401
|
Wang J, Fang Z, Cheng W, Tsang PE, Zhao D. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1202-1210. [PMID: 27207497 DOI: 10.1007/s10646-016-1674-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
This paper was aimed to study the impact of "ageing" (aged in non-saturated soil for 2 and 4 weeks prior to exposure) nanoscale zero-valent iron (nZVI) on the terrestrial plant. The effects of nZVI on Oryza Sativa germination, seedlings growth, chlorophyll biosynthesis, oxidative stress and the activities of antioxidant enzymes at low (250 mg/kg) and high (1000 mg/kg) concentrations were investigated in this study. The results showed that neither the freshly added nor the "ageing" nZVI to the soil had a significant effect on germination, regardless of concentration. At the low concentration, the freshly added nZVI had no visible toxic effects on the rice seedlings growth, but the rice seedlings exhibited obvious toxic symptoms at the high concentration. At the high concentration, toxicity effects of nZVI were reduced after aging with 2 and 4 weeks in soils compared to fresh nZVI, but the "ageing" nZVI continued to significantly inhibit the rice seedlings growth compared with the control, and the inhibition rates of 2 and 4-week-old nZVI were not significantly different. The mechanism of ageing decreased the phytotoxicity of nZVI was due to nZVI particles incomplete oxidation, and some of which had remained in the soil after 4 weeks aged.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, China.
| | - Wen Cheng
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong, 00852, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
402
|
Tiwari A, Singh P, Asthana RK. Role of calcium in the mitigation of heat stress in the cyanobacterium Anabaena PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:67-75. [PMID: 27302007 DOI: 10.1016/j.jplph.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
The effects of exogenously added CaCl2 (0.25mM) on photopigments, photosynthetic O2-evolution, antioxidative enzyme activity, membrane damage, expression of two heat shock genes (groEL and groES) and apoptotic features in Anabaena 7120 under heat stress (45°C) for up to 24h were investigated. Heat stress lowered the level of photopigments; however, Ca2+--supplemented cultures showed a low level reduction in Chl a but induced accumulation of carotenoids and phycocyanin under heat stress. Photosynthetic O2-evolving capacity was maintained at a higher level in cells from Ca2+-supplemented medium. Among the antioxidative enzymes, superoxide dismutase activity was unaffected by the presence or absence of Ca2+ in contrast to increases in catalase, ascorbate peroxidase and glutathione reductase activities in cells grown in Ca2+-supplemented medium. Lower levels of lipid peroxidation were recorded in Anabaena cells grown in Ca2+-supplemented medium in comparison to cells from Ca2+--deprived medium. Target cells grown in Ca2+-deprived medium developed apoptotic features in the early stages of heat shock, while Ca2+ application seemed to interfere with apoptosis because only a few cells showed such features after 24 h of heat exposure, indicating a role for Ca2+ in maintaining cell viability under heat stress. There was also continuous up regulation of two important heat shock genes (groEL and groES) in Ca2+-supplemented cultures, exposed to heat shock, again indicating a role for Ca2+ in stress management.
Collapse
Affiliation(s)
- Anupam Tiwari
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
403
|
Ma X, Wang Q, Rossi L, Zhang W. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6793-802. [PMID: 26691446 DOI: 10.1021/acs.est.5b04111] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants.
Collapse
Affiliation(s)
- Xingmao Ma
- Zachry Department of Civil Engineering, Texas A&M University , 3136 TAMU, College Station, Texas 77843-3136, United States
| | - Qiang Wang
- Department of Civil and Environmental Engineering, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Lorenzo Rossi
- Zachry Department of Civil Engineering, Texas A&M University , 3136 TAMU, College Station, Texas 77843-3136, United States
| | - Weilan Zhang
- Zachry Department of Civil Engineering, Texas A&M University , 3136 TAMU, College Station, Texas 77843-3136, United States
| |
Collapse
|
404
|
Vidović M, Morina F, Milić-Komić S, Vuleta A, Zechmann B, Prokić L, Veljović Jovanović S. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:669-680. [PMID: 26712503 DOI: 10.1111/plb.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.
Collapse
Affiliation(s)
- M Vidović
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| | - F Morina
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| | - S Milić-Komić
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| | - A Vuleta
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - B Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Lj Prokić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - S Veljović Jovanović
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
405
|
Maruta T, Sawa Y, Shigeoka S, Ishikawa T. Diversity and Evolution of Ascorbate Peroxidase Functions in Chloroplasts: More Than Just a Classical Antioxidant Enzyme? PLANT & CELL PHYSIOLOGY 2016; 57:1377-1386. [PMID: 26738546 DOI: 10.1093/pcp/pcv203] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/15/2015] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) have dual functions in plant cells as cytotoxic molecules and emergency signals. The balance between the production and scavenging of these molecules in chloroplasts, major sites for the production of ROS, is one of the key determinants for plant acclimation to stress conditions. The water-water cycle is a crucial regulator of ROS levels in chloroplasts. In this cycle, the stromal and thylakoid membrane-attached isoforms of ascorbate peroxidase (sAPX and tAPX, respectively) are involved in the metabolism of H2O2 Current genome and phylogenetic analyses suggest that the first monofunctional APX was generated as sAPX in unicellular green algae, and that tAPX occurred in multicellular charophytes during plant evolution. Chloroplastic APXs, especially tAPX, have been considered to be the source of a bottleneck in the water-water cycle, at least in higher plants, because of their high susceptibility to H2O2 A number of studies have succeeded in improving plant stress resistance by reinforcing the fragile characteristics of the enzymes. However, researchers have unexpectedly failed to find a 'stress-sensitive phenotype' among loss-of-function mutants, at least in laboratory conditions. Interestingly, the susceptibility of enzymes to H2O2 may have been acquired during plant evolution, thereby allowing for the flexible use of H2O2 as a signaling molecule in plants, and this is supported by growing lines of evidence for the physiological significance of chloroplastic H2O2 as a retrograde signal in plant stress responses. By overviewing historical, biochemical, physiological and genetic studies, we herein discuss the diverse functions of chloroplastic APXs as antioxidant enzymes and signaling modulators.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
- T.M. currently holds an additional post at the Department of Plant Systems Biology, VIB/Ghent University (Technologiepark 927, 9052 Ghent, Belgium)
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
| |
Collapse
|
406
|
Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:219-227. [PMID: 27054705 DOI: 10.1016/j.ecoenv.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas from the Iberian Pyrite Belt. This species can have high concentrations of Zn in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown at several concentrations of Zn(2+) (0, 500, 1000, 1500, 2000µM) and the effects of this metal on plant development and on the defence mechanisms against oxidative stress were evaluated. Independently of the treatment, Zn was mainly retained in the roots. The plants with the highest concentrations of Zn showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production. At 2000µM of Zn, the dry biomass of the shoots decreased significantly. High concentrations of Zn in shoots did not induce deficiencies of other nutrients, except Cu. Plants with high concentrations of Zn had low amounts of chlorophyll, anthocyanins and glutathione and high contents of H2O2. The highest concentrations of Zn in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by triggering antioxidative enzyme activity and by direct reactive oxygen species (ROS) scavenging through carotenoids, that are unaffected by stress due to stabilisation by ascorbic acid.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Universidad de Vigo, Department of Plant Biology and Soil Science, Vigo, Spain.
| | - Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação em Ciências do Ambiente e Empresariais, Instituto Superior Dom Afonso III, Loulé, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
407
|
Orefice I, Chandrasekaran R, Smerilli A, Corato F, Caruso T, Casillo A, Corsaro MM, Piaz FD, Ruban AV, Brunet C. Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
408
|
Nagy V, Vidal-Meireles A, Tengölics R, Rákhely G, Garab G, Kovács L, Tóth SZ. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2016; 39:1460-72. [PMID: 26714836 DOI: 10.1111/pce.12701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/10/2023]
Abstract
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Roland Tengölics
- Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
409
|
Senn ME, Gergoff Grozeff GE, Alegre ML, Barrile F, De Tullio MC, Bartoli CG. Effect of mitochondrial ascorbic acid synthesis on photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:29-35. [PMID: 27010742 DOI: 10.1016/j.plaphy.2016.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 03/09/2016] [Indexed: 05/02/2023]
Abstract
Ascorbic acid (AA) is synthesized in plant mitochondria through the oxidation of l-galactono-1,4-lactone (l-GalL) and then distributed to different cell compartments. AA-deficient Arabidopsis thaliana mutants (vtc2) and exogenous applications of l-GalL were used to generate plants with different AA content in their leaves. This experimental approach allows determining specific AA-dependent effects on carbon metabolism. No differences in O2 uptake, malic and citric acid and NADH content suggest that AA synthesis or accumulation did not affect mitochondrial activity; however, l-GalL treatment increased CO2 assimilation and photosynthetic electron transport rate in vtc2 (but not wt) leaves demonstrating a stimulation of photosynthesis after l-GalL treatment. Increased CO2 assimilation correlated with increased leaf stomatal conductance observed in l-GalL-treated vtc2 plants.
Collapse
Affiliation(s)
- M E Senn
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - G E Gergoff Grozeff
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - M L Alegre
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - F Barrile
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - M C De Tullio
- Department of Earth and Environmental Sciences, Università degli Studi di Bari, Italy
| | - C G Bartoli
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, cc 327, 1900, La Plata, Argentina.
| |
Collapse
|
410
|
Johnson GN, Stepien P. Plastid Terminal Oxidase as a Route to Improving Plant Stress Tolerance: Known Knowns and Known Unknowns. PLANT & CELL PHYSIOLOGY 2016; 57:1387-1396. [PMID: 26936791 DOI: 10.1093/pcp/pcw042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/21/2016] [Indexed: 05/24/2023]
Abstract
A plastid-localized terminal oxidase, PTox, was first described due to its role in chloroplast development, with plants lacking PTox producing white sectors on their leaves. This phenotype is explained as being due to PTox playing a role in carotenoid biosynthesis, as a cofactor of phytoene desaturase. Co-occurrence of PTox with a chloroplast-localized NADPH dehydrogenase (NDH) has suggested the possibility of a functional respiratory pathway in plastids. Evidence has also been found that, in certain stress-tolerant plant species, PTox can act as an electron acceptor from PSII, making it a candidate for engineering stress-tolerant crops. However, attempts to induce such a pathway via overexpression of the PTox protein have failed to date. Here we review the current understanding of PTox function in higher plants and discuss possible barriers to inducing PTox activity to improve stress tolerance.
Collapse
Affiliation(s)
- Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Piotr Stepien
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wroclaw, Poland
| |
Collapse
|
411
|
Production of superoxide from photosystem II-light harvesting complex II supercomplex in STN8 kinase knock-out rice mutants under photoinhibitory illumination. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:240-247. [PMID: 27390892 DOI: 10.1016/j.jphotobiol.2016.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023]
Abstract
When phosphorylation of Photosystem (PS) II core proteins is blocked in STN8 knock-out mutants of rice (Oryza sativa) under photoinhibitory illumination, the mobilization of PSII supercomplex is prevented. We have previously proposed that more superoxide (O2(-)) is produced from PSII in the mutant (Nath et al., 2013, Plant J. 76, 675-686). Here, we clarify the type and site for the generation of reactive oxygen species (ROS). Using both histochemical and fluorescence probes, we observed that, compared with wild-type (WT) leaves, levels of ROS, including O2(-) and hydrogen peroxide (H2O2), were increased when leaves from mutant plants were illuminated with excess light. However, singlet oxygen production was not enhanced under such conditions. When superoxide dismutase was inhibited, O2(-) production was increased, indicating that it is the initial event prior to H2O2 production. In thylakoids isolated from WT leaves, kinase was active in the presence of ATP, and spectrophotometric analysis of nitrobluetetrazolium absorbance for O2(-) confirmed that PSII-driven superoxide production was greater in the mutant thylakoids than in the WT. This contrast in levels of PSII-driven superoxide production between the mutants and the WT plants was confirmed by conducting protein oxidation assays of PSII particles from osstn8 leaves under strong illumination. Those assays also demonstrated that PSII-LHCII supercomplex proteins were oxidized more in the mutant, thereby implying that PSII particles incur greater damage even though D1 degradation during PSII-supercomplex mobilization is partially blocked in the mutant. These results suggest that O2(-) is the major form of ROS produced in the mutant, and that the damaged PSII in the supercomplex is the primary source of O2(-).
Collapse
|
412
|
Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3831-44. [PMID: 26976816 DOI: 10.1093/jxb/erw080] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compartments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in association with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants.
Collapse
Affiliation(s)
- Lorin Mignolet-Spruyt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Enjun Xu
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, 00014 University of Helsinki, Finland
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, 00014 University of Helsinki, Finland
| | - Frank A Hoeberichts
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Per Mühlenbock
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Mikael Brosché
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, 00014 University of Helsinki, Finland
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, 00014 University of Helsinki, Finland Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
413
|
Nascimento-Gavioli MCA, Agapito-Tenfen SZ, Nodari RO, Welter LJ, Sanchez Mora FD, Saifert L, da Silva AL, Guerra MP. Proteome of Plasmopara viticola-infected Vitis vinifera provides insights into grapevine Rpv1/Rpv3 pyramided resistance to downy mildew. J Proteomics 2016; 151:264-274. [PMID: 27235723 DOI: 10.1016/j.jprot.2016.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 01/23/2023]
Abstract
Grapevine is one of the major fruit crops worldwide and requires phytochemical use due to susceptibility to numerous pests, including downy mildew. The pyramiding of previous identified QTL resistance regions allows selection of genotypes with combined resistance loci in order to build up sustainable resistance. This study investigates resistance response of pyramided plants containing Rpv1 and Rpv3 loci to Plasmopara viticola infection process. Phenotypic characterization showed complete resistance and lack of necrotic hypersensitive response spots. Principal Component Analysis revealed infected 96hpi (hours post-inoculation) samples with the most distant proteomes of the entire dataset, followed by the proteome of infected 48hpi samples. Quantitative and qualitative protein differences observed using 2-DE gels coupled to nanoHPLC-ESI-MS/MS analysis showed a lack of transient breakdown in defense responses (biphasic modulation) accompanying the onset of disease. Forty-one proteins were identified, which were mainly included into functional categories of redox and energy metabolism. l-ascorbate degradation pathway was the major altered pathway and suggests up-regulation of anti-oxidant metabolism in response to apoplastic oxidative burst after infection. Overall, these data provide new insights into molecular basis of this incompatible interaction and suggests several targets that could potentially be exploited to develop new protection strategies against this pathogen. BIOLOGICAL SIGNIFICANCE This study provide new insights into the molecular basis of incompatible interaction between Plasmopara viticola and pyramided Rpv1/Rpv3 grapevine and suggests several targets that could potentially be exploited to develop new protection strategies against this pathogen. This is the first proteomic characterization of resistant grapevine available in the literature and it presents contrasting proteomic profiles of that of susceptible plants. The resistance against downy mildew in grapevine has been a long sought and the availability of resistance loci is of major importance. This is the first molecular characterization of resistance provided by Rpv1 and Rpv3 genes.
