401
|
Mendonça L, Howe A, Gilchrist JB, Sheng Y, Sun D, Knight ML, Zanetti-Domingues LC, Bateman B, Krebs AS, Chen L, Radecke J, Li VD, Ni T, Kounatidis I, Koronfel MA, Szynkiewicz M, Harkiolaki M, Martin-Fernandez ML, James W, Zhang P. Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nat Commun 2021; 12:4629. [PMID: 34330917 PMCID: PMC8324836 DOI: 10.1038/s41467-021-24887-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.
Collapse
Affiliation(s)
- Luiza Mendonça
- grid.4991.50000 0004 1936 8948Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew Howe
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - James B. Gilchrist
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Yuewen Sheng
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Dapeng Sun
- grid.21925.3d0000 0004 1936 9000Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael L. Knight
- grid.4991.50000 0004 1936 8948Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Laura C. Zanetti-Domingues
- grid.76978.370000 0001 2296 6998Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire UK
| | - Benji Bateman
- grid.76978.370000 0001 2296 6998Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire UK
| | - Anna-Sophia Krebs
- grid.4991.50000 0004 1936 8948Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Long Chen
- grid.4991.50000 0004 1936 8948Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julika Radecke
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Vivian D. Li
- grid.5335.00000000121885934Murray Edwards College, University of Cambridge, Cambridge, UK
| | - Tao Ni
- grid.4991.50000 0004 1936 8948Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ilias Kounatidis
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A. Koronfel
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Marta Szynkiewicz
- grid.76978.370000 0001 2296 6998Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire UK
| | - Maria Harkiolaki
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Marisa L. Martin-Fernandez
- grid.76978.370000 0001 2296 6998Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire UK
| | - William James
- grid.4991.50000 0004 1936 8948Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peijun Zhang
- grid.4991.50000 0004 1936 8948Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK ,grid.21925.3d0000 0004 1936 9000Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
402
|
Localization of SARS-CoV-2 Capping Enzymes Revealed by an Antibody against the nsp10 Subunit. Viruses 2021; 13:v13081487. [PMID: 34452352 PMCID: PMC8402843 DOI: 10.3390/v13081487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2’-O MTase has become available; however, its biological characterization within the infected cells remains largely elusive. Here, we report a novel monoclonal antibody directed against the SARS-CoV-2 non-structural protein nsp10, a subunit of both the 2’-O RNA and N7 MTase protein complexes. Using this antibody, we investigated the subcellular localization of the SARS-CoV-2 MTases in cells infected with the SARS-CoV-2.
Collapse
|
403
|
Araujo-Silva CA, Marcos AAA, Marinho PM, Branco AMC, Roque A, Romano AC, Matuoka ML, Farah M, Burnier M, Moraes NF, Tierno PFGMM, Schor P, Sakamoto V, Nascimento H, de Sousa W, Belfort R. Presumed SARS-CoV-2 Viral Particles in the Human Retina of Patients With COVID-19. JAMA Ophthalmol 2021; 139:1015-1021. [PMID: 34323931 DOI: 10.1001/jamaophthalmol.2021.2795] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance The presence of the SARS-CoV-2 virus in the retina of deceased patients with COVID-19 has been suggested through real-time reverse polymerase chain reaction and immunological methods to detect its main proteins. The eye has shown abnormalities associated with COVID-19 infection, and retinal changes were presumed to be associated with secondary microvascular and immunological changes. Objective To demonstrate the presence of presumed SARS-CoV-2 viral particles and its relevant proteins in the eyes of patients with COVID-19. Design, Setting, and Participants The retina from enucleated eyes of patients with confirmed COVID-19 infection were submitted to immunofluorescence and transmission electron microscopy processing at a hospital in São Paulo, Brazil, from June 23 to July 2, 2020. After obtaining written consent from the patients' families, enucleation was performed in patients deceased with confirmed SARS-CoV-2 infection. All patients were in the intensive care unit, received mechanical ventilation, and had severe pulmonary involvement by COVID-19. Main Outcomes and Measures Presence of presumed SARS-CoV-2 viral particles by immunofluorescence and transmission electron microscopy processing. Results Three patients who died of COVID-19 were analyzed. Two patients were men, and 1 was a woman. The age at death ranged from 69 to 78 years. Presumed S and N COVID-19 proteins were seen by immunofluorescence microscopy within endothelial cells close to the capillary flame and cells of the inner and the outer nuclear layers. At the perinuclear region of these cells, it was possible to observe by transmission electron microscopy double-membrane vacuoles that are consistent with the virus, presumably containing COVID-19 viral particles. Conclusions and Relevance The present observations show presumed SARS-CoV-2 viral particles in various layers of the human retina, suggesting that they may be involved in some of the infection's ocular clinical manifestations.
Collapse
Affiliation(s)
- Carlla A Araujo-Silva
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-INBEB, Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagens-CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alléxya A A Marcos
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| | - Paula M Marinho
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil.,Hospital Municipal de Barueri Dr. Francisco Moran, Barueri, Brazil
| | - Ana M C Branco
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alexandre Roque
- Hospital Municipal de Barueri Dr. Francisco Moran, Barueri, Brazil
| | - André C Romano
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| | - Mateus L Matuoka
- Hospital Municipal de Barueri Dr. Francisco Moran, Barueri, Brazil
| | - Michel Farah
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| | | | - Nara F Moraes
- Hospital Municipal de Barueri Dr. Francisco Moran, Barueri, Brazil
| | | | - Paulo Schor
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| | - Victoria Sakamoto
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Heloisa Nascimento
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil.,Hospital Municipal de Barueri Dr. Francisco Moran, Barueri, Brazil
| | - Wanderley de Sousa
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-INBEB, Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagens-CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rubens Belfort
- São Paulo Hospital, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| |
Collapse
|
404
|
Ye Q, Lu S, Corbett KD. Structural Basis for SARS-CoV-2 Nucleocapsid Protein Recognition by Single-Domain Antibodies. Front Immunol 2021; 12:719037. [PMID: 34381460 PMCID: PMC8351461 DOI: 10.3389/fimmu.2021.719037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, is the most severe public health event of the twenty-first century. While effective vaccines against SARS-CoV-2 have been developed, there remains an urgent need for diagnostics to quickly and accurately detect infections. Antigen tests, particularly those that detect the abundant SARS-CoV-2 Nucleocapsid protein, are a proven method for detecting active SARS-CoV-2 infections. Here we report high-resolution crystal structures of three llama-derived single-domain antibodies that bind the SARS-CoV-2 Nucleocapsid protein with high affinity. Each antibody recognizes a specific folded domain of the protein, with two antibodies recognizing the N-terminal RNA binding domain and one recognizing the C-terminal dimerization domain. The two antibodies that recognize the RNA binding domain affect both RNA binding affinity and RNA-mediated phase separation of the Nucleocapsid protein. All three antibodies recognize highly conserved surfaces on the Nucleocapsid protein, suggesting that they could be used to develop affordable diagnostic tests to detect all circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Shan Lu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kevin D Corbett
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
405
|
Tasakis RN, Samaras G, Jamison A, Lee M, Paulus A, Whitehouse G, Verkoczy L, Papavasiliou FN, Diaz M. SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts. PLoS One 2021; 16:e0255169. [PMID: 34297786 PMCID: PMC8301627 DOI: 10.1371/journal.pone.0255169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Since the first case of COVID-19 in December 2019 in Wuhan, China, SARS-CoV-2 has spread worldwide and within a year and a half has caused 3.56 million deaths globally. With dramatically increasing infection numbers, and the arrival of new variants with increased infectivity, tracking the evolution of its genome is crucial for effectively controlling the pandemic and informing vaccine platform development. Our study explores evolution of SARS-CoV-2 in a representative cohort of sequences covering the entire genome in the United States, through all of 2020 and early 2021. Strikingly, we detected many accumulating Single Nucleotide Variations (SNVs) encoding amino acid changes in the SARS-CoV-2 genome, with a pattern indicative of RNA editing enzymes as major mutators of SARS-CoV-2 genomes. We report three major variants through October of 2020. These revealed 14 key mutations that were found in various combinations among 14 distinct predominant signatures. These signatures likely represent evolutionary lineages of SARS-CoV-2 in the U.S. and reveal clues to its evolution such as a mutational burst in the summer of 2020 likely leading to a homegrown new variant, and a trend towards higher mutational load among viral isolates, but with occasional mutation loss. The last quartile of 2020 revealed a concerning accumulation of mostly novel low frequency replacement mutations in the Spike protein, and a hypermutable glutamine residue near the putative furin cleavage site. Finally, end of the year data and 2021 revealed the gradual increase to prevalence of known variants of concern, particularly B.1.1.7, that have acquired additional Spike mutations. Overall, our results suggest that predominant viral genomes are dynamically evolving over time, with periods of mutational bursts and unabated mutation accumulation. This high level of existing variation, even at low frequencies and especially in the Spike-encoding region may become problematic when super-spreader events, akin to serial Founder Events in evolution, drive these rare mutations to prominence.
