351
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
352
|
Mulukutla BC, Yongky A, Le T, Mashek DG, Hu WS. Regulation of Glucose Metabolism – A Perspective From Cell Bioprocessing. Trends Biotechnol 2016; 34:638-651. [DOI: 10.1016/j.tibtech.2016.04.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
|
353
|
Park YS, Kim DJ, Koo H, Jang SH, You YM, Cho JH, Yang SJ, Yu ES, Jung Y, Lee DC, Kim JA, Park ZY, Park KC, Yeom YI. AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth. Oncotarget 2016; 7:48155-48167. [PMID: 27340866 PMCID: PMC5217008 DOI: 10.18632/oncotarget.10179] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/04/2016] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase muscle type 2 (PKM2) exhibits post-translational modifications in response to various signals from the tumor microenvironment. Insulin-like growth factor 1 (IGF-1) is a crucial signal in the tumor microenvironment that promotes cell growth and survival in many human cancers. Herein, we report that AKT directly interacts with PKM2 and phosphorylates it at Ser-202, which is essential for the nuclear translocation of PKM2 protein under stimulation of IGF-1. In the nucleus, PKM2 binds to STAT5A and induces IGF-1-stimulated cyclin D1 expression, suggesting that PKM2 acts as an important factor inducing STAT5A activation under IGF-1 signaling. Concordantly, overexpression of STAT5A in cells deficient in PKM2 expression failed to restore IGF-induced growth, whereas reconstitution of PKM2 in PKM2 knockdown cells restored the IGF-induced growth capacity. Our findings suggest a novel role of PKM2 in promoting the growth of cancers with dysregulated IGF/phosphoinositide 3-kinase/AKT signaling.
Collapse
Affiliation(s)
- Young Soo Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Dong Joon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Yeon-Mi You
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Jung Hee Cho
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Suk-Jin Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eun Sil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yuri Jung
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Dong Chul Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Young Il Yeom
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
354
|
Chu W, Guan L, Huang D, Ren Y, Zhou Y. Lovastatin exerts protective effects on endothelial cells via upregulation of PTK2B. Exp Ther Med 2016; 12:1741-1749. [PMID: 27602089 PMCID: PMC4998215 DOI: 10.3892/etm.2016.3547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/06/2016] [Indexed: 01/18/2023] Open
Abstract
Statins are HMG-CoA reductase inhibitors that are used to decrease the blood levels of low-density lipoprotein (LDL). In addition, they have been shown to exert pleiotropic protective effects in the absence of LDL-lowering activity. The present study investigated the effects of lovastatin on global gene expression in human umbilical vein endothelial cells (HUVECs), in order to further explore its ability to protect against oxidized (ox)-LDL-induced cytotoxicity. HUVECs were treated with lovastatin for 2–24 h, and gene expression patterns were analyzed using cDNA microarrays. The results suggested that numerous genes were regulated by lovastatin, including certain genes associated with cell survival, such as PTK2B, BCL2 and MAP3K3. In particular, PTK2B, which has been shown to exert anti-apoptotic effects against ox-LDL-induced cell injury, was upregulated by lovastatin. Knockdown of PTK2B was able to attenuate ox-LDL-induced cell injury, and this was associated with decreased levels of phosphorylated-AKT and eNOS, and inhibition of mitochondrial-dependent apoptosis. In conclusion, the results of the present study suggested that lovastatin protects against ox-LDL-induced cell injury, potentially via the upregulation of PTK2B, which regulates the anti-apoptosis signaling pathway.
Collapse
Affiliation(s)
- Weiwei Chu
- Department of Cadre Health Care, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Lili Guan
- Department of Endocrinology and Metabolism, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Dihua Huang
- Department of Endocrinology and Metabolism, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yuezhong Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Zhou
- Department of Cardiovascular Medicine, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
355
|
Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer. J Cell Biol 2016; 214:249-57. [PMID: 27458133 PMCID: PMC4970329 DOI: 10.1083/jcb.201604085] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022] Open
Abstract
Serine metabolism is frequently dysregulated in cancers; however, the benefit that this confers to tumors remains controversial. In many cases, extracellular serine alone is sufficient to support cancer cell proliferation, whereas some cancer cells increase serine synthesis from glucose and require de novo serine synthesis even in the presence of abundant extracellular serine. Recent studies cast new light on the role of serine metabolism in cancer, suggesting that active serine synthesis might be required to facilitate amino acid transport, nucleotide synthesis, folate metabolism, and redox homeostasis in a manner that impacts cancer.
Collapse
Affiliation(s)
- Katherine R Mattaini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mark R Sullivan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Dana-Farber Cancer Institute, Boston, MA 02215 Broad Institute, Cambridge, MA 02139
| |
Collapse
|
356
|
Perturbation of the Warburg effect increases the sensitivity of cancer cells to TRAIL-induced cell death. Exp Cell Res 2016; 347:133-142. [PMID: 27453209 DOI: 10.1016/j.yexcr.2016.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 11/21/2022]
Abstract
Tumor necrosis-factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-superfamily that selectively induces apoptosis through death receptors (DRs) 4 and/ or DR5 in cancer cells, without affecting normal cells. Unfortunately, many clinical studies have shown that cancer cells acquire TRAIL-resistance and thus avoid TRAIL-induced apoptosis. In the current study, we newly found that PTBP1, a splicer protein that plays an important role in energy metabolism is highly expressed in TRAIL-resistant human colon cancer DLD-1. Interestingly, silencing PTBP1 by using siRNA for PTBP1 (siR-PTBP1) resulted in a significant increase in TRAIL-sensitivity along with the switching of pyruvate kinase muscle (PKM) isoforms from PKM2 to PKM1, leading to impaired Warburg effect, because the intracellular ATP levels were significantly increased and the production of lactate decreased. Notably, siR-PTBP1 canceled the resistance by increasing the expression level of DR5 and effectively inducing the translocation of DR5 to the cell surface membrane. Also, siR-PTBP1 up-regulated the expression level of CCN1, which contributed to the enhanced sensitivity to TRAIL-induced apoptosis. These findings indicate that silencing PTBP1, thus impairing the Warburg effect positively affected TRAIL-induced apoptosis and that this splicer protein may thus serve as a possible target molecule to cancel the resistance of cancer cells to TRAIL.