Collapse
Affiliation(s)
| | | | - Rubens Onofre Nodari
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, Florianópolis 88034-000, Brazil.
| | - Leocir José Welter
- Agronomy Department, Federal University of Santa Catarina, Rod. Ulysses Gaboardi, Km 3, Curitibanos 89520-000, Brazil.
| | - Fernando David Sanchez Mora
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, Florianópolis 88034-000, Brazil.
| | - Luciano Saifert
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, Florianópolis 88034-000, Brazil.
| | - Aparecido Lima da Silva
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, Florianópolis 88034-000, Brazil.
| | - Miguel Pedro Guerra
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, Florianópolis 88034-000, Brazil.
| |
Collapse
|
414
|
Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway. Int J Mol Sci 2016; 17:ijms17050693. [PMID: 27187353 PMCID: PMC4881519 DOI: 10.3390/ijms17050693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022] Open
Abstract
Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRKY member, i.e., CmWRKY10 in chrysanthemum involved in drought tolerance. The transactivation assay showed that CmWRKY10 had transcriptional activity in yeast cells and subcellular localization demonstrated that it was localized in nucleus. Our previous study showed that CmWRKY10 could be induced by drought in chrysanthemum. Moreover, the overexpression of CmWRKY10 in transgenic chrysanthemum plants improved tolerance to drought stress compared to wild-type (WT). High expression of DREB1A, DREB2A, CuZnSOD, NCED3A, and NCED3B transcripts in overexpressed plants provided strong evidence that drought tolerance mechanism was associated with abscisic acid (ABA) pathway. In addition, lower accumulation of reactive oxygen species (ROS) and higher enzymatic activity of peroxidase, superoxide dismutase and catalase in CmWRKY10 overexpressed lines than that of WT demonstrates its role in drought tolerance. Together, these findings reveal that CmWRKY10 works as a positive regulator in drought stress by regulating stress-related genes.
Collapse
|
415
|
Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Ur Rehman Z, Zhu SJ. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8431-40. [PMID: 26782322 DOI: 10.1007/s11356-015-5959-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/10/2015] [Indexed: 05/24/2023]
Abstract
Plants face changes in leaves under lead (Pb) toxicity. Reduced glutathione (GSH) has several functions in plant metabolism, but its role in alleviating Pb toxicity in cotton leaves is still unknown. In the present study, cotton seedlings (28 days old) were exposed to 500 μM Pb and 50 μM GSH, both alone and in combination, for a period of 10 days, in the Hoagland solution under controlled growth conditions. Results revealed Pb-induced changes in cotton's leaf morphology, photosynthesis, and oxidative metabolism. However, exogenous application of GSH restored leaf growth. GSH triggered build up of chlorophyll a, chlorophyll b, and carotenoid contents and boosted fluorescence ratios (F v/F m and F v/F 0). Moreover, GSH reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2), and Pb contents in cotton leaves. Results further revealed that total soluble protein contents were decreased under Pb toxicity; however, exogenously applied GSH improved these contents in cotton leaves. Activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)) were also increased by GSH application under Pb toxicity. Microscopic analysis showed that excess Pb shattered thylakoid membranes in chloroplasts. However, GSH stabilized ultrastructure of Pb-stressed cotton leaves. These findings suggested that exogenously applied GSH lessened the adverse effects of Pb and improved cotton's tolerance to oxidative stress.
Collapse
Affiliation(s)
- Mumtaz Khan
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - M K Daud
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Ali Basharat
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Jamil Khan
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Shui Jin Zhu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
416
|
Chen HY, Chen YM, Wu J, Yang FC, Lv Z, Xu XF, Zheng SS. Expression of FOXO6 is Associated With Oxidative Stress Level and Predicts the Prognosis in Hepatocellular Cancer: A Comparative Study. Medicine (Baltimore) 2016; 95:e3708. [PMID: 27227932 PMCID: PMC4902356 DOI: 10.1097/md.0000000000003708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to explore the association of Forkhead box O6 (FOXO6) expression with oxidative stress level and prognosis of hepatocellular cancer (HCC).The case group included tissues of HCC from 128 patients who were hospitalized in Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery of First Affiliated Hospital, School of Medicine, Zhejiang University. The control group included normal liver tissues from 74 patients. RT-PCR and Western blot were used to test expressions of FOXO6, heme oxygenase (HO)-1, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). Dihydroethidium (DHE) was dyed to observe reactive oxygen species (ROS) level. Immunohistochemistry was used to test FOXO6 expression. FOXO6 was silenced in HepG2 cells to detect cell proliferation and apoptosis. The expressions of ROS, HO-1, GPx, SOD, CAT, p27, and cyclin D1 were also detected to further explore the possible mechanism.The expressions of FOXO6, HO-1, GPx, SOD, and CAT in HCC tissue was significantly higher than those in normal and adjacent HCC tissues (P <0.05). The tumor size, TNM stage, Alpha-fetoprotein (AFP) level, the presence or absence of hepatitis B surface antigen (HbsAg), and differentiation degree were related to FOXO6 expression level (all P <0.05). COX analysis showed that high FOXO6 expression, male, positive HBsAg, advanced TNM staging, high expression of AFP, and low degree of differentiation were all risk factors for prognosis in HCC (P <0.05). Compared with the blank group (C group, without transfection) and the negative control (NC) group, the mRNA expressions of ROS, FOXO6, HO-1, SOD, GPx, and CAT were decreased (P <0.05). si-RNA group had significantly decreased proliferation speed during 24 to 72 hours (P <0.05), whereas si-FOXO6 group had remarkably increased G0/G1 staged cells and decreased S-staged cells (P <0.05). The si-FOXO6 group showed notably increased apoptosis rate (P <0.05) and p27 expressions as well as decreased cyclin D1 expressions (P <0.05).FOXO6 was highly expressed in HCC tissue and was related to oxidative stress levels. Furthermore, FOXO6 expression can be used as a biomarker for deterioration and prognosis of liver cancer, which may provide a novel treatment target for HCC therapy.
Collapse
Affiliation(s)
- Hai-Yong Chen
- From the Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, ZheJiang Province, Hang Zhou 310003,China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (H-YC, Y-MC, J-W, F-CY, Z-L, X-FX, S-SZ)
| | | | | | | | | | | | | |
Collapse
|
417
|
Wujeska-Klause A, Bossinger G, Tausz M. The concentration of ascorbic acid and glutathione in 13 provenances of Acacia melanoxylon. TREE PHYSIOLOGY 2016; 36:524-532. [PMID: 26960387 DOI: 10.1093/treephys/tpw008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Climate change can negatively affect sensitive tree species, affecting their acclimation and adaptation strategies. A common garden experiment provides an opportunity to test whether responses of trees from different provenances are genetically driven and if this response is related to factors at the site of origin. We hypothesized that antioxidative defence systems and leaf mass area ofAcacia melanoxylonR. Br. samples collected from different provenances will vary depending on local rainfall. Thirteen provenances ofA. melanoxylonoriginating from different rainfall habitats (500-2000 mm) were grown for 5 years in a common garden. For 2 years, phyllode samples were collected during winter and summer, for measurements of leaf mass area and concentrations of glutathione and ascorbic acid. Leaf mass area varied between seasons, years and provenances ofA. melanoxylon, and an increase was associated with decreasing rainfall at the site of origin. Ascorbic acid and glutathione concentrations varied between seasons, years (i.e., environmental factors) and among provenances ofA. melanoxylon In general, glutathione and ascorbic acid concentrations were higher in winter compared with summer. Ascorbic acid and glutathione were different among provenances, but this was not associated with rainfall at the site of origin.