Collapse
Affiliation(s)
- Rafail Nikolaos Tasakis
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Georgios Samaras
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Program of Translational Medical Research, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna Jamison
- The Nightingale-Bamford School, New York, NY, United States of America
| | - Michelle Lee
- Cornell University, Ithaca, NY, United States of America
| | - Alexandra Paulus
- The Nightingale-Bamford School, New York, NY, United States of America
| | | | - Laurent Verkoczy
- San Diego Biomedical Research Institute (SDBRI), San Diego, CA, United States of America
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marilyn Diaz
- San Diego Biomedical Research Institute (SDBRI), San Diego, CA, United States of America
| |
Collapse
|
406
|
Seim I, Roden CA, Gladfelter AS. Role of spatial patterning of N-protein interactions in SARS-CoV-2 genome packaging. Biophys J 2021; 120:2771-2784. [PMID: 34214535 PMCID: PMC8241574 DOI: 10.1016/j.bpj.2021.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/25/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Viruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral subgenomic fragments. Some viruses use specific packaging signals, which are conserved sequence or structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), in which one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared with more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of severe acute respiratory syndrome coronavirus 2 are located at the 5' and 3' ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5' and 3' ends of the genome, consistent with the native spatial patterning. Genome compaction is enhanced by clustered LLPS-promoting binding sites, whereas single genome packaging is most efficient when binding sites are distributed throughout the genome. These results suggest that many and variably positioned LLPS-promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles such as paraspeckles, which enrich specific long RNA sequences in a defined arrangement.
Collapse
Affiliation(s)
- Ian Seim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
407
|
Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021; 11:136. [PMID: 34281608 PMCID: PMC8287290 DOI: 10.1186/s13578-021-00643-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is an extremely contagious respiratory virus causing adult atypical pneumonia COVID-19 with severe acute respiratory syndrome (SARS). SARS-CoV-2 has a single-stranded, positive-sense RNA (+RNA) genome of ~ 29.9 kb and exhibits significant genetic shift from different isolates. After entering the susceptible cells expressing both ACE2 and TMPRSS2, the SARS-CoV-2 genome directly functions as an mRNA to translate two polyproteins from the ORF1a and ORF1b region, which are cleaved by two viral proteases into sixteen non-structural proteins (nsp1-16) to initiate viral genome replication and transcription. The SARS-CoV-2 genome also encodes four structural (S, E, M and N) and up to six accessory (3a, 6, 7a, 7b, 8, and 9b) proteins, but their translation requires newly synthesized individual subgenomic RNAs (sgRNA) in the infected cells. Synthesis of the full-length viral genomic RNA (gRNA) and sgRNAs are conducted inside double-membrane vesicles (DMVs) by the viral replication and transcription complex (RTC), which comprises nsp7, nsp8, nsp9, nsp12, nsp13 and a short RNA primer. To produce sgRNAs, RTC starts RNA synthesis from the highly structured gRNA 3' end and switches template at various transcription regulatory sequence (TRSB) sites along the gRNA body probably mediated by a long-distance RNA-RNA interaction. The TRS motif in the gRNA 5' leader (TRSL) is responsible for the RNA-RNA interaction with the TRSB upstream of each ORF and skipping of the viral genome in between them to produce individual sgRNAs. Abundance of individual sgRNAs and viral gRNA synthesized in the infected cells depend on the location and read-through efficiency of each TRSB. Although more studies are needed, the unprecedented COVID-19 pandemic has taught the world a painful lesson that is to invest and proactively prepare future emergence of other types of coronaviruses and any other possible biological horrors.
Collapse
Affiliation(s)
- Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Tian
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Yang
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
408
|
Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol 2021; 12:682603. [PMID: 34335504 PMCID: PMC8317507 DOI: 10.3389/fmicb.2021.682603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.
Collapse
Affiliation(s)
- Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
409
|
Fenwick C, Turelli P, Pellaton C, Farina A, Campos J, Raclot C, Pojer F, Cagno V, Nusslé SG, D’Acremont V, Fehr J, Puhan M, Pantaleo G, Trono D. A high-throughput cell- and virus-free assay shows reduced neutralization of SARS-CoV-2 variants by COVID-19 convalescent plasma. Sci Transl Med 2021; 13:scitranslmed.abi8452. [PMID: 34257144 PMCID: PMC9835890 DOI: 10.1126/scitranslmed.abi8452] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/07/2021] [Indexed: 01/16/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies in the serum of an individual indicates previous infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral spike protein are more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, inflexible, and potentially biohazardous. Here, we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. This high-throughput method matches the performance of the gold standard live virus infection assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific immunoglobulin G titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 spike protein variants of concern. We used our assay to profile serum samples from 59 patients hospitalized with coronavirus disease 2019 (COVID-19). We found that although most sera had high activity against the 2019-nCoV parental spike protein and, to a lesser extent, the α (B.1.1.7) variant, only 58% of serum samples could efficiently neutralize a spike protein derivative containing mutations present in the β (B.1.351) variant. Thus, we have developed an assay that can evaluate effective neutralizing antibody responses to SARS-CoV-2 spike protein variants of concern after natural infection and that can be applied to characterize vaccine-induced antibody responses or to assess the potency of monoclonal antibodies.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Alex Farina
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Jérémy Campos
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Charlène Raclot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Florence Pojer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland.,Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Semira Gonseth Nusslé
- Centre for Primary Care and Public Health, University of Lausanne, Lausanne 1011, Switzerland
| | - Valerie D’Acremont
- Centre for Primary Care and Public Health, University of Lausanne, Lausanne 1011, Switzerland.,Swiss Tropical and Public Health Institute, University of Basel, Basel 4001, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich 8001, Switzerland
| | - Milo Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich 8001, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland.,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland.,VRI, Université Paris-Est Créteil, Faculté de Médicine, INSERM U955, Créteil 94010, France.,Corresponding author. (D.T.); (G.P.)
