4001
|
A suite of new genes defining salinity stress tolerance in seedlings of contrasting rice genotypes. Funct Integr Genomics 2013; 13:351-65. [PMID: 23813016 DOI: 10.1007/s10142-013-0328-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/27/2013] [Accepted: 06/12/2013] [Indexed: 01/25/2023]
Abstract
Salinity is one of the major constraints adversely influencing crop productivity. Saltol QTL is a major QTL associated with Na⁺-K⁺ ratio and seedling stage salinity tolerance in rice. With an aim to understand the contribution of individual genes localized within saltol towards salinity tolerance, we analysed the transcript abundance of a set of these genes in seedlings of contrasting genotypes of rice. We hypothesize that this approach may be helpful in identifying new 'candidate genes' for improving salinity tolerance in crops. For this purpose, seedlings of Oryza sativa cv. IR64 (sensitive) and the landrace Pokkali (tolerant) were subjected to short/long durations of salinity. qRT-PCR analysis clearly exhibited differential regulation of genes encoding signaling related protein (SRPs), where higher transcript abundance for most of them was observed in Pokkali than IR64 under non-stress conditions, thereby indicating towards well preparedness of the former to handle stress, in anticipation. Genes encoding proteins of unknown function (PUFs), though, constitute a considerable portion of plant genome, have so far been neglected in most studies. Time course analysis of these genes showed a continuous increase in their abundance in Pokkali, while in IR64, their abundance increased till 24 h followed by a clear decrease, thereby justifying their nomenclature as 'salinity induced factors' (SIFs). This is the first report showing possible involvement of SIFs localized within salinity related QTL towards salinity stress response. Based on the phenotypes of insertional mutants, it is proposed that these SIFs may have a putative function in vegetative growth (SIFVG), fertility (SIFF), viability (SIFV) or early flowering (SIFEF).
Collapse
|
4002
|
Zeng J, Chen A, Li D, Yi B, Wu W. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5720-6. [PMID: 23711229 DOI: 10.1021/jf401237x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study examined the effects of three different NaCl concentrations (60, 90, and 120 mM) on the growth, physiological responses, and steviol glycoside composition of Stevia rebaudiana Bertoni for 4 weeks. The results showed that the total dry weight decreased by 40% at 120 mM NaCl but remained the same at 60 and 90 mM NaCl. As salt concentration increased, chlorophyll contents decreased markedly by 10-70%, whereas the increments of the antioxidant enzyme activities were 1.0-1.6, 1.2-1.3, and 2.0-4.0 times, respectively, for superoxide dismutase, peroxidase, and catalase. The proline contents in salt-treated plants were 17-42 times higher than that in control. Moreover, leaf possessed significantly higher K⁺ content and K⁺/Na⁺ ratio than stem and root for all salt treatments. In addition, 90-120 mM NaCl treatment notably decreased the content of rebaudioside A (RA) and stevioside (ST) by 16.2-38.2%, whereas the increment of the ratio of RA/ST of salt-treated plants was 1.1-1.4 times. These results indicate that S. rebaudiana is moderately tolerant to salt stress. Hypohaline soil can be utilized in the plantation of S. rebaudiana and may be profitable for optimizing the steviol glycoside composition.
Collapse
Affiliation(s)
- Jianwei Zeng
- Agronomy College, Chengdu Campus, Sichuan Agricultural University , Wenjiang 611130, China
| | | | | | | | | |
Collapse
|
4003
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
4004
|
Shi Y, Wang Y, Flowers TJ, Gong H. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:847-53. [PMID: 23523465 DOI: 10.1016/j.jplph.2013.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 05/18/2023]
Abstract
Silicon can alleviate salt damage to plants, although the mechanism(s) still remains to be elucidated. In this paper, we report the effect of silicon on chloride transport in rice (Oryza sativa L.) seedlings in saline conditions. In the absence of salinity, silicon enhanced the growth of shoots, but not roots in three cultivars (cv. GR4, IR36, and CSR10). Salinity reduced the growth of both shoots and roots in all three genotypes. In saline conditions, addition of silicon to the culture solution again improved the growth of shoots, but not of roots. Under these saline conditions, the concentrations of chloride in the shoot were markedly decreased by adding silicon and the ratio of K(+)/Cl(-) was significantly increased, while the concentration of chloride in the roots was unchanged. The decrease in chloride concentration in the shoot was correlated with the decrease in transpirational bypass flow in rice, as shown by the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). Addition of silicon increased the net photosynthetic rate, stomata conductance, and transpiration of salt-stressed plants in cv. IR36, indicating that the reduction of chloride (and sodium) uptake by silicon was not through a reduction in transpiration rate. Silicon addition also increased the instantaneous water use efficiency of salt-stressed plants, while it did not change the relative growth rate of shoots. The results suggest that silicon addition decreased transpirational bypass flow in the roots, and therefore decreased the transport of chloride to the shoot.
Collapse
Affiliation(s)
- Yu Shi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | | | | |
Collapse
|
4005
|
Hu T, Hu L, Zhang X, Zhang P, Zhao Z, Fu J. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance. PLoS One 2013; 8:e66090. [PMID: 23799072 PMCID: PMC3682948 DOI: 10.1371/journal.pone.0066090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive 'PI 538976' and salt-tolerant 'Overdrive') were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for 'Overdrive' stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in 'Overdrive' (P<0.01) and 'PI 538976' (P<0.05) under salt stress. 'Overdrive' had higher CO2 assimilation and Fv/Fm than 'PI 538976'. Intercellular CO2 concentration, however, was higher in 'PI 538976' treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in 'Overdrive' and 'PI 538976' leaves and in 'PI 538976' stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r(2) = 0.83, P<0.01) and turf quality (r(2) = 0.88, P<0.01) in salt-tolerant 'Overdrive', however, the opposite trend for salt-sensitive 'PI 538976' (r(2) = 0.71, P<0.05 for RGR; r(2) = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in 'Overdrive' than 'PI 538976'. A higher level of SPS and SS expression in leaves was found in 'PI 538976' relative to 'Overdrive'. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Xunzhong Zhang
- Virginia Polytechnic Institute and State University, Blacksburg, United States of America
| | - Pingping Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Zhuangjun Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| |
Collapse
|
4006
|
Zhou J, Wang F, Deng P, Jing W, Zhang W. Characterization and mapping of a salt-sensitive mutant in rice (Oryza sativa L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:504-13. [PMID: 23480486 DOI: 10.1111/jipb.12048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/01/2013] [Indexed: 05/21/2023]
Abstract
A salt-sensitive mutant designated rice salt sensitive 2 (rss2) was isolated from the M2 generation of the rice cultivar Nipponbare mutagenized with ethyl methanesulfonate (EMS). This mutant exhibited a greater decrease in salt tolerance with a significant increase in Na(+) content in its shoots. Genetic analysis indicated that the increase in Na(+) in rss2 was controlled by a single recessive gene. Further genome-wide analysis of the linkage map constructed from the F2 population of rss2/Zhaiyeqing 8 (ZYQ8) showed that two quantitative trait loci (QTLs) on chromosomes 1 and 6 were responsible for the Na(+) concentration in shoots, which explained 14.5% and 53.3%, respectively, of the phenotypic variance. The locus on chromosome 1, but not that on chromosome 6, was also detected in the F2 population of Nipponbare/ZYQ8, suggesting that the QTL on chromosome 6 was responsible for the salt sensitivity in rss2. By analyzing the recombination events in 220 mutant individuals of an enlarged mapping population of rss2/ZYQ8, the rss2 locus was precisely mapped to an interval of 605.3 kb between insertion/deletion (InDel) markers IM21962 and IM22567. This finding will facilitate the cloning of the rss2 locus and provide insight into the physiological mechanisms of salt sensitivity in rice.