Collapse
Affiliation(s)
- Agnieszka Wujeska-Klause
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| | - Michael Tausz
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| |
Collapse
|
418
|
Mokrosnop VM, Polishchuk AV, Zolotareva EK. Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells Under Autotrophic and Mixotrophic Culture Conditions. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816020101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
419
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
420
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016; 16:76. [PMID: 27025596 PMCID: PMC4812658 DOI: 10.1186/s12870-016-0761-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- />Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ting Peng
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ji-Hong Liu
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
421
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
Affiliation(s)
- Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Dipesh K Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Naser A Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Krishna K Sharma
- Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Mohammed W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Abid A Ansari
- Department of Biology, University of Tabuk Tabuk, Saudi Arabia
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Noida, India
| |
Collapse
|
422
|
Silveira JAG, Carvalho FEL. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J Proteomics 2016; 143:24-35. [PMID: 26957143 DOI: 10.1016/j.jprot.2016.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/12/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Salinity is a stressful condition that causes a significant decrease in crop production worldwide. Salt stress affects several photosynthetic reactions, including the modulation of several important proteins. Despite these effects, few molecular-biochemical markers have been identified and evaluated for their importance in improving plant salt resistance. Proteomics is a powerful tool that allows the analysis of multigenic events at the post-translational level that has been widely used to evaluate protein modulation changes in plants exposed to salt stress. However, these studies are frequently fragmented and the results regarding photosynthesis proteins in response to salinity are limited. These constraints could be related to the low number of important photosynthetic proteins differently modulated in response to salinity, as has been commonly revealed by conventional proteomics. In this review, we present an evaluation and perspective on the integrated application of proteomics for the identification of photosynthesis proteins to improve salt resistance. We propose the use of phospho-, thiol- and redox-proteomics, associated with the utilization of isolated chloroplasts or photosynthetic sub-organellar components. This strategy may allow the characterization of essential proteins, providing a better understanding of photosynthesis regulation. Furthermore, this may contribute to the selection of molecular markers to improve salt resistance in crops.
Collapse
Affiliation(s)
- Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| |
Collapse
|
423
|
Ismaiel MMS, El-Ayouty YM, Piercey-Normore M. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Braz J Microbiol 2016; 47:298-304. [PMID: 26991300 PMCID: PMC4874622 DOI: 10.1016/j.bjm.2016.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.
Collapse
Affiliation(s)
- Mostafa Mahmoud Sami Ismaiel
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada; Botany Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | | | - Michele Piercey-Normore
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
424
|
Cheng F, Yin LL, Zhou J, Xia XJ, Shi K, Yu JQ, Zhou YH, Foyer CH. Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1919-33. [PMID: 26834179 PMCID: PMC4783371 DOI: 10.1093/jxb/erw013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
2-Cys peroxiredoxins (2-CPs) function in the removal of hydrogen peroxide and lipid peroxides but their precise roles in the induction of autophagy have not been characterized. Here we show that heat stress, which is known to induce oxidative stress, leads to the simultaneous accumulation of transcripts encoding 2-CPs and autophagy proteins, as well as autophagosomes, in tomato (Solanum lycopersicum) plants. Virus-induced gene silencing of the tomato peroxiredoxin genes 2-CP1, 2-CP2, and 2-CP1/2 resulted in an increased sensitivity of tomato plants to heat stress. Silencing 2-CP2 or 2-CP1/2 increased the levels of transcripts associated with ascorbate biosynthesis but had no effect on the glutathione pool in the absence of stress. However, the heat-induced accumulation of transcripts associated with the water-water cycle was compromised by the loss of 2-CP1/2 functions. The transcript levels of autophagy-related genes ATG5 and ATG7 were higher in plants with impaired 2-CP1/2 functions, and the formation of autophagosomes increased, together with an accumulation of oxidized and insoluble proteins. Silencing of ATG5 or ATG7 increased the levels of 2-CP transcripts and protein but decreased heat stress tolerance. These results demonstrate that 2-CPs fulfil a pivotal role in heat stress tolerance in tomato, via interactions with ascorbate-dependent pathways and autophagy.
Collapse
Affiliation(s)
- Fei Cheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ling-Ling Yin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Christine Helen Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
425
|
Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:870-7. [PMID: 26927949 DOI: 10.1080/09168451.2015.1135042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.
Collapse
Affiliation(s)
- Masahiro Noshi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Risa Hatanaka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Noriaki Tanabe
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Yusuke Terai
- b Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Takanori Maruta
- b Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| |
Collapse
|
426
|
Lira BS, Rosado D, Almeida J, de Souza AP, Buckeridge MS, Purgatto E, Guyer L, Hörtensteiner S, Freschi L, Rossi M. Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato. PLANT & CELL PHYSIOLOGY 2016; 57:642-653. [PMID: 26880818 DOI: 10.1093/pcp/pcw021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Although chlorophyll (Chl) degradation is an essential biochemical pathway for plant physiology, our knowledge regarding this process still has unfilled gaps. Pheophytinase (PPH) was shown to be essential for Chl breakdown in dark-induced senescent leaves. However, the catalyzing enzymes involved in pigment turnover and fruit ripening-associated degreening are still controversial. Chl metabolism is closely linked to the biosynthesis of other isoprenoid-derived compounds, such as carotenoids and tocopherols, which are also components of the photosynthetic machinery. Chls, carotenoids and tocopherols share a common precursor, geranylgeranyl diphosphate, produced by the plastidial methylerythritol 4-phosphate (MEP) pathway. Additionally, the Chl degradation-derived phytol can be incorporated into tocopherol biosynthesis. In this context, tomato turns out to be an interesting model to address isoprenoid-metabolic cross-talk since fruit ripening combines degreening and an intensely active MEP leading to carotenoid accumulation. Here, we investigate the impact of PPH deficiency beyond senescence by the comprehensive phenotyping of SlPPH-knockdown tomato plants. In leaves, photosynthetic parameters indicate altered energy usage of excited Chl. As a mitigatory effect, photosynthesis-associated carotenoids increased while tocopherol content remained constant. Additionally, starch and soluble sugar profiles revealed a distinct pattern of carbon allocation in leaves that suggests enhanced sucrose exportation. The higher levels of carbohydrates in sink organs down-regulated carotenoid biosynthesis. Additionally, the reduction in Chl-derived phytol recycling resulted in decreased tocopherol content in transgenic ripe fruits. Summing up, tocopherol and carotenoid metabolism, together with the antioxidant capacity of the hydrophilic and hydrophobic fractions, were differentially affected in leaves and fruits of the transgenic plants. Thus, in tomato, PPH plays a role beyond senescence-associated Chl degradation that, when compromised, affects isoprenoid and carbon metabolism which ultimately alters the fruit's nutraceutical content.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Almeida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Amanda Pereira de Souza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luzia Guyer
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
427
|
Vuleta A, Manitašević Jovanović S, Tucić B. Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:166-173. [PMID: 26841194 DOI: 10.1016/j.plaphy.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
High solar radiation has been recognized as one of the main causes of the overproduction of reactive oxygen species (ROS) and oxidative stress in plants. To remove the excess of ROS, plants use different antioxidants and tune their activity and/or isoform number as required for given light conditions. In this study, the adaptiveness of light-induced variation in the activities and isoform patterns of key enzymatic antioxidants SOD, APX and CAT was tested in leaves of Iris pumila clonal plants from two natural populations inhabiting a sun exposed dune site and a forest understory, using a reciprocal-transplant experiment. At the exposed habitat, the mean enzymatic activity of total SODs was significantly greater than that in the shaded one, while the amount of the mitochondrial MnSOD was notably higher compared to the plastidic Cu/ZnSOD. However, the number of Cu/ZnSOD isoforms was greater in the forest understory relative to the exposed site (three vs. two, respectively). An inverse relationship recorded between the quantities of MnSOD and Cu/ZnSOD in alternative light habitats might indicate that the two enzymes compensate each other in maintaining intracellular ROS and redox balance. The adaptive population differentiation in APX activity was exclusively recorded in the open habitat, which indicated that the synergistic effect of high light and temperature stress could be the principal selective factor, rather than high light alone. The enzymatic activity of CAT was similar between the two populations, implicating APX as the primary H2O2 scavenger in the I. pumila leaves exposed to high light intensity.