Collapse
|
357
|
Park SH, Ozden O, Liu G, Song HY, Zhu Y, Yan Y, Zou X, Kang HJ, Jiang H, Principe DR, Cha YI, Roh M, Vassilopoulos A, Gius D. SIRT2-Mediated Deacetylation and Tetramerization of Pyruvate Kinase Directs Glycolysis and Tumor Growth. Cancer Res 2016; 76:3802-12. [PMID: 27197174 PMCID: PMC4930699 DOI: 10.1158/0008-5472.can-15-2498] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/19/2016] [Indexed: 01/30/2023]
Abstract
Sirtuins participate in sensing nutrient availability and directing metabolic activity to match energy needs with energy production and consumption. However, the pivotal targets for sirtuins in cancer are mainly unknown. In this study, we identify the M2 isoform of pyruvate kinase (PKM2) as a critical target of the sirtuin SIRT2 implicated in cancer. PKM2 directs the synthesis of pyruvate and acetyl-CoA, the latter of which is transported to mitochondria for use in the Krebs cycle to generate ATP. Enabled by a shotgun mass spectrometry analysis founded on tissue culture models, we identified a candidate SIRT2 deacetylation target at PKM2 lysine 305 (K305). Biochemical experiments including site-directed mutants that mimicked constitutive acetylation suggested that acetylation reduced PKM2 activity by preventing tetramerization to the active enzymatic form. Notably, ectopic overexpression of a deacetylated PKM2 mutant in Sirt2-deficient mammary tumor cells altered glucose metabolism and inhibited malignant growth. Taken together, our results argued that loss of SIRT2 function in cancer cells reprograms their glycolytic metabolism via PKM2 regulation, partially explaining the tumor-permissive phenotype of mice lacking Sirt2 Cancer Res; 76(13); 3802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Seong-Hoon Park
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ozkan Ozden
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guoxiang Liu
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ha Yong Song
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Laboratory for Molecular Cancer Biology, Robert Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yueming Zhu
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yufan Yan
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xianghui Zou
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hong-Jun Kang
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Laboratory for Molecular Cancer Biology, Robert Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Haiyan Jiang
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel R Principe
- Department of Medicine, University of Illinois, College of Medicine, Chicago, Illinois
| | - Yong-Il Cha
- Department of Radiation Oncology, Norton Cancer Center, Louisville, Kentucky
| | - Meejeon Roh
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Laboratory for Molecular Cancer Biology, Robert Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David Gius
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
358
|
Mukherjee J, Ohba S, See WL, Phillips JJ, Molinaro AM, Pieper RO. PKM2 uses control of HuR localization to regulate p27 and cell cycle progression in human glioblastoma cells. Int J Cancer 2016; 139:99-111. [PMID: 26874904 PMCID: PMC6615049 DOI: 10.1002/ijc.30041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Abstract
The M2 isoform of pyruvate kinase (PK) is upregulated in most cancers including glioblastoma. Although PKM2 has been reported to use dual kinase activities to regulate cell growth, it also interacts with phosphotyrosine (pY)-containing peptides independently of its kinase activity. The potential for PKM2 to use the binding of pY-containing proteins to control tumor growth has not been fully examined. We here describe a novel mechanism by which PKM2 interacts in the nucleus with the RNA binding protein HuR to regulate HuR sub-cellular localization, p27 levels, cell cycle progression and glioma cell growth. Suppression of PKM2 in U87, T98G and LN319 glioma cells resulted in increased p27 levels, defects in entry into mitosis, increased centrosome number, and decreased cell growth. These effects could be reversed by shRNA targeting p27. The increased levels of p27 in PKM2 knock-down cells were caused by a loss of the nuclear interaction between PKM2 and HuR, and a subsequent cytoplasmic re-distribution of HuR, which in turn led to increased cap-independent p27 mRNA translation. Consistent with these results, the alterations in p27 mRNA translation, cell cycle progression and cell growth caused by PKM2 suppression could be reversed in vitro and in vivo by suppression of HuR or p27 levels, or by introduction of forms of PKM2 that could bind pY, regardless of their kinase activity. These results define a novel mechanism by which PKM2 regulates glioma cell growth, and also define a novel set of potential therapeutic targets along the PKM2-HuR-p27 pathway.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Shigeo Ohba
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Wendy L See
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Joanna J Phillips
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Annette M Molinaro
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Russell O Pieper
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| |
Collapse
|
359
|
Yan Y, Xie M, Zhang L, Zhou X, Xie H, Zhou L, Zheng S, Wang W. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. Onco Targets Ther 2016; 9:3925-37. [PMID: 27418837 PMCID: PMC4935086 DOI: 10.2147/ott.s106703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is rapidly becoming one of the most prevalent cancers worldwide and is a prominent source of mortality. Ras-related associated with diabetes (RRAD), one of the first members of the 35–39 kDa class of novel Ras-related GTPases, is linked to several types of cancer, although its function in HCC remains unclear. In this study, we observed that RRAD was downregulated in HCC compared with adjacent normal tissues. This change was associated with a poor prognosis. Furthermore, knockdown of RRAD in SK-Hep-1 cells facilitated cell proliferation, accelerated the G1/S transition during the cell cycle, induced cell migration, and reduced apoptosis. In contrast, overexpression of RRAD in Huh7 cells had the opposite effects. Moreover, we demonstrated that RRAD induced cell proliferation through regulation of the cell cycle by downregulating cyclins and cyclin-dependent kinases. RRAD induced tumor cell apoptosis through the mitochondrial apoptosis pathway. In addition, we confirmed that knockdown of RRAD promoted aerobic glycolysis by upregulating glucose transporter 1, whereas overexpression of RRAD inhibited aerobic glycolysis. In conclusion, RRAD plays a pivotal role as a potential tumor suppressor in HCC. An improved understanding of the roles of RRAD in tumor metabolism may provide insights into its potential as a novel molecular target in HCC therapy.
Collapse
Affiliation(s)
- Yingcai Yan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Minjie Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Linshi Zhang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiaohu Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Lin Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
360
|
Wynn ML, Yates JA, Evans CR, Van Wassenhove LD, Wu ZF, Bridges S, Bao L, Fournier C, Ashrafzadeh S, Merrins MJ, Satin LS, Schnell S, Burant CF, Merajver SD. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells. J Biol Chem 2016; 291:13715-29. [PMID: 27129239 PMCID: PMC4919454 DOI: 10.1074/jbc.m115.703959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/01/2016] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Michelle L Wynn
- From the Departments of Internal Medicine, Molecular and Integrative Physiology, and
| | | | | | | | - Zhi Fen Wu
- From the Departments of Internal Medicine
| | | | - Liwei Bao
- From the Departments of Internal Medicine
| | | | | | - Matthew J Merrins
- the Department of Medicine, University of Wisconsin, Madison, Wisconsin 53705, and the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Leslie S Satin
- Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | |
Collapse
|
361
|
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J Cell Physiol 2016; 231:2570-81. [PMID: 26895995 DOI: 10.1002/jcp.25349] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Werner Hartwig
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
362
|
Lu W, Cao Y, Zhang Y, Li S, Gao J, Wang XA, Mu J, Hu YP, Jiang L, Dong P, Gong W, Liu Y. Up-regulation of PKM2 promote malignancy and related to adverse prognostic risk factor in human gallbladder cancer. Sci Rep 2016; 6:26351. [PMID: 27283076 PMCID: PMC4901292 DOI: 10.1038/srep26351] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/15/2016] [Indexed: 02/08/2023] Open
Abstract
Recently, pyruvate kinase M2 (PKM2) has been implicated in the progression of certain cancers and might play pivotal roles in the formation of malignancy. However, the role of PKM2 in gallbladder cancer had not been well investigated. This study analyzed associations between PKM2 expression status with various clinical and pathologic parameters in a large cohort of gallbladder cancer (GBC) patients from a long term follow up results. The expression level of pyruvate kinase isotypes in GBC tissues and their adjacent normal gallbladder tissues were estimated by qRT-PCR and Western blot. PKM2 mRNA level were significantly high in gallbladder cancer tissues than in adjacent noncancerous tissues (P < 0.001). High expression of the PKM2 was detected in 55.71% paraffin-embedded GBC tissue. The high PKM2 expression was independently associated with poorer overall survival in patients with GBC (median survival 11.9 vs 30.1 months; hazard ratio 2.79; 95% CI = 1.18 to 6.55; P = 0.02). These findings indicated elevated expression of PKM2 is a prognostic factor for poor GBC clinical outcomes, implied involving of PKM2 in GBC progression.
Collapse
Affiliation(s)
- Wei Lu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai JiaoTong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Cao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yijian Zhang
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Sheng Li
- Department of Biochemistry, Dalian medical University, No. 9 Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Jian Gao
- Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| | - Xu-An Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yun-Ping Hu
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Lin Jiang
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Institute of Biliary Tract Diseases Research, Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
363
|
The Protein Tyrosine Kinase Inhibitor Tyrphostin 23 Strongly Accelerates Glycolytic Lactate Production in Cultured Primary Astrocytes. Neurochem Res 2016; 41:2607-2618. [PMID: 27278759 DOI: 10.1007/s11064-016-1972-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases. To investigate potential acute effects of T23 on the viability and the glucose metabolism of brain cells, we exposed cultured primary rat astrocytes to T23 for up to 4 h. While the viability and the morphology of the cultured astrocytes were not acutely affected by the presence of T23 in concentrations of up to 300 µM, this compound caused a rapid, time- and concentration-dependent increase in glucose consumption and lactate release. Maximal effects on glycolytic flux were found for incubations with 100 µM T23 for 2 h which doubled both glucose consumption and lactate production. The stimulation of glycolytic flux by T23 was reversible, completely abolished upon removal of the compound and not found in presence of other known inhibitors of endocytosis. Structurally related compounds such as tyrphostin 25 and catechol or modulators of AMP kinase activity did neither affect the basal nor the T23-stimulated lactate production by astrocytes. In contrast, the presence of the phosphatase inhibitor vanadate completely abolished the stimulation by T23 of astrocytic lactate production in a concentration-dependent manner. These data suggest that T23-sensitive phosphorylation/dephosphorylation events are involved in the regulation of astrocytic glycolysis.