Collapse
Affiliation(s)
- Jingwei Zhou
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | |
Collapse
|
4007
|
Yousfi S, Serret MD, Araus JL. Comparative response of δ13C, δ18O and δ15N in durum wheat exposed to salinity at the vegetative and reproductive stages. PLANT, CELL & ENVIRONMENT 2013; 36:1214-27. [PMID: 23240790 DOI: 10.1111/pce.12055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/26/2012] [Accepted: 12/08/2012] [Indexed: 05/05/2023]
Abstract
This study compared the performance of the stable isotope composition of carbon (δ(13) C), oxygen (δ(18) O) and nitrogen (δ(15) N) by tracking plant response and genotypic variability of durum wheat to different salinity conditions. To that end, δ(13) C, δ(18) O and δ(15) N were analysed in dry matter (dm) and the water-soluble fraction (wsf) of leaves from plants exposed to salinity, either soon after plant emergence or at anthesis. The δ(13) C and δ(18) O of the wsf recorded the recent growing conditions, including changes in evaporative conditions. Regardless of the plant part (dm or wsf), δ(13) C and δ(18) O increased and δ(15) N decreased in response to stress. When the stress conditions were established just after emergence, δ(15) N and δ(13) C correlated positively with genotypic differences in biomass, whereas δ(18) O correlated negatively in the most severe treatment. When the stress conditions were imposed at anthesis, relationships between the three isotope signatures and biomass were only significant and positive within the most severe treatments. The results show that nitrogen metabolism, together with stomatal limitation, is involved in the genotypic response to salinity, with the relative importance of each factor depending on the severity and duration of the stress as well as the phenological stage that the stress occurs.
Collapse
Affiliation(s)
- Salima Yousfi
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | | | | |
Collapse
|
4008
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
4009
|
Lü P, Kang M, Jiang X, Dai F, Gao J, Zhang C. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. PLANTA 2013; 237:1547-59. [PMID: 23503758 DOI: 10.1007/s00425-013-1867-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/01/2013] [Indexed: 05/21/2023]
Abstract
Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.
Collapse
Affiliation(s)
- Peitao Lü
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
4010
|
Zhang BL, Shang SH, Zhang HT, Jabeen Z, Zhang GP. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1420-5. [PMID: 23417770 DOI: 10.1002/etc.2183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/07/2012] [Accepted: 01/18/2013] [Indexed: 05/28/2023]
Abstract
The effect of sodium chloride (NaCl) on cadmium (Cd) uptake, translocation, and oxidative stress was investigated using 2 tobacco cultivars differing in Cd tolerance. The growth inhibition of the tobacco plants exposed to Cd toxicity was in part alleviated by moderate addition of NaCl in the culture solution. Cadmium concentration of shoots and roots in the 2 cultivars increased with increasing Cd levels in the solution and decreased with the addition of NaCl. The addition of NaCl could alleviate the oxidative stress caused by Cd toxicity, as reflected by reduced production of malondialdehyde and recovered or enhanced activities of antioxidative enzymes catalase and glutathione peroxidase. The results also showed that the enhancement of antioxidative enzyme activity by NaCl for the tobacco plants exposed to Cd stress is related to induced Ca signaling.
Collapse
Affiliation(s)
- Bing-Lin Zhang
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
4011
|
Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:730-45. [PMID: 23451802 DOI: 10.1111/tpj.12159] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/22/2013] [Accepted: 02/21/2013] [Indexed: 05/21/2023]
Abstract
The WRKY transcription factors have been demonstrated to play crucial roles in regulating stress responses; however, the exact mechanisms underlying their involvement in stress responses are not fully understood. Arabidopsis WRKY8 was predominantly expressed in roots and was highly upregulated by salt treatment. Disruption of WRKY8 rendered plants hypersensitive to salt, showing delayed germination, inhibited post-germination development and accelerated chlorosis. Further investigation revealed that WRKY8 interacted with VQ9, and their interaction decreased the DNA-binding activity of WRKY8. The VQ9 protein was exclusively localized in the nucleus, and VQ9 expression was strongly responsive to NaCl treatment. Mutation of VQ9 enhanced tolerance to salt stress, indicating that VQ9 acts antagonistically with WRKY8 to mediate responses to salt stress. The antagonist functions of WRKY8 and VQ9 were consistent with an increased or reduced Na⁺/K⁺ concentration ratio, as well as contrasting expression patterns of downstream stress-responsive genes in salt-stressed wrky8 and vq9 mutants. Moreover, chromatin immunoprecipitation (ChIP) assays showed that WRKY8 directly bound the promoter of RD29A under salt conditions. These results provided strong evidence that the VQ9 protein acts as a repressor of the WRKY8 factor to maintain an appropriate balance of WRKY8-mediated signaling pathways to establish salinity stress tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | |
Collapse
|
4012
|
del Carmen Martínez-Ballesta M, Moreno DA, Carvajal M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 2013; 14:11607-25. [PMID: 23722664 PMCID: PMC3709749 DOI: 10.3390/ijms140611607] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022] Open
Abstract
Glucosinolates, a class of secondary metabolites, mainly found in Brassicaceae, are affected by the changing environment. This review is focusing on the physiological significance of glucosinolates and their hydrolysis products in the plant response to different abiotic stresses. Special attention is paid to the crosstalk between some of the physiological processes involved in stress response and glucosinolate metabolism, with the resulting connection between both pathways in which signaling mechanisms glucosinolate may act as signals themselves. The function of glucosinolates, further than in defense switching, is discussed in terms of alleviating pathogen attack under abiotic stress. The fact that the exogenous addition of glucosinolate hydrolysis products may alleviate certain stress conditions through its effect on specific proteins is described in light of the recent reports, but the molecular mechanisms involved in this response merit further research. Finally, the transient allocation and re-distribution of glucosinolates as a response to environmental changes is summarized.