Collapse
Affiliation(s)
- Ana Vuleta
- Department of Evolutionary Biology, Institute for Biological Research Siniša Stanković, University of Belgrade, Serbia.
| | - Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research Siniša Stanković, University of Belgrade, Serbia
| | - Branka Tucić
- Department of Evolutionary Biology, Institute for Biological Research Siniša Stanković, University of Belgrade, Serbia
| |
Collapse
|
428
|
Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:338-345. [PMID: 26803790 DOI: 10.1016/j.envpol.2016.01.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg(-1) of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg(-1) nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg(-1) nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China
| | - Zhanqiang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China.
| | - Wen Cheng
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China
| | - Xiaomin Yan
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong 00852, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
429
|
Lu Y, Wohlrab S, Groth M, Glöckner G, Guillou L, John U. Transcriptomic profiling of Alexandrium fundyense
during physical interaction with or exposure to chemical signals from the parasite Amoebophrya. Mol Ecol 2016; 25:1294-307. [DOI: 10.1111/mec.13566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 01/08/2016] [Accepted: 01/26/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Yameng Lu
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Bremerhaven Germany
| | - Sylke Wohlrab
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Bremerhaven Germany
| | - Marco Groth
- Leibniz-Institute for Age Research; Fritz Lipmann Institute Jena; Jena Germany
| | - Gernot Glöckner
- Biochemistry I; Medical Faculty; University of Cologne and Institute for Freshwater Ecology and Inland Fisheries (IGB); Berlin Germany
| | - Laure Guillou
- Laboratoire Adaptation et Diversité en Milieu Marin; CNRS; UMR 7144, Place Georges Teissier, CS90074 29688 Roscoff Cedex France
- Université Pierre et Marie Curie-Paris 6; Sorbonne Universités; UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, CS90074 29688 Roscoff Cedex France
| | - Uwe John
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Bremerhaven Germany
| |
Collapse
|
430
|
Tang Y, Fu X, Shen Q, Tang K. Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce. PLoS One 2016; 11:e0148490. [PMID: 26867015 PMCID: PMC4750918 DOI: 10.1371/journal.pone.0148490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022] Open
Abstract
2-methyl-6-phytyl-1, 4-benzoquinol methyltransferase (MPBQ-MT) is a vital enzyme catalyzing a key methylation step in both α/γ-tocopherol and plastoquinone biosynthetic pathway. In this study, the gene encoding MPBQ-MT was isolated from lettuce (Lactuca sativa) by rapid amplification of cDNA ends (RACE), named LsMT. Overexpression of LsMT in lettuce brought about a significant increase of α- and γ-tocopherol contents with a reduction of phylloquinone (vitamin K1) content, suggesting a competition for a common substrate phytyl diphosphate (PDP) between the two biosynthetic pathways. Besides, overexpression of LsMT significantly increased plastoquinone (PQ) level. The increase of tocopherol and plastoquinone levels by LsMT overexpression conduced to the improvement of plants' tolerance and photosynthesis under high light stress, by directing excessive light energy toward photosynthetic production rather than toward generation of more photooxidative damage. These findings suggest that the role and function of MPBQ-MT can be further explored for enhancing vitamin E value, strengthening photosynthesis and phototolerance under high light in plants.
Collapse
Affiliation(s)
- Yueli Tang
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
431
|
Chen J, Dou R, Yang Z, Wang X, Mao C, Gao X, Wang L. The effect and fate of water-soluble carbon nanodots in maize (Zea maysL.). Nanotoxicology 2016; 10:818-28. [DOI: 10.3109/17435390.2015.1133864] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
432
|
Khan MIR, Khan NA, Masood A, Per TS, Asgher M. Hydrogen Peroxide Alleviates Nickel-Inhibited Photosynthetic Responses through Increase in Use-Efficiency of Nitrogen and Sulfur, and Glutathione Production in Mustard. FRONTIERS IN PLANT SCIENCE 2016; 7:44. [PMID: 26870064 PMCID: PMC4737889 DOI: 10.3389/fpls.2016.00044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 05/20/2023]
Abstract
The response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity to different concentrations of hydrogen peroxide (H2O2) or nickel (Ni) was evaluated. Further, the effect of H2O2 on photosynthetic responses of the mustard cultivars grown with or without Ni stress was studied. Application of 50 μM H2O2 increased photosynthesis and growth more prominently in high photosynthetic capacity cultivar (Varuna) than low photosynthetic capacity cultivar (RH30) grown without Ni stress. The H2O2 application also resulted in alleviation of photosynthetic inhibition induced by 200 mg Ni kg(-1) soil through increased photosynthetic nitrogen-use efficiency (NUE), sulfur-use efficiency (SUE), and glutathione (GSH) reduced production together with decreased lipid peroxidation and electrolyte leakage in both the cultivars. However, the effect of H2O2 was more pronounced in Varuna than RH30. The greater increase in photosynthetic-NUE and SUE and GSH production with H2O2 in Varuna resulted from higher increase in activity of nitrogen (N) and sulfur (S) assimilation enzymes, nitrate reductase and ATP-sulfurylase, respectively resulting in enhanced N and S assimilation. The increased N and S content contributed to the higher activity of ribulose-1,5-bisphosphate carboxylase under Ni stress. Application of H2O2 also regulated PS II activity and stomatal movement under Ni stress for maintaining higher photosynthetic potential in Varuna. Thus, H2O2 may be considered as a potential signaling molecule for augmenting photosynthetic potential of mustard plants under optimal and Ni stress conditions. It alleviates Ni stress through the regulation of stomatal and non-stomotal limitations, and photosynthetic-NUE and -SUE and GSH production.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | | | | |
Collapse
|
433
|
Liu T, Zhu L, Wang J, Wang J, Tan M. Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity. CHEMOSPHERE 2016; 145:269-76. [PMID: 26688264 DOI: 10.1016/j.chemosphere.2015.11.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 05/19/2023]
Abstract
To evaluate the toxic effects of ionic liquids (ILs) in soil on plants at the molecular and cellular levels and to assess the influence of anions on IL toxicity, the toxic effects of 1-decyl-3-methylimidazolium chloride ([Demim]Cl), 1-decyl-3-methylimidazolium bromide ([Demim]Br) and 1-decyl-3-methylimidazolium nitrate ([Demim]NO3) in soil on Vicia faba (V. faba) seedlings were studied for the first time. Our results show that these ILs had little impact on the growth of V. faba seedlings at 1, 5 and 25 mg kg(-1); however, the shoot length, root length, dry weight and pigment contents of the seedlings were significantly affected at 50 mg kg(-1). Furthermore, the EC50 values for effects of [Demim]Cl, [Demim]Br and [Demim]NO3 on the shoot length, root length and dry weight induced were consistent, indicating that the anion may have little influence on IL toxicity. ROS levels were also significantly enhanced at 50 mg kg(-1), resulting in cellular lipid peroxidation, DNA damage and oxidative damage.
