401
|
Huser CA, Pringle MA, Heath VJ, Bell AK, Kendrick H, Smalley MJ, Crighton D, Ryan KM, Gusterson BA, Stein T. TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ 2009; 17:304-15. [PMID: 19745830 DOI: 10.1038/cdd.2009.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transforming growth factor beta (TGFbeta)-stimulated clone-22 domain family member 1 (TSC-22D1) has previously been associated with enhanced apoptosis in several cell systems. In an attempt to identify novel factors that are involved in the control of cell death during mammary gland involution, we found that the mRNA for isoform 2 of TSC-22D1 was highly upregulated 24 h after forced weaning, when a dramatic increase in cell death occurred, closely following the expression of the known inducer of cell death during involution, TGFbeta3. This was paralleled by strongly increased TSC-22D1 isoform 2 protein levels in the luminal epithelium. In contrast, RNA and protein expression levels of the isoform 1 of TSC-22D1 did not change during development. Whereas isoform 2 induced cell death, isoform 1 suppressed TGFbeta-induced cell death and enhanced proliferation in mammary epithelial cell lines. Furthermore, four distinct forms of isoform 2 protein were detected in the mammary gland, of which only a 15-kDa form was associated with early involution. Our data describe novel opposing functions of the two mammalian TSC-22D1 isoforms in cell survival and proliferation, and establish the TSC-22D1 isoform 2 as a potential regulator of cell death during mammary gland involution.
Collapse
Affiliation(s)
- C A Huser
- Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 2009; 167:1-11. [PMID: 19406170 PMCID: PMC2706953 DOI: 10.1016/j.molbiopara.2009.04.008] [Citation(s) in RCA: 550] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/28/2022]
Abstract
Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a "modified Th2" environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on "excretory-secretory" products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system.
Collapse
Affiliation(s)
| | | | - Rick M. Maizels
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
403
|
Heger P, Marin B, Schierenberg E. Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 2009; 10:84. [PMID: 19712444 PMCID: PMC2749850 DOI: 10.1186/1471-2199-10-84] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zinc finger (ZF) protein CTCF (CCCTC-binding factor) is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. RESULTS While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. CONCLUSION Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function.
Collapse
Affiliation(s)
- Peter Heger
- Zoological Institute, University of Cologne, Kerpener Strasse 15, 50937 Köln, Germany.
| | | | | |
Collapse
|
404
|
Nwaka S, Ramirez B, Brun R, Maes L, Douglas F, Ridley R. Advancing drug innovation for neglected diseases-criteria for lead progression. PLoS Negl Trop Dis 2009; 3:e440. [PMID: 19707561 PMCID: PMC2727960 DOI: 10.1371/journal.pntd.0000440] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The current drug R&D pipeline for most neglected diseases remains weak, and unlikely to support registration of novel drug classes that meet desired target product profiles in the short term. This calls for sustained investment as well as greater emphasis in the risky upstream drug discovery. Access to technologies, resources, and strong management as well as clear compound progression criteria are factors in the successful implementation of any collaborative drug discovery effort. We discuss how some of these factors have impacted drug discovery for tropical diseases within the past four decades, and highlight new opportunities and challenges through the virtual North–South drug discovery network as well as the rationale for greater participation of institutions in developing countries in product innovation. A set of criteria designed to facilitate compound progression from screening hits to drug candidate selection is presented to guide ongoing efforts.
Collapse
Affiliation(s)
- Solomon Nwaka
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
- * E-mail:
| | - Bernadette Ramirez
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Reto Brun
- Swiss Tropical Institute, Basel, Switzerland
| | | | - Frank Douglas
- Ewing Marion Kauffman Foundation, Kansas City, Missouri, United States of America
| | - Robert Ridley
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
405
|
Functional analysis of putative operons in Brugia malayi. Int J Parasitol 2009; 40:63-71. [PMID: 19631652 DOI: 10.1016/j.ijpara.2009.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 11/21/2022]
Abstract
Operons are a common mode of gene organization in Caenorhabditis elegans. Similar gene arrangements suggest that functional operons may exist in Brugia malayi. To definitively test this hypothesis, a bicistronic reporter vector consisting of an upstream firefly luciferase gene and a downstream renilla luciferase gene was constructed. The genome was then surveyed to identify 15 gene pairs that were likely to represent operons. Two of four domains upstream of the 5' gene from these clusters exhibited promoter activity. When constructs replicating the promoter and intergenic arrangement found in the native putative operon were transfected into embryos, both firefly and renilla activities were detected, while constructs with the promoter alone or intergenic region alone produced no activity from the downstream reporter. These data confirm that functional operons exist in B. malayi. Mutation of three U-rich element homologues present in one of the operons resulted in a decrease in downstream renilla reporter activity, suggesting that these were important in mRNA maturation. Hemi-nested reverse transcriptase-PCR assays demonstrated that while the mRNA encoding the native downstream open reading frame of one operon contained an SL1 spliced leader at its 5' end, the renilla gene mRNA produced from the corresponding transgenic construct did not.
Collapse
|
406
|
Dubreuil G, Magliano M, Dubrana MP, Lozano J, Lecomte P, Favery B, Abad P, Rosso MN. Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4041-50. [PMID: 19625337 DOI: 10.1093/jxb/erp237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Root-knot nematodes (RKNs) are sedentary biotrophic parasites that induce the differentiation of root cells into feeding cells that provide the nematodes with the nutrients necessary for their development. The development of new control methods against RKNs relies greatly on the functional analysis of genes that are crucial for the development of the pathogen or the success of parasitism. In the absence of genetic transformation, RNA interference (RNAi) allows for phenotype analysis of nematode development and nematode establishment in its host after sequence-specific knock-down of the targeted genes. Strategies used to induce RNAi in RKNs are so far restricted to small-scale analyses. In the search for a new RNAi strategy amenable to large-scale screenings the possibility of using RNA viruses to produce the RNAi triggers in plants was tested. Tobacco rattle virus (TRV) was tested as a means to introduce double-stranded RNA (dsRNA) triggers into the feeding cells and to mediate RKN gene silencing. It was demonstrated that virus-inoculated plants can produce dsRNA and siRNA silencing triggers for delivery to the feeding nematodes. Interestingly, the knock-down of the targeted genes was observed in the progeny of the feeding nematodes, suggesting that continuous ingestion of dsRNA triggers could be used for the functional analysis of genes involved in early development. However, the heterogeneity in RNAi efficiency between TRV-inoculated plants appears as a limitation to the use of TRV-mediated silencing for the high-throughput functional analysis of the targeted nematode genes.