Collapse
Affiliation(s)
- María del Carmen Martínez-Ballesta
- Plant Nutrition Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| | - Diego A. Moreno
- Phytochemistry Lab, Food Science and Technology Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| | - Micaela Carvajal
- Plant Nutrition Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| |
Collapse
|
4013
|
Gao R, Duan K, Guo G, Du Z, Chen Z, Li L, He T, Lu R, Huang J. Comparative Transcriptional Profiling of Two Contrasting Barley Genotypes under Salinity Stress during the Seedling Stage. Int J Genomics 2013; 2013:972852. [PMID: 23762821 PMCID: PMC3671521 DOI: 10.1155/2013/972852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.
Collapse
Affiliation(s)
- Runhong Gao
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Ke Duan
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Guimei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
- College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhizhao Du
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zhiwei Chen
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Liang Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
- College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ting He
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Jianhua Huang
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| |
Collapse
|
4014
|
Postnikova OA, Shao J, Nemchinov LG. Analysis of the Alfalfa Root Transcriptome in Response to Salinity Stress. ACTA ACUST UNITED AC 2013; 54:1041-55. [DOI: 10.1093/pcp/pct056] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4015
|
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 2013; 14:9643-84. [PMID: 23644891 PMCID: PMC3676804 DOI: 10.3390/ijms14059643] [Citation(s) in RCA: 772] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/02/2022] Open
Abstract
High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; E-Mails: (K.N.); (M.M.A.)
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; E-Mails: (K.N.); (M.M.A.)
| | - Rajib Roychowdhury
- Department of Biotechnology, Visva-Bharati University, Santiniketan 731235, West Bengal, India; E-Mail:
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; E-Mails: (K.N.); (M.M.A.)
| |
Collapse
|
4016
|
Yang Y, Lu X, Yan B, Li B, Sun J, Guo S, Tezuka T. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:653-61. [PMID: 23399406 DOI: 10.1016/j.jplph.2012.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 05/07/2023]
Abstract
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.
Collapse
Affiliation(s)
- Yanjuan Yang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | |
Collapse
|
4017
|
Gill SS, Tajrishi M, Madan M, Tuteja N. A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). PLANT MOLECULAR BIOLOGY 2013; 82:1-22. [PMID: 23456247 DOI: 10.1007/s11103-013-0031-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/15/2013] [Indexed: 05/09/2023]
Abstract
The exact mechanism of helicase-mediated salinity tolerance is not yet understood. We have isolated a DESD-box containing cDNA from Pisum sativum (Pea) and named it as PDH45. It is a unique member of DEAD-box helicase family; containing DESD instead of DEAD/H. PDH45 overexpression driven by constitutive cauliflower mosaic virus-35S promoter in rice transgenic [Oryza sativa L. cv. Pusa Basmati 1 (PB1)] plants confers salinity tolerance by improving the photosynthesis and antioxidant machinery. The Na(+) ion concentration and oxidative stress parameters in leaves of the NaCl (0, 100 or 200 mM) treated PDH45 overexpressing T1 transgenic lines were lower as compared to wild type (WT) rice plants under similar conditions. The 200 mM NaCl significantly reduced the leaf area, plant dry mass, net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci), chlorophyll (Chl) content in WT plants as compared to the transgenics. The T1 transgenics exhibited higher glutathione (GSH) and ascorbate (AsA) contents under salinity stress. The activities of antioxidant enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) were significantly higher in transgenics; suggesting the existence of an efficient antioxidant defence system to cope with salinity induced-oxidative damage. Yeast two-hybrid assay indicated that the PDH45 protein interacts with Cu/Zn SOD, adenosine-5'-phosphosulfate-kinase, cysteine proteinase and eIF(4G), thus confirming the involvement of ROS scavenging machinery in the transgenic plants to provide salt tolerance. Furthermore, the T2 transgenics were also able to grow, flower, and set viable seeds under continuous salinity stress of 200 mM NaCl. This study provides insights into the mechanism of PDH45 mediated salinity stress tolerance by controlling the generation of stress induced reactive oxygen species (ROS) and also by protecting the photosynthetic machinery through a strengthened antioxidant system.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
4018
|
Shelden MC, Roessner U, Sharp RE, Tester M, Bacic A. Genetic variation in the root growth response of barley genotypes to salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:516-530. [PMID: 32481128 DOI: 10.1071/fp12290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/24/2013] [Indexed: 06/11/2023]
Abstract
We aimed to identify genetic variation in root growth in the cereal crop barley (Hordeum vulgare L.) in response to the early phase of salinity stress. Seminal root elongation was examined at various concentrations of salinity in seedlings of eight barley genotypes consisting of a landrace, wild barley and cultivars. Salinity inhibited seminal root elongation in all genotypes, with considerable variation observed between genotypes. Relative root elongation rates were 60-90% and 30-70% of the control rates at 100 and 150mM NaCl, respectively. The screen identified the wild barley genotype CPI71284-48 as the most tolerant, maintaining root elongation and biomass in response to salinity. Root elongation was most significantly inhibited in the landrace Sahara. Root and shoot Na+ concentrations increased and K+ concentrations decreased in all genotypes in response to salinity. However, the root and shoot ion concentrations did not correlate with root elongation rates, suggesting that the Na+ and K+ concentrations were not directly influencing root growth, at least during the early phase of salt stress. The identification of genetic diversity in root growth responses to salt stress in barley provides important information for future genetic, physiological and biochemical characterisation of mechanisms of salinity tolerance.
Collapse
Affiliation(s)
- Megan C Shelden
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Ute Roessner
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Robert E Sharp
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Mark Tester
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Antony Bacic
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| |
Collapse
|
4019
|
Trifil P, Lo Gullo MA, Raimondo F, Salleo S, Nardini A. Effects of NaCl addition to the growing medium on plant hydraulics and water relations of tomato. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:459-465. [PMID: 32481122 DOI: 10.1071/fp12287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 06/11/2023]
Abstract
This work reports on experimental evidence for the role of ion-mediated changes of xylem hydraulic conductivity in the functional response of Solanum lycopersicum L. cv. Naomi to moderate salinity levels. Measurements were performed in fully developed 12-week-old plants grown in half-strength Hoagland solution (control, C-plants) or in the same solution added with 35mM NaCl (NaCl-plants). NaCl-plants produced a significantly less but heavier leaves and fruits but had similar gas-exchange rates as control plants. Moreover, NaCl-plants showed higher vessel multiple fraction (FVM) than control plants. Xylem sap potassium and sodium concentrations were significantly higher in NaCl-plants than in control plants. When stems were perfused with 10mM NaCl or KCl, the hydraulic conductance of NaCl plants was nearly 1.5 times higher than in control plants. Accordingly, stem hydraulic conductance measured in planta was higher in NaCl- than in control plants. Our data suggest that tomato plants grown under moderate salinity upregulate xylem sap [Na+] and [K+], as well as sensitivity of xylem hydraulics to sap ionic content, thus, increasing water transport capacity.