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.,Corresponding author. (D.T.); (G.P.)
| |
Collapse
|
410
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 PMCID: PMC8142890 DOI: 10.1016/j.molcel.2021.05.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
411
|
Verma R, Kim E, Martínez-Colón GJ, Jagannathan P, Rustagi A, Parsonnet J, Bonilla H, Khosla C, Holubar M, Subramanian A, Singh U, Maldonado Y, Blish CA, Andrews JR. SARS-CoV-2 Subgenomic RNA Kinetics in Longitudinal Clinical Samples. Open Forum Infect Dis 2021; 8:ofab310. [PMID: 34295944 PMCID: PMC8291522 DOI: 10.1093/ofid/ofab310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Given the persistence of viral RNA in clinically recovered coronavirus disease 2019 (COVID-19) patients, subgenomic RNAs (sgRNAs) have been reported as potential molecular viability markers for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, few data are available on their longitudinal kinetics, compared with genomic RNA (gRNA), in clinical samples. METHODS We analyzed 536 samples from 205 patients with COVID-19 from placebo-controlled, outpatient trials of peginterferon Lambda-1a (Lambda; n = 177) and favipiravir (n = 359). Nasal swabs were collected at 3 time points in the Lambda (days 1, 4, and 6) and favipiravir (days 1, 5, and 10) trials. N-gene gRNA and sgRNA were quantified by quantitative reverse transcription polymerase chain reaction. To investigate the decay kinetics in vitro, we measured gRNA and sgRNA in A549ACE2+ cells infected with SARS-CoV-2, following treatment with remdesivir or dimethylsulfoxide control. RESULTS At 6 days in the Lambda trial and 10 days in the favipiravir trial, sgRNA remained detectable in 51.6% (32/62) and 49.5% (51/106) of the samples, respectively. Cycle threshold (Ct) values for gRNA and sgRNA were highly linearly correlated (marginal R 2 = 0.83), and the rate of increase did not differ significantly in the Lambda trial (1.36 cycles/d vs 1.36 cycles/d; P = .97) or the favipiravir trial (1.03 cycles/d vs 0.94 cycles/d; P = .26). From samples collected 15-21 days after symptom onset, sgRNA was detectable in 48.1% (40/83) of participants. In SARS-CoV-2-infected A549ACE2+ cells treated with remdesivir, the rate of Ct increase did not differ between gRNA and sgRNA. CONCLUSIONS In clinical samples and in vitro, sgRNA was highly correlated with gRNA and did not demonstrate different decay patterns to support its application as a viability marker.
Collapse
Affiliation(s)
- Renu Verma
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eugene Kim
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Giovanny Joel Martínez-Colón
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California, USA
| | - Marisa Holubar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aruna Subramanian
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Upinder Singh
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Catherine A Blish
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
412
|
Miserey‐Lenkei S, Trajkovic K, D'Ambrosio JM, Patel AJ, Čopič A, Mathur P, Schauer K, Goud B, Albanèse V, Gautier R, Subra M, Kovacs D, Barelli H, Antonny B. A comprehensive library of fluorescent constructs of SARS-CoV-2 proteins and their initial characterisation in different cell types. Biol Cell 2021; 113:311-328. [PMID: 33666950 PMCID: PMC8014678 DOI: 10.1111/boc.202000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND INFORMATION Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE This library should facilitate further cellular investigations, notably by imaging techniques.
Collapse
Affiliation(s)
- Stéphanie Miserey‐Lenkei
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | | | | | - Amanda J Patel
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Alenka Čopič
- Institut Jacques MonodUniversité de ParisCNRS, UMR7592ParisF‐75006France
| | - Pallavi Mathur
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Kristine Schauer
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Véronique Albanèse
- Institut Jacques MonodUniversité de ParisCNRS, UMR7592ParisF‐75006France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Melody Subra
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - David Kovacs
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| |
Collapse
|
413
|
Kordyukova LV, Shanko AV. COVID-19: Myths and Reality. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:800-817. [PMID: 34284707 PMCID: PMC8265000 DOI: 10.1134/s0006297921070026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
COVID-19, a new human respiratory disease that has killed nearly 3 million people in a year since the start of the pandemic, is a global public health challenge. Its infectious agent, SARS-CoV-2, differs from other coronaviruses in a number of structural features that make this virus more pathogenic and transmissible. In this review, we discuss some important characteristics of the main SARS-CoV-2 surface antigen, the spike (S) protein, such as (i) ability of the receptor-binding domain (RBD) to switch between the "standing-up" position (open pre-fusion conformation) for receptor binding and the "lying-down" position (closed pre-fusion conformation) for immune system evasion; (ii) advantage of a high binding affinity of the RBD open conformation to the human angiotensin-converting enzyme 2 (ACE2) receptor for efficient cell entry; and (iii) S protein preliminary activation by the intracellular furin-like proteases for facilitation of the virus spreading across different cell types. We describe interactions between the S protein and cellular receptors, co-receptors, and antagonists, as well as a hypothetical mechanism of the homotrimeric spike structure destabilization that triggers the fusion of the viral envelope with the cell membrane at physiological pH and mediates the viral nucleocapsid entry into the cytoplasm. The transition of the S protein pre-fusion conformation to the post-fusion one on the surface of virions after their treatment with some reagents, such as β-propiolactone, is essential, especially in relation to the vaccine production. We also compare the COVID-19 pathogenesis with that of severe outbreaks of "avian" influenza caused by the A/H5 and A/H7 highly pathogenic viruses and discuss the structural similarities between the SARS-CoV-2 S protein and hemagglutinins of those highly pathogenic strains. Finally, we touch on the prospective and currently used COVID-19 antiviral and anti-pathogenetic therapeutics, as well as recently approved conventional and innovative COVID-19 vaccines and their molecular and immunological features.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey V Shanko
- FORT LLC, R&D Department, Moscow, 119435, Russia
- Ivanovsky Institute of Virology, Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia
| |
Collapse
|
414
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 DOI: 10.1101/2020.11.25.398008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
415
|
Shah M, Woo HG. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Mol Cells 2021; 44:408-421. [PMID: 34059561 PMCID: PMC8245319 DOI: 10.14348/molcells.2021.0026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has not only affected human health but also diverted the focus of research and derailed the world economy over the past year. Recently, vaccination against COVID-19 has begun, but further studies on effective therapeutic agents are still needed. The severity of COVID-19 is attributable to several factors such as the dysfunctional host immune response manifested by uncontrolled viral replication, type I interferon suppression, and release of impaired cytokines by the infected resident and recruited cells. Due to the evolving pathophysiology and direct involvement of the host immune system in COVID-19, the use of immune-modulating drugs is still challenging. For the use of immune-modulating drugs in severe COVID-19, it is important to balance the fight between the aggravated immune system and suppression of immune defense against the virus that causes secondary infection. In addition, the interplaying events that occur during virus-host interactions, such as activation of the host immune system, immune evasion mechanism of the virus, and manifestation of different stages of COVID-19, are disjunctive and require thorough streamlining. This review provides an update on the immunotherapeutic interventions implemented to combat COVID-19 along with the understanding of molecular aspects of the immune evasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may provide opportunities to develop more effective and promising therapeutics.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
416
|
Caruso ÍP, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL. Dynamics of the SARS-CoV-2 nucleoprotein N-terminal domain triggers RNA duplex destabilization. Biophys J 2021; 120:2814-2827. [PMID: 34197802 PMCID: PMC8239202 DOI: 10.1016/j.bpj.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of β2-β3 and Δ2-β5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.
