351
|
Gu DN, Jiang MJ, Mei Z, Dai JJ, Dai CY, Fang C, Huang Q, Tian L. microRNA-7 impairs autophagy-derived pools of glucose to suppress pancreatic cancer progression. Cancer Lett 2017; 400:69-78. [PMID: 28450156 DOI: 10.1016/j.canlet.2017.04.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer commonly addicts to aerobic glycolysis, and abnormally activates autophagy to adapt the stringent metabolic microenvironment. microRNA-7 (miR-7) was supposed to modulate various gastrointestinal cancer progression. We wonder whether miR-7 could destroy the reprogrammed metabolic homeostasis in pancreatic cancer via modulating the level of autophagy, and further affect tumor proliferation and survival. Herein, we first reported that pancreatic cancer could take advantage of autophagy as a survival strategy to provide essential glucose required for glycolysis metabolism. Of note, under the stressful tumor microenvironment, miR-7 could repress autophagy through up-regulation of LKB1-AMPK-mTOR signaling, and directly targeting the stages of autophagy induction and vesicle elongation to reduce the supply of intracellular glucose to glycolysis metabolism. Furthermore, miR-7 inhibited pancreatic cancer cell proliferation and metastasis in vitro and in vivo. Consistently, lentivirus-mediated miR-7 effectively reduced the growth of patient-derived xenograft by interfering glycolysis via inhibition of autophagy. Together, these data suggested miR-7 might function as an important regulator to impair autophagy-derived pools of glucose to suppress pancreatic cancer progress. Hence, miR-7 might be a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Dian-Na Gu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chen-Yun Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chi Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
352
|
Hecht EM, Liu MZ, Prince MR, Jambawalikar S, Remotti HE, Weisberg SW, Garmon D, Lopez-Pintado S, Woo Y, Kluger MD, Chabot JA. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma? J Magn Reson Imaging 2017; 46:393-402. [PMID: 28152252 DOI: 10.1002/jmri.25581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/21/2016] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To assess the relationship between diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM)-derived quantitative parameters (apparent diffusion coefficient [ADC], perfusion fraction [f], Dslow , diffusion coefficient [D], and Dfast , pseudodiffusion coefficient [D*]) and histopathology in pancreatic adenocarcinoma (PAC). MATERIALS AND METHODS Subjects with suspected surgically resectable PAC were prospectively enrolled in this Health Insurance Portability and Accountability Act (HIPAA)-compliant, Institutional Review Board-approved study. Imaging was performed at 1.5T with a respiratory-triggered echo planar DWI sequence using 10 b values. Two readers drew regions of interest (ROIs) over the tumor and adjacent nontumoral tissue. Monoexponential and biexponential fits were used to derive ADC2b , ADCall , f, D, and D*, which were compared to quantitative histopathology of fibrosis, mean vascular density, and cellularity. Two biexponential IVIM models were investigated and compared: 1) nonlinear least-square fitting based on the Levenberg-Marquardt algorithm, and 2) linear fit using a fixed D* (20 mm2 /s). Statistical analysis included Student's t-test, Pearson correlation (P < 0.05 was considered significant), intraclass correlation, and coefficients of variance. RESULTS Twenty subjects with PAC were included in the final cohort. Negative correlation between D and fibrosis (Reader 2: r = -0.57 P = 0.01; pooled P = -0.46, P = 0.04) was observed with a trend toward positive correlation between f and fibrosis (r = 0.44, P = 0.05). ADC2b was significantly lower in PAC with dense fibrosis than with loose fibrosis ADC2b (P = 0.03). Inter- and intrareader agreement was excellent for ADC, D, and f. CONCLUSION In PAC, D negatively correlates with fibrosis, with a trend toward positive correlation with f suggesting both perfusion and diffusion effects contribute to stromal desmoplasia. ADC2b is significantly lower in tumors with dense fibrosis and may serve as a biomarker of fibrosis architecture. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:393-402.
Collapse
Affiliation(s)
- Elizabeth M Hecht
- New York Presbyterian-Columbia University Medical Center, Department of Radiology, New York, New York, USA
| | - Michael Z Liu
- New York Presbyterian-Columbia University Medical Center, Department of Radiology, New York, New York, USA
| | - Martin R Prince
- New York Presbyterian-Columbia University Medical Center, Department of Radiology, New York, New York, USA
| | - Sachin Jambawalikar
- New York Presbyterian-Columbia University Medical Center, Department of Radiology, New York, New York, USA
| | - Helen E Remotti
- New York Presbyterian-Columbia University Medical Center, Department of Pathology, New York, New York, USA
| | - Stuart W Weisberg
- New York Presbyterian-Columbia University Medical Center, Department of Pathology, New York, New York, USA
| | - Donald Garmon
- New York Presbyterian-Columbia University Medical Center, Department of Surgery, New York, New York, USA
| | - Sara Lopez-Pintado
- Columbia University Mailman School of Public Heath, Department of Biostatistics, New York, New York, USA
| | - Yanghee Woo
- City of Hope, Department of Surgery, Duarte, California, USA
| | - Michael D Kluger
- New York Presbyterian-Columbia University Medical Center, Department of Surgery, New York, New York, USA
| | - John A Chabot
- New York Presbyterian-Columbia University Medical Center, Department of Surgery, New York, New York, USA
| |
Collapse
|
353
|
Harris NLE, Vennin C, Conway JRW, Vine KL, Pinese M, Cowley MJ, Shearer RF, Lucas MC, Herrmann D, Allam AH, Pajic M, Morton JP, Biankin AV, Ranson M, Timpson P, Saunders DN. SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene 2017; 36:4288-4298. [PMID: 28346421 PMCID: PMC5537606 DOI: 10.1038/onc.2017.63] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2-/- mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- N L E Harris
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - C Vennin
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - J R W Conway
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - K L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - M Pinese
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - M J Cowley
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - R F Shearer
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - M C Lucas
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - D Herrmann
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - A H Allam
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - M Pajic
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - J P Morton
- Cancer Research UK Beatson Institute, Glasgow, Scotland
| | - Australian Pancreatic Cancer Genome Initiative
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
- Cancer Research UK Beatson Institute, Glasgow, Scotland
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - M Ranson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - P Timpson
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
| | - D N Saunders
- Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
354
|
Lin HJ, Lin J. Seed-in-Soil: Pancreatic Cancer Influenced by Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9070093. [PMID: 28753978 PMCID: PMC5532629 DOI: 10.3390/cancers9070093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a fatal malignancy with a five-year survival rate lower than 7%, and most patients dying within six months of diagnosis. The factors that contribute to the aggressiveness of the disease include, but are not limited to: late diagnosis, prompt metastasis to adjacent vital organs, poor response, and resistance to anticancer treatments. This malignancy is uniquely associated with desmoplastic stroma that accounts for 80% of tumor mass. Understanding the biology of stroma can aid the discovery of innovative strategies for eradicating this lethal cancer in the future. This review highlights the critical components in the stroma and how they interact with the cancer cells to convey the devastating tumor progression.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical Laboratory Sciences, University of Delaware, Room 305, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA.
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
355
|
Lau SC, Cheung WY. Evolving treatment landscape for early and advanced pancreatic cancer. World J Gastrointest Oncol 2017; 9:281-292. [PMID: 28808501 PMCID: PMC5534396 DOI: 10.4251/wjgo.v9.i7.281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an infrequent cancer with a high disease related mortality rate, even in the context of early stage disease. Until recently, the rate of death from pancreatic cancer has remained largely similar whereby gemcitabine monotherapy was the mainstay of systemic treatment for most stages of disease. With the discovery of active multi-agent chemotherapy regimens, namely FOLFIRINOX and gemcitabine plus nab-paclitaxel, the treatment landscape of pancreatic cancer is slowly evolving. FOLFIRINOX and gemcitabine plus nab-paclitaxel are now considered standard first line treatment options in metastatic pancreatic cancer. Studies are ongoing to investigate the utility of these same regimens in the adjuvant setting. The potential of these treatments to downstage disease is also being actively examined in the locally advanced context since neoadjuvant approaches may improve resection rates and surgical outcomes. As more emerging data become available, the management of pancreatic cancer is anticipated to change significantly in the coming years.