Collapse
|
364
|
Clark PM, Mai WX, Cloughesy TF, Nathanson DA. Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma. Curr Neurol Neurosci Rep 2016; 16:17. [PMID: 26759318 DOI: 10.1007/s11910-015-0613-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malignant gliomas are intractable and among the most lethal human malignancies. Like other cancers, metabolic reprogramming is a key feature of glioma and is thought to accommodate the heightened nutrient requirements for tumor cell proliferation, growth, and survival. This metabolic rewiring, driven by oncogenic signaling and molded by the unique environment of the brain, may impose vulnerabilities that could be exploited therapeutically for increased tumor control. In this review, we discuss the prominent metabolic features of malignant glioma, the key pathways regulating glioma metabolism, and the potential therapeutic opportunities for targeting metabolic processes.
Collapse
Affiliation(s)
- Peter M Clark
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Wilson X Mai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
- Henry Singleton Brain Tumor Program, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
| |
Collapse
|
365
|
Yu Z, Huang L, Qiao P, Jiang A, Wang L, Yang T, Tang S, Zhang W, Ren C. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells. Biochem Biophys Res Commun 2016; 473:953-958. [PMID: 27045080 DOI: 10.1016/j.bbrc.2016.03.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023]
Abstract
Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Zhenhai Yu
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China.
| | - Liangqian Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Pengyun Qiao
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Aifang Jiang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Li Wang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Tingting Yang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Shengjian Tang
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, China
| | - Wei Zhang
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, China
| | - Chune Ren
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China.
| |
Collapse
|
366
|
Dayton TL, Gocheva V, Miller KM, Israelsen WJ, Bhutkar A, Clish CB, Davidson SM, Luengo A, Bronson RT, Jacks T, Vander Heiden MG. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev 2016; 30:1020-33. [PMID: 27125672 PMCID: PMC4863734 DOI: 10.1101/gad.278549.116] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2(-/-)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2(-/-) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.
Collapse
Affiliation(s)
- Talya L Dayton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Vasilena Gocheva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kathryn M Miller
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William J Israelsen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Clary B Clish
- Metabolite Profiling Platform, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Shawn M Davidson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alba Luengo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roderick T Bronson
- Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
367
|
Alves-Filho JC, Pålsson-McDermott EM. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation. Front Immunol 2016; 7:145. [PMID: 27148264 PMCID: PMC4838608 DOI: 10.3389/fimmu.2016.00145] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signaling pathways, affecting both the enzymatic activity of PKM2 as a PK and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for this protein as a therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- Jose C Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo , Ribeirao Preto , Brazil
| | - Eva M Pålsson-McDermott
- Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
368
|
Tai WT, Hung MH, Chu PY, Chen YL, Chen LJ, Tsai MH, Chen MH, Shiau CW, Boo YP, Chen KF. SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma. Oncotarget 2016; 7:22193-205. [PMID: 26959741 PMCID: PMC5008355 DOI: 10.18632/oncotarget.7923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/23/2016] [Indexed: 01/12/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.
Collapse
Affiliation(s)
- Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Meidcal Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Husan Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yin-Pin Boo
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
369
|
PARP Inhibition Suppresses Growth of EGFR-Mutant Cancers by Targeting Nuclear PKM2. Cell Rep 2016; 15:843-856. [PMID: 27149849 DOI: 10.1016/j.celrep.2016.03.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/20/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Upon growth factor stimulation or in some EGFR mutant cancer cells, PKM2 translocates into the nucleus to induce glycolysis and cell growth. Here, we report that nuclear PKM2 binds directly to poly-ADP ribose, and this PAR-binding capability is critical for its nuclear localization. Accordingly, PARP inhibition prevents nuclear retention of PKM2 and therefore suppresses cell proliferation and tumor growth. In addition, we found that PAR level correlates with nuclear localization of PKM2 in EGFR mutant brain and lung cancers, suggesting that PAR-dependent nuclear localization of PKM2 likely contributes to tumor progression in EGFR mutant glioblastoma and lung cancers. In addition, some EGFR-inhibitor-resistant lung cancer cells are sensitive to PARP inhibitors. Taken together, our data indicate that suppression of PKM2 nuclear function by PARP inhibitors represents a treatment strategy for EGFR-inhibitor-resistant cancers.
Collapse
|
370
|
Mohammad GH, Olde Damink SWM, Malago M, Dhar DK, Pereira SP. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS One 2016; 11:e0151635. [PMID: 26989901 PMCID: PMC4798246 DOI: 10.1371/journal.pone.0151635] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival.
Collapse
Affiliation(s)
- Goran Hamid Mohammad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- Chemistry Department, School of Science, University of Sulaimani, Sulaimanyah, Kurdistan Region, Iraq
| | - S. W. M. Olde Damink
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Massimo Malago
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Dipok Kumar Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| |
Collapse
|
371
|
Shayman JA. Targeting Glycosphingolipid Metabolism to Treat Kidney Disease. Nephron Clin Pract 2016; 134:37-42. [PMID: 26954668 DOI: 10.1159/000444926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
The enhanced expression of glucosylceramide-based glycosphingolipids (GSLs) is a hallmark of many forms of renal disease including diabetic nephropathy, polycystic kidney disease and renal cell carcinoma. A common feature of each of these renal disorders is the preference metabolism via aerobic glycolysis. While aerobic glycolysis is an inefficient way to generate ATP, aerobic glycolysis promotes the formation of substrates important for the production of biomass, including lipids, amino acids and nucleotides, through the pentose phosphate pathway. Two products that are essential for the synthesis of glucosylceramide and more complex GSLs are generated through the pentose phosphate pathway. These products are reducing equivalents in the form of NADPH and UDP-glucose. In experimental models of each of these disorders, inhibition of glucosylceramide synthase with eliglustat or related analogues reverses the disease phenotype suggesting that blocking GSL synthesis should be explored as a potential treatment strategy.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich., USA
| |
Collapse
|
372
|
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, Goronzy JJ, Weyand CM. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213:337-54. [PMID: 26926996 PMCID: PMC4813677 DOI: 10.1084/jem.20150900] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 02/01/2016] [Indexed: 12/25/2022] Open
Abstract
Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease, a chronic inflammatory condition causing high morbidity and mortality. Here, we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD), overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1β, driving systemic and tissue inflammation. In patient-derived monocytes and macrophages, increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species, which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3, thus boosting IL-6 and IL-1β production. Reducing glycolysis, scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence, PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction, oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Tsuyoshi Shirai
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Rafal R Nazarewicz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Barbara B Wallis
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Rolando E Yanes
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ryu Watanabe
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Marc Hilhorst
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Lu Tian
- Division of Biostatistics, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John C Giacomini
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
373
|
Gdynia G, Sauer SW, Kopitz J, Fuchs D, Duglova K, Ruppert T, Miller M, Pahl J, Cerwenka A, Enders M, Mairbäurl H, Kamiński MM, Penzel R, Zhang C, Fuller JC, Wade RC, Benner A, Chang-Claude J, Brenner H, Hoffmeister M, Zentgraf H, Schirmacher P, Roth W. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun 2016; 7:10764. [PMID: 26948869 PMCID: PMC4786644 DOI: 10.1038/ncomms10764] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022] Open
Abstract
The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer.
