopsy and its Potential for Management of Hepatocellular Carcinoma. J Gastrointest Cancer 2016; 47:157-167. [PMID: 26969471 DOI: 10.1007/s12029-016-9801-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We summarized the recent findings of liquid biopsy in cancer field and discussed its potential utility in hepatocellular carcinoma. METHODS Literature published in MEDLINE, EMBASE, and Science Direct electronic databases was searched and reviewed. RESULTS Liquid biopsy specially referred to the detection of nucleic acids (circulating cell-free DNA, cfDNA) and circulating tumor cells (CTCs) in the blood of cancer patients. Compared to conventional single-site sampling or biopsy method, liquid biopsy had the advantages such as non-invasiveness, dynamic monitoring, and the most important of all, overcoming the limit of spatial and temporal heterogeneity. The genomic information of cancer could be profiled by genotyping cfDNA/CTC and subsequently applied to make molecular classification, targeted therapy guidance, and unveil drug resistance mechanisms. The serial sampling feature of liquid biopsy made it possible to monitor treatment response in a real-time manner and predict tumor metastasis/recurrence in advance. CONCLUSIONS Liquid biopsy is a non-invasive, dynamic, and informative sampling method with important clinical translational significance in cancer research and practice. Much work needs to be done before it is used in the management of HCC.
Collapse
Affiliation(s)
- Jian Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Ao Huang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xin-Rong Yang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| |
Collapse
|
387
|
Kishore R, Garikipati VNS, Gumpert A. Tiny Shuttles for Information Transfer: Exosomes in Cardiac Health and Disease. J Cardiovasc Transl Res 2016; 9:169-175. [PMID: 26911150 PMCID: PMC4874852 DOI: 10.1007/s12265-016-9682-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/14/2016] [Indexed: 02/06/2023]
Abstract
Intercellular communication mediated by exosomes, nano-sized extracellular vesicles, is crucial for preserving vascular integrity and in the development of cardiovascular and other diseases. As natural carriers of signal molecules, exosomes released from sources such as blood cells, endothelial cells, immune cells, smooth muscle cells, etc., can modify a multitude of cellular bioactivities. They do so by shuttling lipids, proteins, and nucleic acids between donor and recipient cells while circulating in body fluids and in the extracellular space. A recent surge of interest in the field of exosomal biology is in part due to the recognition that the molecules they carry can act as facilitators of both pathogenesis but can also initiate protective and rescue signaling. This mini-review describes current knowledge on exosome function in health and disease including cardiovascular disease.
Collapse
Affiliation(s)
- Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, MERB-953 3500 N Broad Street, Philadelphia, PA, 19140, USA.
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Venkata Naga Srikanth Garikipati
- Center for Translational Medicine, Temple University School of Medicine, MERB-953 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Anna Gumpert
- Center for Translational Medicine, Temple University School of Medicine, MERB-953 3500 N Broad Street, Philadelphia, PA, 19140, USA
| |
Collapse
|
388
|
Zhang X, Pei Z, Chen J, Ji C, Xu J, Zhang X, Wang J. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer. J Cancer 2016; 7:1081-1087. [PMID: 27326251 PMCID: PMC4911875 DOI: 10.7150/jca.14866] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Xuan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Zenglin Pei
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jinyun Chen
- 2. Departments of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 770030, USA
| | - Chunxia Ji
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jianqing Xu
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Xiaoyan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jin Wang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| |
Collapse
|
389
|
Villasante A, Marturano-Kruik A, Ambati SR, Liu Z, Godier-Furnemont A, Parsa H, Lee BW, Moore MA, Vunjak-Novakovic G. Recapitulating the Size and Cargo of Tumor Exosomes in a Tissue-Engineered Model. Theranostics 2016; 6:1119-30. [PMID: 27279906 PMCID: PMC4893640 DOI: 10.7150/thno.13944] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/20/2015] [Indexed: 12/20/2022] Open
Abstract