Collapse
|
356
|
Arpalahti L, Saukkonen K, Hagström J, Mustonen H, Seppänen H, Haglund C, Holmberg CI. Nuclear ubiquitin C-terminal hydrolase L5 expression associates with increased patient survival in pancreatic ductal adenocarcinoma. Tumour Biol 2017; 39:1010428317710411. [PMID: 28653876 DOI: 10.1177/1010428317710411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease with an overall 5-year survival of less than 5%. Prognosis among surgically treated patients is difficult and identification of new biomarkers is essential for accurate prediction of patient outcome. As part of one of the major cellular protein degradation systems, the proteasome plays a fundamental role in both physiological and pathophysiological conditions including cancer. The proteasome-associated deubiquitinating enzyme ubiquitin C-terminal hydrolase L5 (UCHL5)/Uch37 is a modulator of proteasome activity with cancer prognostic marker potential. Cytoplasmic and nuclear immunoexpression of UCHL5 was evaluated in 154 surgical specimens from pancreatic ductal adenocarcinoma patients treated at Helsinki University Hospital, Finland, in 2000-2011. UCHL5 expression in relation to clinicopathological parameters and the association between UCHL5 In this study, positive expression and patient survival were assessed. Positive nuclear UCHL5 expression was associated with increased patient survival ( p = 0.005). A survival benefit was also detectable in these subgroups of patients: over 65 years ( p < 0.001), at tumor stages IIB to III ( p = 0.007), or with lymph-node positivity ( p = 0.006). In stages IIB to III disease, patients with positive nuclear UCHL5 expression showed a twofold increase in 5-year cancer-specific survival compared to those with negative expression. Multivariate analysis identified positive nuclear UCHL5 expression as an independent prognostic factor ( p = 0.012). In conclusion, UCHL5 expression could function as a prognostic marker in pancreatic ductal adenocarcinoma, particularly at disease stages IIB to III. As UCHL5 is one of the few markers predicting increased survival, our results may be of clinical relevance.
Collapse
Affiliation(s)
- Leena Arpalahti
- 1 Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Kapo Saukkonen
- 1 Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland.,2 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- 1 Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland.,3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- 2 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- 2 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- 1 Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland.,2 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carina I Holmberg
- 1 Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
357
|
Begum A, Ewachiw T, Jung C, Huang A, Norberg KJ, Marchionni L, McMillan R, Penchev V, Rajeshkumar NV, Maitra A, Wood L, Wang C, Wolfgang C, DeJesus-Acosta A, Laheru D, Shapiro IM, Padval M, Pachter JA, Weaver DT, Rasheed ZA, Matsui W. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS One 2017; 12:e0180181. [PMID: 28692661 PMCID: PMC5503247 DOI: 10.1371/journal.pone.0180181] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) play an important role in the clonogenic growth and metastasis of pancreatic ductal adenocarcinoma (PDAC). A hallmark of PDAC is the desmoplastic reaction, but the impact of the tumor microenvironment (TME) on CSCs is unknown. In order to better understand the mechanisms, we examined the impact of extracellular matrix (ECM) proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal adhesion kinase (FAK) on clonogenic PDAC growth and migration in vitro and tumor initiation, growth, and metastasis in vivo in nude mice using shRNA and overexpression constructs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK. FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover, the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-paclitaxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with standard chemotherapy support the clinical testing of this combination.
Collapse
Affiliation(s)
- Asma Begum
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Theodore Ewachiw
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Clinton Jung
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ally Huang
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - K. Jessica Norberg
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Luigi Marchionni
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ross McMillan
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vesselin Penchev
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - N. V. Rajeshkumar
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anirban Maitra
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Laura Wood
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chenguang Wang
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Wolfgang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ana DeJesus-Acosta
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Laheru
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Irina M. Shapiro
- Verastem, Inc., Needham, Massachusetts, United States of America
| | - Mahesh Padval
- Verastem, Inc., Needham, Massachusetts, United States of America
| | | | - David T. Weaver
- Verastem, Inc., Needham, Massachusetts, United States of America
| | - Zeshaan A. Rasheed
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Matsui
- Departments of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
358
|
Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int 2017; 17:68. [PMID: 28694739 PMCID: PMC5498917 DOI: 10.1186/s12935-017-0437-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an extremely dismal malignance. Chemotherapy has been widely applied to treat this intractable tumor. It has exclusive tumor microenvironment (TME), characterized by dense desmoplasia and profound infiltrations of immunosuppressive cells. Interactions between stromal cells and cancer cells play vital roles to affect the biological behaviors of pancreatic cancer. Targeting the stromal components of pancreatic cancer has shown promising results. In addition to the direct toxic effects of chemotherapeutic drugs on cancer cells, they can also remodel the TME, eventually affecting their efficacy. Herein, we reviewed the following four aspects; (1) clinical landmark advances of chemotherapy in pancreatic cancer, since 2000; (2) interactions and mechanisms between stromal cells and pancreatic cancer cells; (3) remodeling effects and mechanisms of chemotherapy on TME; (4) targeting stromal components in pancreatic cancer.
Collapse
Affiliation(s)
- Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
359
|
Melstrom LG, Salazar MD, Diamond DJ. The pancreatic cancer microenvironment: A true double agent. J Surg Oncol 2017; 116:7-15. [PMID: 28605029 DOI: 10.1002/jso.24643] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment in pancreatic cancer is a complex balance of pro- and anti-tumor components. The dense desmoplasia consists of immune cells, extracellular matrix, growth factors, cytokines, and cancer associated fibroblasts (CAF) or pancreatic stellate cells (PSC). There are a multitude of targets including hyaluronan, angiogenesis, focal adhesion kinase (FAK), connective tissue growth factor (CTGF), CD40, chemokine (C-X-C motif) receptor 4 (CXCR-4), immunotherapy, and Vitamin D. The developing clinical therapeutics will be reviewed.
Collapse
Affiliation(s)
- Laleh G Melstrom
- Department of Surgery and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Marcela D Salazar
- Department of Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Don J Diamond
- Department of Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
360
|
Allam A, Thomsen AR, Gothwal M, Saha D, Maurer J, Brunner TB. Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology 2017; 17:514-522. [PMID: 28601475 DOI: 10.1016/j.pan.2017.05.390] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic stellate cells are stromal cells that have multiple physiological functions such as the production of extracellular matrix, stimulation of amylase secretion, phagocytosis and immunity. In pancreatic cancer, stellate cells exhibit a different myofibroblastic-like morphology with the expression of alpha-smooth muscle actin, the activated form is engaged in several mechanisms that support tumorigenesis and cancer invasion and progression. In contrast to the aforementioned observations, eliminating the stromal cells that are positive for alpha-smooth muscle actin resulted in immune-evasion of the cancer cells and resulted in worse prognosis in animal models. Understanding the cancer-stromal signaling in pancreatic adenocarcinoma will provide novel strategies for therapy. Here we provide an updated review of studies that handle the topic "pancreatic stellate cells in cancer" and recent experimental approaches that can be the base for future directions in therapy.
Collapse
Affiliation(s)
- A Allam
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Clinical Oncology and Nuclear Medicine Department, Assiut University Hospitals, Egypt
| | - A R Thomsen
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Gothwal
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Saha
- Department of Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - J Maurer
- Department of Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T B Brunner
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
361
|
Gnatenko DA, Kopantsev EP, Sverdlov ED. The role of the signaling pathway FGF/FGFR in pancreatic cancer. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
362
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
363
|
The Prevalence and Clinicopathological Characteristics of High-Grade Pancreatic Intraepithelial Neoplasia: Autopsy Study Evaluating the Entire Pancreatic Parenchyma. Pancreas 2017; 46:658-664. [PMID: 28196020 DOI: 10.1097/mpa.0000000000000786] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We sought to identify clinicopathological characteristics of high-grade pancreatic intraepithelial neoplasia (PanIN)/carcinoma in situ to facilitate screening for pancreatic ductal adenocarcinoma. METHODS We evaluated PanIN lesions in 173 consecutive autopsy cases with no evidence of pancreatic ductal adenocarcinoma and/or intraductal papillary mucinous neoplasm (mean age, 80.5 years) by submitting the entire pancreas for microscopic examination. RESULTS PanIN-3 was found in 4% of examined cases, whereas PanIN-1 and PanIN-2 were present in 77% and 28%, respectively. PanIN-3 was more frequently identified in patients with diabetes mellitus and/or older age. PanIN-3 lesions were always multifocal, and the number of PanIN-3 foci was positively associated with those of PanIN-1 or PanIN-2. PanIN-3 was located more frequently in the pancreatic body and tail than in the head and predominantly involved small interlobular/intralobular ducts rather than the main duct. Notably, 71% of pancreata with PanIN-3 showed cystic changes in PanIN-3 and lower grade PanIN lesions. PanIN-3 was also accompanied by higher grade extralobular fibrosis. CONCLUSIONS We found that 4% of the examined pancreata harbored PanIN-3 lesions that were associated with several unique clinicopathological features. The cystic change along with fibrotic pancreatic parenchyma may be detected by imaging studies such as endoscopic ultrasound.
Collapse
|
364
|
Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K, Saglimbeni JA, Askan G, Bailey JM, Melchor JP, Zhong Y, Joo MG, Grbovic-Huezo O, Yang IH, Basturk O, Baker L, Park Y, Kurtz RC, Tuveson D, Leach SD, Pasricha PJ. PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk. Cancer Res 2017. [DOI: 10.1158/0008-5472.can-16-0899] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Nerves are a notable feature of the tumor microenvironment in some epithelial tumors, but their role in the malignant progression of pancreatic ductal adenocarcinoma (PDAC) is uncertain. Here, we identify dense innervation in the microenvironment of precancerous pancreatic lesions, known as pancreatic intraepithelial neoplasms (PanIN), and describe a unique subpopulation of neuroendocrine PanIN cells that express the neuropeptide substance P (SP) receptor neurokinin 1-R (NK1-R). Using organoid culture, we demonstrated that sensory neurons promoted the proliferation of PanIN organoids via SP-NK1-R signaling and STAT3 activation. Nerve-responsive neuroendocrine cells exerted trophic influences and potentiated global PanIN organoid growth. Sensory denervation of a genetically engineered mouse model of PDAC led to loss of STAT3 activation, a decrease in the neoplastic neuroendocrine cell population, and impaired PanIN progression to tumor. Overall, our data provide evidence that nerves of the PanIN microenvironment promote oncogenesis, likely via direct signaling to neoplastic neuroendocrine cells capable of trophic influences. These findings identify neuroepithelial cross-talk as a potential novel target in PDAC treatment. Cancer Res; 77(8); 1868–79. ©2017 AACR.