Collapse
Affiliation(s)
- Georg Gdynia
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
- German Cancer Research Center, Clinical Cooperation Unit Molecular Tumor Pathology, 69120 Heidelberg, Germany
| | - Sven W. Sauer
- Division of Inborn Metabolic Diseases, Department of General Pediatrics, University Children's Hospital, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Dominik Fuchs
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Katarina Duglova
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thorsten Ruppert
- Division of Inborn Metabolic Diseases, Department of General Pediatrics, University Children's Hospital, 69120 Heidelberg, Germany
| | - Matthias Miller
- German Cancer Research Center, Boveri Junior Research Group Innate Immunity, 69120 Heidelberg, Germany
| | - Jens Pahl
- German Cancer Research Center, Boveri Junior Research Group Innate Immunity, 69120 Heidelberg, Germany
| | - Adelheid Cerwenka
- German Cancer Research Center, Boveri Junior Research Group Innate Immunity, 69120 Heidelberg, Germany
| | - Markus Enders
- Institute of Inorganic Chemistry, Research Group Enders, University of Heidelberg, 69120 Heidelberg, Germany
| | - Heimo Mairbäurl
- Medical Clinic VII, Department of Sports Medicine, University of Heidelberg, and Translational Lung Research Center (TLRC), member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcin M. Kamiński
- German Cancer Research Center, Division of Immunogenetics, Tumour Immunology Program, 69120 Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christine Zhang
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
- German Cancer Research Center, Clinical Cooperation Unit Molecular Tumor Pathology, 69120 Heidelberg, Germany
| | - Jonathan C. Fuller
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Department of Molecular and Cellular Modeling (MCM), 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Department of Molecular and Cellular Modeling (MCM), 69118 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), Molecular and Cellular Modeling (MCM), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg 69120, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Axel Benner
- German Cancer Research Center, Division of Biostatistics, 69120 Heidelberg, Germany
| | - Jenny Chang-Claude
- Unit of Genetic Epidemiology, German Cancer Research Center, Division of Cancer Epidemiology, 69120 Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg- Eppendorf, 20246 Hamburg, Germany
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Division of Preventive Oncology, 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany
| | - Hanswalter Zentgraf
- German Cancer Research Center, Division of Monoclonal Antibodies, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
- German Cancer Research Center, Clinical Cooperation Unit Molecular Tumor Pathology, 69120 Heidelberg, Germany
- Institute of Pathology, Department of Surgical Pathology, University Medical Center Mainz, University of Mainz, 55131 Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Department of Surgical Pathology, University of Heidelberg, 69120 Heidelberg, Germany
- German Cancer Research Center, Clinical Cooperation Unit Molecular Tumor Pathology, 69120 Heidelberg, Germany
- Institute of Pathology, Department of Surgical Pathology, University Medical Center Mainz, University of Mainz, 55131 Mainz, Germany
| |
Collapse
|
374
|
Papa S, Bubici C. Linking apoptosis to cancer metabolism: Another missing piece of JuNK. Mol Cell Oncol 2016; 3:e1103398. [PMID: 27308628 PMCID: PMC4905410 DOI: 10.1080/23723556.2015.1103398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 06/06/2023]
Abstract
Cancer cells become dependent on aerobic glycolysis to sustain rapid proliferation and escape apoptosis. How this metabolic change, also known as the Warburg effect, is linked to apoptosis remains largely unknown. Our new data place c-Jun N-terminal kinase in the center of a hub regulating apoptosis and cancer metabolism.
Collapse
Affiliation(s)
- Salvatore Papa
- Cell Signaling and Cancer Laboratory, Institute of Hepatology London, UK
| | - Concetta Bubici
- Department of Life Sciences, Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
375
|
Lim SO, Li CW, Xia W, Lee HH, Chang SS, Shen J, Hsu JL, Raftery D, Djukovic D, Gu H, Chang WC, Wang HL, Chen ML, Huo L, Chen CH, Wu Y, Sahin A, Hanash SM, Hortobagyi GN, Hung MC. EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape. Cancer Res 2016; 76:1284-96. [PMID: 26759242 PMCID: PMC4775355 DOI: 10.1158/0008-5472.can-15-2478] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023]
Abstract
Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T-cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. EGF signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGFR, thereby increasing lactate excretion, which leads to inhibition of local cytotoxic T-cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-d-glucose with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC.
Collapse
Affiliation(s)
- Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jia Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical, University, Taichung, Taiwan. Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Ling Wang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical, University, Taichung, Taiwan
| | - Mong-Liang Chen
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical, University, Taichung, Taiwan
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel N Hortobagyi
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas. Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical, University, Taichung, Taiwan. Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
376
|
Xie J, Dai C, Hu X. Evidence That Does Not Support Pyruvate Kinase M2 (PKM2)-catalyzed Reaction as a Rate-limiting Step in Cancer Cell Glycolysis. J Biol Chem 2016; 291:8987-99. [PMID: 26917721 DOI: 10.1074/jbc.m115.704825] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 01/12/2023] Open
Abstract
It has been recognized that the rate-limiting function of pyruvate kinase M2 (PKM2) in glycolysis plays an important role in distributing glycolytic intermediates for anabolic and catabolic purposes in cancer cells. However, after analysis of the catalytic capacity of PKM2 relative to other glycolytic enzymes, the regulation range of PKM2 activity, metabolic flux control, and thermodynamics, we suggest that the PKM2-catalyzed reaction is not a rate-limiting step in cancer cell glycolysis. Hexokinase and phosphofructokinase 1 (PFK1), the first and third enzyme along the pathway, are rate-limiting enzymes that limit the overall glycolytic rate, whereas PKM2 and lactate dehydrogenase, the last two enzymes in the pathway, are for the fast removal of upstream intermediates to prevent the obstruction of the pathway. The argument is in accordance with the catalytic capacity of glycolytic enzymes, regulation range of enzyme activities, metabolic flux control, and thermodynamics.
Collapse
Affiliation(s)
- Jiansheng Xie
- From the Cancer Institute (a Key Laboratory for Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, 310009 Hangzhou and the Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
| | - Chunyan Dai
- From the Cancer Institute (a Key Laboratory for Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, 310009 Hangzhou and
| | - Xun Hu
- From the Cancer Institute (a Key Laboratory for Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, 310009 Hangzhou and
| |
Collapse
|
377
|
He CL, Bian YY, Xue Y, Liu ZX, Zhou KQ, Yao CF, Lin Y, Zou HF, Luo FX, Qu YY, Zhao JY, Ye ML, Zhao SM, Xu W. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Sci Rep 2016; 6:21524. [PMID: 26876154 PMCID: PMC4753445 DOI: 10.1038/srep21524] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/26/2016] [Indexed: 02/05/2023] Open
Abstract
In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells.
