401
|
Weeks ME, Sinclair J, Butt A, Chung YL, Worthington JL, Wilkinson CRM, Griffiths J, Jones N, Waterfield MD, Timms JF. A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response inSchizosaccharomyces pombe. Proteomics 2006; 6:2772-96. [PMID: 16548067 DOI: 10.1002/pmic.200500741] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using an integrated approach incorporating proteomics, metabolomics and published mRNA data, we have investigated the effects of hydrogen peroxide on wild type and a Sty1p-deletion mutant of the fission yeast Schizosaccharomyces pombe. Differential protein expression analysis based on the modification of proteins with matched fluorescent labelling reagents (2-D-DIGE) is the foundation of the quantitative proteomics approach. This study identifies 260 differentially expressed protein isoforms from 2-D-DIGE gels using MALDI MS and reveals the complexity of the cellular response to oxidative stress and the dependency on the Sty1p stress-activated protein kinase. We show the relationship between these protein changes and mRNA expression levels identified in a parallel whole genome study, and discuss the regulatory mechanisms involved in protecting cells against hydrogen peroxide and the involvement of Sty1p-dependent stress-activated protein kinase signalling. Metabolomic profiling of 29 intermediates using 1H NMR was also conducted alongside the protein analysis using the same sample sets, allowing examination of how the protein changes might affect the metabolic pathways and biological processes involved in the oxidative stress response. This combined analysis identifies a number of interlinked metabolic pathways that exhibit stress- and Sty1-dependent patterns of regulation.
Collapse
Affiliation(s)
- Mark E Weeks
- Ludwig Institute for Cancer Research, University College London, Cruciform Building, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Abstract
Glutathione is one of the most abundant thiols present in cyanobacteria and proteobacteria, and in all mitochondria or chloroplast-bearing eukaryotes. In bacteria, in addition to its key role in maintaining the proper oxidation state of protein thiols, glutathione also serves a key function in protecting the cell from the action of low pH, chlorine compounds, and oxidative and osmotic stresses. Moreover, glutathione has emerged as a posttranslational regulator of protein function under conditions of oxidative stress, by the direct modification of proteins via glutathionylation. This review summarizes the biosynthesis and function of glutathione in bacteria from physiological and biotechnological standpoints.
Collapse
Affiliation(s)
- Lluis Masip
- Department of Chemical Engineering, Institute for Cell and Molecular Biology, University of Texas, Austin, 78712-0231, USA
| | | | | |
Collapse
|
403
|
Biaglow JE, Ayene IS, Tuttle SW, Koch CJ, Donahue J, Mieyal JJ. Role of vicinal protein thiols in radiation and cytotoxic responses. Radiat Res 2006; 165:307-17. [PMID: 16494519 DOI: 10.1667/rr3505.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glutathione (GSH) and more recently protein thiols (P-SH) have been found to play a major role in cellular radiation response. However, the effects of protein vicinal thiols, which are important for the functions of several major enzymes, on cellular responses to radiation have not been clearly delineated. Here we investigated the effects of depleting GSH and protein vicinal thiols (HS-P-SH) and P-SH on cell toxicity and radiation response. We used hydroxyethyldisulfide (HEDS, beta-mercaptoethanol-disulfide) alone and in combination with phenylarsine oxide (PAO) to alter P-SH, HS-P-SH and GSH. HEDS, a direct substrate for thioredoxin reductase and an indirect substrate for glutaredoxin (thioltransferase), did not alter protein vicinal thiols in cells. However, PAO, which specifically forms a covalent adduct with vicinal thiols, blocked bioreduction of HEDS; there was a concomitant and yet unexplained decrease in K1 cell GSH in the presence of HEDS and PAO. G6PD+ (K1) and G6PD- (E89) cells treated with L-buthionine sulfoximine (L-BSO) for 72 h to deplete GSH followed by PAO showed an increased cytotoxic response. However, the surviving E89 cells showed a 10,000-fold greater radiation lethality than the K1 cells. The effects of rapid depletion of GSH by a combination of L-BSO and dimethyfumarate (DMF), a glutathione-S-transferase substrate, were also investigated. Under these conditions, PAO radiosensitized the E89 cells more than 1000-fold over the K1 cells. The potential mechanisms for the altered response may be related to the inhibition of thioredoxin reductase and glutaredoxin. Both are key enzymes involved in DNA synthesis, protein homeostasis and cell survival. With GSH removed, vicinal thiols appear to play a critical role in determining cell survival and radiosensitivity. Decreasing P-SH and removing GSH and vicinal thiols is extremely toxic to K1 and E89 cells. We conclude that radiation sensitivity and cell survival are dependent on vicinal thiol and GSH. In the former and latter cases, the protein thiols are also important.
Collapse
Affiliation(s)
- John E Biaglow
- Department of Biochemistry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
404
|
Giustarini D, Dalle-Donne I, Cavarra E, Fineschi S, Lungarella G, Milzani A, Rossi R. Metabolism of oxidants by blood from different mouse strains. Biochem Pharmacol 2006; 71:1753-64. [PMID: 16624256 DOI: 10.1016/j.bcp.2006.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 11/21/2022]
Abstract
Haemoglobins bearing reactive sulfhydryl groups have been shown to be able to interplay with glutathione in some detoxification processes. Blood from different mouse strains commonly used as experimental animal models, i.e., C57, DBA and ICR, was treated with oxidants with the aim of evaluating: (i) the involvement of protein SH groups in oxido-reductive reactions that are commonly carried out by glutathione and (ii) the impact of this phenomenon on blood-mediated metabolism of thiol reactants. All the main forms of glutathione (reduced, disulfide, and mixed disulfide with haemoglobin) were measured after oxidant treatment. Significant differences were found among the studied strains: DBA mice formed preferably mixed disulfides instead of glutathione disulfide, whereas the opposite behaviour was shown by C57 mice. Unexpectedly, the ICR strain resulted to be composed of three different subgroups (ICRa, ICRb, and ICRc), with the ICRa behaving similarly to the DBA strain, ICRc to the C57 strain, and ICRc showing an intermediate behaviour. These results are due to the different number of haemoglobin SH groups in the studied mouse strains. In particular, additional fast-reacting SH groups were found in haemoglobin from DBA, ICRa, and ICRb mice, but not in the C57 and ICRc strain. These differences were also reflected in the susceptibility of haemoglobin to dimerize and in its ability to react with S-nitrosocysteine. Because of the widely different reactivity of haemoglobin cysteinyl residues, the mouse strains examined are an interesting but complicated model in which to study the pharmacological and toxicological action of some drugs.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Neurosciences, Pharmacology Unit, University of Siena, Via A. Moro 4, 53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
405
|
Musci G, Persichini T, Casadei M, Mazzone V, Venturini G, Polticelli F, Colasanti M. Nitrosative/oxidative modifications and ageing. Mech Ageing Dev 2006; 127:544-51. [PMID: 16530251 DOI: 10.1016/j.mad.2006.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 10/03/2005] [Accepted: 01/16/2006] [Indexed: 11/27/2022]
Abstract
We present here a brief description of the relationships among metals, nitric oxide metabolism, and ageing. In particular, we will discuss the interactions occurring between redox (copper, iron) and non-redox (zinc) metals and nitric oxide, the metal- and nitric oxide-catalyzed formation of thiol adducts (nitrosothiols, mixed disulphides) and the possible involvement of these species in the ageing process.
Collapse
Affiliation(s)
- Giovanni Musci
- Dipartimento di Scienze Microbiologiche, Genetiche e Molecolari, University of Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
406
|
Dafre AL, Reischl E. Hemoglobin S-thiolation during peroxide-induced oxidative stress in chicken blood. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:188-197. [PMID: 16289935 DOI: 10.1016/j.cbpc.2005.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 12/01/2022]
Abstract
Protein S-thiolation or protein-glutathione mixed disulfide (PSSG) occurs when cells are exposed to oxidative stress, and has been implicated in several cellular functions. The S-thiolation of hemoglobin as well as other abundant proteins is proposed to participate as a redox buffer, being part of the antioxidant protection system of the cell during the oxidative challenge. We studied the oxidative stress caused by peroxides (H(2)O(2), cumene and tert-butyl hydroperoxide) on chicken blood by measuring the thiol/disulfide status. Chicken blood under peroxide treatment showed a time- and concentration-dependent increase in glutathione disulfide (GSSG) and PSSG. GSSG peaked immediately after treatment (1 min), while PSSG increased progressively over time, showing a maximum after about 30 min. The system recovered after 140 min of incubation, with GSSG and PSSG then barely reaching control values. The S-thiolation of hemoglobin was monitored under nondenaturing PAGE, and the fraction of S-thiolated hemoglobin, or Hb A1, rose in a dose-dependent fashion and was proportional to total S-thiolation, measured as PSSG. This significant correlation indicates that hemoglobin is the major S-thiolated protein in chicken erythrocytes treated with peroxides. The present work shows the behavior of chicken blood under peroxide treatment; it anticipated that chicken hemoglobin thiol groups can actively participate in the redox processes of erythrocytes exposed to oxidative stress, and that hemoglobin is the major S-thiolated protein. This further corroborates the hypothesis that abundant proteins, such as hemoglobin, may take part in the cellular antioxidant defense system.