Collapse
Affiliation(s)
- G Dubreuil
- INRA-UNSA-CNRS, UMR 1064, Interactions Plantes-Microorganismes et Santé Végétale, 400, route des Chappes, BP 167, F-06903 Sophia Antipolis, France
| | | | | | | | | | | | | | | |
Collapse
|
407
|
Williamson SM, Robertson AP, Brown L, Williams T, Woods DJ, Martin RJ, Sattelle DB, Wolstenholme AJ. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits. PLoS Pathog 2009; 5:e1000517. [PMID: 19609360 PMCID: PMC2705655 DOI: 10.1371/journal.ppat.1000517] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/19/2009] [Indexed: 12/04/2022] Open
Abstract
Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect ∼1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs) on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5∶1 (Asu-unc-38∶Asu-unc-29), nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1∶5 Asu-unc-38∶Asu-unc-29), levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the development of parasite-specific screens for future anthelmintics. Ascarid nematodes are major pathogens of humans and livestock. The major method of control is by the use of anthelmintic drugs, many of which target the nervous system. Drugs such as levamisole, pyrantel and oxantel target the nicotinic acetylcholine receptors present on muscle. Nematodes have several such receptors, and until now these have been best understood in the model species Caenorhabditis elegans. We have started to characterise the nicotinic receptors of Ascaris suum, and find that the genetics and pharmacology of the A. suum receptors differ from C. elegans. In both species, nicotine and levamisole preferentially activate different forms of the nicotinic receptor, the N- and L-type, respectively. In C. elegans, the L-type receptor is made up of five subunits, whereas the N-type is a homomer of a sixth subunit. We can recapitulate many of the properties of the A. suum N- and L-type receptors, including their sensitivity to two other important anthelmintics, pyrantel and oxantel, by expressing just two subunits at varying ratios. This has implications for the use of drug combinations and for cross-resistance between nicotinic anthelmintics. It may start to give an explanation for the varying effectiveness of nicotinic drugs against different parasites.
Collapse
Affiliation(s)
- Sally M. Williamson
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | | | - Tracey Williams
- Veterinary Medicine Research & Development, Pfizer Animal Health, Kalamazoo, Michigan, United States of America
| | - Debra J. Woods
- Veterinary Medicine Research & Development, Pfizer Animal Health, Kalamazoo, Michigan, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | | | | |
Collapse
|
408
|
Zhou Y, Carpenter ZW, Brennan G, Nambu JR. The unique Morgue ubiquitination protein is conserved in a diverse but restricted set of invertebrates. Mol Biol Evol 2009; 26:2245-59. [PMID: 19602541 DOI: 10.1093/molbev/msp147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways.
Collapse
Affiliation(s)
- Ying Zhou
- Biology Department, University of Massachusetts, MA, USA
| | | | | | | |
Collapse
|
409
|
Kuang L, Colgrave ML, Bagnall NH, Knox MR, Qian M, Wijffels G. The complexity of the secreted NPA and FAR lipid-binding protein families of Haemonchus contortus revealed by an iterative proteomics-bioinformatics approach. Mol Biochem Parasitol 2009; 168:84-94. [PMID: 19615410 DOI: 10.1016/j.molbiopara.2009.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
Abstract
Two different classes of small nematode specific lipid-binding proteins, the nematode polyprotein allergens/antigens (NPAs) and the fatty acid- and retinol-binding (FAR) proteins, are secreted by helminth parasites. Until now, there was no evidence of the expression or secretion of these two families of proteins in Haemonchus contortus. In this study, we applied proteomic and bioinformatic tools in an iterative manner to reveal the expression and complexity of these proteins in the excretory/secretory products (ESP) of adult H. contortus at the protein and gene levels. Initial examination of the mass spectra of ESP fractions against standard databases returned nine peptides mapping to Ostertagia ostertagi NPA and FAR sequences. Searches of the H. contortus EST and genomic contig databases with the O. ostertagi and Caenorhabditis elegans homologues retrieved diverse sequences encoding H. contortus NPA and FAR proteins. H. contortus sequences were then integrated into a customized database and a new search of the mass spectra achieved a 10-fold improvement in coverage of the predicted H. contortus NPAs. The final analyses of the mass spectra achieved 49-60% coverage of H. contortus NPAs and 7-47% coverage of H. contortus FARs. Moreover, the diversity in structures of the encoding genes was revealed by assembling the genomic sequence data with predicted protein sequences confirmed by the peptide evidence. We predict there are at least one Hc-NPA gene and six Hc-FAR genes in H. contortus, and life stage gene expression of Hc-FAR-1 to -6 revealed unique transcription patterns for each of these genes.
Collapse
Affiliation(s)
- Lisha Kuang
- CSIRO Livestock Industries, Queensland Biosciences Precinct, 306 Carmody Road, St. Lucia, 4067 QLD, Australia
| | | | | | | | | | | |
Collapse
|
410
|
Wu B, Novelli J, Foster J, Vaisvila R, Conway L, Ingram J, Ganatra M, Rao AU, Hamza I, Slatko B. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 2009; 3:e475. [PMID: 19597542 PMCID: PMC2703803 DOI: 10.1371/journal.pntd.0000475] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. METHODS AND FINDINGS Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5'-aminolevulinic acid dehydratase (ALAD, the second step). Similarly, Escherichia coli hemH (FC) deficient strains transformed with human and Wolbachia FC homologues showed significantly different sensitivities to NMMP. This approach enables functional complementation in E. coli heme deficient mutants as an alternative E. coli-based method for drug screening. CONCLUSIONS Our studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi (wBm) might be essential for the filarial host survival. In addition, the results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues.
Collapse
Affiliation(s)
- Bo Wu
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jacopo Novelli
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jeremy Foster
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Romualdas Vaisvila
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Leslie Conway
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jessica Ingram
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Mehul Ganatra
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Anita U. Rao
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Barton Slatko
- Division of Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
411
|
Liu C, Chauhan C, Katholi CR, Unnasch TR. The splice leader addition domain represents an essential conserved motif for heterologous gene expression in B. malayi. Mol Biochem Parasitol 2009; 166:15-21. [PMID: 19428668 PMCID: PMC2680783 DOI: 10.1016/j.molbiopara.2009.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 11/28/2022]
Abstract
Two promoters from the human filarial parasite Brugia malayi have been mapped in detail. The essential domains of both promoters lacked canonical eukaryotic core promoter motifs. However, the largest contiguous essential domain in both promoters flanked and included the splice leader addition site. These findings suggested that the region flanking the trans-splicing addition site might represent a conserved core domain in B. malayi promoters. To test this hypothesis, the putative promoters of 12 trans-spliced genes encoding ribosomal protein homologues from B. malayi were isolated and tested for activity in a B. malayi transient transfection system. Of the 12 domains examined, 11 produced detectable reporter gene activity. Mutant constructs of the six most active promoters were prepared in which the spliced leader acceptor site and the 10 nt upstream and downstream of the site were deleted. All deletion constructs exhibited >90% reduction in reporter gene activity relative to their respective wild type sequences. A conserved pyrimidine-rich tract was located directly upstream from the spliced leader splice acceptor site which contained a conserved T residue located at position -3. Mutation of the entire polypyrimidine tract or the conserved T individually resulted in the loss of over 90% of reporter gene activity. In contrast, mutation of the splice acceptor site did not significantly reduce promoter activity. These data suggest that the region surrounding the splice acceptor site in the ribosomal promoters represents a conserved essential domain which functions independently of splice leader addition.