Collapse
Affiliation(s)
- Chang-Liang He
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yang-Yang Bian
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Yu Xue
- Department of Medical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ze-Xian Liu
- Department of Medical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Kai-Qiang Zhou
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Cui-Fang Yao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Yan Lin
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Han-Fa Zou
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Fang-Xiu Luo
- Department of Pathology, Affiliated Ruijin Hospital of Shanghai Jiaotong University, Shanghai, 201821 P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Yuan Zhao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ming-Liang Ye
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Shi-Min Zhao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Xu
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
378
|
Hsu MC, Hung WC, Yamaguchi H, Lim SO, Liao HW, Tsai CH, Hung MC. Extracellular PKM2 induces cancer proliferation by activating the EGFR signaling pathway. Am J Cancer Res 2016; 6:628-638. [PMID: 27152240 PMCID: PMC4851842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023] Open
Abstract
Pyruvate kinase is a key enzyme in the glycolytic pathway that converts phosphoenolpyruvate to pyruvate, and the M2 isoform of pyruvate kinase (PKM2) is associated with cancer. PKM2 has been reported to function independently of its pyruvate kinase activity, which is crucial for cancer cell proliferation. Moreover, there is growing evidence indicating that dimeric PKM2 is released from tumor cells into the circulation of cancer patients. However, the role of secreted PKM2 in cancer is not well understood. Here, we found that the phosphorylation level of epidermal growth factor receptor (EGFR) significantly increased upon the exposure of cells to the recombinant PKM2 protein. In addition, secreted PKM2 induces EGFR phosphorylation and activates the EGFR downstream signaling in triple-negative breast cancer cells. In contrast, knocking down PKM2 decreased EGFR phosphorylation. Moreover, expression of R399E mutant PKM2, which has been reported to preferentially form a dimer, enhanced EGFR phosphorylation, cellular transformation, and cell proliferation more strongly than the wild-type PKM2. Thus, our study revealed a novel function of extracellular PKM2 in the promoting cancer cell proliferation through EGFR activation.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Hsin-Wei Liao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chia-Hua Tsai
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| |
Collapse
|
379
|
Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget 2016; 7:5972-84. [PMID: 26745603 PMCID: PMC4868734 DOI: 10.18632/oncotarget.6821] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
In contrast to normal differentiated cells that depend on aerobicoxidation for energy production, cancer cells use aerobic glycolysis as the main source (Warburg's effect). The M2 splice isoform of pyruvate kinase (PKM2) is the key regulator for the aerobic glycolysis, high expression of PKM2 contributes to the aerobic glycolysis, promotes the growth of tumors. In the present study, we found that PKM2 was highly expressed in gastric cancer (GC) tissues and had a strongly inverse correlation with the expression of microRNA-let-7a (miR-let-7a). Furthermore, we found that the overexpression of miR-let-7a markedly suppressed the proliferation, migration, and invasion of GC cells by down-regulating the expression of PKM2. MicroRNAs (miRNAs) are important regulators play key roles in tumorigenesis and tumor progression. Although previous reports showed that let-7 family members act as tumor suppressors in many cancers. The specific regulatory mechanism of miR-let-7a to PKM2 in gastric cancer is still unclear. In this study, we revealed that miR-let-7a function as the antitumor and gene regulatory effects of PKM2 in GC cells.
Collapse
Affiliation(s)
- Ran Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Yang
- Liver Transplantation Center of the First Affiliated Hospital and Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Xiang Ma
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Younan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dakui Luo
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
380
|
Shinohara H, Kumazaki M, Minami Y, Ito Y, Sugito N, Kuranaga Y, Taniguchi K, Yamada N, Otsuki Y, Naoe T, Akao Y. Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells. Cancer Lett 2016; 371:1-11. [DOI: 10.1016/j.canlet.2015.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 12/18/2022]
|
381
|
Christensen DR, Calder PC, Houghton FD. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells. Sci Rep 2015; 5:17500. [PMID: 26639784 PMCID: PMC4671001 DOI: 10.1038/srep17500] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.
Collapse
Affiliation(s)
- David R. Christensen
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Franchesca D. Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
382
|
Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90-EGFR association. Oncogene 2015; 35:3387-98. [PMID: 26500058 DOI: 10.1038/onc.2015.397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/17/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
Secondary mutation of epidermal growth factor receptor (EGFR) resulting in drug resistance is one of the most critical issues in lung cancer therapy. Several drugs are being developed to overcome EGFR tyrosine kinase inhibitor (TKI) resistance. Here, we report that pyruvate kinase M2 (PKM2) stabilized mutant EGFR protein by direct interaction and sustained cell survival signaling in lung cancer cells. PKM2 silencing resulted in markedly reduced mutant EGFR expression in TKI-sensitive or -resistant human lung cancer cells, and in inhibition of tumor growth in their xenografts, concomitant with downregulation of EGFR-related signaling. Mechanistically, PKM2 directly interacted with mutant EGFR and heat-shock protein 90 (HSP90), and thus stabilized EGFR by maintaining its binding with HSP90 and co-chaperones. Stabilization of EGFR relied on dimeric PKM2, and the protein half-life of mutant EGFR decreased when PKM2 was forced into its tetramer form. Clinical levels of PKM2 positively correlated with mutant EGFR expression and with patient outcome. These results reveal a previously undescribed non-glycolysis function of PKM2 in the cytoplasm, which contribute to EGFR-dependent tumorigenesis and provide a novel strategy to overcome drug resistance to EGFR TKIs.
Collapse
|
383
|
Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, Hitosugi T, Zhang L, Zhang S, Seo JH, Xie J, Tucker M, Gu TL, Sudderth J, Jiang L, Mitsche M, DeBerardinis RJ, Wu S, Li Y, Mao H, Chen PR, Wang D, Chen GZ, Hurwitz SJ, Lonial S, Arellano ML, Khoury HJ, Khuri FR, Lee BH, Lei Q, Brat DJ, Ye K, Boggon TJ, He C, Kang S, Fan J, Chen J. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol 2015; 17:1484-96. [PMID: 26479318 PMCID: PMC4628560 DOI: 10.1038/ncb3255] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/18/2015] [Indexed: 12/18/2022]
Abstract
The oxidative pentose phosphate pathway (PPP) contributes to tumor growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumor growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signaling. Moreover, we identified and developed 6PGD inhibitors, Physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumor growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.
Collapse
Affiliation(s)
- Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Shannon Elf
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Changliang Shan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hee-Bum Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Quanjiang Ji
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Lu Zhou
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Taro Hitosugi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Liang Zhang
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Shuai Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jae Ho Seo
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jianxin Xie
- Cell Signaling Technology, Inc. (CST), Danvers, Massachusetts 01923, USA
| | - Meghan Tucker
- Cell Signaling Technology, Inc. (CST), Danvers, Massachusetts 01923, USA
| | - Ting-Lei Gu
- Cell Signaling Technology, Inc. (CST), Danvers, Massachusetts 01923, USA
| | - Jessica Sudderth
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lei Jiang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Matthew Mitsche
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shaoxiong Wu
- Department of Chemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yuancheng Li
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hui Mao
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Georgia Zhuo Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Selwyn J Hurwitz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Martha L Arellano
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Benjamin H Lee
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Qunying Lei
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jun Fan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
384
|
Plecitá-Hlavatá L, Ježek J, Ježek P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J Bioenerg Biomembr 2015; 47:467-76. [DOI: 10.1007/s10863-015-9628-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022]
|
385
|
Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, You Y, Lu Z, Peiper SC, Shu Y, Jiang BH. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene 2015; 34:5482-93. [PMID: 25703326 DOI: 10.1038/onc.2015.6] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022]
Abstract
Upregulation of the embryonic M2 isoform of pyruvate kinase (PKM2) emerges as a critical player in the cancer development and metabolism, yet the underlying mechanism of PKM2 overexpression remains to be elucidated. Here we demonstrate that IGF-1/IGF-IR regulates PKM2 expression by enhancing HIF-1α-p65 complex binding to PKM2 promoter. PKM2 expression is regulated by miR-148a/152 suppression. PKM2 directly interacts with NF-κB p65 subunit to promote EGR1 expression for regulating miR-148a/152 feedback circuit in normal cells, but not in cancer cells because of the DNA hypermethylation of miR-148a and miR-152 gene promoters. The silencing of miR-148a/152 contributes to the overexpression of PKM2, NF-κB or/and IGF-IR in some cancer cells. We show that disruption of PKM2/NF-κB/miR-148a/152 feedback loop can regulate cancer cell growth and angiogenesis, and is also associated with triple-negative breast cancer (TNBC) phenotype, which may have clinical implication for providing novel biomarker(s) of TNBC and potential therapeutic target(s) in the future.