Collapse
Affiliation(s)
- Smrita Sinha
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- 2Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
- 3Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ya-Yuan Fu
- 3Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Adrien Grimont
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Kelly Lafaro
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A. Saglimbeni
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gokce Askan
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- 5Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer M. Bailey
- 6Division of Surgical Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jerry P. Melchor
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Zhong
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min Geol Joo
- 7Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olivera Grbovic-Huezo
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - In-Hong Yang
- 7Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olca Basturk
- 5Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lindsey Baker
- 8Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Young Park
- 8Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Robert C. Kurtz
- 2Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Tuveson
- 8Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Steven D. Leach
- 1David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pankaj J. Pasricha
- 3Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
365
|
Zambirinis CP, Miller G. Cancer Manipulation of Host Physiology: Lessons from Pancreatic Cancer. Trends Mol Med 2017; 23:465-481. [PMID: 28400243 DOI: 10.1016/j.molmed.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
Abstract
Homeostasis is a fundamental property of living organisms enabling the human body to withstand internal and external insults. In several chronic diseases, and especially in cancer, many homeostatic mechanisms are deranged. Pancreatic cancer in particular is notorious for its ability to invoke an intense fibroinflammatory stromal reaction facilitating its progression and resistance to treatment. In the past decade, several seminal discoveries have elucidated previously unrecognized modes of commandeering the host's defense systems. Here we review novel discoveries in pancreatic cancer immunobiology and attempt to integrate the notion of deranged homeostasis in the pathogenesis of this disease. We also highlight areas of controversy and obstacles that need to be overcome, hoping to further our mechanistic insight into this malignancy.
Collapse
Affiliation(s)
- Constantinos P Zambirinis
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Harlem Hospital, Columbia University Medical Center, New York, NY 10037, USA
| | - George Miller
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
366
|
Diwakarla C, Hannan K, Hein N, Yip D. Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options. World J Gastroenterol 2017; 23:2276-2285. [PMID: 28428707 PMCID: PMC5385394 DOI: 10.3748/wjg.v23.i13.2276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/20/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a poor prognosis regardless of stage. To date the mainstay of therapy for advanced disease has been chemotherapy with little incremental improvements in outcome. Despite extensive research investigating new treatment options the current practices continue to utilise fluorouracil or gemcitabine containing combinations. The need for novel therapeutic approaches is mandated by the ongoing poor survival rates associated with this disease. One such approach may include manipulation of ribosome biogenesis and the nucleolar stress response, which has recently been applied to haematological malignancies such as lymphoma and prostate cancer with promising results. This review will focus on the current therapeutic options for pancreatic ductal adenocarcinoma and the complexities associated with developing novel treatments, with a particular emphasis on the role of the nucleolus as a treatment strategy.
Collapse
|
367
|
Sinha S, Fu YY, Grimont A, Ketcham M, Lafaro K, Saglimbeni JA, Askan G, Bailey JM, Melchor JP, Zhong Y, Joo MG, Grbovic-Huezo O, Yang IH, Basturk O, Baker L, Park Y, Kurtz RC, Tuveson D, Leach SD, Pasricha PJ. PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk. Cancer Res 2017; 77:1868-1879. [PMID: 28386018 DOI: 10.1158/0008-5472.can-16-0899-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Nerves are a notable feature of the tumor microenvironment in some epithelial tumors, but their role in the malignant progression of pancreatic ductal adenocarcinoma (PDAC) is uncertain. Here, we identify dense innervation in the microenvironment of precancerous pancreatic lesions, known as pancreatic intraepithelial neoplasms (PanIN), and describe a unique subpopulation of neuroendocrine PanIN cells that express the neuropeptide substance P (SP) receptor neurokinin 1-R (NK1-R). Using organoid culture, we demonstrated that sensory neurons promoted the proliferation of PanIN organoids via SP-NK1-R signaling and STAT3 activation. Nerve-responsive neuroendocrine cells exerted trophic influences and potentiated global PanIN organoid growth. Sensory denervation of a genetically engineered mouse model of PDAC led to loss of STAT3 activation, a decrease in the neoplastic neuroendocrine cell population, and impaired PanIN progression to tumor. Overall, our data provide evidence that nerves of the PanIN microenvironment promote oncogenesis, likely via direct signaling to neoplastic neuroendocrine cells capable of trophic influences. These findings identify neuroepithelial cross-talk as a potential novel target in PDAC treatment. Cancer Res; 77(8); 1868-79. ©2017 AACR.
Collapse
Affiliation(s)
- Smrita Sinha
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ya-Yuan Fu
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Adrien Grimont
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Kelly Lafaro
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A Saglimbeni
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer M Bailey
- Division of Surgical Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jerry P Melchor
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Zhong
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min Geol Joo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - In-Hong Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Olca Basturk
- Gastrointestinal Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lindsey Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Young Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Robert C Kurtz
- Gastroenterology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
368
|
Yoshida N, Masamune A, Hamada S, Kikuta K, Takikawa T, Motoi F, Unno M, Shimosegawa T. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer. Cancer Lett 2017; 390:103-114. [PMID: 28093281 DOI: 10.1016/j.canlet.2017.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with pancreatic ductal adenocarcinoma (PDAC). Kindlin-2 is a focal adhesion protein that regulates the activation of integrins. This study aimed to clarify the role of kindlin-2 in PSCs in pancreatic cancer. Kindlin-2 expression in 79 resected pancreatic cancer tissues was examined by immunohistochemical staining. Kindlin-2-knockdown immortalized human PSCs were established using small interfering RNA. Pancreatic cancer cells were treated with conditioned media of PSCs, and the cell proliferation and migration were examined. SUIT-2 pancreatic cancer cells were subcutaneously injected into nude mice alone or with PSCs and the size of the tumors was monitored. Kindlin-2 expression was observed in PDAC and the peritumoral stroma. Stromal kindlin-2 expression was associated with shorter recurrence-free survival time after R0 resection. Knockdown of kindlin-2 resulted in decreased proliferation, migration, and cytokine expression in PSCs. The PSC-induced proliferation and migration of pancreatic cancer cells were suppressed by kindlin-2 knockdown in PSCs. In vivo, co-injection of PSCs increased the size of the tumors, but this effect was abolished by kindlin-2 knockdown in PSCs. In conclusion, kindlin-2 in PSCs promoted the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
369
|
The Neutrophil/Lymphocyte Ratio at Diagnosis Is Significantly Associated with Survival in Metastatic Pancreatic Cancer Patients. Int J Mol Sci 2017; 18:ijms18040730. [PMID: 28353661 PMCID: PMC5412316 DOI: 10.3390/ijms18040730] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Different inflammation-based scores such as the neutrophil/lymphocyte ratio (NLR), the Odonera Prognostic Nutritional Index (PNI), the Glasgow Prognostic Score, the platelet/lymphocyte ratio, and the C-reactive protein/albumin ratio have been found to be significantly associated with pancreatic cancer (PDAC) prognosis. However, most studies have investigated patients undergoing surgery, and few of them have compared these scores. We aimed at evaluating the association between inflammatory-based scores and PDAC prognosis. In a single center cohort study, inflammatory-based scores were assessed at diagnosis and their prognostic relevance as well as that of clinic-pathological variables were evaluated through multiple logistic regression and survival probability analysis. In 206 patients, age, male sex, tumor size, presence of distant metastasis, access to chemotherapy, and an NLR > 5 but not other scores were associated with overall survival (OS) at multivariate analysis. Patients with an NLR < 5 had a median survival of 12 months compared to 4 months in those with an NLR > 5. In the 81 patients with distant metastasis at diagnosis, an NLR > 5 resulted in the only variable significantly associated with survival. Among patients with metastatic disease who received chemotherapy, the median survival was 3 months in patients with an NLR > 5 and 7 months in those with an NLR < 5. The NLR might drive therapeutic options in PDAC patients, especially in the setting of metastatic disease.