Collapse
Affiliation(s)
- Canhui Liu
- Global Health Infectious Disease Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL
| | - Chitra Chauhan
- Global Health Infectious Disease Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL
| | - Charles R. Katholi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Al
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL
| |
Collapse
|
412
|
Li BW, Rush AC, Mitreva M, Yin Y, Spiro D, Ghedin E, Weil GJ. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics 2009; 10:267. [PMID: 19527522 PMCID: PMC2708187 DOI: 10.1186/1471-2164-10-267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 06/15/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3) are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3) from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. RESULTS Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i) relative to cultured L3 (L3c). These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234) or irradiated L3 (L3ir) (22). These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. CONCLUSION Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain the enhanced immunogenicity of L3ir. Gene Ontology and KEGG analyses revealed altered pathways between L3 types. Energy and "immune pathways" are up-regulated and may be needed for L3i invasion and survival, while growth and development are priorities for L3c. This study has improved our understanding of molecules involved in parasite invasion and immune evasion, potential targets of protective immunity, and molecules required for parasite growth and development.
Collapse
Affiliation(s)
- Ben-Wen Li
- Department of internal medicine, Washington University School of Medicine, St, Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
413
|
Dalzell JJ, McMaster S, Johnston MJ, Kerr R, Fleming CC, Maule AG. Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles. Int J Parasitol 2009; 39:1503-16. [PMID: 19482028 DOI: 10.1016/j.ijpara.2009.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 01/27/2023]
Abstract
Nine non-nematode-derived double-stranded RNAs (dsRNAs), designed for use as controls in RNA interference (RNAi) screens of neuropeptide targets, were found to induce aberrant phenotypes and an unexpected inhibitory effect on motility of root knot nematode Meloidogyne incognita J2s following 24h soaks in 0.1 mg/ml dsRNA; a simple soaking procedure which we have found to elicit profound knockdown of neuronal targets in Globodera pallida J2s. We have established that this inhibitory phenomenon is both time- and concentration-dependent, as shorter 4h soaks in 0.1 mg/ml dsRNA had no negative impact on M. incognita J2 stage worms, yet a 10-fold increase in concentration to 1 mg/ml for the same 4h time period had an even greater qualitative and quantitative impact on worm phenotype and motility. Further, a 10-fold increase of J2s soaked in 0.1 mg/ml dsRNA did not significantly alter the observed phenotypic aberration, which suggests that dsRNA uptake of the soaked J2s is not saturated under these conditions. This phenomenon was not initially observed in potato cyst nematode G. pallida J2s, which displayed no aberrant phenotype, or diminution of migratory activity in response to the same 0.1 mg/ml dsRNA 24h soaks. However, a 10-fold increase in dsRNA to 1mg/ml was found to elicit comparable irregularity of phenotype and inhibition of motility in G. pallida, to that initially observed in M. incognita following a 24h soak in 0.1 mg/ml dsRNA. Again, a 10-fold increase in the number of G. pallida J2s soaked in the same volume of 1 mg/ml dsRNA preparation did not significantly affect the observed phenotypic deviation. We do not observe any global impact on transcript abundance in either M. incognita or G. pallida J2s following 0.1 mg/ml dsRNA soaks, as revealed by reverse transcriptase-PCR and quantitative PCR data. This study aims to raise awareness of a phenomenon which we observe consistently and which we believe signifies a more expansive deficiency in our knowledge and understanding of the variables inherent to RNAi-based investigation.
Collapse
Affiliation(s)
- Johnathan J Dalzell
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
414
|
Exploring the immunology of parasitism--from surface antigens to the hygiene hypothesis. Parasitology 2009; 136:1549-64. [PMID: 19460185 DOI: 10.1017/s0031182009006106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helminth immunology is a field which has changed beyond recognition in the past 30 years, transformed not only by new technologies from cDNA cloning to flow cytometry, but also conceptually as our definition of host immune pathways has matured. The molecular revolution defined key nematode surface and secreted antigens, and identified candidate immunomodulators that are likely to underpin parasites' success in eluding immune attack. The immunological advances in defining cytokine networks, lymphocyte subsets and innate cell recognition have also made a huge impact on our understanding of helminth infections. Most recently, the ideas of regulatory immune cells, in particular the regulatory T cell, have again overturned older thinking, but also may explain immune hyporesponsiveness observed in chronic helminth diseases, as well as the link to reduced allergic reactions observed in human and animal infections. The review concludes with a forward look to where we may make future advances towards the final eradication of helminth diseases.
Collapse
|
415
|
The nematode parasite Onchocerca volvulus generates the transforming growth factor-beta (TGF-beta). Parasitol Res 2009; 105:731-41. [DOI: 10.1007/s00436-009-1450-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/17/2009] [Indexed: 02/04/2023]
|
416
|
Cordaux R. Gene conversion maintains nonfunctional transposable elements in an obligate mutualistic endosymbiont. Mol Biol Evol 2009; 26:1679-82. [PMID: 19414524 DOI: 10.1093/molbev/msp093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long-term bacterial endosymbionts typically exhibit reduced genomes, lack genes encoding recombination functions and transposable elements, such as insertion sequences (ISs). In sharp contrast, I found that ISs constitute 2.4% of the genome of the obligate mutualistic endosymbiont Wolbachia wBm. Although no IS copy is transpositionally functional, I show that ISs persist in wBm because of frequent recombinational gene conversion (GC) homogenizing homologous IS sequences. These results not only indicate that there exists a functional recombination molecular machinery in wBm, but they also suggest that, by slowing down the rate of IS degradation and loss, GC may represent a major force influencing reductive evolution in wBm.