Collapse
Affiliation(s)
- Q Xu
- State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, China
| | - L-Z Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Y Yin
- State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Pathology, Anhui Medical University, Hefei, China
| | - J He
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Q Li
- State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, China
| | - X Qian
- State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Y You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Z Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S C Peiper
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Y Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, China
| | - B-H Jiang
- State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
386
|
Giannoni E, Taddei ML, Morandi A, Comito G, Calvani M, Bianchini F, Richichi B, Raugei G, Wong N, Tang D, Chiarugi P. Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread. Oncotarget 2015; 6:24061-74. [PMID: 26183399 PMCID: PMC4695170 DOI: 10.18632/oncotarget.4448] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023] Open
Abstract
Cancer associated fibroblasts (CAFs) are key determinants of cancer progression. In prostate carcinoma (PCa), CAFs induce epithelial-mesenchymal transition (EMT) and metabolic reprogramming of PCa cells towards oxidative phosphorylation (OXPHOS), promoting tumor growth and metastatic dissemination. We herein establish a novel role for pyruvate kinase M2 (PKM2), an established effector of Warburg-like glycolytic behavior, in OXPHOS metabolism induced by CAFs. Indeed, CAFs promote PKM2 post-translational modifications, such as cysteine oxidation and Src-dependent tyrosine phosphorylation, allowing nuclear migration of PKM2 and the formation of a trimeric complex with hypoxia inducible factor-1α (HIF-1α) and the transcriptional repressor Differentially Expressed in Chondrocytes-1 (DEC1). DEC1 recruitment is mandatory for downregulating miR205 expression, thereby fostering EMT execution and metabolic switch toward OXPHOS. Furthermore, the analysis of a cohort of PCa patients reveals a significant positive correlation between PKM2 nuclear localization and cancer aggressiveness, thereby validating our in vitro observations. Crucially, in vitro and in vivo pharmacological targeting of PKM2 nuclear translocation using DASA-58, as well as metformin, impairs metastatic dissemination of PCa cells in SCID mice. Our study indicates that impairing the metabolic tumor:stroma interplay by targeting the PKM2/OXPHOS axis, may be a valuable novel therapeutic approach in aggressive prostate carcinoma.
Collapse
Affiliation(s)
- Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Maura Calvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Barbara Richichi
- Department of Chemistry, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Nicholas Wong
- Division of Nephrology, Department of Medicine, McMaster University, L8N4A6, Hamilton, Ontario, Canada
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, L8N4A6, Hamilton, Ontario, Canada
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| |
Collapse
|
387
|
Exploring the Altered Dynamics of Mammalian Central Carbon Metabolic Pathway in Cancer Cells: A Classical Control Theoretic Approach. PLoS One 2015; 10:e0137728. [PMID: 26367460 PMCID: PMC4569588 DOI: 10.1371/journal.pone.0137728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In contrast with normal cells, most of the cancer cells depend on aerobic glycolysis for energy production in the form of adenosine triphosphate (ATP) bypassing mitochondrial oxidative phosphorylation. Moreover, compared to normal cells, cancer cells exhibit higher consumption of glucose with higher production of lactate. Again, higher rate of glycolysis provides the necessary glycolytic intermediary precursors for DNA, protein and lipid synthesis to maintain high active proliferation of the tumor cells. In this scenario, classical control theory based approach may be useful to explore the altered dynamics of the cancer cells. Since the dynamics of the cancer cells is different from that of the normal cells, understanding their dynamics may lead to development of novel therapeutic strategies. METHOD We have developed a model based on the state space equations of classical control theory along with an order reduction technique to mimic the actual dynamic behavior of mammalian central carbon metabolic (CCM) pathway in normal cells. Here, we have modified Michaelis Menten kinetic equation to incorporate feedback mechanism along with perturbations and cross talks associated with a metabolic pathway. Furthermore, we have perturbed the proposed model to reduce the mitochondrial oxidative phosphorylation. Thereafter, we have connected proportional-integral (PI) controller(s) with the model for tuning it to behave like the CCM pathway of a cancer cell. This methodology allows one to track the altered dynamics mediated by different enzymes. RESULTS AND DISCUSSIONS The proposed model successfully mimics all the probable dynamics of the CCM pathway in normal cells. Moreover, experimental results demonstrate that in cancer cells, a coordination among enzymes catalyzing pentose phosphate pathway and intermediate glycolytic enzymes along with switching of pyruvate kinase (M2 isoform) plays an important role to maintain their altered dynamics.
Collapse
|
388
|
Hosios AM, Fiske BP, Gui DY, Vander Heiden MG. Lack of Evidence for PKM2 Protein Kinase Activity. Mol Cell 2015; 59:850-7. [PMID: 26300261 PMCID: PMC4548833 DOI: 10.1016/j.molcel.2015.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 01/15/2023]
Abstract
The role of pyruvate kinase M2 (PKM2) in cell proliferation is controversial. A unique function of PKM2 proposed to be important for the proliferation of some cancer cells involves the direct activity of this enzyme as a protein kinase; however, a detailed biochemical characterization of this activity is lacking. Using [(32)P]-phosphoenolpyruvate (PEP) we examine the direct substrates of PKM2 using recombinant enzyme and in vitro systems where PKM2 is genetically deleted. Labeling of some protein species from [(32)P]-PEP can be observed; however, most were dependent on the presence of ADP, and none were dependent on the presence of PKM2. In addition, we also failed to observe PKM2-dependent transfer of phosphate from ATP directly to protein. These findings argue against a role for PKM2 as a protein kinase.
Collapse
Affiliation(s)
- Aaron M Hosios
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian P Fiske
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Y Gui
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
389
|
Israelsen WJ, Vander Heiden MG. Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol 2015; 43:43-51. [PMID: 26277545 DOI: 10.1016/j.semcdb.2015.08.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
Abstract
Pyruvate kinase is an enzyme that catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis and plays a role in regulating cell metabolism. There are four mammalian pyruvate kinase isoforms with unique tissue expression patterns and regulatory properties. The M2 isoform of pyruvate kinase (PKM2) supports anabolic metabolism and is expressed both in cancer and normal tissue. The enzymatic activity of PKM2 is allosterically regulated by both intracellular signaling pathways and metabolites; PKM2 thus integrates signaling and metabolic inputs to modulate glucose metabolism according to the needs of the cell. Recent advances have increased our understanding of metabolic regulation by pyruvate kinase, raised new questions, and suggested the possibility of non-canonical PKM2 functions to regulate gene expression and cell cycle progression via protein-protein interactions and protein kinase activity. Here we review the structure, function, and regulation of pyruvate kinase and discuss how these properties enable regulation of PKM2 for cell proliferation and tumor growth.
Collapse
Affiliation(s)
- William J Israelsen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
390
|
Chaman N, Iqbal MA, Siddiqui FA, Gopinath P, Bamezai RNK. ERK2-Pyruvate Kinase Axis Permits Phorbol 12-Myristate 13-Acetate-induced Megakaryocyte Differentiation in K562 Cells. J Biol Chem 2015; 290:23803-15. [PMID: 26269597 DOI: 10.1074/jbc.m115.657411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Noor Chaman
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Askandar Iqbal
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Farid Ahmad Siddiqui
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prakasam Gopinath
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rameshwar N K Bamezai
- From the National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
391
|
Iansante V, Choy PM, Fung SW, Liu Y, Chai JG, Dyson J, Del Rio A, D'Santos C, Williams R, Chokshi S, Anders RA, Bubici C, Papa S. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun 2015; 6:7882. [PMID: 26258887 PMCID: PMC4918319 DOI: 10.1038/ncomms8882] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023] Open
Abstract
Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect with the suppression of apoptosis are not well understood. In this study, using loss-of-function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose) polymerase (PARP)14 promotes aerobic glycolysis in human hepatocellular carcinoma (HCC) by maintaining low activity of the pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. Notably, PARP14 is highly expressed in HCC primary tumours and associated with poor patient prognosis. Mechanistically, PARP14 inhibits the pro-apoptotic kinase JNK1, which results in the activation of PKM2 through phosphorylation of Thr365. Moreover, targeting PARP14 enhances the sensitization of HCC cells to anti-HCC agents. Our findings indicate that the PARP14-JNK1-PKM2 regulatory axis is an important determinant for the Warburg effect in tumour cells and provide a mechanistic link between apoptosis and metabolism.