Collapse
Affiliation(s)
- Alcir Luiz Dafre
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Evaldo Reischl
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
407
|
Fernández V, Tapia G, Varela P, Romanque P, Cartier-Ugarte D, Videla LA. Thyroid hormone-induced oxidative stress in rodents and humans: a comparative view and relation to redox regulation of gene expression. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:231-239. [PMID: 16298169 DOI: 10.1016/j.cbpc.2005.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 01/28/2023]
Abstract
Thyroid hormone (3,3',5-triiodothyronine, T(3)) exerts significant actions on energy metabolism, with mitochondria being the major target for its calorigenic effects. Acceleration of O(2) consumption by T(3) leads to an enhanced generation of reactive oxygen and nitrogen species in target tissues, with a higher consumption of cellular antioxidants and inactivation of antioxidant enzymes, thus inducing oxidative stress. This redox imbalance occurring in rodent liver and extrahepatic tissues with a calorigenic response, as well as in hyperthyroid patients, is further enhanced by an increased respiratory burst activity in Kupffer cells, which may activate redox-sensitive transcription factors such as NF-kappaB thus up-regulating gene expression. T(3) elicits an 80-fold increase in the serum levels of tumor necrosis factor-alpha (TNF-alpha), which is abolished by pretreatment with the antioxidants alpha-tocopherol and N-acetylcysteine, the Kupffer-cell inactivator GdCl(3), or an antisense oligonucleotide against TNF-alpha. In addition, T(3) treatment activates hepatic NF-kappaB, a response that is (i) inhibited by antioxidants and GdCl(3) and (ii) accompanied by induced mRNA expression of the NF-kappaB-responsive genes for TNF-alpha and interleukin (IL)-10. T(3) also increases the hepatic levels of mRNA for IL-1alpha and those of IL-1alpha in serum. Up-regulation of liver iNOS expression is also achieved by T(3), through a cascade initiated by TNF-alpha and involving IkappaB-alpha phosphorylation and NF-kappaB activation. In conclusion, T(3)-induced oxidative stress in the liver enhances the DNA-binding of NF-kappaB and the NF-kappaB-dependent expression of cytokines and iNOS by actions primarily exerted at the Kupffer cell level.
Collapse
Affiliation(s)
- Virginia Fernández
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | - Gladys Tapia
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | - Patricia Varela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | - Pamela Romanque
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | - Denise Cartier-Ugarte
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | - Luis A Videla
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile.
| |
Collapse
|
408
|
Pinto JT, Krasnikov BF, Cooper AJL. Redox-sensitive proteins are potential targets of garlic-derived mercaptocysteine derivatives. J Nutr 2006; 136:835S-841S. [PMID: 16484576 DOI: 10.1093/jn/136.3.835s] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular investigations support existing clinical and epidemiological data that garlic-derived allylsulfides reduce cancer risk. Various allylsulfides can diminish progression of cancer cells at either the G1/S or G2/M phase. Allylsulfide derivatives modify redox-sensitive signal pathways and cause growth inhibition, mitotic arrest, and apoptosis induction. Whether allylsulfides modify intracellular redox potentials by affecting the ratio of glutathione:glutathione disulfide and/or by interacting directly with sulfhydryl domains on regulatory or catalytic-signal proteins requires further investigation. To understand the possible biochemical mechanisms contributing to the protective effects of allylsulfides, we investigated the ability of these compounds to undergo enzyme-catalyzed transformations. In addition to catalyzing gamma-elimination reactions, gamma-cystathionase can perform beta-elimination reactions with cysteinyl S-conjugates derived from garlic extracts when the S-alkyl group (R) is larger than ethyl. The reaction products are pyruvate, ammonium, and a sulfur-containing fragment (RSH). beta-Lyase substrates of gamma-cystathionase thus far identified from garlic include: S-allyl-L-cysteine (R=CH2=CHCH2-), S-allylmercapto-L-cysteine (R=CH2=CHCH2S-), and S-propylmercapto-L-cysteine (R=CH3CH2CH2S-). Mercapto derivatives yield persulfide products (RSSH) that are potential sources of sulfane sulfur, which may modify protein function by reacting at important cysteinyl domains. Thus, beta-elimination reactions with cysteine S-conjugates in garlic may modify cancer-cell growth by targeting redox-sensitive signal proteins at sulfhydryl sites, thereby regulating cell proliferation and/or apoptotic responses. These interactions may be useful in identifying efficacy of garlic-derived compounds and/or developing other novel organosulfur compounds that may modify intracellular redox potentials or interact with thiols associated within cysteine domains in regulatory, catalytic, signal, or structural proteins.
Collapse
Affiliation(s)
- John T Pinto
- Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
409
|
Sahoo R, Dutta T, Das A, Sinha Ray S, Sengupta R, Ghosh S. Effect of nitrosative stress on Schizosaccharomyces pombe: inactivation of glutathione reductase by peroxynitrite. Free Radic Biol Med 2006; 40:625-31. [PMID: 16458193 DOI: 10.1016/j.freeradbiomed.2005.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/23/2005] [Accepted: 09/12/2005] [Indexed: 11/26/2022]
Abstract
Oxidative stress has been shown to alter cellular redox status in various cell types. Changes in expressions of several antioxidative and antistress-responsive genes along with activation or inactivation of various proteins were also reported during oxidative insult as well as during nitrosative stress. In the present study, we show the effect of nitrosative stress on cellular redox status of fission yeast Schizosaccharomyces pombe. This is the first report of S-nitrosoglutathione (GSNO) reductase activity in S. pombe and its inactivation by GSNO. We also show the inactivation of glutathione reductase (GR) and glutathione peroxidase in the presence of various reactive nitrogen species in vivo. In addition, we first observe the inactivation of GR by peroxynitrite in vivo using S. pombe cells and also similar observations under in vitro conditions. An immunoreactive band against monoclonal anti-3-nitrotyrosine antibody confirms the modification of GR under in vitro conditions. We also show the effect of nitrosative stress on Deltapap1 cells of S. pombe, which are more sensitive to nitrosative stress, indicating the involvement of Pap1 in the protection against nitrosative stress. Finally, exposure of S. pombe cells to reactive nitrogen species reveals an important role of cellular thiol pool in protection against nitrosative stress.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Biochemistry, Calcutta University, 35, Ballygunge Circular Road, Kolkata-700 019, India
| | | | | | | | | | | |
Collapse
|
410
|
Salvador A, Savageau MA. Evolution of enzymes in a series is driven by dissimilar functional demands. Proc Natl Acad Sci U S A 2006; 103:2226-31. [PMID: 16461898 PMCID: PMC1413729 DOI: 10.1073/pnas.0510776103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Indexed: 11/18/2022] Open
Abstract
That distinct enzyme activities in an unbranched metabolic pathway are evolutionarily tuned to a single functional requirement is a pervasive assumption. Here we test this assumption by examining the activities of two consecutively acting enzymes in human erythrocytes with an approach to quantitative evolutionary design that avoids the above-mentioned assumption. We previously found that avoidance of NADPH depletion during the pulses of oxidative load to which erythrocytes are normally exposed is the main functional requirement mediating selection for high glucose-6-phosphate dehydrogenase activity. In the present study, we find that, in contrast, the maintenance of oxidized glutathione at low concentrations is the main functional requirement mediating selection for high glutathione reductase activity. The results in this case show that, contrary to the assumption of a single functional requirement, natural selection for the normal activities of the distinct enzymes in the pathway is mediated by different requirements. On the other hand, the results agree with the more general principles that underlie our approach. Namely, that (i) the values of biochemical parameters evolve so as to fulfill the various performance requirements that are relevant to achieve high fitness, and (ii) these performance requirements can be inferred from quantitative systems theory considerations, informed by knowledge of specific aspects of the biochemistry, physiology, genetics, and ecology of the organism.
Collapse
Affiliation(s)
- Armindo Salvador
- *Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science II, Ann Arbor, MI 48109-0620; and
- Chemistry Department, University of Coimbra, Largo Dom Dinis, 3004-535 Coimbra, Portugal
| | - Michael A. Savageau
- *Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science II, Ann Arbor, MI 48109-0620; and
| |
Collapse
|
411
|
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160:1-40. [PMID: 16430879 DOI: 10.1016/j.cbi.2005.12.009] [Citation(s) in RCA: 4032] [Impact Index Per Article: 212.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 02/07/2023]
Abstract
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular, ROS activation of AP-1 (activator protein) and NF-kappaB (nuclear factor kappa B) signal transduction pathways, which in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu, Zn-SOD, Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappaB, AP-1 are also reviewed.