Collapse
Affiliation(s)
- Richard Cordaux
- Université de Poitiers, CNRS UMR 6556 Ecologie, Evolution, Symbiose, Poitiers, France.
| |
Collapse
|
417
|
Gillan V, Maitland K, McCormack G, Him NAIIN, Devaney E. Functional genomics of hsp-90 in parasitic and free-living nematodes. Int J Parasitol 2009; 39:1071-81. [PMID: 19401205 PMCID: PMC2845815 DOI: 10.1016/j.ijpara.2009.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/06/2023]
Abstract
Heat shock protein 90 (Hsp-90) is a highly conserved essential protein in eukaryotes. Here we describe the molecular characterisation of hsp-90 from three nematodes, the free-living Caenorhabditis elegans (Ce) and the parasitic worms Brugia pahangi (Bp) and Haemonchus contortus (Hc). These molecules were functionally characterised by rescue of a Ce-daf-21 (hsp-90) null mutant. Our results show a gradient of rescue: the C. elegans endogenous gene provided full rescue of the daf-21 mutant, while Hc-hsp-90 provided partial rescue. In contrast, no rescue could be obtained using a variety of Bp-hsp-90 constructs, despite the fact that Bp-hsp-90 was transcribed and translated in the mutant worms. daf-21 RNA interference (RNAi) experiments were carried out to determine whether knock-down of the endogenous daf-21 mRNA in N2 worms could be complemented by expression of either parasite gene. However neither parasite gene could rescue the daf-21 (RNAi) phenotypes. These results indicate that factors other than the level of sequence identity are important for determining whether parasite genes can functionally complement in C. elegans.
Collapse
Affiliation(s)
- Victoria Gillan
- Parasitology Group, Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | |
Collapse
|
418
|
|
419
|
Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Hogenhout SA, Spieth J, Sternberg PW, Wilson RK, Grewal PS. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. BMC Genomics 2009; 10:205. [PMID: 19405965 PMCID: PMC2686736 DOI: 10.1186/1471-2164-10-205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 04/30/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex. This large-scale expressed sequence tag (EST) analysis effort enables gene discovery and development of microsatellite markers. These ESTs will also aid in the annotation of the upcoming complete genome sequence of H. bacteriophora. RESULTS A total of 31,485 high quality ESTs were generated from cDNA libraries of the adult H. bacteriophora TTO1 strain. Cluster analysis revealed the presence of 3,051 contigs and 7,835 singletons, representing 10,886 distinct EST sequences. About 72% of the distinct EST sequences had significant matches (E value < 1e-5) to proteins in GenBank's non-redundant (nr) and Wormpep190 databases. We have identified 12 ESTs corresponding to 8 genes potentially involved in RNA interference, 22 ESTs corresponding to 14 genes potentially involved in dauer-related processes, and 51 ESTs corresponding to 27 genes potentially involved in defense and stress responses. Comparison to ESTs and proteins of free-living nematodes led to the identification of 554 parasitic nematode-specific ESTs in H. bacteriophora, among which are those encoding F-box-like/WD-repeat protein theromacin, Bax inhibitor-1-like protein, and PAZ domain containing protein. Gene Ontology terms were assigned to 6,685 of the 10,886 ESTs. A total of 168 microsatellite loci were identified with primers designable for 141 loci. CONCLUSION A total of 10,886 distinct EST sequences were identified from adult H. bacteriophora cDNA libraries. BLAST searches revealed ESTs potentially involved in parasitism, RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, The Ohio State University, OARDC, Wooster, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Dieterich C, Sommer RJ. How to become a parasite - lessons from the genomes of nematodes. Trends Genet 2009; 25:203-9. [PMID: 19361881 DOI: 10.1016/j.tig.2009.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 11/18/2022]
Abstract
The phylum Nematoda is biologically diverse; it includes parasites of plants and animals in addition to free-living taxa. To date, the genomes of six nematodes have been sequenced. Comparative analyses of these ecologically diverse nematodes are beginning to reveal the mechanisms by which parasites arise and how they evolve. Here, we discuss some emerging principles for the mechanisms and evolution of parasitism. First, horizontal gene transfer represents a common theme in nematode parasites. Second, the human parasite Brugia malayi lost otherwise essential genes most probably owing to the mutualistic relationship with a bacterial endosymbiont. Finally, some parasitic features evolved under free-living conditions. A recent study revealed a conserved endocrine mechanism controlling the formation of dauer and infective larvae in nematodes.
Collapse
Affiliation(s)
- Christoph Dieterich
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| | | |
Collapse
|
421
|
Bennuru S, Semnani R, Meng Z, Ribeiro JMC, Veenstra TD, Nutman TB. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis 2009; 3:e410. [PMID: 19352421 PMCID: PMC2659452 DOI: 10.1371/journal.pntd.0000410] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 03/12/2009] [Indexed: 02/04/2023] Open
Abstract
Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 “hypothetical” proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these “hypothetical” proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host–parasite interaction. Human lymphatic filariasis caused by the nematode parasites Brugia malayi and Wuchereria bancrofti are a major cause of concern in tropical countries. Studies over several decades have identified various proteins of these parasites that have highlighted their role in host–parasite interactions and possible chemotherapeutic and prophylactic interventions. The availability of the parasite genome facilitates the identification of all of the proteins of the parasite that could interact with the host. In this study, we have attempted to identify the excretory-secretory proteins of the various stages of the parasite that could be maintained in vitro for a limited period utilizing a high-throughput proteomics approach. We observe and report that the parasites expend resources to secrete out various molecules that they utilize to evade the host immune system and modulate its responses. Further, this study also provides information on the predicted hypothetical proteins to be bonafide proteins and thus a catalogue of the excretory-secretory proteins towards a better understanding of the host–parasite interactions.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roshanak Semnani
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jose M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
422
|
Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 2009; 5:e1000368. [PMID: 19343208 PMCID: PMC2657209 DOI: 10.1371/journal.ppat.1000368] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/06/2009] [Indexed: 11/30/2022] Open
Abstract
Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects. Wolbachia are bacteria that infect millions of insect species worldwide. Wolbachia aren't infectious, but are maternally inherited symbionts passed from mother to offspring. To infect a host population, Wolbachia behave as reproductive parasites and alter the host reproductive system in a manner that increases infected female reproductive success. Some strains of Wolbachia, however, cannot manipulate their host's reproductive systems—yet they can successfully infect insect populations. How is this possible? Here we show that a Wolbachia strain that naturally infects Drosophila melanogaster, and induces very low levels of reproductive parasitism, can also act as a nutritional mutualist. When D. melanogaster flies were reared on normal diets, we observed no cost or benefit associated with the Wolbachia infection. But, if we reared flies on diets containing either very low or high amounts of iron, Wolbachia-infected flies produced more eggs than uninfected flies. As wild-caught flies contain low amounts of iron, our results suggest that flies in the wild should benefit from their Wolbachia symbiont.
