1
|
Brinkman N, Teunis T, Choi S, Ring D, Brode WM. Factors associated with the presence and intensity of ongoing symptoms in Long COVID. PLoS One 2025; 20:e0319874. [PMID: 40267966 PMCID: PMC12017833 DOI: 10.1371/journal.pone.0319874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Identification of modifiable factors associated with symptom intensity among people seeking care for Post-Acute Sequelae of SARS-CoV-2 infection (PASC) could help guide the development of comprehensive, whole-person care pathways to alleviate symptoms irrespective of potential underlying pathophysiologies. We aimed to better define the key contributors to PASC, and sought the factors associated with PASC symptom presence and intensity. METHODS In this cross-sectional study, 249 patients presenting for PASC care at a dedicated Post-COVID-19 clinic completed a standardized screening assessment prior to initial visit and evaluation by a general internist or nurse practitioner. We measured 46 symptoms based on the WHO's Global COVID-19 Clinical Platform Case Report Form for Post COVID Condition and performed a factor analysis and item response theory based 2-parameter logistic model to develop a population-based t-score to measure PASC symptom presence and intensity (PASC-SPI). A multivariable linear regression analysis was used to assess factors associated with PASC-SPI, accounting for demographics, comorbidities, COVID-19 infection duration and severity, and mental health. RESULTS Greater PASC-SPI was associated with greater symptoms of anxiety, a longer duration of COVID-19 infection, and hypercholesterolemia. Lower PASC-SPI was associated with older age, self-reported 1-3 units of alcohol per week, and self-reported clinician confirmation of COVID-19 diagnosis. Symptoms of anxiety accounted for a considerably higher proportion of variation in PASC-SPI than other variables. CONCLUSION Symptoms of anxiety were the strongest correlate of PASC-SPI, highlighting it as both a potential neuroinflammatory marker of PASC and a modifiable component of the illness. This emphasizes the need for comprehensive, whole person treatment strategies that integrate evidence-based interventions to address the multifaceted nature of PASC.
Collapse
Affiliation(s)
- Niels Brinkman
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin,
| | - Teun Teunis
- Department of Orthopedic Surgery & Department of Plastic and Reconstructive Surgery, The University of Pittsburgh,
| | - Seung Choi
- The Center for Applied Psychometric Research, Educational Psychology Department, The University of Texas at Austin,
| | - David Ring
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin,
| | - W. Michael Brode
- Department of Internal Medicine & Department of Population Health, Dell Medical School, The University of Texas at Austin
| |
Collapse
|
2
|
Norris C, Garimella HT, Carr W, Boutté AM, Gupta RK, Przekwas AJ. Modeling biomarker kinetics of Aβ levels in serum following blast. Front Neurol 2025; 16:1548589. [PMID: 40255887 PMCID: PMC12006977 DOI: 10.3389/fneur.2025.1548589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Elucidating the unique neuropathological response to blast exposure remains a barrier towards the development of diagnostic approaches for those with blast-induced traumatic brain injury (bTBI). Quantification of biomarker concentrations in the blood post-injury is typically used to inform brain injury severity. However, injury progression and associated changes in biomarker concentrations are sensitive to parameters such as the blast overpressure (BOP) magnitude and frequency of blast exposure. Through this work, a blast-dose biomarker kinetics (BxK) platform was developed and validated for Aβ42 as a promising predictor of injury post-blast. Blast-dose responses accounting for BOP magnitude and frequency were integrated into a mathematical model accounting for whole-body Aβ peptide kinetics. Validation of the developed model was performed through comparison with acute monomer levels in the blood serum of 15 service members exposed to repeated low-level blast while undergoing three-day weapons training. Amyloid precursor protein (APP) synthesis was assumed to be proportional to blast magnitude and additive effects within a window of recovery were applied to account for cumulative exposure. Aβ42 concentrations in the blood serum were predicted within 6.5 ± 5.2% on average, demonstrating model feasibility and biomarker sensitivity to blast. Outcomes discuss how modulation of patient-specific factors (age, weight, genetic factors, years of exposure, sleep) and pathophysiological factors (BBB permeability, amyloidogenic pathology, neuroinflammation) can reveal potential sources of variability in experimental data and be incorporated into the blast-dose BxK platform in future iterations. Advancements in model complexity accounting for sex-specific factors, weapon system, stress levels, risk of symptom onset, and pharmacological treatment strategies are anticipated to improve model calibration. Utilization of this blast-dose BxK model to identify drivers of pathophysiological mechanisms and predict chronic outcomes has the potential to transform bTBI diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Carly Norris
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| | - Harsha T. Garimella
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| | - Walter Carr
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Angela M. Boutté
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Raj K. Gupta
- US Army Medical Research and Development Command, DoD Blast Injury Research Coordinating Office (BIRCO), Fort Detrick, MD, United States
| | - Andrzej J. Przekwas
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| |
Collapse
|
3
|
Wong KT, Hooi YT, Tan SH, Ong KC. Emerging and re-emerging viral infections of the central nervous system in Australasia and beyond. Pathology 2025; 57:230-240. [PMID: 39799084 DOI: 10.1016/j.pathol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country. Another orthoflavivirus, Murray Valley encephalitis virus, has re-emerged in Australia. The Hendra henipavirus together with Nipah henipavirus are listed as high-risk pathogens by the World Health Organization because both can cause lethal encephalitis. The former remains a health threat in Australasia because bats may still be able to spread the infection to unvaccinated Australian horses and other animals acting as intermediate hosts, and thence to humans. The global COVID-19 pandemic, caused by the emerging severe acute respiratory syndrome coronavirus-2, a virus transmitted from animals to humans that was first described and first arose in China, is associated with acute and long-lasting CNS pathology. Fortunately, the pathology and pathogenesis of these important neurotropic viruses are now better understood, leading to better management protocols and prevention strategies. Pathologists are in a unique position to contribute to the diagnosis and advancement in our knowledge of infectious diseases. This review summarises some of the current knowledge about a few important emerging and re-emerging CNS infections in Australasia and beyond.