Collapse
Affiliation(s)
- M Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
412
|
Le Moan N, Clement G, Le Maout S, Tacnet F, Toledano MB. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 2006; 281:10420-30. [PMID: 16418165 DOI: 10.1074/jbc.m513346200] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein thiol oxidation subserves important biological functions and constitutes a sequel of reactive oxygen species toxicity. We developed two distinct thiol-labeling approaches to identify oxidized cytoplasmic protein thiols in Saccharomyces cerevisiae. Inone approach, we used N-(6-(biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide to purify oxidized protein thiols, and in the other, we used N-[(14)C]ethylmaleimide to quantify this oxidation. Both approaches showed a large number of the same proteins with oxidized thiols ( approximately 200), 64 of which were identified by mass spectrometry. We show that, irrespective of its mechanism, protein thiol oxidation is dependent upon molecular O(2). We also show that H(2)O(2) does not cause de novo protein thiol oxidation, but rather increases the oxidation state of a select group of proteins. Furthermore, our study reveals contrasted differences in the oxidized proteome of cells upon inactivation of the thioredoxin or GSH pathway suggestive of very distinct thiol redox control functions, assigning an exclusive role for thioredoxin in H(2)O(2) metabolism and the presumed thiol redox buffer function for GSH. Taken together, these results suggest the high selectivity of cytoplasmic protein thiol oxidation.
Collapse
Affiliation(s)
- Natacha Le Moan
- Laboratoire Stress Oxydants et Cancer, Service de Biologie Moléculaire Systémique, Département de Biologie Joliot-Curie, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
413
|
Sampathkumar R, Balasubramanyam M, Sudarslal S, Rema M, Mohan V, Balaram P. Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy. Clin Biochem 2006; 38:892-9. [PMID: 16051210 DOI: 10.1016/j.clinbiochem.2005.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/04/2005] [Accepted: 06/27/2005] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Protein glutathionylation is considered an important post-translational modification in the pathogenesis of complex diseases. The aim of this study was to examine whether hemoglobin (Hb) is modified by reduced glutathione (GSH) via oxidation of the thiol groups present in diabetes and its associated microangiopathy and to determine whether oxidative imbalance has any correlation with glutathionylated Hb (HbSSG) levels. METHODS The study group consisted of a total of 130 subjects which included non-diabetic healthy control subjects (n = 30) and type 2 diabetic patients with (n = 53) and without (n = 47) microangiopathy. All subjects were assessed for glycemic and lipidemic status, while diabetic subjects were also assessed for the diagnosis of retinopathy and nephropathy. RBC lysates from all the subjects were analyzed by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) for HbSSG beta-globin chains. Levels of GSH and thiobarbituric acid substances (TBARS) levels were measured by spectrophotometric and fluorimetric methods, respectively. RESULTS The positivity for HbSSG in diabetic subjects with microangiopathy was significantly higher (69%) compared to diabetics without microangiopathy (22%) and control subjects (14%). In univariate regression analysis, HbSSG levels were significantly associated with the duration of diabetes, HbA1c, and TBARS levels. GSH levels were negatively correlated (r = -0.57, P < 0.001) with HbSSG in diabetic subjects. A significant inverse correlation (r = -0.42, P < 0.001) between the GSH levels and HbA1c levels was also seen in diabetic subjects. CONCLUSIONS This is perhaps the largest LC-MS-based study to demonstrate that HbSSG levels are markedly increased in diabetic subjects with microangiopathy. Since diabetic subjects also exhibited increased lipid peroxidation and decreased GSH levels, it appears that enhanced oxidative stress may account for the increased HbSSG concentrations and altered reduction-oxidation (redox) signaling.
Collapse
Affiliation(s)
- Rangasamy Sampathkumar
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, 6B, Conran Smith Road, Gopalapuram, Chennai-600 086, India
| | | | | | | | | | | |
Collapse
|
414
|
Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, del Río LA. Nitrosative Stress in Plants: A New Approach to Understand the Role of NO in Abiotic Stress. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_2006_091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
415
|
Włodek PJ, Smolenski OB, Chwatko G, Iciek MB, Miłkowski A, Bald E, Włodek L. Disruption of thiol homeostasis in plasma of terminal renal failure patients. Clin Chim Acta 2005; 366:137-45. [PMID: 16337615 DOI: 10.1016/j.cca.2005.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 09/12/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The aim of the present studies was to investigate the changes in concentrations of different forms of thiols in plasma of terminal renal failure patients before and after hemodialysis. METHODS Total concentrations of thiols, their free forms and the level of their mixed disulfides with proteins were determined with HPLC. RESULTS In terminal renal failure patients before dialysis, total concentrations of cysteine, homocysteine and cysteinylglycine and their free and protein-bound fractions increased while level of all such forms of glutathione dropped. A single dialysis session caused short-lasting return of concentrations of all forms of thiols to the level equal or close to the control group. The changes observed in non-dialyzed patients were similar to those observed in dialyzed patients before single dialysis procedure. CONCLUSIONS The obtained results showed severe disturbance of thiol homeostasis in plasma of terminal renal failure patients. The following changes have to be emphasized: (1) high level of free cysteine (cystine) fraction, (2) strong tendency of homocysteine to form mixed disulfides with proteins, (3) drop of glutathione level. These observations confirm a suggestion that atherogenic action of homocysteine can be a result of S-homocysteinylation and N-homocysteinylation reactions, whereas toxic action of cysteine can result from auto-oxidation reaction.
Collapse
Affiliation(s)
- Przemysław J Włodek
- Department of Nephrology, Rydygier Hospital, os. Złotej Jesieni 1, 31-826 Cracow, Poland
| | | | | | | | | | | | | |
Collapse
|
416
|
Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 2005; 71:551-64. [PMID: 16337153 DOI: 10.1016/j.bcp.2005.10.044] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/25/2005] [Accepted: 10/30/2005] [Indexed: 12/25/2022]
Abstract
Glutathione represents the major low molecular weight antioxidant redox recycling thiol in mammalian cells and plays a central role in the cellular defence against oxidative damage. Classically glutathione has been known to provide the cell with a reducing environment in addition to maintaining the proteins in a reduced state. Emerging evidences suggest that the glutathione redox status may entail dynamic regulation of protein function by reversible disulfide bond formation. The formation of inter- and intramolecular disulfides as well as mixed disulfides between protein cysteines and glutathione, i.e., S-glutathiolation, has now been associated with the stabilization of extracellular proteins, protection of proteins against irreversible oxidation of critical cysteine residues, and regulation of enzyme functions and transcription. Regulation of DNA binding of redox-dependent transcription factors such as nuclear factor-kappaB, p53, and activator protein-1, has been suggested as one of the mechanisms by which cells may transduce oxidative stress redox signaling into an inducible expression of a wide variety of genes implicated in cellular changes such as proliferation, differentiation, and apoptosis. However, the molecular mechanisms linking the glutathione cellular redox state to a reversible oxidation of various signaling proteins are still poorly understood. This commentary discusses the emerging concept of protein-S-thiolation, protein-S-nitrosation and protein-SH (formation of sulfenic, sulfinic and sulfonic acids) in redox signaling during normal physiology and under oxidative stress in controlling the cellular processes.
Collapse
Affiliation(s)
- Saibal Biswas
- Department of Biochemistry, Dr. Ambedkar College, Nagpur, Maharashtra State, India
| | | | | |
Collapse
|
417
|
Mullineaux PM, Rausch T. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. PHOTOSYNTHESIS RESEARCH 2005; 86:459-74. [PMID: 16328783 DOI: 10.1007/s11120-005-8811-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/15/2005] [Indexed: 05/05/2023]
Abstract
The ubiquitous antioxidant thiol tripeptide glutathione is present in millimolar concentrations in plant tissues and is regarded as one of the major determinants of cellular redox homeostasis. Recent research has highlighted a regulatory role for glutathione in influencing the expression of many genes important in plants' responses to both abiotic and biotic stress. Therefore, it becomes important to consider how glutathione levels and its redox state are influenced by environmental factors, how glutathione is integrated into primary metabolism and precisely how it can influence the functioning of signal transduction pathways by modulating cellular redox state. This review draws on a number of recent important observations and papers to present a unified view of how the responsiveness of glutathione to changes in photosynthesis may be one means of linking changes in nuclear gene expression to changes in the plant's external environment.