Collapse
|
423
|
Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides. Trends Parasitol 2009; 25:171-81. [DOI: 10.1016/j.pt.2008.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/25/2008] [Accepted: 12/19/2008] [Indexed: 01/26/2023]
|
424
|
Yin Y, Martin J, Abubucker S, Wang Z, Wyrwicz L, Rychlewski L, McCarter JP, Wilson RK, Mitreva M. Molecular determinants archetypical to the phylum Nematoda. BMC Genomics 2009; 10:114. [PMID: 19296854 PMCID: PMC2666764 DOI: 10.1186/1471-2164-10-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Nematoda diverged from other animals between 600–1,200 million years ago and has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals, but many are parasites of plants and animals including humans, posing major ecological and economical challenges around the world. Results We investigated phylum-specific molecular characteristics in Nematoda by exploring over 214,000 polypeptides from 32 nematode species including 27 parasites. Over 50,000 nematode protein families were identified based on primary sequence, including ~10% with members from at least three different species. Nearly 1,600 of the multi-species families did not share homology to Pfam domains, including a total of 758 restricted to Nematoda. Majority of the 462 families that were conserved among both free-living and parasitic species contained members from multiple nematode clades, yet ~90% of the 296 parasite-specific families originated only from a single clade. Features of these protein families were revealed through extrapolation of essential functions from observed RNAi phenotypes in C. elegans, bioinformatics-based functional annotations, identification of distant homology based on protein folds, and prediction of expression at accessible nematode surfaces. In addition, we identified a group of nematode-restricted sequence features in energy-generating electron transfer complexes as potential targets for new chemicals with minimal or no toxicity to the host. Conclusion This study identified and characterized the molecular determinants that help in defining the phylum Nematoda, and therefore improved our understanding of nematode protein evolution and provided novel insights for the development of next generation parasite control strategies.
Collapse
Affiliation(s)
- Yong Yin
- The Genome Center, Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Klink VP, Hosseini P, MacDonald MH, Alkharouf NW, Matthews BF. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics 2009; 10:111. [PMID: 19291306 PMCID: PMC2662880 DOI: 10.1186/1471-2164-10-111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 03/16/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND A single Glycine max (soybean) genotype (Peking) reacts differently to two different populations of Heterodera glycines (soybean cyst nematode) within the first twelve hours of infection during resistant (R) and susceptible (S) reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix soybean GeneChip were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2) prior to their infection of Peking. Other analyses focused on the infective L2 at 12 hours post infection (i-L2(12h)), and the infective sedentary stages at 3 days post infection (i-L2(3d)) and 8 days post infection (i-L2/L3(8d)). RESULTS Differential expression and false discovery rate (FDR) analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8) identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and beta-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein. CONCLUSION These analyses identify a genetic expression signature for these two populations both prior to and subsequently as they undergo an R or S reaction. The identification of genes like steroid alpha reductase and serine proteinase that are involved in feeding and nutritional uptake as being highly suppressed during the R response at 8d may indicate genes that the plant is targeting. The analyses also identified numerous putative parasitism genes that are differentially expressed. The 1668 genes that are suppressed in NL1-RHg, and hence induced in TN8 may represent genes that are important during the parasitic stages of H. glycines development. The potential for different arrays of putative parasitism genes to be expressed in different nematode populations may indicate how H. glycines evolve mechanisms to overcome resistance.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| | - Parsa Hosseini
- Jess and Mildred Fisher College of Science and Mathematics, Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, Maryland 21252, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| | - Nadim W Alkharouf
- Jess and Mildred Fisher College of Science and Mathematics, Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, Maryland 21252, USA
| | - Benjamin F Matthews
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| |
Collapse
|
426
|
Jex AR, Waeschenbach A, Hu M, van Wyk JA, Beveridge I, Littlewood DTJ, Gasser RB. The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum--two hookworms of animal health and zoonotic importance. BMC Genomics 2009; 10:79. [PMID: 19210793 PMCID: PMC2656527 DOI: 10.1186/1471-2164-10-79] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/11/2009] [Indexed: 11/22/2022] Open
Abstract
Background Hookworms are blood-feeding nematodes that parasitize the small intestines of many mammals, including humans and cattle. These nematodes are of major socioeconomic importance and cause disease, mainly as a consequence of anaemia (particularly in children or young animals), resulting in impaired development and sometimes deaths. Studying genetic variability within and among hookworm populations is central to addressing epidemiological and ecological questions, thus assisting in the control of hookworm disease. Mitochondrial (mt) genes are known to provide useful population markers for hookworms, but mt genome sequence data are scant. Results The present study characterizes the complete mt genomes of two species of hookworm, Ancylostoma caninum (from dogs) and Bunostomum phlebotomum (from cattle), each sequenced (by 454 technology or primer-walking), following long-PCR amplification from genomic DNA (~20–40 ng) isolated from individual adult worms. These mt genomes were 13717 bp and 13790 bp in size, respectively, and each contained 12 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, typical for other secernentean nematodes. In addition, phylogenetic analysis (by Bayesian inference and maximum likelihood) of concatenated mt protein sequence data sets for 12 nematodes (including Ancylostoma caninum and Bunostomum phlebotomum), representing the Ascaridida, Spirurida and Strongylida, was conducted. The analysis yielded maximum statistical support for the formation of monophyletic clades for each recognized nematode order assessed, except for the Rhabditida. Conclusion The mt genomes characterized herein represent a rich source of population genetic markers for epidemiological and ecological studies. The strong statistical support for the construction of phylogenetic clades and consistency between the two different tree-building methods employed indicate the value of using whole mt genome data sets for systematic studies of nematodes. The grouping of the Spirurida and Ascaridida to the exclusion of the Strongylida was not supported in the present analysis, a finding which conflicts with the current evolutionary hypothesis for the Nematoda based on nuclear ribosomal gene data.
Collapse
Affiliation(s)
- Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria 3030, Australia.