Collapse
|
370
|
Rovithi M, Avan A, Funel N, Leon LG, Gomez VE, Wurdinger T, Griffioen AW, Verheul HMW, Giovannetti E. Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing. Sci Rep 2017; 7:44686. [PMID: 28304379 PMCID: PMC5356332 DOI: 10.1038/srep44686] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
The aim of the present study was to develop chick-embryo chorioallantoic membrane (CAM) bioluminescent tumor models employing low passage cell cultures obtained from primary pancreatic ductal adenocarcinoma (PDAC) cells. Primary PDAC cells transduced with lentivirus expressing Firefly-luciferase (Fluc) were established and inoculated onto the CAM membrane, with >80% engraftment. Fluc signal reliably correlated with tumor growth. Tumor features were evaluated by immunohistochemistry and genetic analyses, including analysis of mutations and mRNA expression of PDAC pivotal genes, as well as microRNA (miRNA) profiling. These studies showed that CAM tumors had histopathological and genetic characteristic comparable to the original tumors. We subsequently tested the modulation of key miRNAs and the activity of gemcitabine and crizotinib on CAM tumors, showing that combination treatment resulted in 63% inhibition of tumor growth as compared to control (p < 0.01). These results were associated with reduced expression of miR-21 and increased expression of miR-155. Our study provides the first evidence that transduced primary PDAC cells can form tumors on the CAM, retaining several histopathological and (epi)genetic characteristics of original tumors. Moreover, our results support the use of these models for drug testing, providing insights on molecular mechanisms underlying antitumor activity of new drugs/combinations.
Collapse
Affiliation(s)
- Maria Rovithi
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Internal Medicine, Agios Nikolaos General Hospital, Agios Nikolaos, Crete, Greece
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies; School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Leticia G. Leon
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Valentina E. Gomez
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, US
| | - Arjan W. Griffioen
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M. W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
371
|
The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Lett 2017; 397:94-102. [PMID: 28254409 DOI: 10.1016/j.canlet.2017.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer, which is often asymptomatic, is currently one of the most common causes of cancer-related death. This phenomenon is most likely due to a lack of early diagnosis, a high metastasis rate and a disappointing chemotherapy outcome. Thus, improving treatment outcomes by overcoming chemotherapy resistance may be a useful strategy in pancreatic cancer. Various underlying mechanisms involved in the chemoresistance of pancreatic cancer have been investigated. Notably, non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a pivotal role in regulating sensitivity to chemotherapy in pancreatic cancer. In this review, we highlight recent evidence regarding the role of miRNAs and lncRNAs in the chemoresistance of pancreatic cancer, including their expression levels, targets, biological functions and the regulation of chemoresistance, and discuss the potential clinical application of miRNAs and lncRNAs in the treatment of pancreatic cancer.
Collapse
|
372
|
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
373
|
Calatayud D, Dehlendorff C, Boisen MK, Hasselby JP, Schultz NA, Werner J, Immervoll H, Molven A, Hansen CP, Johansen JS. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark Res 2017; 5:8. [PMID: 28239461 PMCID: PMC5320745 DOI: 10.1186/s40364-017-0087-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to validate previously described diagnostic and prognostic microRNA expression profiles in tissue samples from patients with pancreatic cancer and other periampullary cancers. Methods Expression of 46 selected microRNAs was studied in formalin-fixed paraffin-embedded tissue from patients with resected pancreatic ductal adenocarcinoma (n = 165), ampullary cancer (n=59), duodenal cancer (n = 6), distal common bile duct cancer (n = 21), and gastric cancer (n = 20); chronic pancreatitis (n = 39); and normal pancreas (n = 35). The microRNAs were analyzed by PCR using the Fluidigm platform. Results Twenty-two microRNAs were significantly differently expressed in patients with pancreatic cancer when compared to healthy controls and chronic pancreatitis patients; 17 miRNAs were upregulated (miR-21-5p, −23a-3p, −31-5p, −34c-5p, −93-3p, −135b-3p, −155-5p, −186-5p, −196b-5p, −203, −205-5p, −210, −222-3p, −451, −492, −614, and miR-622) and 5 were downregulated (miR-122-5p, −130b-3p, −216b, −217, and miR-375). MicroRNAs were grouped into diagnostic indices of varying complexity. Ten microRNAs associated with prognosis were identified (let-7 g, miR-29a-5p, −34a-5p, −125a-3p, −146a-5p, −187, −205-5p, −212-3p, −222-5p, and miR-450b-5p). Prognostic indices based on differences in expression of 2 different microRNAs were constructed for pancreatic and ampullary cancer combined and separately (30, 5, and 21 indices). Conclusion The study confirms that pancreatic cancer tissue has a microRNA expression profile that is different from that of other periampullary cancers, chronic pancreatitis, and normal pancreas. We identified prognostic microRNAs and microRNA indices that were associated with shorter overall survival in patients with radically resected pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s40364-017-0087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Calatayud
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, LMU, University of Munich, Munich, Germany
| | - Heike Immervoll
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Ålesund Hospital, Ålesund, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Carsten Palnæs Hansen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
374
|
Neuzillet C, Rousseau B, Kocher H, Bourget P, Tournigand C. Unravelling the pharmacologic opportunities and future directions for targeted therapies in gastro-intestinal cancers Part 1: GI carcinomas. Pharmacol Ther 2017; 174:145-172. [PMID: 28223233 DOI: 10.1016/j.pharmthera.2017.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Until the 1990s, cytotoxic chemotherapy has been the cornerstone of medical therapy for gastrointestinal (GI) cancers. Better understanding of the molecular biology of cancer cell has led to the therapeutic revolution of targeted therapies, i.e. monoclonal antibodies or small molecule inhibitors directed against proteins that are specifically overexpressed or mutated in cancer cells. These agents being more specific to cancer cells were expected to be less toxic than cytotoxic agents. Targeted agents have provided clinical benefit in many GI cancer types. For example, antiangiogenics and anti-EGFR therapies have significantly improved survival of patients affected by metastatic colorectal cancer and have deeply changed the therapeutic strategy in this disease. However, their effects have sometimes been disappointing, due to intrinsic or acquired resistance mechanisms (e.g., RAS mutation for anti-EGFR therapies), or to an activity restricted to some tumour settings (e.g., lack of activity in other cancer types, or on the microscopic residual disease in adjuvant setting). Many studies are negative in overall population but positive in some specific patient subgroups (e.g., trastuzumab in HER2-positive gastric cancer), illustrating the importance of patient selection and early identification of predictive biomarkers of response to these therapies. We propose a comprehensive two-part review providing a panoramic approach of the successes and failures of targeted agents in GI cancers to unravel the pharmacologic opportunities and future directions for these agents in GI oncology. In this first part, we will focus on adenocarcinomas and squamous cell carcinomas, for which targeted therapies are mostly used in combination with chemotherapy.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; Tumour Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Barts and The London HPB Centre, The Royal London Hospital, Whitechapel, London, E1 1BB, United Kingdom.
| | - Benoît Rousseau
- Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Hemant Kocher
- Tumour Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Barts and The London HPB Centre, The Royal London Hospital, Whitechapel, London, E1 1BB, United Kingdom
| | - Philippe Bourget
- Department of Clinical Pharmacy, Necker-Enfants Malades University Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| |
Collapse
|
375
|
Geismann C, Grohmann F, Dreher A, Häsler R, Rosenstiel P, Legler K, Hauser C, Egberts JH, Sipos B, Schreiber S, Linkermann A, Hassan Z, Schneider G, Schäfer H, Arlt A. Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:782-796. [PMID: 28188806 DOI: 10.1016/j.bbamcr.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers. From a clinical view, the transcription factor NF-κB is of particular importance, since this pathway confers apoptosis resistance and limits drug efficacy. Whereas the role of the most abundant NF-κB subunit p65/RelA in therapeutic resistance is well documented, only little knowledge of the RelA downstream targets and their functional relevance in TRAIL mediated apoptosis in PDAC is available. In the present study TRAIL resistant and sensitive PDAC cell lines were analyzed for differentially expressed RelA target genes, to define RelA downstream targets mediating TRAIL resistance. The most upregulated target gene was then further functionally characterized. Unbiased genome-wide expression analysis demonstrated that the chemokine CCL20 represents the strongest TRAIL inducible direct RelA target gene in resistant PDAC cells. Unexpectedly, targeting CCL20 by siRNA, blocking antibodies or by downregulation of the sole CCL20 receptor CCR6 had no effect on PDAC cell death or cancer cell migration, arguing against an autocrine role of CCL20 in PDAC. However, by using an ex vivo indirect co-culture system we were able to show that CCL20 acts paracrine to recruit immune cells. Importantly, CCL20-recruited immune cells further increase TRAIL resistance of CCL20-producing PDAC cells. In conclusion, our data show a functional role of a RelA-CCL20 pathway in PDAC TRAIL resistance. We demonstrate how the therapy-induced cross-talk of cancer cells with immune cells affects treatment responses, knowledge needed to tailor novel bi-specific treatments, which target tumor cell as well as immune cells.
Collapse
Affiliation(s)
- Claudia Geismann
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany
| | - Frauke Grohmann
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany
| | - Anita Dreher
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, UKSH Campus Kiel, Germany
| | | | - Karen Legler
- Division of Molecular Oncology, Institute for Experimental Cancer Research, UKSH Campus Kiel, Kiel, Germany
| | | | | | - Bence Sipos
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany; Institute of Clinical Molecular Biology, UKSH Campus Kiel, Germany
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Zonera Hassan
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Munich, Germany
| | - Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Munich, Germany
| | - Heiner Schäfer
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany; Institute of Experimental Cancer Research, UKSH Campus Kiel, Germany
| | - Alexander Arlt
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Kiel, Germany.
| |
Collapse
|
376
|
Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology. Cancer Lett 2017; 392:83-93. [PMID: 28189533 DOI: 10.1016/j.canlet.2017.01.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease.