Collapse
Affiliation(s)
- Tong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China
| | - Meiying Tan
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, PR China
| |
Collapse
|
434
|
Sofo A, Scopa A, Hashem A, Abd‐Allah EF. Lipid metabolism and oxidation in plants subjected to abiotic stresses. PLANT‐ENVIRONMENT INTERACTION 2016:205-213. [DOI: 10.1002/9781119081005.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
435
|
Ahmad P, Abdel Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:513. [PMID: 27200003 PMCID: PMC4847423 DOI: 10.3389/fpls.2016.00513] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can efficiently minimize Cd-toxicity and eventually improve health and yield in C. arietinum by the cumulative outcome of the enhanced contents of organic solute, secondary metabolites, mineral elements, and activity of antioxidant defense enzymes.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany, Sri Pratap CollegeSrinagar, India
- *Correspondence: Parvaiz Ahmad
| | - Arafat A. Abdel Latef
- Botany Department, Faculty of Science, South Valley UniversityQena, Egypt
- Biology Department, College of Applied Medical Sciences, Taif UniversityTaif, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Department of Plant Production, Faculty of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Abeer Hashem
- Department of Botany and Microbiology, Faculty of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Agriculture Research Center, Plant Pathology Research InstituteGiza, Egypt
| | - Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity UniversityUttar Pradesh, India
| | - Naser A. Anjum
- Department of Chemistry, Centre for Environmental and Marine Studies, University of AveiroAveiro, Portugal
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityLefkosa, Cyprus
| |
Collapse
|
436
|
Szafrańska K, Reiter RJ, Posmyk MM. Melatonin Application to Pisum sativum L. Seeds Positively Influences the Function of the Photosynthetic Apparatus in Growing Seedlings during Paraquat-Induced Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1663. [PMID: 27867393 PMCID: PMC5096385 DOI: 10.3389/fpls.2016.01663] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/21/2016] [Indexed: 05/20/2023]
Abstract
Melatonin, due to its pleiotropic effects plays an important role improving tolerance to stresses. Plants increase endogenous melatonin synthesis when faced with harsh environments as well as exogenously applied melatonin limits stress injuries. Presented work demonstrated that single melatonin application into the seeds during pre-sowing priming improved oxidative stress tolerance of growing seedlings exposed to paraquat (PQ). PQ is a powerful herbicide which blocks the process of photosynthesis under light conditions due to free radicals excess production, when O2 is rapidly converted to [Formula: see text] and subsequently to other reactive oxygen species. The parameters of chlorophyll fluorescence [Fv/Fm, Fv/Fo, Rfd, ΦPSII, qP, and non-photochemical quenching (NPQ)] in all variants of pea leaves (derived from control non-treated seeds - C, and those hydroprimed with water - H, and hydroprimed with melatonin water solution 50 or 200 μM - H-MEL50 and H-MEL200, respectively) were analyzed as a tool for photosynthetic efficacy testing. Moreover stability of the photosynthetic pigments (chlorophylls a, b, and carotenoids) was also monitored under oxidative stress conditions. The results suggest that melatonin applied into the seed significantly enhances oxidative stress tolerance in growing seedlings. This beneficial effect was reflected in reduced accumulation of [Formula: see text] in leaf tissues, preservation of photosynthetic pigments, improved functioning of the photosynthetic apparatus and higher water content in the tissues during PQ-mediated stress. Our findings provide evidence for the physiological role of this molecule and serve as a platform for its possible applications in agricultural or related areas of research.
Collapse
Affiliation(s)
- Katarzyna Szafrańska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, San AntonioTX, USA
| | - Małgorzata M. Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
- *Correspondence: Małgorzata M. Posmyk,
| |
Collapse
|
437
|
Fusaro L, Gerosa G, Salvatori E, Marzuoli R, Monga R, Kuzminsky E, Angelaccio C, Quarato D, Fares S. Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:13-21. [PMID: 26307426 DOI: 10.1111/plb.12383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Quercus ilex L. seedlings were exposed in open-top chambers for one growing season to three levels of ozone (O3 ): charcoal filtered air, non-filtered air supplemented with +30% or +74% ambient air O3 . Key functional parameters related to photosynthetic performance and stomatal density were measured to evaluate the response mechanisms of Q. ilex to chronic O3 exposure, clarifying how ecophysiological traits are modulated during the season in an ozone-enriched environment. Dark respiration showed an early response to O3 exposure, increasing approximately 45% relative to charcoal-filtered air in both O3 enriched treatments. However, at the end of the growing season, maximum rate of assimilation (Amax ) and stomatal conductance (gs ) showed a decline (-13% and -36%, for Amax and gs , respectively) only in plants under higher O3 levels. Photosystem I functionality supported the capacity of Q. ilex to cope with oxidative stress by adjusting the energy flow partitioning inside the photosystems. The response to O3 was also characterised by increased stomatal density in both O3 enriched treatments relative to controls. Our results suggest that in order to improve the reliability of metrics for O3 risk assessment, the seasonal changes in the response of gs and photosynthetic machinery to O3 stress should be considered.
Collapse
Affiliation(s)
- L Fusaro
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - G Gerosa
- Department of Mathematics and Physics, Catholic University, Brescia, Italy
| | - E Salvatori
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - R Marzuoli
- Department of Mathematics and Physics, Catholic University, Brescia, Italy
| | - R Monga
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - E Kuzminsky
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - C Angelaccio
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - D Quarato
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - S Fares
- Council for Agricultural Research and Economics, Research Centre for the Soil-Plant System, Rome, Italy
| |
Collapse
|
438
|
Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyodan B, Varshney RK, Nguyen HT. Identification and Comparative Analysis of Differential Gene Expression in Soybean Leaf Tissue under Drought and Flooding Stress Revealed by RNA-Seq. FRONTIERS IN PLANT SCIENCE 2016; 7:1044. [PMID: 27486466 PMCID: PMC4950259 DOI: 10.3389/fpls.2016.01044] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/04/2016] [Indexed: 05/18/2023]
Abstract
Drought and flooding are two major causes of severe yield loss in soybean worldwide. A lack of knowledge of the molecular mechanisms involved in drought and flood stress has been a limiting factor for the effective management of soybeans; therefore, it is imperative to assess the expression of genes involved in response to flood and drought stress. In this study, differentially expressed genes (DEGs) under drought and flooding conditions were investigated using Illumina RNA-Seq transcriptome profiling. A total of 2724 and 3498 DEGs were identified under drought and flooding treatments, respectively. These genes comprise 289 Transcription Factors (TFs) representing Basic Helix-loop Helix (bHLH), Ethylene Response Factors (ERFs), myeloblastosis (MYB), No apical meristem (NAC), and WRKY amino acid motif (WRKY) type major families known to be involved in the mechanism of stress tolerance. The expression of photosynthesis and chlorophyll synthesis related genes were significantly reduced under both types of stresses, which limit the metabolic processes and thus help prolong survival under extreme conditions. However, cell wall synthesis related genes were up-regulated under drought stress and down-regulated under flooding stress. Transcript profiles involved in the starch and sugar metabolism pathways were also affected under both stress conditions. The changes in expression of genes involved in regulating the flux of cell wall precursors and starch/sugar content can serve as an adaptive mechanism for soybean survival under stress conditions. This study has revealed the involvement of TFs, transporters, and photosynthetic genes, and has also given a glimpse of hormonal cross talk under the extreme water regimes, which will aid as an important resource for soybean crop improvement.