Collapse
Affiliation(s)
- Philip M Mullineaux
- Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, UK.
| | | |
Collapse
|
418
|
Niture SK, Velu CS, Bailey NI, Srivenugopal KS. S-thiolation mimicry: quantitative and kinetic analysis of redox status of protein cysteines by glutathione-affinity chromatography. Arch Biochem Biophys 2005; 444:174-84. [PMID: 16297848 DOI: 10.1016/j.abb.2005.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/04/2005] [Accepted: 10/14/2005] [Indexed: 11/26/2022]
Abstract
S-Glutathionylation is emerging as a novel regulatory and adoptive mechanism by which glutathione (GSH or GSSG) conjugation can modify functionally important reactive cysteines in redox-sensitive proteins. The dynamics of generation and reversal of this modification in cells is poorly understood. This study describes the ability and applicability of GSH- and GSSG-affinity matrices to quantitatively bind proteins which harbor reactive cysteines and undergo glutathionylation. We showed that purified proteins, known to be modified by S-thiolation, bind to these matrices, are selectively eluted by dithiothreitol and rapidly incorporate biotin-labeled GSH or GSSG in vitro. Chromatography of extracts from tumor cells that had been treated with oxidants (diamide, H(2)O(2), tert-butyl hydroperoxide) on GSH-Sepharose showed the specific binding of many proteins, whose levels increased transiently (2- to 6-fold) soon after treatments. However, when these cells were post-incubated in drug/oxidant-free media, protein binding decreased gradually to control levels over 3-12h, thereby demonstrating the central role of cysteine redox status in the binding. Immunoblotting of eluates from GSH-Sepharose showed the presence of known (actin, ubiquitin-activating enzyme E1, NF-kappaB, and proteasome) and putative (p53, glutathione-S-transferase P1) targets for glutathionation. After oxidant withdrawal, many of these proteins displayed unique kinetics in their loss of binding to GSH-matrix, reflecting their differential abilities to recover from cysteine redox changes in cellular milieu. Further, we correlated the kinetics of S-thiolation susceptibility of the proteasome and ubiquitin-E1 proteins with altered levels of protein ubiquitination in H(2)O(2)-treated cells. Our study reveals the hitherto underutilized ability of glutathione matrices for analyzing the kinetics of cysteine redox in cellular proteins and allows easy identification of S-thiolatable proteins.
Collapse
Affiliation(s)
- Suryakant K Niture
- Center for Cancer Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | |
Collapse
|
419
|
Biswas SK, Newby DE, Rahman I, Megson IL. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E(-/-) mice. Biochem Biophys Res Commun 2005; 338:1368-73. [PMID: 16263083 DOI: 10.1016/j.bbrc.2005.10.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 11/16/2022]
Abstract
Glutathione is a vital intracellular antioxidant. The enzymes involved in its synthesis and utilisation are tightly regulated, but the importance of glutathione regulation in atherogenesis is poorly understood. Here, we establish that glutathione is severely (approximately 80%) depleted very early (10 weeks) in the atheroma-prone aortic arch of male apoprotein E-deficient (Apo-E(-/-)) mice compared to age-matched wild-type controls. Importantly, this event pre-empts lipid peroxidation and detectable atheroma by several months. Depletion of glutathione was associated with excessive oxidant burden and reduced transcription and activity of the rate-limiting enzyme for glutathione synthesis, gamma-glutamylcysteine ligase, together with the glutathione-dependent antioxidant enzyme, glutathione peroxidase. Depletion via reduced synthesis of glutathione precedes lipid peroxidation and atherogenesis in Apo-E(-/-) mice. We suggest that glutathione deficiency is central to the failure of the intracellular antioxidant defences and is causally implicated in the pathogenesis of atherosclerosis. Modification of the glutathione pathway may present a novel and important therapeutic target in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Saibal K Biswas
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ Edinburgh, UK
| | | | | | | |
Collapse
|
420
|
Noguchi M, Takata T, Kimura Y, Manno A, Murakami K, Koike M, Ohizumi H, Hori S, Kakizuka A. ATPase activity of p97/valosin-containing protein is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in Walker A motif. J Biol Chem 2005; 280:41332-41. [PMID: 16234241 DOI: 10.1074/jbc.m509700200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein (p97/VCP) has been proposed as playing crucial roles in a variety of physiological and pathological processes such as cancer and neurodegeneration. We previously showed that VCP(K524A), an ATPase activity-negative VCP mutant, induced vacuolization, accumulation of ubiquitinated proteins, and cell death, phenotypes commonly observed in neurodegenerative disorders. However, any regulatory mechanism of its ATPase activity has not yet been clarified. Here, we show that oxidative stress readily inactivates VCP ATPase activity. With liquid chromatography/tandem mass spectrometry, we found that at least three cysteine residues were modified by oxidative stress. Of them, the 522nd cysteine (Cys-522) was identified as the site responsible for the oxidative inactivation of VCP. VCP(C522T), a single-amino acid substitution mutant from cysteine to threonine, conferred almost complete resistance to the oxidative inactivation. In response to oxidative stress, VCP strengthened the interaction with Npl4 and Ufd1, both of which are essential in endoplasmic reticulum-associated protein degradation. Cys-522 is located in the second ATP binding motif and is highly conserved in multicellular but not unicellular organisms. Cdc48p (yeast VCP) has threonine in the corresponding amino acid, and it showed resistance to the oxidative inactivation in vitro. Furthermore, a yeast mutant (delta cdc48 + cdc48[T532C]) was shown to be susceptible to oxidants-induced growth inhibition and cell death. These results clearly demonstrate that VCP ATPase activity is regulated by the oxidative modification of the Cys-522 residue. This regulatory mechanism may play a key role in the conversion of oxidative stress to endoplasmic reticulum stress response in multicellular organisms and also in the pathological process of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Masakatsu Noguchi
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology (JST), Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Brennan JP, Miller JIA, Fuller W, Wait R, Begum S, Dunn MJ, Eaton P. The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 2005; 5:215-25. [PMID: 16223748 DOI: 10.1074/mcp.m500212-mcp200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione disulfide (GSSG) accumulates in cells under an increased oxidant load, which occurs during neurohormonal or metabolic stimulation as well as in many disease states. Elevated GSSG promotes protein S-glutathiolation, a reversible post-translational modification, which can directly alter or regulate protein function. We developed novel strategies for the study of protein S-glutathiolation that involved the simple synthesis of N,N-biotinyl glutathione disulfide (biotin-GSSG). Biotin-GSSG treatment of cells mimics a defined component of oxidative stress, namely a shift in the glutathione redox couple to the oxidized disulfide state. This induces widespread protein S-glutathiolation, which was detected on non-reducing Western blots probed with streptavidin-horseradish peroxidase and imaged using confocal fluorescence microscopy and ExtrAvidin-FITC. S-Glutathiolated proteins were purified using streptavidin-agarose and identified using proteomic methods. We conclude that biotin-GSSG is a useful tool in the investigation of protein S-glutathiolation and offers significant advantages over conventional methods or antibody-based strategies. These novel approaches may find widespread utility in the study of disease or redox signaling models where GSSG accumulation occurs.
Collapse
Affiliation(s)
- Jonathan P Brennan
- Cardiovascular Division, Department of Cardiology, King's College London, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
422
|
Hosono T, Fukao T, Ogihara J, Ito Y, Shiba H, Seki T, Ariga T. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem 2005; 280:41487-93. [PMID: 16219763 DOI: 10.1074/jbc.m507127200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allyl sulfides are characteristic flavor components obtained from garlic. These sulfides are thought to be responsible for their epidemiologically proven anticancer effect on garlic eaters. This study was aimed at clarifying the molecular basis of this anticancer effect of garlic by using human colon cancer cell lines HCT-15 and DLD-1. The growth of the cells was significantly suppressed by diallyl trisulfide (DATS, HCT-15 IC50 = 11.5 microM, DLD-1 IC50 = 13.3 microM); however, neither diallyl monosulfide nor diallyl disulfide showed such an effect. The proportion of HCT-15 and that of DLD-1 cells residing at the G1 and S phases were decreased by DATS, and their populations at the G2/M phase were markedly increased for up to 12 h. The cells with a sub-G1 DNA content were increased thereafter. Caspase-3 activity was also dramatically increased by DATS. Fluorescence-activated cell sorter analysis performed on the cells arrested at the G1/S boundary revealed cell cycle-dependent induction of apoptosis through the transition of the G2/M phase to the G1 phase by DATS. DATS inhibited tubulin polymerization in an in vitro cell-free system. DATS disrupted microtubule network formation of the cells, and microtubule fragments could be seen at the interphase. Peptide mass mapping by liquid chromatography-tandem mass spectrometry analysis for DATS-treated tubulin demonstrated that there was a specific oxidative modification of cysteine residues Cys-12beta and Cys-354beta to form S-allylmercaptocysteine with a peptide mass increase of 72.1 Da. The potent antitumor activity of DATS was also demonstrated in nude mice bearing HCT-15 xenografts. This is the first paper describing intracellular target molecules directly modified by garlic components.
Collapse
Affiliation(s)
- Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
423
|
Barthel A, Klotz LO. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem 2005; 386:207-16. [PMID: 15843166 DOI: 10.1515/bc.2005.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress is linked to the pathogenesis and pathobiochemistry of various diseases, including cancer, diabetes and cardiovascular disorders. The non-specific damaging effect of reactive oxygen species (ROS) generated during oxidative stress is involved in the development of diseases, as well as the activation of specific signaling cascades in cells exposed to the higher oxidant load. A cellular signaling cascade that is activated by several types of reactive oxygen species is the phosphoinositide 3'-kinase (PI 3-kinase)/protein kinase B (PKB) pathway, which regulates cellular survival and fuel metabolism, thus establishing a link between oxidative stress and signaling in neoplastic, metabolic or degenerative diseases. Several links of PI 3-kinase/PKB signaling to ROS are discussed in this review, with particular focus on the molecular mechanisms involved in the regulation of PI 3-kinase signaling by oxidative stress and important players such as (i) the glutathione and glutaredoxin system, (ii) the thioredoxin system and (iii) Ser/Thr- and Tyr phosphatases.