Collapse
|
377
|
Yeo D, Phillips P, Baldwin GS, He H, Nikfarjam M. Inhibition of group 1 p21-activated kinases suppresses pancreatic stellate cell activation and increases survival of mice with pancreatic cancer. Int J Cancer 2017; 140:2101-2111. [PMID: 28109008 DOI: 10.1002/ijc.30615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer remains one of the most lethal of all solid tumors. Pancreatic stellate cells (PSCs) are primarily responsible for the fibrosis that constitutes the stroma and p21-activated kinase 1 (PAK1) may have a role in signalling pathways involving PSCs. This study aimed to examine the role of PAK1 in PSCs and in the interaction of PSCs with pancreatic cancer cells. Human PSCs were isolated using the modified outgrowth method. The effect of inhibiting PAK1 with group 1 PAK inhibitor, FRAX597, on cell proliferation and apoptosis in vitro was measured by thymidine incorporation and annexin V assays, respectively. The effect of depleting host PAK1 on the survival of mice with pancreatic Pan02 cell tumors was evaluated using PAK1 knockout (KO) mice. PAK1 was expressed in isolated PSCs. FRAX597 reduced the activation of PSCs, inhibited PSC proliferation, and increased PSC apoptosis at least in partial by inhibiting PAK1 activity. The decreased expression and activity of PAK1 in PAK1 KO mice tumors was associated with an increased mouse survival. These results implicate PAK1 as a regulator of PSC activation, proliferation and apoptosis. Targeting stromal PAK1 could increase therapeutic response and survival of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dannel Yeo
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Phoebe Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Hong He
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
378
|
Rath N, Morton JP, Julian L, Helbig L, Kadir S, McGhee EJ, Anderson KI, Kalna G, Mullin M, Pinho AV, Rooman I, Samuel MS, Olson MF. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol Med 2017; 9:198-218. [PMID: 28031255 PMCID: PMC5286371 DOI: 10.15252/emmm.201606743] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a KrasG12D/p53R172H mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of KrasG12D/p53R172H PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.
Collapse
Affiliation(s)
- Nicola Rath
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Linda Julian
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Lena Helbig
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | | | | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Andreia V Pinho
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ilse Rooman
- Oncology Research Centre, Free University Brussels (VUB), Brussels, Belgium
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael F Olson
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
379
|
Kota J, Hancock J, Kwon J, Korc M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett 2017; 391:38-49. [PMID: 28093284 DOI: 10.1016/j.canlet.2016.12.035] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies with a 5-year survival rate of 8%. Dense, fibrotic stroma associated with pancreatic tumors is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Targeting stroma is considered as a potential therapeutic strategy to improve anti-cancer drug efficacy and patient survival. Although numerous stromal depletion therapies have reached the clinic, they add little to overall survival and are often associated with toxicity. Furthermore, increasing evidence suggests the anti-tumor properties of stroma. Its complete ablation enhanced tumor progression and reduced survival. Consequently, efforts are now focused on developing stromal-targeted therapies that normalize the reactive stroma and avoid the extremes: stromal abundance vs. complete depletion. In this review, we summarized the state of current and emerging anti-stromal targeted therapies, with major emphasis on the role of miRNAs in PDAC stroma and their potential use as novel therapeutic agents to modulate PDAC tumor-stromal interactions.
Collapse
Affiliation(s)
- Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA; The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA.
| | - Julie Hancock
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Jason Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA; Department of Medicine, IUSM, Indianapolis, IN, USA
| |
Collapse
|
380
|
Driscoll DR, Karim SA, Sano M, Gay DM, Jacob W, Yu J, Mizukami Y, Gopinathan A, Jodrell DI, Evans TRJ, Bardeesy N, Hall MN, Quattrochi BJ, Klimstra DS, Barry ST, Sansom OJ, Lewis BC, Morton JP. mTORC2 Signaling Drives the Development and Progression of Pancreatic Cancer. Cancer Res 2016; 76:6911-6923. [PMID: 27758884 PMCID: PMC5135633 DOI: 10.1158/0008-5472.can-16-0810] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
mTOR signaling controls several critical cellular functions and is deregulated in many cancers, including pancreatic cancer. To date, most efforts have focused on inhibiting the mTORC1 complex. However, clinical trials of mTORC1 inhibitors in pancreatic cancer have failed, raising questions about this therapeutic approach. We employed a genetic approach to delete the obligate mTORC2 subunit Rictor and identified the critical times during which tumorigenesis requires mTORC2 signaling. Rictor deletion resulted in profoundly delayed tumorigenesis. Whereas previous studies showed most pancreatic tumors were insensitive to rapamycin, treatment with a dual mTORC1/2 inhibitor strongly suppressed tumorigenesis. In late-stage tumor-bearing mice, combined mTORC1/2 and PI3K inhibition significantly increased survival. Thus, targeting mTOR may be a potential therapeutic strategy in pancreatic cancer. Cancer Res; 76(23); 6911-23. ©2016 AACR.
Collapse
Affiliation(s)
- David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Makoto Sano
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - David M Gay
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Wright Jacob
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yusuke Mizukami
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - T R Jeffry Evans
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Brian J Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
- Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
381
|
Quantitative secretomic analysis of pancreatic cancer cells in serum-containing conditioned medium. Sci Rep 2016; 6:37606. [PMID: 27869176 PMCID: PMC5116583 DOI: 10.1038/srep37606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/01/2016] [Indexed: 01/22/2023] Open
Abstract
Pancreatic cancer is a highly metastatic and chemo-resistant disease. Secreted proteins involved in cell-cell interactions play an important role in changing the tumor microenvironment. Previous studies generally focus on the secretome of cancer cell line from serum-free media, due to the serious interference of fetal bovine serum (FBS). However, serum-starvation may alter expression patterns of secreted proteins. Hence, efforts to decrease the interference of serum in proteomic analysis of serum-containing media have been hampered to quantitatively measure the tumor secretion levels. Recently, the metabolic labeling, protein equalization, protein fractionation and filter-aided sample preparation (FASP) strategy (MLEFF) has been successfully used to avoid the disturbance of serum on secretome analysis. Here, this efficient method was applied for comparative secretome analysis of two hamster pancreatic cancer cells with differentially metastatic potentials, enabling the observation of 161 differentially expressed proteins, including 106 proteins that had been previously reported and detected in plasma. By integrated analysis of our data and publicly available bioinformatics resources, we found that a combination panel consisting of CDH3, PLAU, and LFNG might improve the prognosis of overall pancreatic cancer survival. These secreted proteins may serve as a potential therapeutic targets for pancreatic cancer metastasis.