Collapse
Affiliation(s)
- Wei Chen
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Qiuming Yao
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Gunvant B. Patil
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Gaurav Agarwal
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | | - Li Lin
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Biao Wang
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Legume Biotechnology Laboratory, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Yongqin Wang
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Silvas J. Prince
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Li Song
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Dong Xu
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Yongqiang C. An
- Plant Genetics Research Unit, Donald Danforth Plant Science Center, US Department of Agriculture, Agricultural Research Service, Midwest AreaSt. Louis, MO, USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Henry T. Nguyen
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- *Correspondence: Henry T. Nguyen
| |
Collapse
|
439
|
Chmielewska K, Rodziewicz P, Swarcewicz B, Sawikowska A, Krajewski P, Marczak Ł, Ciesiołka D, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Surma M, Adamski T, Bednarek P, Stobiecki M. Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1108. [PMID: 27512399 PMCID: PMC4962459 DOI: 10.3389/fpls.2016.01108] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/12/2016] [Indexed: 05/17/2023]
Abstract
In this study, proteomic and metabolomic changes in leaves and roots of two barley (Hordeum vulgare L.) genotypes, with contrasting drought tolerance, subjected to water deficit were investigated. Our two-dimensional electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF and MALDI-TOF/TOF) analyses revealed 121 drought-responsive proteins in leaves and 182 in roots of both genotypes. Many of the identified drought-responsive proteins were associated with processes that are typically severely affected during water deficit, including photosynthesis and carbon metabolism. However, the highest number of identified leaf and root proteins represented general defense mechanisms. In addition, changes in the accumulation of proteins that represent processes formerly unassociated with drought response, e.g., phenylpropanoid metabolism, were also identified. Our tandem gas chromatography - time of flight mass spectrometry (GC/MS TOF) analyses revealed approximately 100 drought-affected low molecular weight compounds representing various metabolite types with amino acids being the most affected metabolite class. We compared the results from proteomic and metabolomic analyses to search for existing relationship between these two levels of molecular organization. We also uncovered organ specificity of the observed changes and revealed differences in the response to water deficit of drought susceptible and tolerant barley lines. Particularly, our results indicated that several of identified proteins and metabolites whose accumulation levels were increased with drought in the analyzed susceptible barley variety revealed elevated constitutive accumulation levels in the drought-resistant line. This may suggest that constitutive biochemical predisposition represents a better drought tolerance mechanism than inducible responses.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Paweł Rodziewicz
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Barbara Swarcewicz
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Aneta Sawikowska
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Paweł Krajewski
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Danuta Ciesiołka
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Anetta Kuczyńska
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | | | - Piotr Ogrodowicz
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | | | - Maria Surma
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Tadeusz Adamski
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
- *Correspondence: Maciej Stobiecki, Paweł Bednarek,
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
- *Correspondence: Maciej Stobiecki, Paweł Bednarek,
| |
Collapse
|
440
|
Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:838. [PMID: 27379130 PMCID: PMC4908137 DOI: 10.3389/fpls.2016.00838] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/27/2016] [Indexed: 05/18/2023]
Abstract
Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Vicente Martinez
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Teresa C. Mestre
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Francisco Rubio
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Amadeo Girones-Vilaplana
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Diego A. Moreno
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North TexasDenton, TX, USA
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Rosa M. Rivero
| |
Collapse
|
441
|
Moustakas M, Malea P, Zafeirakoglou A, Sperdouli I. Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:28-34. [PMID: 26778431 DOI: 10.1016/j.pestbp.2015.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 05/12/2023]
Abstract
The non-selective herbicide paraquat (Pq) is being extensively used for broad-spectrum weed control. Through water runoff and due to its high water solubility it contaminates aquatic environments. Thus, the present study was carried out to investigate the photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa to short- (2h) and long-term (24h) exposure to 2, 20, 200 and 1000μM paraquat (Pq) toxicity by using chlorophyll fluorescence imaging and H2O2 real-time imaging. The effective quantum yield of PSII (ΦPSII) show a tendency to increase at 2μM Pq after 2h exposure, and increased significantly at 20 and 200μM Pq. Τhe maximum oxidative effect on C. nodosa leaves was observed 2h after exposure to 200μM Pq concentration when the highest increases of ΦPSII due to high electron transport rate (ETR) resulted in a significant increase of H2O2 production due to the lowest non-photochemical quenching (NPQ) that was not efficient to serve as a protective mechanism, resulting in photooxidation. Prolonged exposure (24h) to 200μM Pq resulted in a decreased ΦPSII not due to an increase of the photoprotective mechanism NPQ, but due to high quantum yield of non-regulated energy loss in PSII (ΦNO), resulting to the lowest fraction of open PSII reaction centers (qp). This decreased ΦPSII has resulted to less Pq radicals to be formed, with a consequence of a small increase of H2O2 production compared to control C. nodosa leaves, but substantial lower than that of 2h exposure to 200μM Pq. Exposure of C. nodosa leaves to 1000μM Pq toxicity had lower effects on the efficiency of photochemical reactions of photosynthesis under both short- (2h) and long-term (24h) exposure than 200μM Pq. This was evident by an almost unchanged ΦPSII and qp, that remained unchanged even at a longer exposure time (48h), compared to control C. nodosa leaves. Thus, the response of C. nodosa leaves to Pq toxicity fits the "Threshold for Tolerance Model", with a threshold concentration of 200μM Pq required for initiation of a tolerance mechanism, by increasing H2O2 production for the induction of genes encoding protective processes in response to Pq-induced oxidative stress. Overall, it is concluded that chlorophyll fluorescence imaging constitutes a promising basis for investigating herbicide mode of action in aquatic plants and for detecting their protective mechanisms.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey.
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristi Zafeirakoglou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
442
|
Mechanisms of Superoxide Generation and Signaling in Cytochrome bc Complexes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
443
|
Zhou X, Zhao H, Cao K, Hu L, Du T, Baluška F, Zou Z. Beneficial Roles of Melatonin on Redox Regulation of Photosynthetic Electron Transport and Synthesis of D1 Protein in Tomato Seedlings under Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1823. [PMID: 27965706 PMCID: PMC5127804 DOI: 10.3389/fpls.2016.01823] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
Melatonin is important in the protection of plants suffering various forms of abiotic stress. The molecular mechanisms underlying the melatonin-mediated protection of their photosynthetic machinery are not completely resolved. This study investigates the effects of exogenous melatonin applications on salt-induced damage to the light reaction components of the photosynthetic machinery of tomato seedlings. The results showed that melatonin pretreatments can help maintain growth and net photosynthetic rate (PN) under salt stress conditions. Pretreatment with melatonin increased the effective quantum yield of photosystem II (ΦPSII), the photochemical quenching coefficient (qP) and the proportion of PSII centers that are "open" (qL) under saline conditions. In this way, damage to the photosynthetic electron transport chain (PET) in photosystem II (PSII) was mitigated. In addition, melatonin pretreatment facilitated the repair of PSII by maintaining the availability of D1 protein that was otherwise reduced by salinity. The ROS levels and the gene expressions of the chloroplast TRXs and PRXs were also investigated. Salt stress resulted in increased levels of reactive oxygen species (ROS), which were mitigated by melatonin. In tomato leaves under salt stress, the expressions of PRXs and TRXf declined but the expressions of TRXm1/4 and TRXm2 increased. Melatonin pretreatment promoted the expression of TRXf and the abundances of TRXf and TRXm gene products but had no effects on the expressions of PRXs. In summary, melatonin improves the photosynthetic activities of tomato seedlings under salt stress. The mechanism could be that: (1) Melatonin controls ROS levels and prevents damaging elevations of ROS caused by salt stress. (2) Melatonin facilitates the recovery of PET and D1 protein synthesis, thus enhancing the tolerance of photosynthetic activities to salinity. (3) Melatonin induces the expression of TRXf and regulates the abundance of TRXf and TRXm gene products, which may facilitate repair of the light reaction parts of the photosynthetic machinery.