Collapse
Affiliation(s)
- Valeria Iansante
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Pui Man Choy
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Sze Wai Fung
- Department of Medicine, Section of Inflammation and Signal Transduction, Imperial College, London W12 0NN, UK
| | - Ying Liu
- The Sol Goldman Pancreatic Cancer Research Center, Division of Gastrointestinal and Liver Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
- Department of Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450000, China
| | - Jian-Guo Chai
- Department of Medicine, Section of Molecular Immunology, Imperial College, London W12 0NN, UK
| | - Julian Dyson
- Department of Medicine, Section of Molecular Immunology, Imperial College, London W12 0NN, UK
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna 40129, Italy
| | - Clive D'Santos
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Roger Williams
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
- Viral Hepatitis Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Shilpa Chokshi
- Viral Hepatitis Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Robert A Anders
- The Sol Goldman Pancreatic Cancer Research Center, Division of Gastrointestinal and Liver Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Concetta Bubici
- Department of Medicine, Section of Inflammation and Signal Transduction, Imperial College, London W12 0NN, UK
| | - Salvatore Papa
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| |
Collapse
|
392
|
Lo AKF, Dawson CW, Young LS, Ko CW, Hau PM, Lo KW. Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells. J Pathol 2015; 237:238-48. [PMID: 26096068 DOI: 10.1002/path.4575] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
Non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signalling pathways which collectively promote cell proliferation, transformation, angiogenesis, and invasiveness, as well as modulation of energy metabolism. In this study, we report that LMP1 increases cellular uptake of glucose and glutamine, enhances LDHA activity and lactate production, but reduces pyruvate kinase activity and pyruvate concentrations. LMP1 also increases the phosphorylation of PKM2, LDHA, and FGFR1, as well as the expression of PDHK1, FGFR1, c-Myc, and HIF-1α, regardless of oxygen availability. Collectively, these findings suggest that LMP1 promotes aerobic glycolysis. With respect to FGFR1 signalling, LMP1 not only increases FGFR1 expression, but also up-regulates FGF2, leading to constitutive activation of the FGFR1 signalling pathway. Furthermore, two inhibitors of FGFR1 (PD161570 and SU5402) attenuate LMP1-mediated aerobic glycolysis, cellular transformation (proliferation and anchorage-independent growth), cell migration, and invasion in nasopharyngeal epithelial cells, identifying FGFR1 signalling as a key pathway in LMP1-mediated growth transformation. Immunohistochemical staining revealed that high levels of phosphorylated FGFR1 are common in primary NPC specimens and that this correlated with the expression of LMP1. In addition, FGFR1 inhibitors suppress cell proliferation and anchorage-independent growth of NPC cells. Our current findings demonstrate that LMP1-mediated FGFR1 activation contributes to aerobic glycolysis and transformation of epithelial cells, thereby implicating FGF2/FGFR1 signalling activation in the EBV-driven pathogenesis of NPC.
Collapse
Affiliation(s)
- Angela Kwok-Fung Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.,Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | - Christopher W Dawson
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | | | - Chuen-Wai Ko
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Pok-Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
393
|
Kumar B, Bamezai RNK. Moderate DNA damage promotes metabolic flux into PPP via PKM2 Y-105 phosphorylation: a feature that favours cancer cells. Mol Biol Rep 2015; 42:1317-21. [PMID: 25840825 DOI: 10.1007/s11033-015-3876-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/31/2015] [Indexed: 11/28/2022]
Abstract
Pyruvate kinase M2, an important metabolic enzyme, promotes aerobic glycolysis (Warburg effect) to facilitate cancer cell proliferation. Unravelling the status of this important glycolytic pathway enzyme under sub-lethal doses of etoposide, a commonly used anti-proliferative genotoxic drug to induce mild/moderate DNA damage in HeLa cells as a model system and discern its effect on: PKM2 expression, phosphorylation, dimer: tetramer ratio, activity and associated effects, was pertinent. Protein expression and phosphorylation of PKM2 from HeLa cells was estimated using Western blotting. Same protein lysate was also used to estimate total pyruvate kinase activity and the total dimer: tetramer content evaluated using glycerol gradient ultra-centrifugation. Intracellular PEP was estimated manually using standard curve; while NADPH was assessed by NADPH estimation kit. Unpaired t test and two-way-ANOVA was used for statistical analysis. A relative decrease in PKM2 expression and a subsequent dose and time dependent increase in Y105-phosphorylation were observed. A concomitant increase in PKM2 dimer content and Y105-phosphorylation responsible for reduced PKM2 activity promoted PEP accumulation and NADPH production, representing increased metabolic flux into PPP, a feature that favours cancer cells. It was apparent that the sub-lethal doses of etoposide induced inadequate damage to DNA in cancer cells in culture promoted pro-survival conditions due to Y105-phosphorylation of PKM2, its stable dimerization and inactivation, a unique association not known earlier, indicating what might happen in tumour revivals or recurrences.
Collapse
Affiliation(s)
- Bhupender Kumar
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
394
|
De Rosa V, Iommelli F, Monti M, Fonti R, Votta G, Stoppelli MP, Del Vecchio S. Reversal of Warburg Effect and Reactivation of Oxidative Phosphorylation by Differential Inhibition of EGFR Signaling Pathways in Non-Small Cell Lung Cancer. Clin Cancer Res 2015. [PMID: 26216352 DOI: 10.1158/1078-0432.ccr-15-0375] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE One of the hallmarks of cancer cells is the excessive conversion of glucose to lactate under normoxic conditions, also known as the Warburg effect. Here, we tested whether the targeted inhibition of EGFR may revert this effect and reactivate mitochondrial oxidative phosphorylation in non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Sensitive (HCC827) and resistant (H1975 and H1993) NSCLC cells were treated with a panel of EGFR or MET inhibitors, and then tested for changes of EGFR signaling, glycolytic cascade, and mitochondrial function. Silencing of key glycolytic enzymes was then performed with targeted siRNAs. Furthermore, tumor-bearing nude mice treated with EGFR inhibitors were evaluated with (18)F-FDG PET/CT and tumors were analyzed for glycolytic and mitochondrial proteins. RESULTS Effective inhibition of EGFR signaling in NSCLC cells induced a dramatic reduction of hexokinase II (HKII) and phospho-pyruvate kinase M2 (p-PKM2, Tyr105) levels as well as an upregulation of mitochondrial complexes subunits (OXPHOS). Accordingly, a decreased lactate secretion and increased intracellular ATP levels were also observed in response to EGFR inhibitors. Downregulation of HKII and PKM2 by targeted siRNA transfection did not cause upregulation of OXPHOS but enhanced the effects of EGFR TKIs. Conversely, selective inhibition of AKT and ERK1/2 caused OXPHOS upregulation and glycolysis inhibition, respectively. Similar findings were obtained in tumors from animals treated with appropriate EGFR inhibitors. CONCLUSIONS Our findings indicate that EGFR inhibitors may reactivate oxidative phosphorylation of cancer cells and provide a mechanistic clue for the rational combination of agents targeting EGFR-dependent proliferation and glucose metabolism in cancer therapy.