Collapse
Affiliation(s)
- Ícaro P Caruso
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| |
Collapse
|
417
|
Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed H, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD. Live Imaging of SARS-CoV-2 Infection in Mice Reveals Neutralizing Antibodies Require Fc Function for Optimal Efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791699 DOI: 10.1101/2021.03.22.436337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.
Collapse
|
418
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
419
|
Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 Variants and COVID-19 Vaccine Efficacy: What the Clinician Should Know? J Clin Med Res 2021; 13:317-325. [PMID: 34267839 PMCID: PMC8256910 DOI: 10.14740/jocmr4518] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta coronavirus that belongs to the Coronaviridae family. SARS-CoV-2 is an enveloped spherical-shaped virus. The ribonucleic acid (RNA) is oriented in a 5'-3'direction which makes it a positive sense RNA virus, and the RNA can be read directly as a messenger RNA. The nonstructural protein 14 (nsp14) has proofreading activity which allows the rate of mutations to stay low. A change in the genetic sequence is called a mutation. Genomes that differ from each other in genetic sequence are called variants. Variants are the result of mutations but differ from each other by one or more mutations. When a phenotypic difference is demonstrated among the variants, they are called strains. Viruses constantly change in two different ways, antigenic drift and antigenic shift. SARS-CoV-2 genome is also prone to various mutations that led to antigenic drift resulting in escape from immune recognition. The Center of Disease Control and Prevention (CDC) updates the variant strains in the different classes. The classes are variant of interest, variant of concern and variant of high consequence. The current variants included in the variant of interest by the USA are: B.1.526, B.1.525, and P.2; and those included in the variant of concern by the USA are B.1.1.7, P.1, B.1.351, B.1.427, and B.1.429. The double and triple mutant variants first reported in India have resulted in a massive increase in the number of cases. Emerging variants not only result in increased transmissibility, morbidity and mortality, but also have the ability to evade detection by existing or currently available diagnostic tests, which can potentially delay the diagnosis and treatment, exhibit decreased susceptibility to treatment including antivirals, monoclonal antibodies and convalescent plasma, possess the ability to cause reinfection in previously infected and recovered individuals, and vaccine breakthrough cases in fully vaccinated individuals. Hence, continuation of precautionary measures, genomic surveillance and vaccination plays an important role in the prevention of spread, early identification of variants, prevention of mutations and viral replication, respectively.
Collapse
Affiliation(s)
- Deepa Vasireddy
- Department of Pediatrics, Pediatric Group of Acadiana, Lafayette, LA, USA
| | - Rachana Vanaparthy
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Gisha Mohan
- Physicians for American Health Care Access, Philadelphia, PA, USA
| | | | - Paavani Atluri
- Department of Medicine, Bay Area Hospital, Coos Bay, OR, USA
| |
Collapse
|
420
|
Fellouse FA, Miersch S, Chen C, Michnick SW. Structure-based Design of a Specific, Homogeneous Luminescence Enzyme Reporter Assay for SARS-CoV-2. J Mol Biol 2021; 433:166983. [PMID: 33839165 PMCID: PMC8028696 DOI: 10.1016/j.jmb.2021.166983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Recombinant antibodies (Abs) against the SARS-CoV-2 virus hold promise for treatment of COVID-19 and high sensitivity and specific diagnostic assays. Here, we report engineering principles and realization of a Protein-fragment Complementation Assay (PCA) detector of SARS-CoV-2 antigen by coupling two Abs to complementary N- and C-terminal fragments of the reporter enzyme Gaussia luciferase (Gluc). Both Abs display comparably high affinities for distinct epitopes of viral Spike (S)-protein trimers. Gluc activity is reconstituted when the Abs are simultaneously bound to S-protein bringing the Ab-fused N- and C-terminal fragments close enough together (8 nm) to fold. We thus achieve high specificity both by requirement of simultaneous binding of the two Abs to the S-protein and also, in a steric configuration in which the two Gluc complementary fragments can fold and thus reconstitute catalytic activity. Gluc activity can also be reconstituted with virus-like particles that express surface S-protein with detectable signal over background within 5 min of incubation. Design principles presented here can be readily applied to develop reporters to virtually any protein with sufficient available structural details. Thus, our results present a general framework to develop reporter assays for COVID-19, and the strategy can be readily deployed in response to existing and future pathogenic threats and other diseases.
Collapse
Affiliation(s)
- Frederic A Fellouse
- The Donnelly Centre, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Shane Miersch
- The Donnelly Centre, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Chao Chen
- The Donnelly Centre, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | |
Collapse
|
421
|
Zhao H, Wu D, Nguyen A, Li Y, Adão RC, Valkov E, Patterson GH, Piszczek G, Schuck P. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. iScience 2021; 24:102523. [PMID: 33997662 PMCID: PMC8103780 DOI: 10.1016/j.isci.2021.102523] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here, we use biophysical tools to study N-protein interactions with oligonucleotides of different lengths, examining the size, composition, secondary structure, and energetics of the resulting states. We observe the formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant change in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within macromolecular condensates.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Regina C. Adão
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Eugene Valkov
- Messenger RNA Regulation and Decay Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 560, Room 21-105A, Frederick, MD 21702, USA
| | - George H. Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
422
|
Lulla V, Wandel MP, Bandyra KJ, Ulferts R, Wu M, Dendooven T, Yang X, Doyle N, Oerum S, Beale R, O’Rourke SM, Randow F, Maier HJ, Scott W, Ding Y, Firth AE, Bloznelyte K, Luisi BF. Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. J Virol 2021; 95:e0066321. [PMID: 33963053 PMCID: PMC8223950 DOI: 10.1128/jvi.00663-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.
Collapse
Affiliation(s)
- Valeria Lulla
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - Mary Wu
- The Francis Crick Institute, London, United Kingdom
| | - Tom Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Nicole Doyle
- Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Stephanie Oerum
- CNRS-Université Paris Diderot, Institut de Biologie Physico-Chimique, Paris, France
| | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
| | - Sara M. O’Rourke
- University of California at Santa Cruz, Santa Cruz, California, USA
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - William Scott
- University of California at Santa Cruz, Santa Cruz, California, USA
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Kotryna Bloznelyte
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
423
|
Sender R, Bar-On YM, Gleizer S, Bernshtein B, Flamholz A, Phillips R, Milo R. The total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A 2021; 118:e2024815118. [PMID: 34083352 PMCID: PMC8237675 DOI: 10.1073/pnas.2024815118] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Quantitatively describing the time course of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection within an infected individual is important for understanding the current global pandemic and possible ways to combat it. Here we integrate the best current knowledge about the typical viral load of SARS-CoV-2 in bodily fluids and host tissues to estimate the total number and mass of SARS-CoV-2 virions in an infected person. We estimate that each infected person carries 109 to 1011 virions during peak infection, with a total mass in the range of 1 μg to 100 μg, which curiously implies that all SARS-CoV-2 virions currently circulating within human hosts have a collective mass of only 0.1 kg to 10 kg. We combine our estimates with the available literature on host immune response and viral mutation rates to demonstrate how antibodies markedly outnumber the spike proteins, and the genetic diversity of virions in an infected host covers all possible single nucleotide substitutions.