Collapse
|
382
|
Diana A, Wang LM, D'Costa Z, Azad A, Silva MA, Soonawalla Z, Allen P, Liu S, McKenna WG, Muschel RJ, Fokas E. Prognostic role and correlation of CA9, CD31, CD68 and CD20 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget 2016; 7:72819-72832. [PMID: 27637082 PMCID: PMC5341946 DOI: 10.18632/oncotarget.12022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
We assessed the prognostic value of hypoxia (carbonic anhydrase 9; CA9), vessel density (CD31), with macrophages (CD68) and B cells (CD20) that can interact and lead to immune suppression and disease progression using scanning and histological mapping of whole-mount FFPE pancreatectomy tissue sections from 141 primarily resectable pancreatic ductal adenocarcinoma (PDAC) samples treated with surgery and adjuvant chemotherapy. Their expression was correlated with clinicopathological characteristics, and overall survival (OS), progression-free survival (PFS), local progression-free survival (LPFS) and distant metastases free-survival (DMFS), also in the context of stroma density (haematoxylin-eosin) and activity (alpha-smooth muscle actin). The median OS was 21 months after a mean follow-up of 20 months (range, 2-69 months). The median tumor surface area positive for CA9 and CD31 was 7.8% and 8.1%, respectively. Although total expression of these markers lacked prognostic value in the entire cohort, nevertheless, high tumor compartment CD68 expression correlated with worse PFS (p = 0.033) and DMFS (p = 0.047). Also, high CD31 expression predicted for worse OS (p = 0.004), PFS (p = 0.008), LPFS (p = 0.014) and DMFS (p = 0.004) in patients with moderate density stroma. High stromal and peripheral compartment CD68 expression predicted for significantly worse outcome in patients with loose and moderate stroma density, respectively. Altogether, in contrast to the current notion, hypoxia levels in PDAC appear to be comparable to other malignancies. CD31 and CD68 constitute prognostic markers in patient subgroups that vary according to tumor compartment and stromal density. Our study provides important insight on the pathophysiology of PDAC and should be exploited for future treatments.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, CD20/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor
- Carbonic Anhydrase IX/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/therapy
- Combined Modality Therapy
- Female
- Humans
- Hypoxia/metabolism
- Immunohistochemistry
- Macrophages/metabolism
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Neovascularization, Pathologic/metabolism
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/therapy
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Prognosis
- Stromal Cells/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Angela Diana
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Lai Mun Wang
- Department of Pathology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Michael A. Silva
- Department of Surgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Zahir Soonawalla
- Department of Surgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Paul Allen
- Department of Pathology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Stanley Liu
- Department of Radiation Oncology, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - W. Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ruth J. Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Current Address: Department of Radiotherapy and Oncology, Goethe University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
383
|
Impact of SPARC expression on outcome in patients with advanced pancreatic cancer not receiving nab-paclitaxel: a pooled analysis from prospective clinical and translational trials. Br J Cancer 2016; 115:1520-1529. [PMID: 27802454 PMCID: PMC5155356 DOI: 10.1038/bjc.2016.355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Conflicting results on the role of secreted protein acidic and rich in cysteins (SPARC) expression have been reported in resected pancreatic ductal adenocarcinoma (PDAC), and its prognostic and/or predictive role in advanced PDAC (aPDAC) has not been extensively investigated yet. This study was designed to evaluate SPARC expression as a biomarker in aPDAC patients (pts) not receiving nab-paclitaxel. METHODS Using immunohistochemistry, we examined the stromal as well as the tumoral (i.e., cytoplasmic) SPARC expression in tumour tissue (primary tumours and metastases) of 134 aPDAC pts participating in completed prospective clinical and biomarker trials. The SPARC expression levels were correlated to the pts' clinicopathological parameters and survival times. RESULTS Sixty-seven per cent of the analysed tumours showed high stromal SPARC expression, which was not associated with overall survival (OS, median 9.1 vs 7.6 months, P=0.316). A positive cytoplasmic SPARC expression was detected in 55% of the tumours and correlated significantly with inferior progression-free survival (PFS, 6.2 vs 8.6 months, P=0.004) and OS (7.8 vs 8.4 months, P=0.032). This association was strongest for pts, where primary tumour tissue was examined (PFS: 6.7 vs 10.8 months, P=0.004; OS: 7.9 vs 11.9 months, P=0.030), whereas no significant correlation was detected for pts, where only metastatic tissue was available (PFS: 5.8 vs 6.6 months, P=0.502; OS: 7.0 vs 7.8 months, P=0.452). In pts receiving gemcitabine-based chemotherapy cytoplasmic SPARC expression was significantly associated with an inferior PFS and OS (PFS: 6.2 vs 9.2 months, P=0.002; OS 7.3 vs 9.9 months, P=0.012), whereas no such association was detected for stromal SPARC expression or for pts receiving fluoropyrimidine-based chemotherapy. CONCLUSION We identified cytoplasmic SPARC expression in the primary tumour as a biomarker associated with inferior PFS and OS in aPDAC. Cytoplasmic SPARC expression may furthermore act as a negative predictive biomarker in pts treated with gemcitabine-based chemotherapy.
Collapse
|
384
|
Moz S, Basso D, Bozzato D, Galozzi P, Navaglia F, Negm OH, Arrigoni G, Zambon CF, Padoan A, Tighe P, Todd I, Franchin C, Pedrazzoli S, Punzi L, Plebani M. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells. Oncotarget 2016; 7:69927-69944. [PMID: 27655713 PMCID: PMC5342525 DOI: 10.18632/oncotarget.12068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.
Collapse
Affiliation(s)
- Stefania Moz
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Daniela Basso
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Dania Bozzato
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Paola Galozzi
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Padova, Italy
| | - Filippo Navaglia
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Ola H. Negm
- University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
- Mansoura University, Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura City, Egypt
| | - Giorgio Arrigoni
- University of Padova, Department of Biomedical Sciences, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Carlo-Federico Zambon
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Andrea Padoan
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Paddy Tighe
- University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| | - Ian Todd
- University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| | - Cinzia Franchin
- University of Padova, Department of Biomedical Sciences, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Leonardo Punzi
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Padova, Italy
| | - Mario Plebani
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| |
Collapse
|
385
|
|
386
|
Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M, Loewer M, Glimm H, Hackert T, Sprick MR, Höfer T, Trumpp A, Halama N, Hassel JC, Strobel O, Büchler M, Sahin U, Offringa R. Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 2016; 5:e1240859. [PMID: 28123878 DOI: 10.1080/2162402x.2016.1240859] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The devastating prognosis of patients with resectable pancreatic ductal adenocarcinoma (PDA) presents an urgent need for the development of therapeutic strategies targeting disseminated tumor cells. Until now, T-cell therapy has been scarcely pursued in PDA, due to the prevailing view that it represents a poorly immunogenic tumor. EXPERIMENTAL DESIGN We systematically analyzed T-cell infiltrates in tumor biopsies from 127 patients with resectable PDA by means of immunohistochemistry, flow cytometry, T-cell receptor (TCR) deep-sequencing and functional analysis of in vitro expanded T-cell cultures. Parallel studies were performed on tumor-infiltrating lymphocytes (TIL) from 44 patients with metastatic melanoma. RESULTS Prominent T-cell infiltrates, as well as tertiary lymphoid structures harboring proliferating T-cells, were detected in the vast majority of biopsies from PDA patients. The notion that the tumor is a site of local T-cell expansion was strengthened by TCR deep-sequencing, revealing that the T-cell repertoire in the tumor is dominated by highly frequent CDR3 sequences that can be up to 10,000-fold enriched in tumor as compared to peripheral blood. In fact, TCR repertoire composition in PDA resembled that in melanoma. Moreover, in vitro expansion of TILs was equally efficient for PDA and melanoma, resulting in T-cell cultures displaying HLA class I-restricted reactivity against autologous tumor cells. CONCLUSIONS The tumor-infiltrating T-cell response in PDA shows striking similarity to that in melanoma, where adoptive T-cell therapy has significant therapeutic impact. Our findings indicate that T-cell-based therapies may be used to counter disease recurrence in patients with resectable PDA.
Collapse
Affiliation(s)
- Isabel Poschke
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | | | - Frank Bergmann
- Department of Pathology, Heidelberg University Hospital , Heidelberg, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center and BioQuant Center, University of Heidelberg , Heidelberg, Germany
| | - Claudia Lauenstein
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | - Jennifer Hermes
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Ehrenberg
- Division of Applied Stem Cell Biology, National Center for Tumor Diseases, Heidelberg, Germany; National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Volkmar
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | - Martin Loewer
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | - Hanno Glimm
- Division of Applied Stem Cell Biology, National Center for Tumor Diseases , Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Martin R Sprick
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg , Germany and HI-STEM gGmbH , Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center and BioQuant Center, University of Heidelberg , Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg , Germany and HI-STEM gGmbH , Heidelberg, Germany
| | - Niels Halama
- National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital , Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, Heidelberg University Hospital , Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany; BioNTech AG, Mainz, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany; Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
387
|
Marks DL, Olson RL, Fernandez-Zapico ME. Epigenetic control of the tumor microenvironment. Epigenomics 2016; 8:1671-1687. [PMID: 27700179 DOI: 10.2217/epi-2016-0110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stromal cells of the tumor microenvironment have been shown to play important roles in both supporting and limiting cancer growth. The altered phenotype of tumor-associated stromal cells (fibroblasts, immune cells, endothelial cells etc.) is proposed to be mainly due to epigenetic dysregulation of gene expression; however, only limited studies have probed the roles of epigenetic mechanisms in the regulation of stromal cell function. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation and histone post-translational modification-based gene expression regulation, and miRNA-mediated translational regulation) drive aspects of stromal cell phenotype, and discuss the implications of these findings for treatment of malignancies. We also summarize the effects of epigenetic mechanism-targeted drugs on stromal cells and discuss the consideration of the microenvironment response in attempts to use these drugs for cancer treatment.
Collapse
Affiliation(s)
- David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Lo Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,University of Minnesota Rochester, Rochester, MN 55904, USA
| | | |
Collapse
|
388
|
Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 2016; 381:259-68. [DOI: 10.1016/j.canlet.2016.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
|
389
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|
390
|
Salmiheimo A, Mustonen H, Stenman UH, Puolakkainen P, Kemppainen E, Seppänen H, Haglund C. Systemic Inflammatory Response and Elevated Tumour Markers Predict Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma. PLoS One 2016; 11:e0163064. [PMID: 27632196 PMCID: PMC5025052 DOI: 10.1371/journal.pone.0163064] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
Background Estimation of the prognosis of resectable pancreatic ductal adenocarcinoma (PDAC) currently relies on tumour-related factors such as resection margins and on lymph-node ratio (LNR) both inconveniently available only postoperatively. Our aim was to assess the accuracy of preoperative laboratory data in predicting PDAC prognosis. Methods Collection of laboratory and clinical data was retrospective from 265 consecutive patients undergoing surgery for PDAC at Helsinki University Hospital. Cancer-specific survival assessment utilized Kaplan-Meier analysis, and independent associations between factors were by the Cox regression model. Results During follow-up, 76% of the patients died of PDAC, with a median survival time of 19.6 months. In univariate analysis, CRP, albumin, CEA, and CA19-9 were significantly associated with postoperative cancer-specific survival. In multivariate analysis, taking into account age, gender, LNR, resection margins, tumour status, and adjuvant chemotherapy, the preoperative biomarkers independently associated with adverse prognosis were hypoalbuminemia (< 36 g/L, hazard ratio (HR) 1.56, 95% confidence interval (CI) 1.10–2.19, p = 0.011), elevated CRP (> 5 mg/L, HR 1.44, 95% CI 1.03–2.02, p = 0.036), CEA (> 5 μg/L, HR 1.60, 95% CI 1.07–2.53, p = 0.047), and CA19-9 (≥555 kU/L, HR 1.91, 95% CI 1.18–3.08, p = 0.008). Conclusion For patients with resectable PDAC, preoperative CRP, along with albumin and tumour markers, is useful for predicting prognosis.