Collapse
Affiliation(s)
- Xiaoting Zhou
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Hailiang Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - Kai Cao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - Lipan Hu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - Tianhao Du
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Zhirong Zou
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
- *Correspondence: Zhirong Zou
| |
Collapse
|
444
|
Singh D, Yadav NS, Tiwari V, Agarwal PK, Jha B. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery. FRONTIERS IN PLANT SCIENCE 2016; 7:737. [PMID: 27313584 PMCID: PMC4889606 DOI: 10.3389/fpls.2016.00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/13/2016] [Indexed: 05/06/2023]
Abstract
About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.
Collapse
Affiliation(s)
- Dinkar Singh
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Narendra Singh Yadav
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Vivekanand Tiwari
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Pradeep K. Agarwal
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative ResearchCSIR, New Delhi, India
| | - Bhavanath Jha
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative ResearchCSIR, New Delhi, India
- *Correspondence: Bhavanath Jha
| |
Collapse
|
445
|
Biochemical toxicity and DNA damage of imidazolium-based ionic liquid with different anions in soil on Vicia faba seedlings. Sci Rep 2015; 5:18444. [PMID: 26675424 PMCID: PMC4682074 DOI: 10.1038/srep18444] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/21/2015] [Indexed: 01/26/2023] Open
Abstract
In the present study, the toxic effects of 1-octyl-3-methylimidazolium chloride ([Omim]Cl), 1-octyl-3-methylimidazolium bromide ([Omim]Br) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) in soil on Vicia faba (V. faba) seedlings at 0, 100, 200, 400, 600 and 800 mg kg−1 were assessed for the first time at the cellular and molecular level. Moreover, the toxicity of these three ionic liquids (ILs) was evaluated, and the influence of anions on the toxicity of the ILs was assessed. The results showed that even at 100 mg kg−1, the growth of V. faba seedlings was inhibited after exposure to the three ILs, and the inhibitory effect was enhanced with increasing concentrations of the three ILs. The level of reactive oxygen species (ROS) was increased after exposure to the three ILs, which resulted in lipid peroxidation, DNA damage and oxidative damage in the cells of the V. faba seedlings. In addition, the anion structure could influence the toxicity of ILs, and toxicity of the three tested ILs decreased in the following order: [Omim]BF4 > [Omim]Br > [Omim]Cl. Moreover, oxidative damage is the primary mechanism by which ILs exert toxic effects on crops, and ILs could reduce the agricultural productivity.
Collapse
|
446
|
Carvalho FEL, Ware MA, Ruban AV. Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis. PLANT, CELL & ENVIRONMENT 2015; 38:2603-2617. [PMID: 26012511 DOI: 10.1111/pce.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
The amount of light plants can tolerate during different phases of ontogenesis remains largely unknown. This was addressed here employing a novel methodology that uses the coefficient of photochemical quenching (qP) to assess the intactness of photosystem II reaction centres. Fluorescence quenching coefficients, total chlorophyll content and concentration of anthocyanins were determined weekly during the juvenile, adult, reproductive and senescent phases of plant ontogenesis. This enabled quantification of the protective effectiveness of non-photochemical fluorescence quenching (NPQ) and determination of light tolerance. The light intensity that caused photoinhibition in 50% of leaf population increased from ∼70 μmol m(-2) s(-1) , for 1-week-old seedlings, to a maximum of 1385 μmol m(-2) s(-1) for 8-week-old plants. After 8 weeks, the tolerated light intensity started to gradually decline, becoming only 332 μmol m(-2) s(-1) for 13-week-old plants. The dependency of light tolerance on plant age was well-related to the amplitude of protective NPQ (pNPQ) and the electron transport rates (ETRs). Light tolerance did not, however, show a similar trend to chlorophyll a/b ratios and content of anthocyanins. Our data suggest that pNPQ is crucial in defining the capability of high light tolerance by Arabidopsis plants during ontogenesis.
Collapse
Affiliation(s)
- Fabricio E L Carvalho
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
447
|
Salvatori E, Fusaro L, Strasser RJ, Bussotti F, Manes F. Effects of acute O3 stress on PSII and PSI photochemistry of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.), probed by prompt chlorophyll "a" fluorescence and 820 nm modulated reflectance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:368-77. [PMID: 26535554 DOI: 10.1016/j.plaphy.2015.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 05/02/2023]
Abstract
The response of PSII and PSI photochemistry to acute ozone (O3) stress was tested in a "model plant system", namely the O3 sensitive (S156) and O3 resistant (R123) genotype pairs of Phaseolus vulgaris L., during a phenological phase of higher O3 sensitivity (pod formation). The modulation of the photosynthetic activity during O3 stress was analysed by measuring gas exchanges, Prompt Fluorescence (PF, JIP-test) and 820 nm Modulated Reflectance (MR), a novel techniques which specifically detects the changes in the redox state of P700 and plastocyanin. The results showed that, coherently with genotypic-specific O3 sensitivity, the response of the two snap bean genotypes differed for the intensity and time of onset of the considered physiological changes. In fact, despite leaf injury and gas exchanges reduction appeared concurrently in both genotypes, S156 showed a PSII down regulation already after the first day of fumigation (DOF), and an enhancement of Cyclic Electron Flow of PSI after the second DOF, whereas R123 showed only slight adjustments until the third DOF, when the activity of both photosystems was down-regulated. Despite these differences, it is possible to distinguish in both genotypes an early O3 response of the photochemical apparatus, involving PSII only, and a following response, in which PSI activity and content are also modulated. The measurement of the MR signal, performed simultaneously with the PF measurements and the JIP-test analysis, has allowed a better understanding of the role that PSI plays in the O3 stress response of the S156/R123 model plant system.
Collapse
Affiliation(s)
- Elisabetta Salvatori
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Lina Fusaro
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Reto J Strasser
- Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy, Geneva, Switzerland
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science (DISPAA), Section of Soil and Plant Science, University of Florence, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Fausto Manes
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
448
|
Prasad A, Kumar A, Suzuki M, Kikuchi H, Sugai T, Kobayashi M, Pospíšil P, Tada M, Kasai S. Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. FRONTIERS IN PLANT SCIENCE 2015; 6:862. [PMID: 26528319 PMCID: PMC4606053 DOI: 10.3389/fpls.2015.00862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/29/2015] [Indexed: 05/29/2023]
Abstract
Hydrogen peroxide (H2O2) is known to be generated in Photosystem II (PSII) via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red (AR) has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behavior of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
449
|
Kolupaev YE, Karpets YV, Dmitriev AP. Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
450
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|