Collapse
Affiliation(s)
- Ron Sender
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yinon M Bar-On
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Biana Bernshtein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avi Flamholz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Department of Physics, California Institute of Technology, Pasadena, CA 91125
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
424
|
Megyeri K, Dernovics Á, Al-Luhaibi ZII, Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol 2021; 27:3208-3222. [PMID: 34163106 PMCID: PMC8218355 DOI: 10.3748/wjg.v27.i23.3208] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as a highly virulent respiratory pathogen that is known as the causative agent of coronavirus disease 2019 (COVID-19). Diarrhea is a common early symptom in a significant proportion of patients with SARS-CoV-2 infection. SARS-CoV-2 can infect and replicate in esophageal cells and enterocytes, leading to direct damage to the intestinal epithelium. The infection decreases the level of angiotensin-converting enzyme 2 receptors, thereby altering the composition of the gut microbiota. SARS-CoV-2 elicits a cytokine storm, which contributes to gastrointestinal inflammation. The direct cytopathic effects of SARS-CoV-2, gut dysbiosis, and aberrant immune response result in increased intestinal permeability, which may exacerbate existing symptoms and worsen the prognosis. By exploring the elements of pathogenesis, several therapeutic options have emerged for the treatment of COVID-19 patients, such as biologics and biotherapeutic agents. However, the presence of SARS-CoV-2 in the feces may facilitate the spread of COVID-19 through fecal-oral transmission and contaminate the environment. Thus gastrointestinal SARS-CoV-2 infection has important epidemiological significance. The development of new therapeutic and preventive options is necessary to treat and restrict the spread of this severe and widespread infection more effectively. Therefore, we summarize the key elements involved in the pathogenesis and the epidemiology of COVID-19-associated diarrhea.
Collapse
Affiliation(s)
- Klara Megyeri
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Csongrad, Hungary
| | - Áron Dernovics
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Csongrad, Hungary
| | - Zaid I I Al-Luhaibi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Csongrad, Hungary
| | - András Rosztóczy
- Division of Gastroenterology, Department of Internal Medicine, University of Szeged, Szeged 6720, Csongrad, Hungary
| |
Collapse
|
425
|
Fu Q, Chou JJ. A Trimeric Hydrophobic Zipper Mediates the Intramembrane Assembly of SARS-CoV-2 Spike. J Am Chem Soc 2021; 143:8543-8546. [PMID: 34086443 PMCID: PMC8204753 DOI: 10.1021/jacs.1c02394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/09/2023]
Abstract
The S protein of SARS-CoV-2 is a type I membrane protein that mediates membrane fusion and viral entry. A vast amount of structural information is available for the ectodomain of S, a primary target by the host immune system, but much less is known regarding its transmembrane domain (TMD) and its membrane-proximal regions. Here, we determined the NMR structure of the S protein TMD in bicelles that closely mimic a lipid bilayer. The TMD structure is a transmembrane α-helix (TMH) trimer that assembles spontaneously in a membrane. The trimer structure shows an extensive hydrophobic core along the 3-fold axis that resembles that of a trimeric leucine/isoleucine zipper, but with tetrad, not heptad, repeats. The trimeric core is strong in bicelles, resisting hydrogen-deuterium exchange for weeks. Although highly stable, structural guided mutagenesis identified single mutations that can completely dissociate the TMD trimer. Multiple studies have shown that the membrane anchors of viral fusion proteins can form highly specific oligomers, but the exact function of these oligomers remains unclear. Our findings should guide future experiments to address the above question for SARS coronaviruses.
Collapse
Affiliation(s)
- Qingshan Fu
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - James J. Chou
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
426
|
Jamiruddin MR, Haq MA, Tomizawa K, Kobatake E, Mie M, Ahmed S, Khandker SS, Ali T, Jahan N, Oishee MJ, Khondoker MU, Sil BK, Haque M, Adnan N. Longitudinal Antibody Dynamics Against Structural Proteins of SARS-CoV-2 in Three COVID-19 Patients Shows Concurrent Development of IgA, IgM, and IgG. J Inflamm Res 2021; 14:2497-2506. [PMID: 34163208 PMCID: PMC8214341 DOI: 10.2147/jir.s313188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Dynamics and persistence of neutralizing and non-neutralizing antibodies can give us the knowledge required for serodiagnosis, disease management, and successful vaccine design and development. The disappearance of antibodies, absence of humoral immunity activation, and sporadic reinfection cases emphasize the importance of longitudinal antibody dynamics against variable structural antigens. METHODS In this study, twenty-five healthy subjects working in a SARS-COV-2 serodiagnostic assay development project were enrolled, and their sign and symptoms were followed up to six months. Three subjects showed COVID-19-like symptoms, and three subjects' antibody dynamics were followed over 120 days by analyzing 516 samples. We have developed 12 different types of in-house ELISAs to observe the kinetics of IgG, IgM, and IgA against four SARS-CoV-2 proteins, namely nucleocapsid, RBD, S1, and whole spike (S1+S2). For the development of these assays, 30-104 pre-pandemic samples were taken as negative controls and 83 RT-qPCR positive samples as positive ones. RESULTS All three subjects presented COVID-19-like symptoms twice, with mild symptoms in the first episode were severe in the second, and RT-qPCR confirmed the latter. The initial episode did not culminate with any significant antibody development, while a multifold increase in IgG antibodies characterized the second episode. Interestingly, IgG antibody development concurrent with IgM and IgA and persisted, whereas the latter two weans off rather quickly if appeared. CONCLUSION Antibody kinetics observed in this study can provide a pathway to the successful development of sero-diagnostics and epidemiologists to predict the fate of vaccination currently in place.
Collapse
Affiliation(s)
| | - Md Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8502, Japan
| | - Masayasu Mie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8502, Japan
| | - Sohel Ahmed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Tamanna Ali
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Nowshin Jahan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | | | | | - Bijon Kumar Sil
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| | - Nihad Adnan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
427
|
Steuten K, Kim H, Widen JC, Babin BM, Onguka O, Lovell S, Bolgi O, Cerikan B, Neufeldt CJ, Cortese M, Muir RK, Bennett JM, Geiss-Friedlander R, Peters C, Bartenschlager R, Bogyo M. Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19. ACS Infect Dis 2021; 7:1457-1468. [PMID: 33570381 PMCID: PMC7901237 DOI: 10.1021/acsinfecdis.0c00815] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Two proteases produced by the SARS-CoV-2 virus, the main protease and papain-like protease, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both Mpro and PLpro proteases. These efforts identified a small number of hits for the Mpro protease and no viable hits for the PLpro protease. Of the Mpro hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead Mpro inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of Mpro inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsins L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting Mpro and PLpro proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.
Collapse
Affiliation(s)
- Kas Steuten
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - John C. Widen
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Brett M. Babin
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Oguz Bolgi
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher J. Neufeldt
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ryan K. Muir
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - John M. Bennett
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, German
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
428
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
429
|
Corti D, Purcell LA, Snell G, Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021; 184:3086-3108. [PMID: 34087172 PMCID: PMC8152891 DOI: 10.1016/j.cell.2021.05.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- COVID-19/pathology
- COVID-19/virology
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/isolation & purification
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | | | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
430
|
Wang J, Han M, Wang H, Möckl L, Zeng L, Moerner WE, Qi LS. Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34127974 PMCID: PMC8202426 DOI: 10.1101/2021.06.09.447760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus within 20 years that gave rise to a life-threatening disease and the first to reach pandemic spread. To make therapeutic headway against current and future coronaviruses, the biology of coronavirus RNA during infection must be precisely understood. Here, we present a robust and generalizable framework combining high-throughput confocal and super-resolution microscopy imaging to study coronavirus infection at the nanoscale. Employing the model human coronavirus HCoV-229E, we specifically labeled coronavirus genomic RNA (gRNA) and double-stranded RNA (dsRNA) via multicolor RNA-immunoFISH and visualized their localization patterns within the cell. The exquisite resolution of our approach uncovers a striking spatial organization of gRNA and dsRNA into three distinct structures and enables quantitative characterization of the status of the infection after antiviral drug treatment. Our approach provides a comprehensive framework that supports investigations of coronavirus fundamental biology and therapeutic effects.