Collapse
Affiliation(s)
- Aino Salmiheimo
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esko Kemppainen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
391
|
Abstract
Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (hereafter referred to as pancreatic cancer) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease. In this Review we gather the wide-ranging aspects of pancreatic cancer research into a single concept rooted in Darwinian evolution, with the goal of identifying novel insights and opportunities for study.
Collapse
Affiliation(s)
- Alvin Makohon-Moore
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
392
|
Abstract
PURPOSE OF REVIEW The review intends to describe recent studies on the development of pancreatic cancer from a genetic, molecular, and microenvironment perspective. RECENT FINDINGS Pancreatic cancer has been discovered to have distinct molecular subtypes based on transcriptome analyses that may have implications for treatment. Recent studies are also mapping the complex molecular biology of this cancer as it relates to the core signaling abnormalities inherent to this disease. There have been discoveries of novel modes of regulation of pancreatic cancer development, including alterations in key transcription factors, epigenetic modifiers, and metabolic pathways. Studies of the tumor-associated microenvironment continue to reveal its complex role in tumor development. SUMMARY Pancreatic cancer development appears to depend on a multifaceted network of signals that are dynamic, involve multiple cell types, and are linked to spatiotemporal factors in tumor evolution. Understanding the development of pancreatic cancer in this context is key to identifying novel and effective targets for treatment.
Collapse
|
393
|
Gleeson FC, Kerr SE, Kipp BR, Voss JS, Minot DM, Tu ZJ, Henry MR, Graham RP, Vasmatzis G, Cheville JC, Lazaridis KN, Levy MJ. Targeted next generation sequencing of endoscopic ultrasound acquired cytology from ampullary and pancreatic adenocarcinoma has the potential to aid patient stratification for optimal therapy selection. Oncotarget 2016; 7:54526-54536. [PMID: 27203738 PMCID: PMC5342360 DOI: 10.18632/oncotarget.9440] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/24/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Less than 10% of registered drug intervention trials for pancreatic ductal adenocarcinoma (PDAC) include a biomarker stratification strategy. The ability to identify distinct mutation subsets via endoscopic ultrasound fine needle aspiration (EUS FNA) molecular cytology could greatly aid clinical trial patient stratification and offer predictive markers. We identified chemotherapy treatment naïve ampullary adenocarcinoma and PDAC patients who underwent EUS FNA to assess multigene mutational frequency and diversity with a surgical resection concordance assessment, where available. METHODS Following strict cytology smear screening criteria, targeted next generation sequencing (NGS) using a 160 cancer gene panel was performed. RESULTS Complete sequencing was achieved in 29 patients, whereby 83 pathogenic alterations were identified in 21 genes. Cytology genotyping revealed that the majority of mutations were identified in KRAS (93%), TP53 (72%), SMAD4 (31%), and GNAS (10%). There was 100% concordance for the following pathogenic alterations: KRAS, TP53, SMAD4, KMT2D, NOTCH2, MSH2, RB1, SMARCA4, PPP2R1A, PIK3R1, SCL7A8, ATM, and FANCD2. Absolute multigene mutational concordance was 83%. Incremental cytology smear mutations in GRIN2A, GATA3 and KDM6A were identified despite re-examination of raw sequence reads in the corresponding resection specimens. CONCLUSIONS EUS FNA cytology genotyping using a 160 cancer gene NGS panel revealed a broad spectrum of pathogenic alterations. The fidelity of cytology genotyping to that of paired surgical resection specimens suggests that EUS FNA represents a suitable surrogate and may complement the conventional stratification criteria in decision making for therapies and may guide future biomarker driven therapeutic development.
Collapse
Affiliation(s)
- Ferga C. Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic Rochester, MN, USA
| | - Sarah E. Kerr
- Department of Laboratory Medicine & Pathology, Mayo Clinic Rochester, MN, USA
| | - Benjamin R. Kipp
- Department of Laboratory Medicine & Pathology, Mayo Clinic Rochester, MN, USA
| | - Jesse S. Voss
- Department of Laboratory Medicine & Pathology, Mayo Clinic Rochester, MN, USA
| | - Douglas M. Minot
- Department of Laboratory Medicine & Pathology, Mayo Clinic Rochester, MN, USA
| | - Zheng Jin Tu
- Division of Biomedical Statics & Informatics, Department of Health Sciences Research, Mayo Clinic Rochester, MN, USA
| | - Michael R. Henry
- Department of Laboratory Medicine & Pathology, Mayo Clinic Rochester, MN, USA
| | - Rondell P. Graham
- Department of Laboratory Medicine & Pathology, Mayo Clinic Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - John C. Cheville
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology & Hepatology, Mayo Clinic Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J. Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
394
|
Liu Y, Li F, Gao F, Xing L, Qin P, Liang X, Zhang J, Qiao X, Lin L, Zhao Q, Du L. Role of microenvironmental periostin in pancreatic cancer progression. Oncotarget 2016; 8:89552-89565. [PMID: 29163770 PMCID: PMC5685691 DOI: 10.18632/oncotarget.11533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/09/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic reaction. Pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Aberrant up-regulation of periostin expression has been reported in activated PSCs. In this study, we investigated the role of periostin and the mechanisms underlying its aberrant upregulation in PDAC. We used lentiviral shRNA and human recombinant periostin protein to down and up regulate periostin expression in vitro. Specific oncogenic signaling pathways such as EGFR-Akt and EGFR-Erk-c-Myc were assessed in vitro and in vivo. Tissue microarray immunohistochemical assays including 80 pancreatic cancer tissues and paired normal tissues were used to understand the function relationship between periostin expression and PDAC pathologic stage and overall survival. We found that periostin was strongly expressed in PSCs and the stroma of PDAC tumors. We also observed a significant decrease in proliferation, metastasis, and clonality of pancreatic cancer cells when co-cultured with supernatant of periostin shRNA-transfected PSCs. Specifically, the biological behavior of periostin correlated with EGFR-Akt and EGER-Erk-c-Myc signaling pathways. Moreover, increased periostin expression significantly associated with advanced disease stage and decreased survival rate in PDAC patients. Together, our findings provide novel insights into the role of microenvironmental periostin in pancreatic cancer progression, and periostin may serve as a prognostic biomarker for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Feng Gao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lingxi Xing
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingxin Liang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Jiajie Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Xiaohui Qiao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis and National Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| |
Collapse
|
395
|
Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, Cataldo I, Rusev BC, Lawlor RT, Diodoro MG, Milella M, Grazi GL, Bissell MJ, Scarpa A, Nisticò P. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncoimmunology 2016; 5:e1221556. [PMID: 28123868 PMCID: PMC5213039 DOI: 10.1080/2162402x.2016.1221556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease in need of prognostic markers to address therapeutic choices. We have previously shown that alternative splicing of the actin regulator, hMENA, generates hMENA11a, and hMENAΔv6 isoforms with opposite roles in cell invasion. We examined the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome. The functional effects of hMENA isoforms were analyzed by loss and gain of function experiments in TGF-β1-treated PDAC cell lines. hMENA11a knock-down in PDAC cell lines affected cell-cell adhesion but not invasion. TGF-β1 cooperated with β-catenin signaling to upregulate hMENA and hMENAΔv6 expression but not hMENA11a In the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulation is crucial for SMAD2-mediated TGF-β1 signaling and TGF-β1-induced EMT. Since the hMENA isoform expression pattern correlates with patient outcome, the data suggest that hMENA splicing and related pathways are novel key players in pancreatic tumor microenvironment and may represent promising targets for the development of new prognostic and therapeutic tools in PDAC.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Pierluigi Iapicca
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Francesca Di Modugno
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Paola Trono
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, Regina Elena National Cancer Institute , Rome, Italy
| | - Matteo Fassan
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Ivana Cataldo
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Borislav C Rusev
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Rita T Lawlor
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | | | - Michele Milella
- Medical Oncology, Regina Elena National Cancer Institute , Rome, Italy
| | - Gian Luca Grazi
- Hepato-pancreato-biliary Surgery Unit, Regina Elena National Cancer Institute , Rome, Italy
| | - Mina J Bissell
- Lawrence Berkeley National Laboratory, University of California , CA, USA
| | - Aldo Scarpa
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona , Verona, Italy
| | - Paola Nisticò
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute , Rome, Italy
| |
Collapse
|
396
|
Tjomsland V, Sandnes D, Pomianowska E, Cizmovic ST, Aasrum M, Brusevold IJ, Christoffersen T, Gladhaug IP. The TGFβ-SMAD3 pathway inhibits IL-1α induced interactions between human pancreatic stellate cells and pancreatic carcinoma cells and restricts cancer cell migration. J Exp Clin Cancer Res 2016; 35:122. [PMID: 27473228 PMCID: PMC4966589 DOI: 10.1186/s13046-016-0400-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The most abundant cells in the extensive desmoplastic stroma of pancreatic adenocarcinomas are the pancreatic stellate cells, which interact with the carcinoma cells and strongly influence the progression of the cancer. Tumor stroma interactions induced by IL-1α/IL-1R1 signaling have been shown to be involved in pancreatic cancer cell migration. TGFβ and its receptors are overexpressed in pancreatic adenocarcinomas. We aimed at exploring TGFβ and IL-1α signaling and cross-talk in the stellate cell cancer cell interactions regulating pancreatic adenocarcinoma cell migration. METHODS Human pancreatic stellate cells were isolated from surgically resected pancreatic adenocarcinomas and cultured in the presence of TGFβ or pancreatic adenocarcinoma cell lines. The effects of TGFβ were blocked by inhibitors or amplified by silencing the endogenous inhibitor of SMAD signaling, SMAD7. Pancreatic stellate cell responses to IL-1α or to IL-1α-expressing pancreatic adenocarcinoma cells (BxPC-3) were characterized by their ability to stimulate migration of cancer cells in a 2D migration model. RESULTS In pancreatic stellate cells, IL-1R1 expression was found to be down-regulated by TGFβ and blocking of TGFβ signaling re-established the expression. Endogenous inhibition of TGFβ signaling by SMAD7 was found to correlate with the levels of IL-1R1, indicating a regulatory role of SMAD7 in IL-1R1 expression. Pancreatic stellate cells cultured in the presence of IL-1α or in co-cultures with BxPC-3 cells enhanced the migration of cancer cells. This effect was blocked after treatment of the pancreatic stellate cells with TGFβ. Silencing of stellate cell expression of SMAD7 was found to suppress the levels of IL-1R1 and reduce the stimulatory effects of IL-1α, thus inhibiting the capacity of pancreatic stellate cells to induce cancer cell migration. CONCLUSIONS TGFβ signaling suppressed IL-1α mediated pancreatic stellate cell induced carcinoma cell migration. Depletion of SMAD7 upregulated the effects of TGFβ and reduced the expression of IL-1R1, leading to inhibition of IL-1α induced stellate cell enhancement of carcinoma cell migration. SMAD7 might represent a target for inhibition of IL-1α induced tumor stroma interactions.