There is a growing interest in the pivotal role of exosomes in cancer and in their use as biomarkers. However, despite the importance of the microenvironment for cancer initiation and progression, monolayer cultures of tumor cells still represent the main in vitro source of exosomes. As a result, their environmental regulation remains largely unknown. Here, we report a three-dimensional tumor model for studying exosomes, using Ewing's sarcoma type 1 as a clinically relevant example. The bioengineered model was designed based on the hypothesis that the 3-dimensionality, composition and stiffness of the tumor matrix are the critical determinants of the size and cargo of exosomes released by the cancer cells. We analyzed the effects of the tumor microenvironment on exosomes, and the effects of exosomes on the non-cancer cells from the bone niche. Exosomes from the tissue-engineered tumor had similar size distribution as those in the patients' plasma, and were markedly smaller than those in monolayer cultures. Bioengineered tumors and the patients' plasma contained high levels of the Polycomb histone methyltransferase EZH2 mRNA relatively to their monolayer counterparts. Notably, EZH2 mRNA, a potential tumor biomarker detectable in blood plasma, could be transferred to the surrounding mesenchymal stem cells. This study provides the first evidence that an in vitro culture environment can recapitulate some properties of tumor exosomes.
Collapse
|
390
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
391
|
Yang IP, Tsai HL, Huang CW, Lu CY, Miao ZF, Chang SF, Juo SHH, Wang JY. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2. Oncotarget 2016; 7:18837-18850. [PMID: 26934556 PMCID: PMC4951333 DOI: 10.18632/oncotarget.7719] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 01/05/2023] Open
Abstract
The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Department of Surgery, Division of General Surgery Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Division of Gastroenterology and General Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Division of Gastroenterology and General Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Yu Lu
- Department of Internal Medicine, Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Feng Miao
- Department of Surgery, Division of Gastroenterology and General Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Se-Fen Chang
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Department of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Division of Gastroenterology and General Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
392
|
Tovar-Camargo OA, Toden S, Goel A. Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers. Expert Rev Mol Diagn 2016; 16:553-67. [PMID: 26892862 DOI: 10.1586/14737159.2016.1156535] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diagnostic strategies, particularly non-invasive blood-based screening approaches, are gaining increased attention for the early detection and attenuation of mortality associated with colorectal cancer (CRC). However, the majority of current screening approaches are inadequate at replacing the conventional CRC diagnostic procedures. Yet, due to technological advances and better understanding of molecular events underlying human cancer, a new category of biomarkers are on the horizon. Recent evidence indicates that cells release a distinct class of small vesicles called 'exosomes', which contain nucleic acids and proteins that reflect and typify host-cell molecular architecture. Intriguingly, exosomes released from cancer cells have a distinct genetic and epigenetic makeup, which allows them to undertake their tumorigenic function. From a clinical standpoint, these unique cancer-specific fingerprints present in exosomes appear to be detectable in a small amount of blood, making them very attractive substrates for developing cancer biomarkers, particularly noninvasive diagnostic approaches.
Collapse
Affiliation(s)
- Oscar A Tovar-Camargo
- a Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics , Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center , Dallas , TX , USA
| | - Shusuke Toden
- a Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics , Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center , Dallas , TX , USA
| | - Ajay Goel
- a Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics , Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center , Dallas , TX , USA
| |
Collapse
|
393
|
Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. Versatile roles of extracellular vesicles in cancer. J Clin Invest 2016; 126:1163-72. [PMID: 26974161 DOI: 10.1172/jci81130] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have shown that non-cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells.