Collapse
Affiliation(s)
- Patrizia Trifil
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, viale F. Stagno D'Alcontres, 31, 98166 Messina, Italia
| | - Maria Assunta Lo Gullo
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, viale F. Stagno D'Alcontres, 31, 98166 Messina, Italia
| | - Fabio Raimondo
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, viale F. Stagno D'Alcontres, 31, 98166 Messina, Italia
| | - Sebastiano Salleo
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| |
Collapse
|
4020
|
Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2013; 36:1009-18. [PMID: 23148892 DOI: 10.1111/pce.12033] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 05/18/2023]
Abstract
Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress.
Collapse
Affiliation(s)
- Hugues Renault
- IGEPP, UMR1349 INRA, Université de Rennes 1, F-35653, Le Rheu, France.
| | | | | | | | | | | | | |
Collapse
|
4021
|
Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Vanden Bossche R, De Milde L, Yoshizumi T, Matsui M, Inzé D. Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:319-32. [PMID: 23553636 PMCID: PMC3641212 DOI: 10.1104/pp.113.216341] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/31/2013] [Indexed: 05/20/2023]
Abstract
Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms remain largely unknown. Here, we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR5 (ERF5) and ERF6 as master regulators that adapt leaf growth to environmental changes. ERF5 and ERF6 gene expression is induced very rapidly and specifically in actively growing leaves after sudden exposure to osmotic stress that mimics mild drought. Subsequently, enhanced ERF6 expression inhibits cell proliferation and leaf growth by a process involving gibberellin and DELLA signaling. Using an ERF6-inducible overexpression line, we demonstrate that the gibberellin-degrading enzyme GIBBERELLIN 2-OXIDASE6 is transcriptionally induced by ERF6 and that, consequently, DELLA proteins are stabilized. As a result, ERF6 gain-of-function lines are dwarfed and hypersensitive to osmotic stress, while the growth of erf5erf6 loss-of-function mutants is less affected by stress. Besides its role in plant growth under stress, ERF6 also activates the expression of a plethora of osmotic stress-responsive genes, including the well-known stress tolerance genes STZ, MYB51, and WRKY33. Interestingly, activation of the stress tolerance genes by ERF6 occurs independently from the ERF6-mediated growth inhibition. Together, these data fit into a leaf growth regulatory model in which ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth inhibition.
Collapse
|
4022
|
Ellouzi H, Ben Hamed K, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S. Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. PLANTA 2013; 237:1311-23. [PMID: 23381736 DOI: 10.1007/s00425-013-1847-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/14/2013] [Indexed: 05/23/2023]
Abstract
Plants are often exposed to a combination of stresses, which can occur simultaneously or at different times throughout their life. In this study, the effects of salinity, drought and cadmium pre-treatments were evaluated on the subsequent response of Cakile maritima, a halophytic species, to various levels of salinity (from 100 to 800 mM NaCl) after a recovery time of 2 weeks. Studies were performed in two sets of experiments in a glasshouse under short and long photoperiod (November and July, respectively). In both experiments and in contrast to control plants (not exposed to any previous stress), plants previously exposed to drought, salt or cadmium stress showed lower levels of hydrogen peroxide and malondialdehyde, an indicator of lipid peroxidation, upon salt treatment, particularly at high NaCl concentrations. Oxidative stress alleviation was not only observed at 800 mM NaCl under short photoperiod, but also at 600 and 800 mM NaCl under long photoperiod in terms of reduced salt-induced increases in hydrogen peroxide and malondialdehyde levels in plants previously exposed to drought, salt or cadmium stress. Previous exposure of plants to all stresses additionally caused decreased levels of jasmonic acid, which might be associated with a lower oxidative stress, differences being observed again at 800 mM NaCl only under short photoperiod and at 600 and 800 mM NaCl under long photoperiod. In conclusion, a relatively long-term stress memory was found in C. maritima pre-exposed to salinity, drought or cadmium, which resulted in a lower oxidative stress when subsequently exposed to salinity. The positive effects of drought and cadmium were of similar magnitude to those provided by salt pre-exposure, which indicated an effective cross-tolerance response in this species.
Collapse
Affiliation(s)
- Hasna Ellouzi
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
4023
|
Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 2013; 8:e62085. [PMID: 23637970 PMCID: PMC3639250 DOI: 10.1371/journal.pone.0062085] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/16/2013] [Indexed: 12/04/2022] Open
Abstract
Proline accumulation is an important mechanism for osmotic regulation under salt stress. In this study, we evaluated proline accumulation profiles in roots, stems and leaves of Jerusalem artichoke (Helianthus tuberosus L.) plantlets under NaCl stress. We also examined HtP5CS, HtOAT and HtPDH enzyme activities and gene expression patterns of putative HtP5CS1, HtP5CS2, HtOAT, HtPDH1, and HtPDH2 genes. The objective of our study was to characterize the proline regulation mechanisms of Jerusalem artichoke, a moderately salt tolerant species, under NaCl stress. Jerusalem artichoke plantlets were observed to accumulate proline in roots, stems and leaves during salt stress. HtP5CS enzyme activities were increased under NaCl stress, while HtOAT and HtPDH activities generally repressed. Transcript levels of HtP5CS2 increased while transcript levels of HtOAT, HtPDH1 and HtPDH2 generally decreased in response to NaCl stress. Our results supports that for Jerusalem artichoke, proline synthesis under salt stress is mainly through the Glu pathway, and HtP5CS2 is predominant in this process while HtOAT plays a less important role. Both HtPDH genes may function in proline degradation.
Collapse
Affiliation(s)
- Zengrong Huang
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Coastal Biology and Bioesources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Long Zhao
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dandan Chen
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingxiang Liang
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ML); (ZL); (HS)
| | - Zhaopu Liu
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ML); (ZL); (HS)
| | - Hongbo Shao
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Coastal Biology and Bioesources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
- Institute for Life Sciences, Qingdao University of Science and Technology, Qingdao, China
- * E-mail: (ML); (ZL); (HS)
| | - Xiaohua Long
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4024
|
Plant High-Affinity Potassium (HKT) Transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 2013; 14:7660-80. [PMID: 23571493 PMCID: PMC3645709 DOI: 10.3390/ijms14047660] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022] Open
Abstract
High-affinity Potassium Transporters (HKTs) belong to an important class of integral membrane proteins (IMPs) that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.
Collapse
|
4025
|
Suter L, Widmer A. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS One 2013; 8:e60364. [PMID: 23585834 PMCID: PMC3621951 DOI: 10.1371/journal.pone.0060364] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/25/2013] [Indexed: 01/29/2023] Open
Abstract
Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana.