Collapse
|
431
|
Thacker VV, Sharma K, Dhar N, Mancini G, Sordet‐Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep 2021; 22:e52744. [PMID: 33908688 PMCID: PMC8183417 DOI: 10.15252/embr.202152744] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.
Collapse
Affiliation(s)
- Vivek V Thacker
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kunal Sharma
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Neeraj Dhar
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Gian‐Filippo Mancini
- Histology Core FacilityEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - John D McKinney
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
432
|
Kehrer T, García-Sastre A, Miorin L. Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. J Interferon Cytokine Res 2021; 41:205-219. [PMID: 34161170 PMCID: PMC8336211 DOI: 10.1089/jir.2021.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a public health crisis of unprecedented proportions. After the emergence of SARS-CoV-1 in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, this is the third outbreak of a highly pathogenic zoonotic coronavirus (CoV) that the world has witnessed in the last 2 decades. Infection with highly pathogenic human CoVs often results in a severe respiratory disease characterized by a delayed and blunted interferon (IFN) response, accompanied by an excessive production of proinflammatory cytokines. This indicates that CoVs developed effective mechanisms to overcome the host innate immune response and promote viral replication and pathogenesis. In this review, we describe the key innate immune signaling pathways that are activated during infection with SARS-CoV-2 and other well studied pathogenic CoVs. In addition, we summarize the main strategies that these viruses employ to modulate the host immune responses through the antagonism of IFN induction and effector pathways.
Collapse
Affiliation(s)
- Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
433
|
Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila MA, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Rep 2021; 35:109197. [PMID: 34043946 PMCID: PMC8118641 DOI: 10.1016/j.celrep.2021.109197] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over 950,000 whole-genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been determined for viruses isolated from around the world. These sequences are critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We isolate one of these mutant viruses from a patient sample and use viral challenge experiments to link this isolate (ORF7aΔ115) to a growth defect. ORF7a is implicated in immune modulation, and we show that the C-terminal truncation negates anti-immune activities of the protein, which results in elevated type I interferon response to the viral infection. Collectively, this work indicates that ORF7a mutations occur frequently, and that these changes affect viral mechanisms responsible for suppressing the immune response.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Nichols
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
434
|
Ng KW, Faulkner N, Wrobel AG, Gamblin SJ, Kassiotis G. Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Semin Immunol 2021; 55:101507. [PMID: 34716096 PMCID: PMC8542444 DOI: 10.1016/j.smim.2021.101507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/04/2023]
Abstract
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, London, NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
435
|
Ye Q, Lu S, Corbett KD. Structural basis for SARS-CoV-2 Nucleocapsid protein recognition by single-domain antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.01.446591. [PMID: 34100017 PMCID: PMC8183014 DOI: 10.1101/2021.06.01.446591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, is the most severe public health event of the twenty-first century. While effective vaccines against SARS-CoV-2 have been developed, there remains an urgent need for diagnostics to quickly and accurately detect infections. Antigen tests, particularly those that detect the abundant SARS-CoV-2 Nucleocapsid protein, are a proven method for detecting active SARS-CoV-2 infections. Here we report high-resolution crystal structures of three llama-derived single-domain antibodies that bind the SARS-CoV-2 Nucleocapsid protein with high affinity. Each antibody recognizes a specific folded domain of the protein, with two antibodies recognizing the N-terminal RNA binding domain and one recognizing the C-terminal dimerization domain. The two antibodies that recognize the RNA binding domain affect both RNA binding affinity and RNA-mediated phase separation of the Nucleocapsid protein. All three antibodies recognize highly-conserved surfaces on the Nucleocapsid protein, suggesting that they could be used to develop affordable diagnostic tests to detect all circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Department of Cellular & Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA
| | - Shan Lu
- Department of Cellular & Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA
| | - Kevin D. Corbett
- Department of Cellular & Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA
| |
Collapse
|
436
|
Renz A, Widerspick L, Dräger A. Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential Antiviral Target. Genes (Basel) 2021; 12:796. [PMID: 34073716 PMCID: PMC8225150 DOI: 10.3390/genes12060796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Collapse
Affiliation(s)
- Alina Renz
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Virus Immunology, 20359 Hamburg, Germany;
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
437
|
Lytton SD, Yeasmin M, Ghosh AK, Bulbul MRH, Molla MMA, Herr M, Duchmann H, Sharif MM, Nafisa T, Amin MR, Hosen N, Rahman MT, Islam S, Islam A, Shamsuzzaman AKM. Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection. Pathogens 2021; 10:637. [PMID: 34067281 PMCID: PMC8224749 DOI: 10.3390/pathogens10060637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The assessment of antibody responses to severe acute respiratory syndrome coronavirus-2 is potentially confounded by exposures to flaviviruses. The aims of the present research were to determine whether anti-dengue antibodies affect the viral load and the detection of anti-coronavirus nucleocapsid (N)-protein antibodies in coronavirus infectious disease 2019 (COVID-19) in Bangladesh. METHODS Viral RNA was evaluated in swab specimens from 115 COVID-19 patients by real-time reverse transcription polymerase chain reaction (rT-PCR). The anti-N-protein antibodies, anti-dengue virus E-protein antibodies and the dengue non-structural protein-1 were determined in serum from 115 COVID-19 patients, 30 acute dengue fever pre-COVID-19 pandemic and nine normal controls by ELISA. RESULTS The concentrations of viral RNA in the nasopharyngeal; Ct median (95% CI); 22 (21.9-23.3) was significantly higher than viral RNA concentrations in oropharyngeal swabs; and 29 (27-30.5) p < 0.0001. Viral RNA concentrations were not correlated with-dengue IgG levels. The anti-nucleocapsid antibodies were IgA 27% positive and IgG 35% positive at days 1 to 8 post-onset of COVID-19 symptoms versus IgA 0% and IgG 0% in dengue patients, p < 0.0001. The levels of anti- nucleocapsid IgA or IgG versus the levels of anti-dengue IgM or IgG revealed no significant correlations. CONCLUSIONS Viral RNA and anti-nucleocapsid antibodies were detected in COVID-19 patients from dengue-endemic regions of Bangladesh, independently of the dengue IgG levels.