Collapse
|
394
|
Zuberi M, Khan I, Gandhi G, Ray PC, Saxena A. The conglomeration of diagnostic, prognostic and therapeutic potential of serum miR-199a and its association with clinicopathological features in epithelial ovarian cancer. Tumour Biol 2016; 37:11259-66. [PMID: 26951510 DOI: 10.1007/s13277-016-4993-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal cause of morbidity and mortality worldwide. miRNA deregulation evinces a remarkable role in ovarian cancer tumorigenesis. miRNA-199a (miR-199a) is known to be involved in cancer development and progression. Although miR-199a has been studied in various cell types, its correlation with clinicopathological features in EOC has not been documented. In this study, we identified the clinicopathological hallmarks which might be perturbed due to the downregulation of serum miR-199a in EOC. Seventy serum samples from histopathologically confirmed EOC patients and 70 controls were collected. Total RNA from serum was isolated by Trizol method, polyadenylated and reverse transcribed into cDNA. Expression level of miR-199a was detected by using miRNA qRT-PCR. Relative expression was determined with matched controls using U6 snRNA as reference. Level of miR-199a expression was compared with distinct clinicopathological features. Expression of miR-199a was found to be significantly downregulated in comparison with matched normal controls. The expression level of miR-199a was found to be significantly associated with tumor stage, lymph node metastasis, and distal metastasis. Receiver operating characteristic (ROC) curve for diagnostic potential yielded significant area under the curve (AUC) with a considerable sensitivity and specificity. ROC curves for prognosis yielded significant AUCs for histological grade, distal metastasis, lymph node status, and survival. Our findings suggest that miR-199a downregulation might be a potential indicator for disease progression promoting the aggressive tumor progression and be identified as a diagnostic marker to predict the prognosis and survival in EOC patients.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - Imran Khan
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Gauri Gandhi
- Department of Gynaecology and Obstetrics, Lok Nayak Hospital, New Delhi, 110002, India
| | - P C Ray
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India.
| |
Collapse
|
395
|
Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Biol 2016; 37:10703-14. [PMID: 26867772 DOI: 10.1007/s13277-016-4939-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
Prognosis of lung cancer still remains grim largely due to recurrence and aggressive metastasis of the disease. In this study, we examined the potential of exosomal miRNAs as biomarkers of recurrent lung cancer. Initially, in vitro miRNA profiles of normal lung (Beas-2b) and lung cancer (H1299) cells and of exosomes isolated from conditioned media were determined. In vivo study involved establishing subcutaneous primary and recurrent lung cancer xenografts in nude mouse model and examining tumor and serum exosomal miRNA alteration in secondary/recurrent lung tumors. A total of 77 miRNAs were observed to be significantly modulated in the H1299 cells (47 miRNA upregulated and 30 downregulated) compared to the Beas-2b cells. The exosomes isolated from conditioned media indicated several miRNAs which were in agreement with cells of origin. A similarity was also observed between miRNAs from serum exosomes and tumors, indicating their origin from the lung tumors. Two miRNAs, miR-21 and miR-155, were found to be significantly upregulated in recurrent tumors compared to primary tumors. These miRNAs were also upregulated in serum exosomes of recurrent tumor-bearing animals versus non-tumor- or primary tumor-bearing animals. Increased expression of the recurrent disease markers were also observed in recurrent tumors compared with primary tumors. Serum exosomes from recurrent tumor mice mirrored its tumor profile in expressing higher levels of these proteins compared with exosomes from primary tumor mice. Our data suggest that exosomal miRNA signatures may be a true representation of a pathological profile of lung cancer; thus, miRNAs could serve as promising biomarkers for non-invasive diagnosis of the disease.
Collapse
|
396
|
Decoding the Secret of Cancer by Means of Extracellular Vesicles. J Clin Med 2016; 5:jcm5020022. [PMID: 26861408 PMCID: PMC4773778 DOI: 10.3390/jcm5020022] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 12/16/2022] Open
Abstract
One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer.