| | | | | | | | | | | | | |
Collapse
|
427
|
Barrière A, Yang SP, Pekarek E, Thomas CG, Haag ES, Ruvinsky I. Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. Genome Res 2009; 19:470-80. [PMID: 19204328 DOI: 10.1101/gr.081851.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The majority of nematodes are gonochoristic (dioecious) with distinct male and female sexes, but the best-studied species, Caenorhabditis elegans, is a self-fertile hermaphrodite. The sequencing of the genomes of C. elegans and a second hermaphrodite, C. briggsae, was facilitated in part by the low amount of natural heterozygosity, which typifies selfing species. Ongoing genome projects for gonochoristic Caenorhabditis species seek to approximate this condition by intense inbreeding prior to sequencing. Here we show that despite this inbreeding, the heterozygous fraction of the whole genome shotgun assemblies of three gonochoristic Caenorhabditis species, C. brenneri, C. remanei, and C. japonica, is considerable. We first demonstrate experimentally that independently assembled sequence variants in C. remanei and C. brenneri are allelic. We then present gene-based approaches for recognizing heterozygous regions of WGS assemblies. We also develop a simple method for quantifying heterozygosity that can be applied to assemblies lacking gene annotations. Consistently we find that approximately 10% and 30% of the C. remanei and C. brenneri genomes, respectively, are represented by two alleles in the assemblies. Heterozygosity is restricted to autosomes and its retention is accompanied by substantial inbreeding depression, suggesting that it is caused by multiple recessive deleterious alleles and not merely by chance. Both the overall amount and chromosomal distribution of heterozygous DNA is highly variable between assemblies of close relatives produced by identical methodologies, and allele frequencies have continued to change after strains were sequenced. Our results highlight the impact of mating systems on genome sequencing projects.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
428
|
Ford L, Zhang J, Liu J, Hashmi S, Fuhrman JA, Oksov Y, Lustigman S. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 2009; 3:e377. [PMID: 19190745 PMCID: PMC2634747 DOI: 10.1371/journal.pntd.0000377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/13/2009] [Indexed: 12/05/2022] Open
Abstract
Background Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1) and cathepsin Z (Ce-cpz-1) has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting. Methods and Findings RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages. Conclusions Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets. Filarial nematodes are an important group of human pathogens, causing lymphatic filariasis and onchocerciasis, and infecting around 150 million people throughout the tropics with more than 1.5 billion at risk of infection. Control of filariasis currently relies on mass drug administration (MDA) programs using drugs which principally target the microfilarial life-cycle stage. These control programs are facing major challenges, including the absence of a drug with macrofilaricidal or permanent sterilizing activity, and the possibility of the development of drug-resistance against the drugs available. Cysteine proteases are essential enzymes which play important roles in a wide range of cellular processes, and the cathepsin-like cysteine proteases have been identified as potential targets for drug or vaccine development in many parasites. Here we have studied the function of several of the cathepsin-like enzymes in the filarial nematode, B. malayi, and demonstrate that these cysteine proteases are involved in the development of embryos, show similar functions to their counterparts in C. elegans, and therefore, provide an important target for future drug development targeted to eliminate filariasis.
Collapse
Affiliation(s)
- Louise Ford
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
429
|
Integrating genomics and phylogenetics in understanding the history of Trichinella species. Vet Parasitol 2009; 159:210-3. [DOI: 10.1016/j.vetpar.2008.10.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
430
|
Wang Z, Martin J, Abubucker S, Yin Y, Gasser RB, Mitreva M. Systematic analysis of insertions and deletions specific to nematode proteins and their proposed functional and evolutionary relevance. BMC Evol Biol 2009; 9:23. [PMID: 19175938 PMCID: PMC2644674 DOI: 10.1186/1471-2148-9-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/28/2009] [Indexed: 11/25/2022] Open
Abstract
Background Amino acid insertions and deletions in proteins are considered relatively rare events, and their associations with the evolution and adaptation of organisms are not yet understood. In this study, we undertook a systematic analysis of over 214,000 polypeptides from 32 nematode species and identified insertions and deletions unique to nematode proteins in more than 1000 families and provided indirect evidence that these alterations are linked to the evolution and adaptation of nematodes. Results Amino acid alterations in sequences of nematodes were identified by comparison with homologous sequences from a wide range of eukaryotic (metzoan) organisms. This comparison revealed that the proteins inferred from transcriptomic datasets for nematodes contained more deletions than insertions, and that the deletions tended to be larger in length than insertions, indicating a decreased size of the transcriptome of nematodes compared with other organisms. The present findings showed that this reduction is more pronounced in parasitic nematodes compared with the free-living nematodes of the genus Caenorhabditis. Consistent with a requirement for conservation in proteins involved in the processing of genetic information, fewer insertions and deletions were detected in such proteins. On the other hand, more insertions and deletions were recorded for proteins inferred to be involved in the endocrine and immune systems, suggesting a link with adaptation. Similarly, proteins involved in multiple cellular pathways tended to display more deletions and insertions than those involved in a single pathway. The number of insertions and deletions shared by a range of plant parasitic nematodes were higher for proteins involved in lipid metabolism and electron transport compared with other nematodes, suggesting an association between metabolic adaptation and parasitism in plant hosts. We also identified three sizable deletions from proteins found to be specific to and shared by parasitic nematodes, which, given their uniqueness, might serve as target candidates for drug design. Conclusion This study illustrates the significance of using comparative genomics approaches to identify molecular elements unique to parasitic nematodes, which have adapted to a particular host organism and mode of existence during evolution. While the focus of this study was on nematodes, the approach has applicability to a wide range of other groups of organisms.
Collapse
Affiliation(s)
- Zhengyuan Wang
- The Genome Center, Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
431
|
Abstract
Tandem mass spectrographic analysis of the secreted proteins of plant- and human-parasitic nematodes reveals molecular similarities that reflect the shared need to counter host defenses.
Collapse
Affiliation(s)
- David McK Bird
- Center for the Biology of Nematode Parasitism, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
432
|
Signal sequence analysis of protein sequences from the filarial nematode parasite Brugia malayi and the evolution of secreted proteins in parasites. Parasitol Res 2009; 104:1321-6. [PMID: 19165503 DOI: 10.1007/s00436-009-1331-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Taking a genomic approach to characterize potential secreted products, we analyzed putative protein sequences from Brugia malayi whole-genome shotgun sequencing project. SignalP analysis was applied to predict protein sequences and to identify potential signal peptides and anchors. We randomly analyzed 552 sequences, of which 88 (15.9%) bear predicted signal sequence coding regions. Through comparisons of sequences with homologs from other species, we found that although some of the sequences with signal sequences have no homologs with others, there are almost the same amounts of the sequences with signals which are highly conserved. Considering the distribution of secretory proteins of B. malayi in three categories has not made big differences, and most of the homologues of free-living nematodes of these secretory proteins also contained either N-signal signal peptides or signal anchors; we speculated that secretory proteins may be in the same evolutional status as the non-secretory proteins.
Collapse
|
433
|
Sleumer MC, Bilenky M, He A, Robertson G, Thiessen N, Jones SJM. Caenorhabditis elegans cisRED: a catalogue of conserved genomic elements. Nucleic Acids Res 2009; 37:1323-34. [PMID: 19151087 PMCID: PMC2651782 DOI: 10.1093/nar/gkn1041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The availability of completely sequenced genomes from eight species of nematodes has provided an opportunity to identify novel cis-regulatory elements in the promoter regions of Caenorhabditis elegans transcripts using comparative genomics. We determined orthologues for C. elegans transcripts in C. briggsae, C. remanei, C. brenneri, C. japonica, Pristionchus pacificus, Brugia malayi and Trichinella spiralis using the WABA alignment algorithm. We pooled the upstream region of each transcript in C. elegans with the upstream regions of its orthologues and identified conserved DNA sequence elements by de novo motif discovery. In total, we discovered 158 017 novel conserved motifs upstream of 3847 C. elegans transcripts for which three or more orthologues were available, and identified 82% of 44 experimentally proven regulatory elements from ORegAnno. We annotated 26% of the motifs as similar to known binding sequences of transcription factors from ORegAnno, TRANSFAC and JASPAR. This is the first catalogue of annotated conserved upstream elements for nematodes and can be used to find putative regulatory elements, improve gene models, discover novel RNA genes, and understand the evolution of transcription factors and their binding sites in phylum Nematoda. The annotated motifs provide novel binding site candidates for both characterized transcription factors and orthologues of characterized mammalian transcription factors.