Collapse
Affiliation(s)
- Léonie Suter
- ETH Zurich, Institute of Integrative Biology, Zurich, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Zurich, Switzerland
| |
Collapse
|
4026
|
Maksimović JJD, Zivanović BD. Quantification of the antioxidant activity in salt-stressed tissues. Methods Mol Biol 2013; 913:237-50. [PMID: 22895764 DOI: 10.1007/978-1-61779-986-0_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Biochemical methods available for the measurement of antioxidant activity in salt-stressed tissues are reviewed, outlining the most important advantages and shortcomings of the methods. Here we consider commonly used methods for measuring total antioxidant capacity and phenolic content, ABTS and Folin-Ciocalteu's procedure, respectively. Moreover, we presented assays for determination of antioxidant enzymes activities: superoxide dismutase, catalase, and ascorbate peroxidase. This choice of methods enables us to elucidate a full profile of antioxidant activities, evaluating their effectiveness against various reactive oxygen species produced during salt stress.
Collapse
|
4027
|
Senadheera P, Maathuis FJM. Transcriptome analysis of membrane transporters in response to salinity stress. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 913:291-303. [PMID: 22895768 DOI: 10.1007/978-1-61779-986-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Exposure to high ambient levels of NaCl affects plant water relations and creates ionic stress. To a large extent, responses to such stress depend on the action of membrane transporters, particularly those that move cations such as Na(+) and K(+). A genomics approach can greatly help with the identification of important membrane transporter genes. This can be done by comparing transcriptomes of salinized and non-salinized plants, by comparing tolerant and non-tolerant species, or by using intraspecies variation. This chapter describes a protocol using oligo-microarrays to compare salinity treated (50 mM NaCl) and non-treated rice roots, presenting protocols for growth, RNA isolation, cDNA synthesis and labeling, and a summary of data collection, analysis, and interpretation. Although focused on rice root tissue, the described procedures can be applied to many different treatments, tissues, and plant species.
Collapse
Affiliation(s)
- Prasad Senadheera
- Department of Botany, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | | |
Collapse
|
4028
|
Abstract
Interrogating the cell-specific transcriptome forms an important component of understanding the role that specific cells play in assisting a plant to overcome abiotic stress. Among the challenges arising when extracting RNA from individual plant cells are: the isolation of pure cell populations; the small yield of material when isolating specific cell types, and ensuring an accurate representation of the transcriptome from each cell type after amplification of RNA. Here we describe two approaches for isolating RNA from specific cell types-single cell sampling and analysis (SiCSA) and laser capture microdissection. Isolated RNA can then be directly sampled qualitatively using reverse transcription PCR (RT-PCR) or amplified for profiling -multiple specific genes using quantitative RT-PCR and genome-wide transcript analyses.
Collapse
Affiliation(s)
- Stuart J Roy
- Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA, Australia.
| | | | | | | | | |
Collapse
|
4029
|
Accelerated Reactive Oxygen Scavenging System and Membrane Integrity of Two Panicum Species Varying in Salt Tolerance. Cell Biochem Biophys 2013; 67:885-92. [DOI: 10.1007/s12013-013-9576-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4030
|
Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci 2013; 14:7370-90. [PMID: 23549270 PMCID: PMC3645691 DOI: 10.3390/ijms14047370] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/23/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.
Collapse
Affiliation(s)
- Min Wang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qingsong Zheng
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qirong Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Shiwei Guo
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| |
Collapse
|
4031
|
Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1953-66. [PMID: 23567865 PMCID: PMC3638822 DOI: 10.1093/jxb/ert055] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H(2)O(2) in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel role for H2S in plant priming, and in particular in a fruit crop such as strawberry.
Collapse
Affiliation(s)
- Anastasis Christou
- Department of Environmental Science and Technology, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | | | | | | |
Collapse
|
4032
|
Li L, Zhang Y, Luo J, Korpelainen H, Li C. Sex-specific responses of Populus yunnanensis exposed to elevated CO2 and salinity. PHYSIOLOGIA PLANTARUM 2013; 147:477-88. [PMID: 22897484 DOI: 10.1111/j.1399-3054.2012.01676.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 05/07/2023]
Abstract
Populus yunnanensis Dode., a native dioecious woody plant in southwestern China, was employed as a model species to study sex-specific morphological, physiological and biochemical responses to elevated CO2 and salinity. To investigate the effects of elevated CO2 , salinity and their combination, the cuttings were exposed to two CO2 regimes (ambient CO2 and double ambient CO2 ) and two salt treatments in growth chambers. Males exhibited greater downregulation of net photosynthesis rate (Anet ) and carboxylation efficiency (CE) than females at elevated CO2 , whereas these sexual differences were lessened under salt stress. On the other hand, salinity induced a higher decrease in Anet and CE, more growth inhibition and leaf Cl(-) accumulation and more damage to cell organelles in females than in males, whereas the sexual differences in photosynthesis and growth were lessened at elevated CO2 . Moreover, elevated CO2 exacerbated membrane lipid peroxidation and organelle damage in females but not in males under salt stress. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under salt stress, and elevated CO2 lessens the sexual differences in photosynthesis and growth under salt stress; (2) elevated CO2 tends to aggravate the negative effects of salinity in females; and (3) sex-specific reactions under the combination of elevated CO2 and salinity are distinct from single-stress responses. Therefore, these results provide evidence for different adaptive responses between plants of different sexes exposed to elevated CO2 and salinity.
Collapse
Affiliation(s)
- Ling Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | | | | | | |
Collapse
|
4033
|
Zhang B, Liu K, Zheng Y, Wang Y, Wang J, Liao H. Disruption of AtWNK8 enhances tolerance of Arabidopsis to salt and osmotic stresses via modulating proline content and activities of catalase and peroxidase. Int J Mol Sci 2013; 14:7032-47. [PMID: 23535337 PMCID: PMC3645675 DOI: 10.3390/ijms14047032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/17/2022] Open
Abstract
With no lysine kinases (WNKs) play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT) activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD) activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.
Collapse
Affiliation(s)
- Baige Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kaidong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
- Life science and Technology School, Zhanjiang Normal University, Zhanjiang 524048, China
| | - Yan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
| | - Yingxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
| |
Collapse
|
4034
|
Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 2013; 14:6757-89. [PMID: 23531537 PMCID: PMC3645664 DOI: 10.3390/ijms14046757] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022] Open
Abstract
The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.
Collapse
|
4035
|
Jaarsma R, de Vries RSM, de Boer AH. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS One 2013; 8:e60183. [PMID: 23533673 PMCID: PMC3606169 DOI: 10.1371/journal.pone.0060183] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/22/2013] [Indexed: 01/21/2023] Open
Abstract
Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na(+) homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na(+) levels in root and stem with the highest leaf Na(+) concentration of all cultivars, resulting in a high Na(+) shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na(+) accumulation was found and the SDI for Na(+) points to a role of stem Na(+) accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na(+) accumulation in stem tissue, resulting in reduced Na(+) transport to the leaves.