Collapse
Affiliation(s)
- Viviana De Rosa
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Marcello Monti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Giuseppina Votta
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | | | - Silvana Del Vecchio
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy. Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
395
|
Chen Z, Wang Z, Guo W, Zhang Z, Zhao F, Zhao Y, Jia D, Ding J, Wang H, Yao M, He X. TRIM35 Interacts with pyruvate kinase isoform M2 to suppress the Warburg effect and tumorigenicity in hepatocellular carcinoma. Oncogene 2015; 34:3946-56. [PMID: 25263439 DOI: 10.1038/onc.2014.325] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 12/21/2022]
Abstract
Tripartite motif-containing protein 35 (TRIM35) is a member of RBCC family, which has a highly conserved order consisting of a RING domain followed by one or two B-Box domains and then a coiled-coil domain. We previously identified TRIM35 as a novel tumor suppressor in human hepatocellular carcinoma (HCC). However, the molecular mechanism that TRIM35 uses to suppress tumorigenicity is largely unknown. Pyruvate kinase isoform M2 (PKM2) has been demonstrated to have a central role in metabolic reprogramming during cancer progression. Phosphorylation of PKM2 tyrosine residue 105 (Y105) regulates PKM2 to provide a metabolic advantage to tumor cells, thereby promoting tumor growth. In the present work, mass spectrometry analysis demonstrated an interaction between TRIM35 and PKM2. Co-IP experiments confirmed that TRIM35 interacts with PKM2 and that the coiled-coil domain is required for such an interaction. Furthermore, the coiled-coil domain mediates decreases in the Warburg effect and in the cell proliferation of HCC cells. In addition, TRIM35 suppresses the tumorigenicity of HCC cells through the blockade of PKM2 Y105 phosphorylation. Collectively, our data reveal a new function for TRIM35, which is to regulate the Warburg effect and tumorigenicity through interaction with PKM2 in HCC.
Collapse
Affiliation(s)
- Z Chen
- 1] Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China [2] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - W Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - D Jia
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - J Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - H Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X He
- 1] Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China [2] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
396
|
Zuo RJ, Gu XW, Qi QR, Wang TS, Zhao XY, Liu JL, Yang ZM. Warburg-like Glycolysis and Lactate Shuttle in Mouse Decidua during Early Pregnancy. J Biol Chem 2015; 290:21280-91. [PMID: 26178372 DOI: 10.1074/jbc.m115.656629] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Decidualization is an essential process of maternal endometrial stromal cells to support pregnancy. Although it is known that enhanced glucose influx is critical for decidualization, the underlying mechanism in regulating glucose metabolism in decidua remains insufficiently understood. Here, we demonstrate that aerobic glycolysis-related genes and factors are all substantially induced during decidualization, indicating the existence of Warburg-like glycolysis in decidua. In vitro, progesterone activates hypoxia-inducible factor 1α (Hif1α) and c-Myc through Pi3k-Akt signaling pathway to maintain aerobic glycolysis in decidualizing cells. Knocking down of pyruvate kinase M2 (Pkm2) attenuates the induction of decidual marker gene. Decidual formation in vivo is also impaired by glycolysis inhibitor 3-bromopyruvate. Besides, lactate exporter monocarboxylate transporter 4 (Mct4) is induced in newly formed decidual cells, whereas lactate importer Mct1 and proliferation marker Ki-67 are complementarily located in the surrounding undifferentiated cells, which are supposed to consume lactate for proliferation. Hif1α activation is required for lactate-dependent proliferation of the undifferentiated cells. Inhibition of lactate flux leads to compromised decidualization and decelerated lactate-dependent proliferation. In summary, we reveal that Warburg-like glycolysis and local lactate shuttle are activated in decidua and play important roles for supporting early pregnancy.
Collapse
Affiliation(s)
- Ru-Juan Zuo
- From the College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 and
| | - Xiao-Wei Gu
- the Department of Biology, Shantou University, Shantou 515063, China
| | - Qian-Rong Qi
- the Department of Biology, Shantou University, Shantou 515063, China
| | - Tong-Song Wang
- the Department of Biology, Shantou University, Shantou 515063, China
| | - Xu-Yu Zhao
- the Department of Biology, Shantou University, Shantou 515063, China
| | - Ji-Long Liu
- From the College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 and
| | - Zeng-Ming Yang
- From the College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 and
| |
Collapse
|
397
|
Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget 2015; 6:16832-47. [PMID: 26164081 PMCID: PMC4627277 DOI: 10.18632/oncotarget.4160] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided.
Collapse
Affiliation(s)
- Romain Cohen
- INSERM U728, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), Clichy La Garenne, France
| | - Cindy Neuzillet
- INSERM U728, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), Clichy La Garenne, France
- Department of Medical Oncology, Henri Mondor University Hospital, Créteil, France
| | | | - Sandrine Faivre
- Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Armand de Gramont
- New Drug Evaluation Laboratory, Centre of Experimental Therapeutics and Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Raymond
- Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
398
|
Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. Mol Cell 2015; 59:345-358. [PMID: 26145173 DOI: 10.1016/j.molcel.2015.05.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/17/2015] [Accepted: 05/28/2015] [Indexed: 01/02/2023]
Abstract
Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.
Collapse
|
399
|
Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, Yung WKA, Weinstein JN, Tan M, Yao J. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 2015; 5:8202-10. [PMID: 24077665 PMCID: PMC4226677 DOI: 10.18632/oncotarget.1159] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The M2 isoform of pyruvate kinase (PKM2) plays an important role in aerobic glycolysis and is a mediator of the Warburg effect in tumors. It was previously thought that tumor cells switch expression of PKM from normal tissue-expressed PKM1 to tumor-specific PKM2 via an alternative splicing mechanism. This view was challenged by a recent report demonstrating that PKM2 is already the major PKM isoform expressed in many differentiated normal tissues. Here, through analyses on sixteen tumor types using the cancer genome atlas RNA-Seq and exon array datasets, we confirmed that isoform switch from PKM1 to PKM2 occurred in glioblastomas but not in other tumor types examined. Despite lacking of isoform switches, PKM2 expression was found to be increased in all cancer types examined, and correlated strongly to poor prognosis in head and neck cancers. We further demonstrated that elevated PKM2 expression correlated well with the hypomethylation status of intron 1 of the PKM gene in multiple cancer types, suggesting epigenetic regulation by DNA methylation as a major mechanism in controlling PKM transcription in tumors. Our study suggests that isoform switch of PKM1 to PKM2 in cancers is tissue-specific and targeting PKM2 activity in tumors remains a promising approach for clinical intervention of multiple cancer types.
Collapse
Affiliation(s)
- Shruti Desai
- Mitchell Cancer Institute, Departments of Cell Biology and Neuroscience, University of South Alabama, Mobile, USA
| | - Minming Ding
- Division of Biostatistics, School of Public Health, The University of Texas - Houston Health Science Center, Houston, USA
| | - Bin Wang
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, The University of Texas - Houston Health Science Center, Houston, USA
| | - Zhimin Lu
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, The University of Texas - Houston Health Science Center, Houston, USA
| | - Qi Zhao
- Ludwig Collaborative Laboratory, Department of Neurosurgery, Johns Hopkins University, 1550 Orleans Street, Baltimore, USA
| | - Kenna Shaw
- Department of TCGA Genome Data Analysis Center, The University of Texas M. D. Anderson Cancer Center, The University of Texas - Houston Health Science Center, Houston, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, The University of Texas - Houston Health Science Center, Houston, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, The University of Texas - Houston Health Science Center, Houston, USA
| | - Ming Tan
- Mitchell Cancer Institute, Departments of Cell Biology and Neuroscience, University of South Alabama, Mobile, USA
| | - Jun Yao
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, The University of Texas - Houston Health Science Center, Houston, USA
| |
Collapse
|
400
|
Cavazos DA, Brenner AJ. Hypoxia in astrocytic tumors and implications for therapy. Neurobiol Dis 2015; 85:227-233. [PMID: 26094595 DOI: 10.1016/j.nbd.2015.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM, Grade IV astrocytoma) is the most common and most aggressive of the primary malignant brain tumors in adults. Hypoxia is a distinct feature in GBM and plays a significant role in tumor progression, resistance to treatment and poor outcomes. This review considers the effects of hypoxia on astrocytic tumors and the mechanisms that contribute to tumor progression and therapeutic resistance, with a focus on the vascular changes, chemotaxic signaling pathways and metabolic alterations involved.
Collapse
Affiliation(s)
- David A Cavazos
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Andrew J Brenner
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|