Collapse
Affiliation(s)
- Monica C Sleumer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
434
|
Pieper U, Eswar N, Webb BM, Eramian D, Kelly L, Barkan DT, Carter H, Mankoo P, Karchin R, Marti-Renom MA, Davis FP, Sali A. MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2009; 37:D347-54. [PMID: 18948282 PMCID: PMC2686492 DOI: 10.1093/nar/gkn791] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/08/2008] [Indexed: 11/14/2022] Open
Abstract
MODBASE (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by MODPIPE, an automated modeling pipeline that relies primarily on MODELLER for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.org/modeller). MODBASE currently contains 5,152,695 reliable models for domains in 1,593,209 unique protein sequences; only models based on statistically significant alignments and/or models assessed to have the correct fold are included. MODBASE also allows users to calculate comparative models on demand, through an interface to the MODWEB modeling server (http://salilab.org/modweb). Other resources integrated with MODBASE include databases of multiple protein structure alignments (DBAli), structurally defined ligand binding sites (LIGBASE), predicted ligand binding sites (AnnoLyze), structurally defined binary domain interfaces (PIBASE) and annotated single nucleotide polymorphisms and somatic mutations found in human proteins (LS-SNP, LS-Mut). MODBASE models are also available through the Protein Model Portal (http://www.proteinmodelportal.org/).
Collapse
Affiliation(s)
- Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Narayanan Eswar
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ben M. Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David Eramian
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Libusha Kelly
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David T. Barkan
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Hannah Carter
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Parminder Mankoo
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rachel Karchin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Marc A. Marti-Renom
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Fred P. Davis
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, Office 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, Graduate Group in Biophysics, Graduate Group in Bioinformatics, University of California at San Francisco, CA, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, Structural Genomics Unit, Bioinformatics & Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler 16, Valencia 46012, Spain and Howard Hughes Medical Institute, Janelia Farm, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
435
|
Abstract
Expressed sequence tags (ESTs) are fragments of mRNA sequences derived through single sequencing reactions performed on randomly selected clones from cDNA libraries. To date, over 45 million ESTs have been generated from over 1400 different species of eukaryotes. For the most part, EST projects are used to either complement existing genome projects or serve as low-cost alternatives for purposes of gene discovery. However, with improvements in accuracy and coverage, they are beginning to find application in fields such as phylogenetics, transcript profiling and proteomics. This volume provides practical details on the generation and analysis of ESTs. Chapters are presented which cover creation of cDNA libraries; generation and processing of sequence data; bioinformatics analysis of ESTs; and their application to phylogenetics and transcript profiling.
Collapse
Affiliation(s)
- John Parkinson
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
436
|
Bird DM, Williamson VM, Abad P, McCarter J, Danchin EGJ, Castagnone-Sereno P, Opperman CH. The genomes of root-knot nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:333-51. [PMID: 19400640 DOI: 10.1146/annurev-phyto-080508-081839] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant-parasitic nematodes are the most destructive group of plant pathogens worldwide and are extremely challenging to control. The recent completion of two root-knot nematode genomes opens the way for a comparative genomics approach to elucidate the success of these parasites. Sequencing revealed that Meloidogyne hapla, a diploid that reproduces by facultative, meiotic parthenogenesis, encodes approximately 14,200 genes in a compact, 54 Mpb genome. Indeed, this is the smallest metazoan genome completed to date. By contrast, the 86 Mbp Meloidogyne incognita genome encodes approximately 19,200 genes. This species reproduces by obligate mitotic parthenogenesis and exhibits a complex pattern of aneuploidy. The genome includes triplicated regions and contains allelic pairs with exceptionally high degrees of sequence divergence, presumably reflecting adaptations to the strictly asexual reproductive mode. Both root-knot nematode genomes have compacted gene families compared with the free-living nematode Caenorhabditis elegans, and both encode large suites of enzymes that uniquely target the host plant. Acquisition of these genes, apparently via horizontal gene transfer, and their subsequent expansion and diversification point to the evolutionary history of these parasites. It also suggests new routes to their control.
Collapse
Affiliation(s)
- David McK Bird
- Center for the Biology of Nematode Parasitism, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | | | |
Collapse
|
437
|
Rosso MN, Jones JT, Abad P. RNAi and functional genomics in plant parasitic nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:207-32. [PMID: 19400649 DOI: 10.1146/annurev.phyto.112408.132605] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.
Collapse
Affiliation(s)
- M N Rosso
- INRA, UNSA, UMR 1301, CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, F-06903 Sophia Antipolis, France.
| | | | | |
Collapse
|
438
|
Danchin EG, Perfus-Barbeoch L. The Genome Sequence of Meloidogyne incognita Unveils Mechanisms of Adaptation to Plant-Parasitism in Metazoa. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
439
|
Coghlan A, Fiedler TJ, McKay SJ, Flicek P, Harris TW, Blasiar D, Stein LD. nGASP--the nematode genome annotation assessment project. BMC Bioinformatics 2008; 9:549. [PMID: 19099578 PMCID: PMC2651883 DOI: 10.1186/1471-2105-9-549] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/19/2008] [Indexed: 11/15/2022] Open
Abstract
Background While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets across 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. Results The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with unusually many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs posed the greatest difficulty for gene-finders. Conclusion This experiment establishes a baseline of gene prediction accuracy in Caenorhabditis genomes, and has guided the choice of gene-finders for the annotation of newly sequenced genomes of Caenorhabditis and other nematode species. We have created new gene sets for C. briggsae, C. remanei, C. brenneri, C. japonica, and Brugia malayi using some of the best-performing gene-finders.