Collapse
Affiliation(s)
- Rinse Jaarsma
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rozemarijn S. M. de Vries
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Albertus H. de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
4036
|
Blasco B, Leyva R, Romero L, Ruiz JM. Iodine effects on phenolic metabolism in lettuce plants under salt stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2591-6. [PMID: 23445402 DOI: 10.1021/jf303917n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Iodine, applied as iodate in biofortification programs (at doses of ≤80 μM), has been confirmed to improve the foliar biomass, antioxidant response, and accumulation of phenol compounds in lettuce plants. The changes in phenolic compounds induced by the iodate application appear to have functional consequences in the response of salt-stressed plants. Thus, the aim of the present study was to determine whether the application of iodate can improve the response of severe salinity stress and whether the resistance can be attributed to the phenolic metabolism in lettuce ( Lactuca sativa cv. Philipus), a glycophyte cultivated for food and consumed year round. In this work, the application of iodate, especially at 20 and 40 μM, in lettuce plants under salinity stress (100 mM NaCl) exerted a significantly positive effect on biomass and induced higher activity in the enzymes shikimate dehydrogenase and phenylalanine ammonia-lyase as well as the lower MW phenol-degrading enzyme polyphenol oxidase. This increased hydroxycinnamic acids and derivatives in addition to total phenols, which appear to act as protective compounds against salinity. This study reveals that in agricultural areas affected by this type of stress, the application of iodate may be an effective strategy, as it not only improves lettuce plant growth but also supplements the human diet with phenolic compounds and the trace element iodine.
Collapse
Affiliation(s)
- Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada , E-18071 Granada, Spain
| | | | | | | |
Collapse
|
4037
|
Ross PM, Adam P. Climate change and intertidal wetlands. BIOLOGY 2013; 2:445-80. [PMID: 24832670 PMCID: PMC4009871 DOI: 10.3390/biology2010445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 11/17/2022]
Abstract
Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.
Collapse
Affiliation(s)
- Pauline M Ross
- School of Science and Health, University of Western Sydney, Hawkesbury K12, Locked Bag 1797, Penrith, Sydney, New South Wales 2751, Australia.
| | - Paul Adam
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
4038
|
Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu XF, Ding XD, Zhu YM. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:505-15. [PMID: 23276523 DOI: 10.1016/j.jplph.2012.11.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/13/2012] [Accepted: 11/17/2012] [Indexed: 05/23/2023]
Abstract
Receptor-like protein kinases (RLKs) play vital roles in sensing outside signals, yet little is known about RLKs functions and roles in stress signal perception and transduction in plants, especially in wild soybean. Through the microarray analysis, GsSRK was identified as an alkaline (NaHCO3)-responsive gene, and was subsequently isolated from Glycine soja by homologous cloning. GsSRK encodes a 93.22kDa protein with a highly conserved serine/threonine protein kinase catalytic domain, a G-type lectin region, and an S-locus region. Real-time PCR results showed that the expression levels of GsSRK were largely induced by ABA, salt, and drought stresses. Over expression of GsSRK in Arabidopsis promoted seed germination, as well as primary root and rosette leaf growth during the early stages of salt stress. Compared to the wild type Arabidopsis, GsSRK overexpressors exhibited enhanced salt tolerance and higher yields under salt stress, with higher chlorophyll content, lower ion leakage, higher plant height, and more siliques at the adult developmental stage. Our studies suggest that GsSRK plays a crucial role in plant response to salt stress.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
4039
|
Achenbach L, Eller F, Nguyen LX, Brix H. Differences in salinity tolerance of genetically distinct Phragmites australis clones. AOB PLANTS 2013; 5:plt019. [PMCID: PMC4104622 DOI: 10.1093/aobpla/plt019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The common reed (Phragmites australis) is a clonal wetland grass with high genetic variability. Clone-specific differences are reflected in morphological and physiological traits, and hence in the ability to cope with environmental stress. The responses to progressively increasing salinity of fifteen distinct Phragmites australis clones reveal genotype-related strategies of salt avoidance and exclusion. The salinity-induced inhibition in shoot elongation rate and photosynthesis varies widely between clones. The differences can be partially attributed to their geographic range, but not correlated to ploidy level. Thus, the genetic background is a major factor influencing the salinity tolerance of distinct Phragmites australis clones. Different clones of the wetland grass Phragmites australis differ in their morphology and physiology, and hence in their ability to cope with environmental stress. We analysed the responses of 15 P. australis clones with distinct ploidy levels (PLs) (4n, 6n, 8n, 10n, 12n) and geographic origins (Romania, Russia, Japan, Czech Republic, Australia) to step-wise increased salinity (8, 16, 24, 32, 40, 56 and 72 ppt). Shoot elongation rate, photosynthesis and plant part-specific ion accumulation were studied in order to assess if traits associated with salinity tolerance can be related to the genetic background and the geographic origin of the clones. Salt stress affected all clones, but at different rates. The maximum height was reduced from 1860 mm in control plants to 660 mm at 40 ppt salinity. The shoot elongation rate of salt-exposed plants varied significantly between clones until 40 ppt salinity. The light-saturated photosynthesis rate (Pmax) was stimulated by a salinity of 8 ppt, but decreased significantly at higher salinities. The stomatal conductance (gs) and the transpiration rate (E) decreased with increasing salinity. Only three clones survived at 72 ppt salinity, although their rates of photosynthesis were strongly inhibited. The roots and basal leaves of the salt-exposed plants accumulated high concentrations of water-extractable Na+ (1646 and 1004 µmol g−1 dry mass (DM), respectively) and Cl− (1876 and 1400 µmol g−1 DM, respectively). The concentrations of water-extractable Mg2+ and Ca2+ were reduced in salt-exposed plants compared with controls. The variation of all the measured parameters was higher among clones than among PLs. We conclude that the salinity tolerance of distinct P. australis clones varies widely and can be partially attributed to their longitudinal geographic origin, but not to PL. Further investigation will help in improving the understanding of this species' salt tolerance mechanisms and their connection to genetic factors.
Collapse
|
4040
|
Physiological and biochemical responses of Ulva prolifera and Ulva linza to cadmium stress. ScientificWorldJournal 2013; 2013:289537. [PMID: 23533346 PMCID: PMC3606767 DOI: 10.1155/2013/289537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/03/2013] [Indexed: 11/17/2022] Open
Abstract
Responses of Ulva prolifera and Ulva linza to Cd(2+) stress were studied. We found that the relative growth rate (RGR), Fv/Fm, and actual photochemical efficiency of PSII (Yield) of two Ulvaspecies were decreased under Cd(2+) treatments, and these reductions were greater in U. prolifera than in U. linza. U. prolifera accumulated more cadmium than U. linza under Cd(2+) stress. While U. linza showed positive osmotic adjustment ability (OAA) at a wider Cd(2+) range than U. prolifera. U. linza had greater contents of N, P, Na(+), K(+), and amino acids than U. prolifera. A range of parameters (concentrations of cadmium, Ca(2+), N, P, K(+), Cl(-), free amino acids (FAAs), proline, organic acids and soluble protein, Fv/Fm, Yield, OAA, and K(+)/Na(+)) could be used to evaluate cadmium resistance in Ulva by correlation analysis. In accordance with the order of the absolute values of correlation coefficient, contents of Cd(2+) and K(+), Yield, proline content, Fv/Fm, FAA content, and OAA value of Ulva were more highly related to their adaptation to Cd(2+) than the other eight indices. Thus, U. linza has a better adaptation to Cd(2+) than U. prolifera, which was due mainly to higher nutrient content and stronger OAA and photosynthesis in U. linza.