Collapse
Affiliation(s)
| | - Mahmuda Yeasmin
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Asish Kumar Ghosh
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh; (A.K.G.); (M.M.S.); (M.R.A.)
| | | | - Md. Maruf Ahmed Molla
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Martha Herr
- NovaTec Immundiagnostica GmbH, 63128 Dietzenbach, Germany; (M.H.); (H.D.)
| | - Helmut Duchmann
- NovaTec Immundiagnostica GmbH, 63128 Dietzenbach, Germany; (M.H.); (H.D.)
| | - Md. Mohiuddin Sharif
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh; (A.K.G.); (M.M.S.); (M.R.A.)
| | - Tasnim Nafisa
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Md. Robed Amin
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh; (A.K.G.); (M.M.S.); (M.R.A.)
| | - Nur Hosen
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.R.); (A.I.)
| | - Sumaiya Islam
- Bangladesh Medical College and Hospital, 14/A Dhanmondi, Dhaka 1209, Bangladesh;
| | - Alimul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.R.); (A.I.)
| | - Abul Khair Mohammad Shamsuzzaman
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| |
Collapse
|
438
|
Sano E, Deguchi S, Sakamoto A, Mimura N, Hirabayashi A, Muramoto Y, Noda T, Yamamoto T, Takayama K. Modeling SARS-CoV-2 infection and its individual differences with ACE2-expressing human iPS cells. iScience 2021; 24:102428. [PMID: 33880436 PMCID: PMC8051014 DOI: 10.1016/j.isci.2021.102428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Genetic differences are a primary reason for differences in the susceptibility and severity of COVID-19. As induced pluripotent stem (iPS) cells maintain the genetic information of the donor, they can be used to model individual differences in SARS-CoV-2 infection in vitro. We found that human iPS cells expressing the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) (ACE2-iPS cells) can be infected w SARS-CoV-2. In infected ACE2-iPS cells, the expression of SARS-CoV-2 nucleocapsid protein, budding of viral particles, and production of progeny virus, double membrane spherules, and double-membrane vesicles were confirmed. We performed SARS-CoV-2 infection experiments on ACE2-iPS/ embryonic stem (ES) cells from eight individuals. Male iPS/ES cells were more capable of producing the virus compared with female iPS/ES cells. These findings suggest that ACE2-iPS cells can not only reproduce individual differences in SARS-CoV-2 infection in vitro but also are a useful resource to clarify the causes of individual differences in COVID-19 due to genetic differences.
Collapse
Affiliation(s)
- Emi Sano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | - Natsumi Mimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501 Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
439
|
Matsuo T. Viewing SARS-CoV-2 Nucleocapsid Protein in Terms of Molecular Flexibility. BIOLOGY 2021; 10:454. [PMID: 34064163 PMCID: PMC8224284 DOI: 10.3390/biology10060454] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
The latest coronavirus SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19) pneumonia leading to the pandemic, contains 29 proteins. Among them, nucleocapsid protein (NCoV2) is one of the abundant proteins and shows multiple functions including packaging the RNA genome during the infection cycle. It has also emerged as a potential drug target. In this review, the current status of the research of NCoV2 is described in terms of molecular structure and dynamics. NCoV2 consists of two domains, i.e., the N-terminal domain (NTD) and the C-terminal domain (CTD) with a disordered region between them. Recent simulation studies have identified several potential drugs that can bind to NTD or CTD with high affinity. Moreover, it was shown that the degree of flexibility in the disordered region has a large effect on drug binding rate, suggesting the importance of molecular flexibility for the NCoV2 function. Molecular flexibility has also been shown to be integral to the formation of droplets, where NCoV2, RNA and/or other viral proteins gather through liquid-liquid phase separation and considered important for viral replication. Finally, as one of the future research directions, a strategy for obtaining the structural and dynamical information on the proteins contained in droplets is presented.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan;
- Laboratoire Interdisciplinaire de Physique (LiPhy), Grenoble-Alpes University, 140 Rue de la Physique, 38402 Saint Martin d’Hères, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France
| |
Collapse
|
440
|
Knoblach B, Ishida R, Hobman TC, Rachubinski RA. Peroxisomes exhibit compromised structure and matrix protein content in SARS-CoV-2-infected cells. Mol Biol Cell 2021; 32:1273-1282. [PMID: 34010015 PMCID: PMC8351553 DOI: 10.1091/mbc.e21-02-0074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has triggered global health and economic crises. Here we report the effects of SARS-CoV-2 infection on peroxisomes of human cell lines Huh-7 and SK-N-SH. Peroxisomes undergo dramatic changes in morphology in SARS-CoV-2-infected cells. Rearrangement of peroxisomal membranes is followed by redistribution of peroxisomal matrix proteins to the cytosol, resulting in a dramatic decrease in the number of mature peroxisomes. The SARS-CoV-2 ORF14 protein was shown to interact physically with human PEX14, a peroxisomal membrane protein required for matrix protein import and peroxisome biogenesis. Given the important roles of peroxisomes in innate immunity, SARS-CoV-2 may directly target peroxisomes, resulting in loss of peroxisome structural integrity, matrix protein content and ability to function in antiviral signaling.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ray Ishida
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
441
|
An overview of the recent advances in cryo-electron microscopy for life sciences. Emerg Top Life Sci 2021; 5:151-168. [PMID: 33760078 DOI: 10.1042/etls20200295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.
Collapse
|
442
|
Anderson-Coughlin BL, Shearer AEH, Omar AN, Wommack KE, Kniel KE. Recovery of SARS-CoV-2 from Wastewater Using Centrifugal Ultrafiltration. Methods Protoc 2021; 4:mps4020032. [PMID: 34065842 PMCID: PMC8162551 DOI: 10.3390/mps4020032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic is a global crisis and continues to impact communities as the disease spreads. Clinical testing alone provides a snapshot of infected individuals but is costly and difficult to perform logistically across whole populations. The virus which causes COVID-19, SARS-CoV-2, is shed in human feces and urine and can be detected in human waste. SARS-CoV-2 can be shed in high concentrations (>107 genomic copies/mL) due to its ability to replicate in the gastrointestinal tract of humans through attachment to the angiotensin-converting enzyme 2 (ACE-2) receptors there. Monitoring wastewater for SARS-CoV-2, alongside clinical testing, can more accurately represent the spread of disease within a community. This protocol describes a reliable and efficacious method to recover SARS-CoV-2 in wastewater, quantify genomic RNA levels, and evaluate concentration fluctuations over time. Using this protocol, viral levels as low as 10 genomic copies/mL were successfully detected from 30 mL of wastewater in more than seven-hundred samples collected between August 2020 and March 2021. Through the adaptation of traditional enteric virus methods used in food safety research, targets have been reliably detected with no inhibition of detection (RT-qPCR) observed in any sample processed. This protocol is currently used for surveillance of wastewater systems across New Castle County, Delaware.
Collapse
Affiliation(s)
- Brienna L. Anderson-Coughlin
- Center for Environmental and Wastewater-Based Epidemiological Research, Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (B.L.A.-C.); (A.E.H.S.); (A.N.O.)
| | - Adrienne E. H. Shearer
- Center for Environmental and Wastewater-Based Epidemiological Research, Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (B.L.A.-C.); (A.E.H.S.); (A.N.O.)
| | - Alexis N. Omar
- Center for Environmental and Wastewater-Based Epidemiological Research, Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (B.L.A.-C.); (A.E.H.S.); (A.N.O.)
| | - K. Eric Wommack
- Center for Environmental and Wastewater-Based Epidemiological Research, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Kalmia E. Kniel
- Center for Environmental and Wastewater-Based Epidemiological Research, Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (B.L.A.-C.); (A.E.H.S.); (A.N.O.)
- Correspondence:
| |
Collapse
|
443
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
444
|
IgM and IgG Immunoreactivity of SARS-CoV-2 Recombinant M Protein. Int J Mol Sci 2021; 22:ijms22094951. [PMID: 34066920 PMCID: PMC8125631 DOI: 10.3390/ijms22094951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Diagnostic evaluation of specific antibodies against the SARS-CoV-2 virus is mainly based on spike (S) and nucleocapsid (N) proteins. Despite the critical functions in virus infection and contribution to the pattern of immunodominance in COVID-19, exploitation of the most abundant membrane (M) protein in the SARS-CoV-2 serology tests is minimal. This study investigated the recombinant M protein's immunoreactivity with the sera from COVID-19 convalescents. In silico designed protein was created from the outer N-terminal part (19 aa) and internal C-terminal tail (101-222 aa) of the M protein (YP_009724393.1) and was recombinantly produced and purified. The designed M protein (16,498.74 Da, pI 8.79) revealed both IgM and IgG reactivity with serum samples from COVID-19 convalescents in Western blot. In ELISA, more than 93% (28/30) of COVID-19 sera were positive for IgM detection, and more than 96% (29/30) were positive for specific IgG detection to M protein. Based on the capacity to provoke an immune response and its strong antigenic properties, as shown here, and the fact that it is also involved in the virion entry into host cells, the M protein of the SARS-CoV-2 virus as a good antigen has the potential in diagnostic purposes and vaccine design.