Collapse
Affiliation(s)
- Andreas Barthel
- Abteilung für Endokrinologie, Diabetologie und Rheumatologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
424
|
Asmis R, Wang Y, Xu L, Kisgati M, Begley JG, Mieyal JJ. A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J 2005; 19:1866-8. [PMID: 16160061 DOI: 10.1096/fj.04-2991fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adriamycin is a widely used antitumor antibiotic, but its use has been limited by its cytotoxicity in both cardiomyocytes and non-cardiac tissues. While adriamycin's ability to redox cycle via one-electron transfer reactions and generate ROS is thought to promote cardiotoxicity, the mechanisms involved in non-cardiac tissue injury are not clear. Here we show that prolonged exposure (48 h) of human monocyte-derived macrophages to adriamycin at concentrations as low as 1 microM promotes caspase-independent cell death. Treatment of cells with scavengers of superoxide and peroxyl radicals blocked adriamycin-induced oxidation of dichlorodihydrofluorescein (DCFH) but did not prevent macrophage injury. Macrophages treated with either adriamycin or the thiol oxidant diamide showed elevated levels of glutathione disulfide and increased protein-S-glutathionylation prior to cell injury, indicating that thiol oxidation is involved in adriamycin-induced macrophage death. Furthermore, inhibition of glutathione reductase (GR) with 1,3-bis[2-chloroethyl]-1-nitrosourea or transfection of macrophages with small inhibitory RNA (siRNA) directed against GR or glutaredoxin (Grx) potentiated adriamycin-induced macrophage injury. Thus, both GR and Grx appear to play a crucial role in protecting macrophages from adriamycin-induced cell injury. These findings suggest a new mechanism for adriamycin-induced tissue injury whereby thiol oxidation, rather than one-electron redox cycling and ROS generation, mediates adriamycin-induced cell damage.
Collapse
Affiliation(s)
- Reto Asmis
- Division of Cardiovascular Medicine and Graduate Center for Nutritional Sciences, University of Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
425
|
Zhang HS, Xiao JH, Cao EH, Qin JF. Homocysteine inhibits store-mediated calcium entry in human endothelial cells: evidence for involvement of membrane potential and actin cytoskeleton. Mol Cell Biochem 2005; 269:37-47. [PMID: 15786715 DOI: 10.1007/s11010-005-3168-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of homocysteine for store-operated calcium influx was investigated in human umbilical cord endothelial cell line. Homocysteine significantly decreased thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization. GSH and DTT prevented homocysteine-induced inhibition of thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; while GSSG had the opposite effect. Homocysteine blocked large conductance Ca2+-activated K+ (BK(Ca)) channels in a concentration-dependent manner and related to the redox status of the endothelial cells. BK(Ca) channels opener NS1619 reversed thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; BK(Ca) channels inhibitor iberiotoxin had the opposite effect. The findings suggest that homocysteine is involved in store-regulated Ca2+ entry through membrane potential-dependent and actin cytoskeleton-dependent mechanisms, redox status of homocysteine and BK(Ca) channels may play a regulatory role in it.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- Center for System Biology, Institute of Biophysics, Acadenia Sinica, Chaoyang District, Beijing, PR China
| | | | | | | |
Collapse
|
426
|
Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrhart J. Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 2005; 7:1117-39. [PMID: 16115016 DOI: 10.1089/ars.2005.7.1117] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the etiology for many neurodegenerative diseases is unknown, the common findings of mitochondrial defects and oxidative damage posit these events as contributing factors. The temporal conundrum of whether mitochondrial defects lead to enhanced reactive oxygen species generation, or conversely, if oxidative stress is the underlying cause of the mitochondrial defects remains enigmatic. This review focuses on evidence to show that either event can lead to the evolution of the other with subsequent neuronal cell loss. Glutathione is a major antioxidant system used by cells and mitochondria for protection and is altered in a number of neurodegenerative and neuropathological conditions. This review also addresses the multiple roles for glutathione during mitochondrial inhibition or oxidative stress. Protein aggregation and inclusions are hallmarks of a number of neurodegenerative diseases. Recent evidence that links protein aggregation to oxidative stress and mitochondrial dysfunction will also be examined. Lastly, current therapies that target mitochondrial dysfunction or oxidative stress are discussed.
Collapse
Affiliation(s)
- G D Zeevalk
- Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
427
|
Rebrin I, Zicker S, Wedekind KJ, Paetau-Robinson I, Packer L, Sohal RS. Effect of antioxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouse. Free Radic Biol Med 2005; 39:549-57. [PMID: 16043026 PMCID: PMC2837083 DOI: 10.1016/j.freeradbiomed.2005.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/17/2005] [Accepted: 04/09/2005] [Indexed: 01/22/2023]
Abstract
The main purpose of this study was to investigate whether consumption of diets enriched in antioxidants attenuates the level of oxidative stress in the senescence-accelerated mouse (SAM). In separate and independent studies, two different dietary mixtures, one enriched with vitamin E, vitamin C, L-carnitine, and lipoic acid (Diet I) and another diet including vitamins E and C and 13 additional ingredients containing micronutrients with bioflavonoids, polyphenols, and carotenoids (Diet II), were fed for 8 and 10 months, respectively. The amounts of glutathione (GSH) and glutathione disulfides (GSSG) and GSH:GSSG ratios were determined in plasma, tissue homogenates, and mitochondria isolated from five different tissues of SAM (P8) mice. Both diets had a reductive effect in plasma; however Diet I had relatively little effect on the glutathione redox status in tissue homogenates or mitochondria. Remarkably, Diet II caused a large increase in the amount of glutathione and a marked reductive shift in glutathione redox state in mitochondria. Overall, the effects of Diet II were tissue and gender specific. Results indicated that the glutathione redox state in mitochondria and tissues can be altered by supplemental intake of a relatively complex mixture of dietary antioxidants that contains substances known to induce phase 2 enzymes, glutathione, and antioxidant defenses. Whether corresponding attenuations occur in age-associated deleterious changes in physiological functions or life span remains unknown.
Collapse
Affiliation(s)
- Igor Rebrin
- Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | - Lester Packer
- Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Rajindar S. Sohal
- Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
- Corresponding author. Fax: +1 323 442 2038. (R.S. Sohal)
| |
Collapse
|
428
|
Dixon DP, Skipsey M, Grundy NM, Edwards R. Stress-induced protein S-glutathionylation in Arabidopsis. PLANT PHYSIOLOGY 2005; 138:2233-44. [PMID: 16055689 PMCID: PMC1183410 DOI: 10.1104/pp.104.058917] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/23/2005] [Accepted: 05/03/2005] [Indexed: 05/03/2023]
Abstract
S-Glutathionylation (thiolation) is a ubiquitous redox-sensitive and reversible modification of protein cysteinyl residues that can directly regulate their activity. While well established in animals, little is known about the formation and function of these mixed disulfides in plants. After labeling the intracellular glutathione pool with [35S]cysteine, suspension cultures of Arabidopsis (Arabidopsis thaliana ecotype Columbia) were shown to undergo a large increase in protein thiolation following treatment with the oxidant tert-butylhydroperoxide. To identify proteins undergoing thiolation, a combination of in vivo and in vitro labeling methods utilizing biotinylated, oxidized glutathione (GSSG-biotin) was developed to isolate Arabidopsis proteins/protein complexes that can be reversibly glutathionylated. Following two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry proteomics, a total of 79 polypeptides were identified, representing a mixture of proteins that underwent direct thiolation as well as proteins complexed with thiolated polypeptides. The mechanism of thiolation of five proteins, dehydroascorbate reductase (AtDHAR1), zeta-class glutathione transferase (AtGSTZ1), nitrilase (AtNit1), alcohol dehydrogenase (AtADH1), and methionine synthase (AtMetS), was studied using the respective purified recombinant proteins. AtDHAR1, AtGSTZ1, and to a lesser degree AtNit1 underwent spontaneous thiolation with GSSG-biotin through modification of active-site cysteines. The thiolation of AtADH1 and AtMetS required the presence of unidentified Arabidopsis proteins, with this activity being inhibited by S-modifying agents. The potential role of thiolation in regulating metabolism in Arabidopsis is discussed and compared with other known redox regulatory systems operating in plants.