Collapse
|
4041
|
Zhang X, Wei L, Wang Z, Wang T. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:262-76. [PMID: 23176661 DOI: 10.1111/jipb.12013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Saline-alkali soil seriously threatens agriculture productivity; therefore, understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge. Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress, and is thus an ideal plant for studying this tolerance mechanism. In this study, we examined the salt and alkaline-salt stress tolerance of P. tenuiflora, and analyzed gene expression profiles under these stresses. Physiological experiments revealed that P. tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2 CO3 (pH 11.0) for 6 d. We identified 4,982 unigenes closely homologous to rice and barley. Furthermore, 1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments. Differentially expressed genes were overrepresented in functions of photosynthesis, oxidation reduction, signal transduction, and transcription regulation. Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure, photosynthesis, and protein synthesis. Comparing with salt stress, alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H(+) transport and citric acid synthesis. These data indicate common and diverse features of salt and alkaline-salt stress tolerance, and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | |
Collapse
|
4042
|
Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. PLANT PHYSIOLOGY 2013; 161:1217-28. [PMID: 23321418 PMCID: PMC3585591 DOI: 10.1104/pp.112.211854] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/12/2013] [Indexed: 05/18/2023]
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs) are classified into the two subgroups OPRI and OPRII. The latter proteins participate in jasmonic acid synthesis, while the function of the former ones is as yet unclear. We describe here the characterization of the OPRI gene TaOPR1, isolated from the salinity-tolerant bread wheat (Triticum aestivum) cultivar SR3. Salinity stress induced a higher level of TaOPR1 expression in the seedling roots of cv SR3 than in its parental cultivar, JN177. This induction was abolished when abscisic acid (ABA) synthesis was inhibited. The overexpression of TaOPR1 in wheat significantly enhanced the level of salinity tolerance, while its heterologous expression in Arabidopsis alleviated root growth restriction in the presence of salinity and oxidants and raised the sensitivity to ABA. In Arabidopsis, TaOPR1 promoted ABA synthesis and the ABA-dependent stress-responsive pathway, partially rescued the sensitivity of the Arabidopsis aba2 mutant defective in ABA synthesis to salinity, and improved the activities of reactive oxygen species scavengers and the transcription of their encoding genes while reducing malondialdehyde and reactive oxygen species levels. TaOPR1 did not interact with jasmonate synthesis or the jasmonate signaling pathway. Rather than serving purely as an antioxidant, we believe that TaOPR1 acts during episodes of abiotic stress response as a signaling compound associated with the regulation of the ABA-mediated signaling network.
Collapse
|
4043
|
Hill CB, Jha D, Bacic A, Tester M, Roessner U. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains. MOLECULAR PLANT 2013; 6:350-68. [PMID: 23132143 DOI: 10.1093/mp/sss125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants employ several strategies to maintain cellular ion homeostasis under salinity stress, including mediating ion fluxes by transmembrane transport proteins and adjusting osmotic pressure by accumulating osmolytes. The HKT (high-affinity potassium transporter) gene family comprises Na(+) and Na(+)/K(+) transporters in diverse plant species, with HKT1;1 as the only member in Arabidopsis thaliana. Cell-type-specific overexpression of AtHKT1;1 has been shown to prevent shoot Na(+) overaccumulation under salinity stress. Here, we analyzed a broad range of metabolites and elements in shoots and roots of different AtHKT1;1 genotypes and their parental strains before and after salinity stress, revealing a reciprocal relationship of metabolite differences between an AtHKT1;1 knockout line (hkt1;1) and the AtHKT1;1 overexpressing lines (E2586 UAS GAL4 :HKT1;1 and J2731*UAS GAL4 :HKT1;1). Although levels of root sugars were increased after salt stress in both AtHKT1;1 overexpressing lines, E2586 UAS GAL4 :HKT1;1 showed higher accumulation of the osmoprotectants trehalose, gentiobiose, and melibiose, whereas J2731*UAS GAL4 :HKT1;1 showed higher levels of sucrose and raffinose, compared with their parental lines, respectively. In contrast, the knockout line hkt1;1 showed strong increases in the levels of the tricarboxylic acid (TCA) cycle intermediates in the shoots after salt treatment. This coincided with a significant depletion of sugars, suggesting that there is an increased rate of carbon influx into the TCA cycle at a constant rate of C-efflux from the cycle, which might be needed to support plant survival during salt stress. Using correlation analysis, we identified associations between the Na(+) content and several sugars, suggesting that regulation of sugar metabolism is important in plant responses to salinity stress.
Collapse
Affiliation(s)
- Camilla B Hill
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
4044
|
Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 2013; 14:4885-911. [PMID: 23455464 PMCID: PMC3634444 DOI: 10.3390/ijms14034885] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022] Open
Abstract
Metabolites reflect the integration of gene expression, protein interaction and other different regulatory processes and are therefore closer to the phenotype than mRNA transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most transversal and can be applied to different organisms with little or no modifications. It has been successfully applied to the study of molecular phenotypes of plants in response to abiotic stress in order to find particular patterns associated to stress tolerance. These studies have highlighted the essential involvement of primary metabolites: sugars, amino acids and Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as effectors of osmotic readjustment. On the contrary, secondary metabolites are more specific of genera and species and respond to particular stress conditions as antioxidants, Reactive Oxygen Species (ROS) scavengers, coenzymes, UV and excess radiation screen and also as regulatory molecules. In addition, the induction of secondary metabolites by several abiotic stress conditions could also be an effective mechanism of cross-protection against biotic threats, providing a link between abiotic and biotic stress responses. Moreover, the presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS) for tolerant crop selection in breeding programs.