Collapse
Affiliation(s)
- Avril Coghlan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Abstract
The efficiency of RNA interference varies between different organisms, even among nematodes. A recent report of successful RNA interference in the nematode Panagrolaimus superbus in BMC Molecular Biology has implications for the comparative study of the functional genomics of nematode species, and prompts reflections on the choice of Caenorhabditis elegans as a model organism.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut Jacques Monod, CNRS - Universities of Paris 7 and 6, Tour 43, 2 place Jussieu, 75251 Paris cedex 05, France.
| |
Collapse
|
441
|
|
442
|
Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitol Res 2008; 104:753-61. [DOI: 10.1007/s00436-008-1251-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
443
|
|
444
|
Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AWE, Chen F, Crowther GJ, Doyle MA, Hertz-Fowler C, Hopkins AL, McAllister G, Nwaka S, Overington JP, Pain A, Paolini GV, Pieper U, Ralph SA, Riechers A, Roos DS, Sali A, Shanmugam D, Suzuki T, Voorhis WCV, Verlinde CLMJ. Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 2008; 7:900-7. [PMID: 18927591 PMCID: PMC3184002 DOI: 10.1038/nrd2684] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The increasing availability of genomic data for pathogens that cause tropical diseases has created new opportunities for drug discovery and development. However, if the potential of such data is to be fully exploited, the data must be effectively integrated and be easy to interrogate. Here, we discuss the development of the TDR Targets database (http://tdrtargets.org), which encompasses extensive genetic, biochemical and pharmacological data related to tropical disease pathogens, as well as computationally predicted druggability for potential targets and compound desirability information. By allowing the integration and weighting of this information, this database aims to facilitate the identification and prioritization of candidate drug targets for pathogens.
Collapse
Affiliation(s)
- Fernán Agüero
- Universidad Nacional de General San Martín, Buenos Aires (Argentina)
| | | | | | | | | | - Robert K. Campbell
- Marine Biological Laboratory, Woods Hole MA (USA)
- Pfizer Laboratories, Sandwich (UK)
| | - Santiago Carmona
- Universidad Nacional de General San Martín, Buenos Aires (Argentina)
| | | | | | - Feng Chen
- University of Pennsylvania, Philadelphia PA (USA)
| | | | | | | | | | | | | | | | - Arnab Pain
- Sanger Institute, Hinxton, Cambridgeshire (UK)
| | | | | | | | | | | | - Andrej Sali
- University of California, San Francisco CA (USA)
| | | | | | | | | |
Collapse
|
445
|
Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl Trop Dis 2008; 2:e326. [PMID: 18958170 PMCID: PMC2569413 DOI: 10.1371/journal.pntd.0000326] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/01/2008] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. METHODOLOGY/PRINCIPAL FINDINGS To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP) of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. CONCLUSIONS/SIGNIFICANCE A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host-parasite interaction.
Collapse
|
446
|
Martin J, Abubucker S, Wylie T, Yin Y, Wang Z, Mitreva M. Nematode.net update 2008: improvements enabling more efficient data mining and comparative nematode genomics. Nucleic Acids Res 2008; 37:D571-8. [PMID: 18940860 PMCID: PMC2686480 DOI: 10.1093/nar/gkn744] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nematode.net (http://nematode.net) is a publicly available resource dedicated to the study of parasitic nematodes. In 2000, the Genome Center at Washington University (GC) joined a consortium including the Nematode Genomics group in Edinburgh, and the Pathogen Sequencing Unit of the Sanger Institute to generate expressed sequence tags (ESTs) as an inexpensive and efficient solution for gene discovery in parasitic nematodes. As of 2008 the GC, sampling key parasites of humans, animals and plants, has generated over 500 000 ESTs and 1.2 million genome survey sequences from more than 30 non-Caenorhabditis elegans nematodes. Nematode.net was implemented to offer user-friendly access to data produced by this project. In addition to sequence data, the site hosts: assembled NemaGene clusters in GBrowse views characterizing composition and protein homology, functional Gene Ontology annotations presented via the AmiGO browser, KEGG-based graphical display of NemaGene clusters mapped to metabolic pathways, codon usage tables, NemFam protein families which represent conserved nematode-restricted coding sequences not found in public protein databases, a web-based WU-BLAST search tool that allows complex querying and other assorted resources. The primary aim of Nematode.net is the dissemination of this diverse collection of information to the broader scientific community in a way that is useful, consistent, centralized and enduring.
Collapse
Affiliation(s)
- John Martin
- The Genome Center, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA
| | | | | | | | | | | |
Collapse
|
447
|
Cantacessi C, Loukas A, Campbell BE, Mulvenna J, Ong EK, Zhong W, Sternberg PW, Otranto D, Gasser RB. Exploring transcriptional conservation between Ancylostoma caninum and Haemonchus contortus by oligonucleotide microarray and bioinformatic analyses. Mol Cell Probes 2008; 23:1-9. [PMID: 18977290 DOI: 10.1016/j.mcp.2008.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 08/13/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
In this study, we identified, using an established oligonucleotide microarray platform for the parasitic nematode Haemonchus contortus, transcripts that are 'conserved' between serum-activated and non-activated L3s of Ancylostoma caninum (aL3 and L3, respectively) and H. contortus by cross-species hybridization (CSH) at high stringency and conducted extensive bioinformatic analyses of the cross-hybridizing expressed sequence tags (ESTs). The microarray analysis revealed significant differential hybridization between aL3 and L3 for 32 molecules from A. caninum, of which 29 were shown to have homologues/orthologues in the free-living nematode Caenorhabditis elegans and/or A. caninum and the other three molecules had no homologues in current gene databases. 'Non-wildtype' RNAi phenotypes were recorded for 13 of the C. elegans homologues. A subset of 16 C. elegans homologues/orthologues (i.e. genes abce-1, act-2, C08H9.2, C55F2.1, calu-1, col-181, cpr-6, elo-2, asp-1, K07E3.4, rpn-2, sel-9, T28C12.4, hsb-1, Y57G11C.15 and ZK593.1) were predicted to interact genetically with a total of 156 (range 1-88) other genes. Gene ontology (GO) analysis of the interacting genes revealed that the most common subcategories were signal transduction (7%), intracellular protein transport and glycolysis (6.2%) within 'biological process'; nuclear (25.7%) and intracellular (19.8%) within 'cellular component'; and ATP-binding (14.4%) and protein-binding (8.4%) within 'molecular function'. The potential roles of key molecules in the two blood-feeding parasitic nematodes are discussed in relation to the known roles of their homologues/orthologues in C. elegans. The CSH approach used may provide a tool for the screening of genes conserved across a range of different taxa of parasites for which DNA microarray platforms are not available.
Collapse
Affiliation(s)
- C Cantacessi
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Thomas JH, Robertson HM. The Caenorhabditis chemoreceptor gene families. BMC Biol 2008; 6:42. [PMID: 18837995 PMCID: PMC2576165 DOI: 10.1186/1741-7007-6-42] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 10/06/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. RESULTS Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. CONCLUSION Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
449
|
|
450
|
Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 2008; 105:14802-7. [PMID: 18809916 PMCID: PMC2547418 DOI: 10.1073/pnas.0805946105] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Indexed: 11/18/2022] Open
Abstract
We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the free-living nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution.
Collapse
Affiliation(s)
- Charles H Opperman
- Center for the Biology of Nematode Parasitism, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|