Collapse
Affiliation(s)
- David P Dixon
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | |
Collapse
|
429
|
Cornejo P, Varela P, Videla LA, Fernández V. Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide 2005; 13:54-61. [PMID: 15927492 DOI: 10.1016/j.niox.2005.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/12/2005] [Accepted: 04/20/2005] [Indexed: 11/15/2022]
Abstract
Iron is an essential micronutrient promoting oxidative stress in the liver of overloaded animals and human, which may trigger the expression of redox-sensitive genes. We have tested the hypothesis that chronic iron overload (CIO) enhances inducible nitric oxide synthase (iNOS) expression in rat liver by extracellular signal-regulated kinase (ERK1/2) and NF-kappaB activation. CIO (diet enriched with 3%(wt/wt) carbonyl-iron for 12 weeks) increased liver protein carbonylation and decreased reduced glutathione (GSH) content and the GSH/GSSG ratio after 6 weeks, parameters that are normalized after 8-12 weeks of treatment. These changes are paralleled by higher phosphorylated-ERK1/2 to non-phosphorylated-ERK1/2 ratios at 6 and 8 weeks, increased NF-kappaB DNA binding to the iNOS gene promoter at 8-12 weeks, and higher iNOS mRNA expression and activity at 8 and 12 weeks. It is concluded that CIO triggers liver oxidative stress at early times, with upregulation of iNOS expression involving the ERK/NF-kappaB pathway at later times, a finding that may represent a hepatoprotective mechanism against CIO toxicity in addition to the recovery of GSH homeostasis.
Collapse
Affiliation(s)
- Pamela Cornejo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | | | | | | |
Collapse
|
430
|
Goch G, Vdovenko S, Kozłowska H, Bierzyñski A. Affinity of S100A1 protein for calcium increases dramatically upon glutathionylation. FEBS J 2005; 272:2557-65. [PMID: 15885104 DOI: 10.1111/j.1742-4658.2005.04680.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100A1 is a typical representative of a group of EF-hand calcium-binding proteins known as the S100 family. The protein is composed of two alpha subunits, each containing two calcium-binding loops (N and C). At physiological pH (7.2) and NaCl concentration (100 mm), we determined the microscopic binding constants of calcium to S100A1 by analysing the Ca(2+)-titration curves of Trp90 fluorescence for both the native protein and its Glu32 --> Gln mutant with an inactive N-loop. Using a chelator method, we also determined the calcium-binding constant for the S100A1 Glu73 --> Gln mutant with an inactive C-loop. The protein binds four calcium ions in a noncooperative way with binding constants of K(1) =4 +/- 2 x 10(3) m(-1) (C-loops) and K(2) approximately 10(2) m(-1) (N-loops). Only when both loops are saturated with calcium does the protein change its global conformation, exposing to the solvent hydrophobic patches, which can be detected by 2-p-toluidinylnaphthalene-6-sulfonic acid - a fluorescent probe of protein-surface hydrophobicity. S-Glutathionylation of the single cysteine residue (85) of the alpha subunits leads to a 10-fold increase in the affinity of the protein C-loops for calcium and an enormous - four orders of magnitude - increase in the calcium-binding constants of its N-loops, owing to a cooperativity effect corresponding to DeltaDeltaG = -6 +/- 1 kcal.mol(-1). A similar effect is observed upon formation of the mixed disulfide with cysteine and 2-mercaptoethanol. The glutathionylated protein binds TRTK-12 peptide in a calcium-dependent manner. S100A1 protein can act, therefore, as a linker between the calcium and redox signalling pathways.
Collapse
Affiliation(s)
- Grazyna Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | | | | | | |
Collapse
|
431
|
Foley TD, Kintner ME. Brain PP2A is modified by thiol-disulfide exchange and intermolecular disulfide formation. Biochem Biophys Res Commun 2005; 330:1224-9. [PMID: 15823574 DOI: 10.1016/j.bbrc.2005.03.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Indexed: 11/26/2022]
Abstract
The regulation of protein phosphatase 2A (PP2A) activity by thiol-disulfide exchange and resulting formation of an intermolecular disulfide was examined following exposure of a rat brain soluble fraction to a biotinylated derivative of the model disulfide HPDP (HPDP-biotin) which would be expected to label reactive protein thiols with a disulfide-linked biotin. The results show that a low concentration (500 microM) of HPDP-biotin produced substantial inhibition of PP2A activity and promoted the binding of the catalytic subunit of PP2A to an immobilized avidin-affinity column. Both the inhibition of PP2A activity and the binding of PP2A to the avidin column were reversed by treatment with the disulfide reducing agent dithiothreitol (DTT). Furthermore, the specific activity of PP2A was up to 7-fold higher in the DTT-eluted fractions from the avidin-affinity column than in the soluble fraction. These findings demonstrate directly that PP2A is susceptible to reversible inhibitory modification by thiol-disulfide exchange and provide mechanistic support for the emerging view that PP2A is an oxidant-sensitive protein phosphatase.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry, University of Scranton, Scranton, PA 18510, USA.
| | | |
Collapse
|
432
|
Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, Murphy MP. Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 2005; 7:999-1010. [PMID: 15998254 DOI: 10.1089/ars.2005.7.999] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many proteins contain free thiols that can be modified by the reversible formation of mixed disulfides with low-molecular-weight thiols through a process called S-thiolation. As the majority of these modifications result from the interaction of protein thiols with the endogenous glutathione pool, protein glutathionylation is the predominant alteration. Protein glutathionylation is of significance both for defense against oxidative damage and in redox signaling. As mitochondria are at the heart of both oxidative damage and redox signaling within the cell, the glutathionylation of mitochondrial proteins is of particular importance. Here we review the mechanisms and physiological significance of the glutathionylation of mitochondrial thiol proteins.
Collapse
|
433
|
Sadidi M, Geddes TJ, Kuhn DM. S-thiolation of tyrosine hydroxylase by reactive nitrogen species in the presence of cysteine or glutathione. Antioxid Redox Signal 2005; 7:863-9. [PMID: 15998241 DOI: 10.1089/ars.2005.7.863] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine. Peroxynitrite (ONOO-) and nitrogen dioxide (NO2) inhibit TH catalytic function and cause nitration of protein tyrosine residues. Exposure of TH to either ONOO- or NO2 in the presence of cysteine (or glutathione) prevents tyrosine nitration and results in S-thiolation instead. TH catalytic activity is suppressed by S-thiolation. Dithiothreitol prevents and reverses the modification of TH by S-thiolation, and returns enzyme activity to control levels. S-Nitrosothiols, which are known to S-thiolate proteins, can be formed in the reaction of cysteine or glutathione with reactive nitrogen species. Therefore, S-nitrosoglutathione (GSNO) was tested for its ability to modify TH. Fresh solutions of GSNO did not modify TH, whereas decomposed GSNO resulted in extensive S-thiolation of the protein. Dimedone, a sulfenic acid trap, prevents S-thiolation of TH when included with GSNO during its decomposition. Taken together, these results show that TH is S-thiolated by ONOO- or NO2 in the presence of cysteine. S-Thiolation occurs at the expense of tyrosine nitration. Glutathione disulfide S-oxide, which forms spontaneously in the decomposition of GSNO and which is found in tissue undergoing oxidative stress, may be the species that S-thiolates TH.
Collapse
Affiliation(s)
- Mahdieh Sadidi
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
434
|
McDonagh B, Tyther R, Sheehan D. Carbonylation and glutathionylation of proteins in the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: Actin as a target for oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 73:315-26. [PMID: 15869813 DOI: 10.1016/j.aquatox.2005.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/24/2005] [Accepted: 03/29/2005] [Indexed: 05/02/2023]
Abstract
Protein expression profiles (PEPs) were generated by two-dimensional electrophoresis (2-D SDS-PAGE) for gill and digestive glands of Mytilus edulis sampled from a polluted and reference site in Cork Harbour, Ireland. Similar patterns and expression levels were found for both sites in silver stained gels. However, Western blotting for carbonylated proteins demonstrated higher levels of specific carbonylation of proteins in tissues from animals in the polluted site. Animals from the reference site were acclimated in holding tanks, exposed to 1 mM H2O2 for 24 h, dissected and analysed by 2-D SDS-PAGE. Again, generally similar PEPs were found in control and exposed animals for gill and digestive gland but carbonylation was more pronounced in polluted and exposed animals. Western blotting of extracts after one-dimensional electrophoresis with antibodies to glutathione and actin revealed that gill proteins are glutathionylated more strongly than digestive gland and that this process is more pronounced in polluted animals than in controls. We conclude that carbonylation and glutathionylation can occur in gill and digestive gland in response to oxidative stress in M. edulis. Actin is a major target for both glutathionylation and carbonylation under oxidative stress conditions.