Collapse
Affiliation(s)
- Vegard Tjomsland
- Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dagny Sandnes
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ewa Pomianowska
- Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Johnsen Brusevold
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oral Biology, University of Oslo, Oslo, Norway
- Department of Pediatric Dentistry and Behavioral Science, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivar P Gladhaug
- Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
397
|
Carapuça EF, Gemenetzidis E, Feig C, Bapiro TE, Williams MD, Wilson AS, Delvecchio FR, Arumugam P, Grose RP, Lemoine NR, Richards FM, Kocher HM. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma. J Pathol 2016; 239:286-96. [PMID: 27061193 PMCID: PMC5025731 DOI: 10.1002/path.4727] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming an attractive option, due to the lack of efficacy of standard chemotherapy and increased knowledge about PDAC stroma. We postulated that the addition of stromal therapy may enhance the anti-tumour efficacy of chemotherapy. Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically applicable regimen, to target cancer cells and pancreatic stellate cells (PSCs) respectively, in 3D organotypic culture models and genetically engineered mice (LSL-Kras(G12D) (/+) ;LSL-Trp53(R172H) (/+) ;Pdx-1-Cre: KPC mice) representing the spectrum of PDAC. In two distinct sets of organotypic models as well as KPC mice, we demonstrate a reduction in cancer cell proliferation and invasion together with enhanced cancer cell apoptosis when ATRA is combined with gemcitabine, compared to vehicle or either agent alone. Simultaneously, PSC activity (as measured by deposition of extracellular matrix proteins such as collagen and fibronectin) and PSC invasive ability were both diminished in response to combination therapy. These effects were mediated through a range of signalling cascades (Wnt, hedgehog, retinoid, and FGF) in cancer as well as stellate cells, affecting epithelial cellular functions such as epithelial-mesenchymal transition, cellular polarity, and lumen formation. At the tissue level, this resulted in enhanced tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an overall reduction in tumour size. The enhanced effect of stromal co-targeting (ATRA) alongside chemotherapy (gemcitabine) appears to be mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, rather than ablating stroma or targeting a single pathway. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Elisabete F Carapuça
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Emilios Gemenetzidis
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christine Feig
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Tashinga E Bapiro
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Michael D Williams
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Abigail S Wilson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesca R Delvecchio
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Prabhu Arumugam
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Frances M Richards
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Barts and The London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
398
|
Wörmann SM, Song L, Ai J, Diakopoulos KN, Kurkowski MU, Görgülü K, Ruess D, Campbell A, Doglioni C, Jodrell D, Neesse A, Demir IE, Karpathaki AP, Barenboim M, Hagemann T, Rose-John S, Sansom O, Schmid RM, Protti MP, Lesina M, Algül H. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival. Gastroenterology 2016; 151:180-193.e12. [PMID: 27003603 DOI: 10.1053/j.gastro.2016.03.010] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice. METHODS Stat3, Il6st (encodes gp130), or Trp53 were disrupted, or a mutant form of P53 (P53R172H) or transgenic sgp130 were expressed, in mice that developed pancreatic tumors resulting from expression of activated KRAS (KrasG12D, KC mice). Pancreata were collected and analyzed by immunohistochemistry, in situ hybridization, quantitative reverse-transcription polymerase chain reaction (qPCR), or immunoblot assays; fluorescence-activated cell sorting was performed to identify immune cells. We obtained frozen pancreatic tumor specimens from patients and measured levels of phosphorylated STAT3 and P53 by immunohistochemistry; protein levels were associated with survival using Kaplan-Meier analyses. We measured levels of STAT3, P53, ligands for gp130, interleukin 6, cytokines, sonic hedgehog signaling, STAT3 phosphorylation (activation), and accumulation of reactive oxygen species in primary pancreatic cells from mice. Mice with pancreatic tumors were given gemcitabine and a Janus kinase 2 (JAK2) inhibitor; tumor growth was monitored by 3-dimensional ultrasound. RESULTS STAT3 was phosphorylated constitutively in pancreatic tumor cells from KC mice with loss or mutation of P53. Tumor cells of these mice accumulated reactive oxygen species and had lower activity of the phosphatase SHP2 and prolonged phosphorylation of JAK2 compared with tumors from KC mice with functional P53. These processes did not require the gp130 receptor. Genetic disruption of Stat3 in mice, or pharmacologic inhibitors of JAK2 or STAT3 activation, reduced fibrosis and the numbers of pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation. CONCLUSIONS In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice. Transcript profiling: ArrayExpress accession number: E-MTAB-3278.
Collapse
Affiliation(s)
- Sonja M Wörmann
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Liang Song
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jiaoyu Ai
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kalliope N Diakopoulos
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Magdalena U Kurkowski
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kivanc Görgülü
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Dietrich Ruess
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Andrew Campbell
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Claudio Doglioni
- Pathology Unit, San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy
| | - Duncan Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Albrecht Neesse
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University, Marburg, Germany
| | - Ihsan E Demir
- Chirurgische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Maxim Barenboim
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Thorsten Hagemann
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Owen Sansom
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Roland M Schmid
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Maria P Protti
- Tumor Immunology Unit, San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy
| | - Marina Lesina
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Hana Algül
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
399
|
Porciuncula A, Hajdu C, David G. The Dual Role of Senescence in Pancreatic Ductal Adenocarcinoma. Adv Cancer Res 2016; 131:1-20. [PMID: 27451122 DOI: 10.1016/bs.acr.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of senescence as a tumor suppressor is well established; however, recent evidence has revealed novel paracrine functions for senescent cells in relation to their microenvironment, most notably protumorigenic roles in certain contexts. Senescent cells are capable of altering the inflammatory microenvironment through the senescence-associated secretory phenotype, which could have important consequences for tumorigenesis. The role of senescent cells in a highly inflammatory cancer like pancreatic cancer is still largely undefined, apart from the fact that senescence abrogation increases tumorigenesis in vivo. This review will summarize our current knowledge of the phenomenon of cellular senescence in pancreatic ductal adenocarcinoma, its overlapping link with inflammation, and some urgent unanswered questions in the field.
Collapse
Affiliation(s)
- A Porciuncula
- NYU Cancer Institute, New York University School of Medicine, New York, NY, United States
| | - C Hajdu
- New York University School of Medicine, New York, NY, United States
| | - G David
- NYU Cancer Institute, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
400
|
Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2016; 30:355-85. [PMID: 26883357 PMCID: PMC4762423 DOI: 10.1101/gad.275776.115] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ying et al. review pancreatic ductal adenocarcinoma (PDAC) genetics and biology, particularly altered cancer cell metabolism, the complexity of immune regulation in the tumor microenvironment, and impaired DNA repair processes. With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|