Collapse
|
445
|
Lévy D, Di Cicco A, Bertin A, Dezi M. [Cryo-electron microcopy for a new vision of the cell and its components]. Med Sci (Paris) 2021; 37:379-385. [PMID: 33908856 DOI: 10.1051/medsci/2021034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a technique for imaging biological samples that plays a central role in structural biology, with high impact on research fields such as cell and developmental biology, bioinformatics, cell physics and applied mathematics. It allows the determination of structures of purified proteins within cells. This review describes the main recent advances in cryo-EM, illustrated by examples of proteins of biomedical interest, and the avenues for future development.
Collapse
Affiliation(s)
- Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico- Chimie Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico- Chimie Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico- Chimie Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico- Chimie Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
446
|
Brun J, Vasiljevic S, Gangadharan B, Hensen M, V. Chandran A, Hill ML, Kiappes J, Dwek RA, Alonzi DS, Struwe WB, Zitzmann N. Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS CENTRAL SCIENCE 2021; 7:586-593. [PMID: 34056088 PMCID: PMC8029450 DOI: 10.1021/acscentsci.1c00058] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the causative pathogen of the COVID-19 pandemic which as of March 29, 2021, has claimed 2 776 175 lives worldwide. Vaccine development efforts focus on the viral trimeric spike glycoprotein as the main target of the humoral immune response. Viral spikes carry glycans that facilitate immune evasion by shielding specific protein epitopes from antibody neutralization, and antigen efficacy is influenced by spike glycoprotein production in vivo. Therefore, immunogen integrity is important for glycoprotein-based vaccine candidates. Here, we show how site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins. Furthermore, we show that their distinctive cellular secretion pathways result in different protein glycosylation and secretion patterns, including shedding of spike monomeric subunits for the non-stabilized wild-type spike tested, which may have implications for the resulting immune response and vaccine design.
Collapse
Affiliation(s)
- Juliane Brun
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Bevin Gangadharan
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Mario Hensen
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anu V. Chandran
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Michelle L. Hill
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - J.L. Kiappes
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Raymond A. Dwek
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dominic S. Alonzi
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Weston B. Struwe
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Nicole Zitzmann
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
447
|
Seim I, Roden CA, Gladfelter AS. Role of spatial patterning of N-protein interactions in SARS-CoV-2 genome packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.06.425605. [PMID: 33442696 PMCID: PMC7805453 DOI: 10.1101/2021.01.06.425605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Viruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral sub-genomic fragments. Some viruses use specific packaging signals, which are conserved sequence/structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), where one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared to more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of SARS-CoV-2 are located at the 5' and 3' ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5' and 3' ends of the genome, consistent with the native spatial patterning. Genome compaction is enhanced by clustered LLPS-promoting binding sites, while single genome packaging is most efficient when binding sites are distributed throughout the genome. These results suggest that many and variably positioned LLPS-promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles like paraspeckles, which enrich specific, long RNA sequences in a defined arrangement.
Collapse
Affiliation(s)
- Ian Seim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Christine A. Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
448
|
Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, Tavares AH, Saeed M, Holehouse AS, Ploss A, Levental I, Douam F, Padera RF, Levy BD, Brangwynne CP. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 2021; 10:e65962. [PMID: 33890572 PMCID: PMC8104966 DOI: 10.7554/elife.65962] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Chanelle C Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Paul J Ackerman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Anita Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Hahn Kim
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, United States
- Department of Chemistry, Princeton University, Princeton, United States
| | - Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Tomokazu Tamura
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Alexander H Tavares
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Florian Douam
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
- Howard Hughes Medical Institute, Princeton, United States
| |
Collapse
|
449
|
Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, Ramadoss GN, Flanigan WR, Fozouni P, Li H, Chen PY, Nakamura K, Whitman JD, Hanson PJ, McManus BM, Ott M, Conklin BR, McDevitt TC. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med 2021; 13:eabf7872. [PMID: 33723017 PMCID: PMC8128284 DOI: 10.1126/scitranslmed.abf7872] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Although coronavirus disease 2019 (COVID-19) causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human induced pluripotent stem cell (iPSC)-derived heart cells to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural genes corroborates adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and nuclear disruption. Human autopsy specimens from patients with COVID-19 reflected similar alterations, particularly sarcomeric fragmentation. These notable cytopathic features in cardiomyocytes provide insights into SARS-CoV-2-induced cardiac damage, offer a platform for discovery of potential therapeutics, and raise concerns about the long-term consequences of COVID-19 in asymptomatic and severe cases.
Collapse
Affiliation(s)
| | - Serah Kang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Camille R Simoneau
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA
- UC Berkeley-UCSF Joint Program in Bioengineering, Berkeley, CA 94720, USA
| | - Ana C Silva
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gokul N Ramadoss
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Will R Flanigan
- Gladstone Institutes, San Francisco, CA 94158, USA
- UC Berkeley-UCSF Joint Program in Bioengineering, Berkeley, CA 94720, USA
| | - Parinaz Fozouni
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Huihui Li
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Pei-Yi Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ken Nakamura
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94143, USA
| | - Jeffrey D Whitman
- Department of Laboratory Medicine, UCSF, San Francisco, CA 94143, USA
| | - Paul J Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA.
- Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA 94158, USA.
- Department of Medicine, UCSF, San Francisco, CA 94143, USA
- Innovative Genomics Institute, Berkeley, CA 94704, USA
- Department of Ophthalmology, UCSF, San Francisco, CA 94158, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| |
Collapse
|
450
|
Fu Q, Chou JJ. A trimeric hydrophobic zipper mediates the intramembrane assembly of SARS-CoV-2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851163 PMCID: PMC8043453 DOI: 10.1101/2021.04.09.439203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The S protein of the SARS-CoV-2 is a Type I membrane protein that mediates membrane fusion and viral entry. A vast amount of structural information is available for the ectodomain of S, a primary target by the host immune system, but much less is known regarding its transmembrane domain (TMD) and its membrane-proximal regions. Here, we determined the nuclear magnetic resonance (NMR) structure of the S protein TMD in bicelles that closely mimic a lipid bilayer. The TMD structure is a transmembrane α-helix (TMH) trimer that assembles spontaneously in membrane. The trimer structure shows an extensive hydrophobic core along the 3-fold axis that resembles that of a trimeric leucine/isoleucine zipper, but with tetrad, not heptad, repeat. The trimeric core is strong in bicelles, resisting hydrogen-deuterium exchange for weeks. Although highly stable, structural guided mutagenesis identified single mutations that can completely dissociate the TMD trimer. Multiple studies have shown that the membrane anchor of viral fusion protein can form highly specific oligomers, but the exact function of these oligomers remain unclear. Our findings should guide future experiments to address the above question for SARS coronaviruses.
Collapse
Affiliation(s)
- Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|