Collapse
Affiliation(s)
- Brian McDonagh
- Proteomics Research Group, Department of Biochemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
435
|
Churchill EN, Szweda LI. Translocation of δPKC to mitochondria during cardiac reperfusion enhances superoxide anion production and induces loss in mitochondrial function. Arch Biochem Biophys 2005; 439:194-9. [PMID: 15963450 DOI: 10.1016/j.abb.2005.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
Activation of the delta-isoform of protein kinase C (deltaPKC) by certain conditions of oxidative stress results in translocation of the kinase to the mitochondria leading to release of cytochrome c and the induction of apoptosis. In the current study, the effects of myocardial reperfusion-induced deltaPKC translocation on mitochondrial function were assessed. Mitochondria isolated from hearts that had undergone ischemia (30 min) followed by reperfusion (15 min) exhibited a significant increase in the rate of superoxide anion (O(2)(-)) generation. This was associated with the translocation of deltaPKC to the mitochondria within the first 5 min of reperfusion. deltaPKC translocation occurred exclusively during reperfusion and could be mimicked by infusion of intact hearts with H(2)O(2) suggesting redox-dependent activation during reperfusion. Infusion of a peptide inhibitor (deltaV(1-1)) specific to the delta-isoform of PKC significantly reduced reperfusion-induced increases in mitochondrial O(2)(-) generation. Finally, the decline in mitochondrial respiratory activity evident upon prolonged reperfusion (120min) was completely prevented by inhibition of deltaPKC translocation. Thus, deltaPKC represents a cytosolic redox-sensitive molecule that plays an important role in amplification of O(2)(-) production and subsequent declines in mitochondrial function during reperfusion.
Collapse
Affiliation(s)
- Eric N Churchill
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4907, USA
| | | |
Collapse
|
436
|
Corti A, Paolicchi A, Franzini M, Dominici S, Casini AF, Pompella A. The S-thiolating activity of membrane gamma-glutamyltransferase: formation of cysteinyl-glycine mixed disulfides with cellular proteins and in the cell microenvironment. Antioxid Redox Signal 2005; 7:911-8. [PMID: 15998246 DOI: 10.1089/ars.2005.7.911] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have documented that activity of the plasma membrane enzyme gamma-glutamyltransferase (GGT) is accompanied by prooxidant processes, with production of reactive oxygen species and oxidation of cellular protein thiols. The present work was aimed to verify the occurrence and extent of S-thiolation mediated by GGT and characterize the molecular species involved in mixed disulfide formation. Experiments show that the cysteinyl-glycine (CG) originating from cellular GGT-mediated glutathione (GSH) metabolism can efficiently thiolate cellular proteins, as well as proteins present in the extracellular environment. With cells presenting high levels of GGT expression, basal levels of CG-containing protein mixed disulfides are detectable, in cellular proteins, as well as in proteins of the culture medium. Stimulation of GGT activity in these cells by administration of substrates results in an increase of CG mixed disulfide formation and a concomitant decrease of GSH-containing disulfides, likely due to GGT-dependent removal of GSH from the system. The findings reported suggest that binding of CG ("protein S-cysteylglycylation") may represent an as yet unrecognized function of membrane GGT, likely playing a regulatory role(s) in the cell and its surroundings.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Experimental Pathology BMIE, University of Pisa Medical School, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
437
|
Giustarini D, Milzani A, Aldini G, Carini M, Rossi R, Dalle-Donne I. S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione. Antioxid Redox Signal 2005; 7:930-9. [PMID: 15998248 DOI: 10.1089/ars.2005.7.930] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
S-Nitrosation of protein sulfhydryl groups is an established response to oxidative/nitrosative stress. The transient nature and reversibility of S-nitrosation, as well as its specificity, render this posttranslational modification an attractive mechanism of regulation of protein function and signal transduction, in analogy to S-glutathionylation. Several feasible mechanisms for protein S-nitrosation have been proposed, including transnitrosation by S-nitrosothiols, such as S-nitrosoglutathione (GSNO), where the nitrosonium moiety is directly transferred from one thiol to another. The reaction between GSNO and protein sulfhydryls can also produce a mixed disulfide by S-glutathionylation, which involves the nucleophilic attack of the sulfur of GSNO by the protein thiolate anion. In this study, we have investigated the possible occurrence of S-glutathionylation during reaction of GSNO with papain, creatine phosphokinase, glyceraldehyde-3-phosphate dehydrogenase, alcohol dehydrogenase, bovine serum albumin, and actin. Our results show that papain, creatine phosphokinase, and glyceraldehyde-3-phosphate dehydrogenase were significantly both S-nitrosated and S-glutathionylated by GSNO, whereas alcohol dehydrogenase, bovine serum albumin, and actin appeared nearly only S-nitrosated. The susceptibility of the modified proteins to denitrosation and deglutathionylation by reduced glutathione was also investigated.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
438
|
Di Simplicio P, Frosali S, Priora R, Summa D, Cherubini Di Simplicio F, Di Giuseppe D, Di Stefano A. Biochemical and biological aspects of protein thiolation in cells and plasma. Antioxid Redox Signal 2005; 7:951-63. [PMID: 15998250 DOI: 10.1089/ars.2005.7.951] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein thiolation is elicited by oxidation by different mechanisms and is involved in a variety of biological processes. Thiols, protein SH (PSH) and non-protein SH groups (NPSH, namely GSH), are in competition in all biological environments in the regulation of oxidant homeostasis because oxidants thiolate proteins, whereas GSH dethiolates them (e.g., GSSG + PSH --> GSSP + GSH). Although poorly investigated, the elimination of disulfides from thiolated proteins to regenerate critical PSH is important. These aspects are poorly known in cells, where glutaredoxin and peroxiredoxin operate as enzymes or potential chaperones to accelerate dethiolation. On the contrary, studies with plasma or albumin have highlighted the importance of protein conformation in dethiolation processes and have clarified the reason why homocysteine (thiol with potential toxicity) is preferentially bound to albumin as protein-thiol mixed disulfide with respect to other NPSH. Here we provide an overview of protein thiolation/dethiolation processes, with an emphasis on recent developments and future perspectives in this field.
Collapse
Affiliation(s)
- Paolo Di Simplicio
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
439
|
Tiribelli C, Ostrow JD. The molecular basis of bilirubin encephalopathy and toxicity: report of an EASL Single Topic Conference, Trieste, Italy, 1-2 October, 2004. J Hepatol 2005; 43:156-166. [PMID: 15921815 DOI: 10.1016/j.jhep.2005.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Claudio Tiribelli
- Centro Studi Fegato, Bldg. Q, AREA Science Park, Basovizza and Department of BBCM, University of Trieste, 34012 Trieste, Italy.
| | | |
Collapse
|
440
|
Dal Monte M, Del Corso A, Moschini R, Cappiello M, Amodeo P, Mura U. Zofenoprilat-glutathione mixed disulfide as a specific S-thiolating agent of bovine lens aldose reductase. Antioxid Redox Signal 2005; 7:841-8. [PMID: 15998238 DOI: 10.1089/ars.2005.7.841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ability of Zofenoprilat, an angiotensin-converting enzyme inhibitor carrying a thiol group, to intervene in protein S-thiolation processes was tested on bovine lens aldose reductase (ALR2). Zofenoprilat, more susceptible to oxidation than glutathione (GSH), forms with this physiological thiol a rather stable mixed disulfide (ZSSG). ZSSG, whose generation through the transthiolation reaction between GSH and Zofenoprilat homodisulfide was shown to be enhanced by a micro-class glutathione S-transferase, appears to be a specific donor of the Zofenoprilat moiety in the S-thiolation processes. This is indicated by the apparent stability of ZSSG to reduction by GSH and by the specificity of the transfer of the group on ALR2, used as a protein model. Indeed, the S-thiolation of ALR2 by ZSSG occurred exclusively through the insertion of the Zofenoprilat moiety of ZSSG on the enzyme. The modified ALR2 is shown to retain the same activity of the native enzyme, but displays a reduced sensitivity to inhibition. The S-thiolation of specific target enzymes is proposed as an event potentially relevant for the antioxidant action of Zofenoprilat.
Collapse
Affiliation(s)
- Massimo Dal Monte
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
441
|
Churchill EN, Murriel CL, Chen CH, Mochly-Rosen D, Szweda LI. Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res 2005; 97:78-85. [PMID: 15961716 DOI: 10.1161/01.res.0000173896.32522.6e] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac ischemia and reperfusion are associated with loss in the activity of the mitochondrial enzyme pyruvate dehydrogenase (PDH). Pharmacological stimulation of PDH activity improves recovery in contractile function during reperfusion. Signaling mechanisms that control inhibition and reactivation of PDH during reperfusion were therefore investigated. Using an isolated rat heart model, we observed ischemia-induced PDH inhibition with only partial recovery evident on reperfusion. Translocation of the redox-sensitive delta-isoform of protein kinase C (PKC) to the mitochondria occurred during reperfusion. Inhibition of this process resulted in full recovery of PDH activity. Infusion of the deltaPKC activator H2O2 during normoxic perfusion, to mimic one aspect of cardiac reperfusion, resulted in loss in PDH activity that was largely attributable to translocation of deltaPKC to the mitochondria. Evidence indicates that reperfusion-induced translocation of deltaPKC is associated with phosphorylation of the alphaE1 subunit of PDH. A potential mechanism is provided by in vitro data demonstrating that deltaPKC specifically interacts with and phosphorylates pyruvate dehydrogenase kinase (PDK)2. Importantly, this results in activation of PDK2, an enzyme capable of phosphorylating and inhibiting PDH. Thus, translocation of deltaPKC to the mitochondria during reperfusion likely results in activation of PDK2 and phosphorylation-dependent inhibition of PDH.