Collapse
|
397
|
Sharma A, Khatun Z, Shiras A. Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine (Lond) 2016; 11:421-37. [PMID: 26784674 DOI: 10.2217/nnm.15.210] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanosized (30-150 nm) extracellular vesicles 'exosomes' are secreted by cells for intercellular communication during normal and pathological conditions. Exosomes carry biomacromolecules from cell-of-origin and, therefore, represent molecular bioprint of the cell. Tumor-derived exosomes or TDEx modulate tumor microenvironment by transfer of macromolecules locally as well as at distant metastatic sites. Due to their biological stability, TDEx are rich source of biomarkers in cancer patients. TDEx focused cancer diagnosis allows liquid biopsy-based tumor typing and may facilitate therapy response monitoring by developing novel exosomes diagnostics. Therefore, efficient and specific capturing of exosomes for subsequent amplification of the biomessages; for example, DNA, RNA, miRNA can reinvent cancer diagnosis. Here, in this review, we discuss advancements in exosomes isolation strategies, presence of exosomes biomarkers and importance of TDEx in gauging tumor heterogeneity for their potential use in cancer diagnosis, therapy.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, L4, 100 NCL Innovation Park, Dr Homi Bhabha Road, Pune-411008, India.,National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune411007
| | - Zamila Khatun
- ExoCan Healthcare Technologies Pvt Ltd, L4, 100 NCL Innovation Park, Dr Homi Bhabha Road, Pune-411008, India
| | - Anjali Shiras
- National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune411007
| |
Collapse
|
398
|
Yang H, Fu H, Xu W, Zhang X. Exosomal non-coding RNAs: a promising cancer biomarker. ACTA ACUST UNITED AC 2016; 54:1871-1879. [DOI: 10.1515/cclm-2016-0029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/18/2016] [Indexed: 12/13/2022]
Abstract
AbstractNovel and non-invasive biomarkers are urgently needed for early detection of cancer. Exosomes are nano-sized particles released by cells and contain various bioactive molecules including proteins, DNA, mRNAs, and non-coding RNAs. Increasing evidence suggests that exosomes play critical roles in tumorigenesis, tumor growth, metastasis, and therapy resistance. Exosomes could be readily accessible in nearly all the body fluids. The altered production of exosomes and aberrant expression of exosomal contents could reflect the pathological state of the body, indicating that exosomes and exosomal contents can be utilized as novel cancer biomarkers. Herein, we review the basic properties of exosomes, the functional roles of exosomes in cancer, and the methods of detecting exosomes and exosomal contents. In particular, we highlight the clinical values of exosomal non-coding RNAs in cancer diagnosis and prognosis.
Collapse
|
399
|
Brites D, Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front Cell Neurosci 2015; 9:476. [PMID: 26733805 PMCID: PMC4681811 DOI: 10.3389/fncel.2015.00476] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past 15–20 years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), comprising ectosomes and exosomes with a size ranging from 0.1–1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs). Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating critical pathways associated with depression and how they may contribute to other brain disorders including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), which share several neuroinflammatory-associated processes. Specific reference will be made to EVs as potential biomarkers and disease monitoring approaches, focusing on their potentialities as drug delivery vehicles, and on putative therapeutic strategies using autologous exosome-based delivery systems to treat neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
400
|
Abstract
Exosomes are membrane-bound, intercellular communication shuttles that are defined by their endocytic origin and size range of 30–140 nm. Secreted by nearly all mammalian cell types and present in myriad bodily fluids, exosomes confer messages between cells, proximal and distal, by transporting biofunctional cargo in the form of proteins, nucleic acids, and lipids. They play a vital role in cellular signaling in both normal physiology and disease states, particularly cancer. Exosomes are powerful progenitors in altering target cell phenotypes, particularly in tumorigenesis and cancer progression, with the ability to alter tumor microenvironments and to assist in establishing the pre-metastatic niche. Many aspects of exosomes present them as novel means to identify cancer biomarkers for early detection and therapeutic targets, and using intrinsic and engineered characteristics of exosomes as therapeutic devices to ameliorate the progression of the disease. This review outlines some of the recent and major findings with regard to exosomes in cancer, and their utilization as therapeutic tools.
Collapse
|