Collapse
|
4045
|
Geilfus CM, Mühling KH. Ratiometric monitoring of transient apoplastic alkalinizations in the leaf apoplast of living Vicia faba plants: chloride primes and PM-H+-ATPase shapes NaCl-induced systemic alkalinizations. THE NEW PHYTOLOGIST 2013; 197:1117-1129. [PMID: 23176077 DOI: 10.1111/nph.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Transient apoplastic alkalinization has been discussed as a general stress factor, and is thought to represent a root-to-shoot signal that transmits information regarding an ongoing NaCl stress event from the site of the trigger to the distant plant tissue. Surprisingly, despite this importance, a number of gaps exist in our knowledge of NaCl-induced apoplastic pH alkalinization. This study was designed in order to shed light onto the mechanisms responsible for the initiation and transiency of leaf apoplastic alkalinization under conditions of NaCl stress as supplied to roots. An H(+)-sensitive fluorescence probe, in combination with ratiometric microscopy imaging, was used for in planta live recording of leaf apoplastic pH. The use of a nonionic solute demonstrated that the alkalinization is induced in response to ionic, and not osmotic, components of NaCl stress. Tests with Cl(-)- or Na(+)-accompanying counter-ions strengthened the idea that the stress factor itself, namely Cl(-), is transferred from root to shoot and elicits the pH alterations. Investigations with a plasma membrane ATPase inhibitor suggest that ATPase activity influences the course of the alkalinization by having a shaping re-acidifying effect on the alkalinization.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Hermann-Rodewald-Str. 2, 24118, Kiel, Germany
| | - Karl-Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Hermann-Rodewald-Str. 2, 24118, Kiel, Germany
| |
Collapse
|
4046
|
Roy SJ, Huang W, Wang XJ, Evrard A, Schmöckel SM, Zafar ZU, Tester M. A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. PLANT, CELL & ENVIRONMENT 2013; 36:553-68. [PMID: 22897323 DOI: 10.1111/j.1365-3040.2012.02595.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity is a major abiotic stress which affects crop plants around the world, resulting in substantial loss of yield and millions of dollars of lost revenue. High levels of Na(+) in shoot tissue have many adverse effects and, crucially, yield in cereals is commonly inversely proportional to the extent of shoot Na(+) accumulation. We therefore need to identify genes, resistant plant cultivars and cellular processes that are involved in salinity tolerance, with the goal of introducing these factors into commercially available crops. Through the use of an Arabidopsis thaliana mapping population, we have identified a highly significant quantitative trait locus (QTL) linked to Na(+) exclusion. Fine mapping of this QTL identified a protein kinase (AtCIPK16), related to AtSOS2, that was significantly up-regulated under salt stress. Greater Na(+) exclusion was associated with significantly higher root expression of AtCIPK16, which is due to differences in the gene's promoter. Constitutive overexpression of the gene in Arabidopsis leads to plants with significant reduction in shoot Na(+) and greater salinity tolerance. amiRNA knock-downs of AtCIPK16 in Arabidopsis show a negative correlation between the expression levels of the gene and the amount of shoot Na(+) . Transgenic barley lines overexpressing AtCIPK16 show increased salinity tolerance.
Collapse
Affiliation(s)
- S J Roy
- Australian Centre for Plant Functional Genomics and the University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | | | |
Collapse
|
4047
|
Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:42-51. [PMID: 23352401 DOI: 10.1016/j.plantsci.2012.11.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 05/08/2023]
Abstract
High soil salinity is a serious problem for crop production because most of the cultivated plants are salt sensitive, which is also the case for the globally important crop plant maize. Salinity stress leads to secondary oxidative stress in plants and a correlation between antioxidant capacity and salt tolerance has been demonstrated in several plant species. The plant antioxidant capacity may be enhanced by arbuscular mycorrhizal fungi (AMF) and it has been proposed that AM symbiosis is more effective with native than with collection AMF species. Thus, we investigated whether native AMF isolated from a dry and saline environment can help maize plants to overcome salt stress better than AMF from a culture collection and whether protection against oxidative stress is involved in such an effect. Maize plants inoculated with three native AMF showed higher efficiency of photosystem II and stomatal conductance, which surely decreased photorespiration and ROS production. Indeed, the accumulation of hydrogen peroxide, the oxidative damage to lipids and the membrane electrolyte leakage in these AM plants were significantly lower than in non-mycorrhizal plants or in plants inoculated with the collection AMF. The activation of antioxidant enzymes such as superoxide dismutase or catalase also accounted for these effects.
Collapse
Affiliation(s)
- Beatriz Estrada
- Departamento de Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín (CSIC). Profesor Albareda n° 1, 18008 Granada, Spain
| | | | | | | |
Collapse
|
4048
|
Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. MOLECULAR PLANT 2013; 6:275-86. [PMID: 23355543 DOI: 10.1093/mp/sst017] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.
Collapse
Affiliation(s)
- Hongtao Ji
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, PR China
| | | | | | | | | | | |
Collapse
|
4049
|
Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA, Kronzucker HJ. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS One 2013; 8:e57767. [PMID: 23460903 PMCID: PMC3583904 DOI: 10.1371/journal.pone.0057767] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 12/25/2022] Open
Abstract
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K(+)) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world's most important and salt-sensitive crop species. Using efflux analysis with (42)K, coupled with growth and tissue K(+) analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K(+) set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K(+) release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K(+) status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na(+) accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K(+) efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K(+) status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na(+) accumulation is the key factor in performance decline on NaCl stress.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yuel-Kai Jean
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Imtiaz Kabir
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Inci Tolay
- Department of Agriculture, Akdeniz University, Antalya, Turkey
| | - Ayfer A. Torun
- Department of Soil Science & Plant Nutrition, Cukurova University, Adana, Turkey
| | | |
Collapse
|
4050
|
A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct Integr Genomics 2013; 13:167-77. [PMID: 23443578 DOI: 10.1007/s10142-013-0310-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 01/07/2023]
Abstract
Wall-associated receptor-like kinases (WAKs) are important candidates for directly linking the extracellular matrix with intracellular compartments and are involved in developmental processes and stress response. WAK gene family has been identified in plants such as Arabidopsis and rice. Here, we present a detailed analysis of the WAK1 gene from barley cv. Golden Promise, mapped to chromosome 5H. Three BAC clones corresponding to the WAK fragment were sequenced and the full-length WAK1 gene was characterized. The gene has three exons and two short introns with a coding region of 2,178 bp encoding a protein of 725 amino acids. A regulatory region was analyzed in -1,000 bp sequence upstream to start codon. Using conserved domains database and SMART, various conserved domains such as GUB WAK Bind, epidermal growth factor CA, and protein kinase C as well as other regions like signal peptides, active sites, and transmembrane domains were identified. The gene organization of HvWAK1 was compared with wheat (TaWAK1) and Arabidopsis (AtWAK1), suggesting that the WAK1 gene organization has remained highly conserved. Nonetheless, WAK1 was found to be highly divergent when compared with sequences available from barley cv. Haruna Nijo (50 %), rice (46 %), wheat (21 %), Arabidopsis (25 %), and maize (19 %). This divergence may have facilitated a better adaptation to surrounding environments due to its role in communication between the extracellular matrix, cell, and outer environment. Semiquantitative RT-PCR-based expression analysis indicates HvWAK1 expression is specific to roots. Significant differences in root growth between GP wild type and GP-Ds mutant seedlings were observed under control and salt stress conditions.
Collapse
|