Collapse
Affiliation(s)
- Eric N Churchill
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
442
|
Dixon DP, Fordham-Skelton AP, Edwards R. Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 2005; 44:7696-703. [PMID: 15909984 DOI: 10.1021/bi047324a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant protein tyrosine phosphatases (PTPs) are important in regulating cellular responses to redox change through their reversible inactivation under oxidative conditions. Studies on the soybean (Glycine max) GmPTP have shown that, compared with its mammalian counterparts, the plant enzyme is relatively insensitive to inactivation by H2O2 but hypersensitive (k(inact) = 559 M(-1) s(-1)) to S-glutathionylation (thiolation) promoted by the presence of oxidized glutathione (GSSG). Through a combination of chemical and mutational modification studies, three of the seven cysteine residues of GmPTP have been identified by mass spectrometry as being able to inactivate the enzyme when thiolated by GSSG or alkylated with iodoacetamide. Conserved Cys 266 was shown to be essential for catalysis but surprisingly resistant to S-modification, whereas the regulatory Cys 78 and Cys 176 were readily thiolated and/or alkylated. Mutagenesis of these cysteines showed that all three residues were in proximity of each other, regulating each's reactivity to S-modifying agents. Through a combination of protein modification and kinetic experiments, we conclude that the inactivation of GmPTP by GSSG is regulated at two levels. Cys 176 appears to be required to promote the formation of the reduced form of Cys 266, which is otherwise unreactive. When thiolated, Cys 176 immediately inactivates the enzyme, and this is followed by the thiolation of Cys 78, which undergoes a slow disulfide exchange with Cys 266 giving rise to a Cys 78-Cys 266 disulfide. We speculate that this two-tiered protection is required for regulation of GmPTP under highly oxidizing conditions.
Collapse
Affiliation(s)
- David P Dixon
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | |
Collapse
|
443
|
Philipp E, Brey T, Pörtner HO, Abele D. Chronological and physiological ageing in a polar and a temperate mud clam. Mech Ageing Dev 2005; 126:598-609. [PMID: 15811429 DOI: 10.1016/j.mad.2004.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/03/2004] [Accepted: 12/15/2004] [Indexed: 11/19/2022]
Abstract
We investigated chronological and physiological ageing of two mud clams with regard to the "rate of living theory" (Pearl, 1928) and the "free radical theory of ageing" (Harman, 1956). The Antarctic Laternula elliptica (Pholadomyoida) and the temperate Mya arenaria (Myoida) represent the same ecotype (benthic infaunal filter feeders), but differ in maximum life span, 36 and 13 years, respectively. L. elliptica has a two-fold lower standard metabolic rate than M. arenaria, but its life long energy turnover at maximal age is three times higher. When comparing the two species within the lifetime window of M. arenaria, antioxidant capacities (glutathione, catalase) are higher and tissue oxidation (ratio of oxidised to reduced glutathione, lipofuscin accumulation) is lower in the polar L. elliptica than in the temperate mud clam. Tissue redox state in L. elliptica remained stable throughout all ages, whereas it increased dramatically in aged M. arenaria. Our results indicate that metabolic rates and maintenance of tissue redox state are major factors determining maximum lifespan in the investigated mud clams.
Collapse
Affiliation(s)
- Eva Philipp
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Okophysiologie, Postfach 120161, D-27568 Bremerhaven, Germany
| | | | | | | |
Collapse
|
444
|
Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res Rev 2005; 4:288-314. [PMID: 15936251 DOI: 10.1016/j.arr.2005.02.005] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 02/22/2005] [Indexed: 12/29/2022]
Abstract
Glutathione plays a critical role in many biological processes both directly as a co-factor in enzymatic reactions and indirectly as the major thiol-disulfide redox buffer in mammalian cells. Glutathione also provides a critical defense system for the protection of cells from many forms of stress. However, mild stress generally increases glutathione levels, often but not exclusively through effects on glutamate cysteine ligase, the rate-limiting enzyme for glutathione biosynthesis. This upregulation in glutathione provides protection from more severe stress and may be a critical feature of preconditioning and tolerance. In contrast, during aging, glutathione levels appear to decline in a number of tissues, thereby putting cells at increased risk of succumbing to stress. The evidence for such a decline is strongest in the brain where glutathione loss is implicated in both Parkinson's disease and in neuronal injury following stroke.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
445
|
Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 2005; 3:1228-33. [PMID: 15595732 DOI: 10.1021/pr049887e] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An approach is described for the simultaneous identification and quantitation of oxidant-sensitive cysteine thiols in a complex protein mixture using a thiol-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, USA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. Applying this approach, we have identified cysteine thiols of proteins in a rabbit heart membrane fraction that are sensitive to a high concentration of hydrogen peroxide. Previously known and some novel proteins with oxidant-sensitive cysteines were identified. Of the many protein thiols labeled by the ICAT, only relatively few were oxidized more than 50% despite the high concentration of oxidant used, indicating that oxidant-sensitive thiols are relatively rare, and denoting their specificity and potential functional relevance.
Collapse
Affiliation(s)
- Mahadevan Sethuraman
- Vascular Biology Unit, Cardiovascular Proteomics Center, and Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
446
|
Väänänen AJ, Kankuri E, Rauhala P. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain. Free Radic Biol Med 2005; 38:1102-11. [PMID: 15780768 DOI: 10.1016/j.freeradbiomed.2005.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 10/04/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.
Collapse
Affiliation(s)
- Antti J Väänänen
- Institute of Biomedicine (Pharmacology), Biomedicum Helsinki, P.O. Box 63, University of Helsinki 00014, Finland
| | | | | |
Collapse
|
447
|
Cheng G, Ikeda Y, Iuchi Y, Fujii J. Detection of S-glutathionylated proteins by glutathione S-transferase overlay. Arch Biochem Biophys 2005; 435:42-9. [PMID: 15680905 DOI: 10.1016/j.abb.2004.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/25/2004] [Indexed: 11/25/2022]
Abstract
Oxidative and nitrosative stress lead to the S-glutathionylation of proteins and subsequent functional impairment. Glutathione S-transferase (GST) from Schistosoma japonicum was found to bind to the glutathione moiety of S-glutathionylated proteins, thus establishing a convenient method for detecting S-glutathionylated proteins by biotinylated GST. Applications of this method to proteins that were prepared from cultured cells and blotted onto a membrane exhibited numerous positive bands, which were abolished by treatment with dithiothreitol. Treatment of a cellular extract with nitrosoglutathione led to enhanced staining of the bands in a dose-dependent manner. The method was also applicable for the histochemical detection of S-glutathionylated proteins in situ. The positive staining by biotin-GST became faint in the presence of S-glutathionylated ovalbumin, suggesting that the reaction is specific to S-glutathionylated proteins. Collectively, these data indicate that the method established here is simple and useful for detecting S-glutathionylated proteins on blotted membrane and in situ.
Collapse
Affiliation(s)
- Guang Cheng
- Department of Biomolecular Function, Yamagata University Graduate School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | | | | | | |
Collapse
|
448
|
|
449
|
|
450
|
Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A, Madrazo I, Franco-Bourland RE. Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience 2005; 130:639-49. [PMID: 15590148 DOI: 10.1016/j.neuroscience.2004.09.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2004] [Indexed: 12/25/2022]
Abstract
Secondary damage after spinal cord (SC) injury remains without a clinically effective drug treatment. To explore the neuroprotective effects of cell-permeable reduced glutathione monoethyl ester (GSHE), rats subjected to SC contusion using the New York University impactor were randomly assigned to receive intraperitoneally GSHE (total dose of 12 mg/kg), methylprednisolone sodium succinate (total dose of 120 mg/kg), or saline solution as vehicle. Motor function, assessed using the Basso-Beattie-Bresnahan scale for 8 weeks, was significantly better in GSHE (11.2+/-0.6, mean+/-S.E.M., n=8, at 8 weeks) than methylprednisolone (9.3+/-0.6) and vehicle (9.4+/-0.7) groups. The number of neurons in the red nuclei labeled with FluoroRuby placed caudally to the injury site was significantly higher in GSHE (158+/-9.3 mean+/-S.E.M., n=4) compared with methylprednisolone (53+/-14.7) and vehicle (46+/-16.4) groups. Differences in the amount of spared SC tissue at the epicenter and neighboring areas were not significant among experimental groups. In a second series of experiments, using similar treatment groups (n=6), regional changes in microvascular SC blood flow were evaluated for 100 min by laser-Doppler flowmetry after clip compression injury. SC blood flow fell in vehicle-treated rats 20% below baseline and increased significantly with methylprednisolone approximately 12% above baseline; changes were not greater than 5% in rats given GSHE. In conclusion, GSHE given to rats early after moderate SC contusion/compression improves functional outcome and red nuclei neuron survival significantly better than methylprednisolone and vehicle, and stabilizes SC blood flow. These results support further investigation of reduced glutathione supplementation after acute SC injury for future clinical application.
Collapse
Affiliation(s)
- G Guízar-Sahagún
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|