Collapse
Affiliation(s)
- Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 PMCID: PMC11974614 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
5
|
Becker RC, Tantry US, Khan M, Gurbel PA. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J Thromb Thrombolysis 2025; 58:15-49. [PMID: 39179952 PMCID: PMC11762605 DOI: 10.1007/s11239-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A heightened risk for thrombosis is a hallmark of COVID-19. Expansive clinical experience and medical literature have characterized small (micro) and large (macro) vessel involvement of the venous and arterial circulatory systems. Most events occur in patients with serious or critical illness in the hyperacute (first 1-2 weeks) or acute phases (2-4 weeks) of SARS-CoV-2 infection. However, thrombosis involving the venous, arterial, and microcirculatory systems has been reported in the subacute (4-8 weeks), convalescent (> 8-12 weeks) and chronic phases (> 12 weeks) among patients with mild-to-moderate illness. The purpose of the current focused review is to highlight the distinguishing clinical features, pathological components, and potential mechanisms of venous, arterial, and microvascular thrombosis in patients with COVID-19. The overarching objective is to better understand the proclivity for thrombosis, laying a solid foundation for screening and surveillance modalities, preventive strategies, and optimal patient management.
Collapse
Affiliation(s)
- Richard C Becker
- Cardiovascular Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| | - Muhammad Khan
- Division of General Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| |
Collapse
|
6
|
Wang F, Han H, Wang C, Wang J, Peng Y, Chen Y, He Y, Deng Z, Li F, Rong Y, Wang D, Liu W, Chen H, Zhang Z. SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction. Transl Neurodegener 2024; 13:68. [PMID: 39726060 DOI: 10.1186/s40035-024-00458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood. METHODS We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo. The M protein was stereotaxically injected to further assess its effects in the brains of wild-type (WT) and 5 × FAD mice. Omics technologies, including RNA sequencing and interactome analysis, were performed to explore the mechanisms of the effects of M protein both in vitro and in vivo. RESULTS Systematic analysis of SARS-CoV-2 structural and accessory proteins in Drosophila identified that the M protein induces mitochondrial fragmentation and dysfunction, leading to reduced ATP production, ROS overproduction, and eventually cell death in the indirect flight muscles. In WT mice, M caused hippocampal atrophy, neural apoptosis, glial activation, and mitochondrial damage. These changes were further aggravated in 5 × FAD mice. M was localized to the Golgi apparatus and genetically interacted with four wheel drive (FWD, a Drosophila homolog of mammalian PI4KIIIβ) to regulate Golgi functions in flies. Fwd RNAi, but not PI4KIIIα RNAi, reversed the M-induced Golgi abnormality, mitochondrial fragmentation, and ATP reduction. Inhibition of PI4KIIIβ activity suppressed the M-induced neuronal cell death. Therefore, M induced mitochondrial fragmentation and apoptosis likely through disruption of Golgi-derived PI(4)P-containing vesicles. CONCLUSIONS M disturbs the distribution and function of Golgi, leading to mitochondrial abnormality and eventually neurodegeneration via a PI4KIIIβ-mediated mechanism. This study reveals a potential mechanism for COVID-19 neurological symptoms and opens a new avenue for development of therapeutic strategies targeting SARS-CoV-2 M or mitochondria.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Hailong Han
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Caifang Wang
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Yanni Peng
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Ye Chen
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Yaohui He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361000, China
| | - Zhouyang Deng
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Fang Li
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Yikang Rong
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
| | - Danling Wang
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361000, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Zhuohua Zhang
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
7
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. Brain 2024; 147:3471-3486. [PMID: 38554393 PMCID: PMC11449144 DOI: 10.1093/brain/awae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Joy Barrett
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21021, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Pei-Ju Lu
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Kirsch CFE, Khurram SA, Lambert D, Belani P, Pawha PS, Alipour A, Rashid S, Herb MT, Saju S, Zhu Y, Delman BN, Lin HM, Balchandani P. Seven-tesla magnetic resonance imaging of the nervus terminalis, olfactory tracts, and olfactory bulbs in COVID-19 patients with anosmia and hypogeusia. FRONTIERS IN RADIOLOGY 2024; 4:1322851. [PMID: 39410969 PMCID: PMC11473298 DOI: 10.3389/fradi.2024.1322851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Introduction Linking olfactory epithelium to the central nervous system are cranial nerve 1, the olfactory nerve, and cranial nerve "0," and the nervus terminalis (NT). Since there is minimal expression of angiotensin-converting enzyme-2 (ACE-2) in the olfactory nerve, it is unclear how SARS-CoV-2 causes anosmia (loss of smell) and hypogeusia (reduction of taste). In animal models, NT expresses ACE-2 receptors, suggesting a possible SARS-CoV-2 viral entry site in humans. The purpose of this study was to determine whether ultra-high-field 7 T magnetic resonance imaging (MRI) could visualize the NT, olfactory bulbs (OB), and olfactory tract (OT) in healthy controls and COVID-19 anosmia or hypogeusia and to qualitatively assess for volume loss and T2 alterations. Methods In this study, 7 T MRI was used to evaluate the brain and olfactory regions in 45 COVID-19 patients and 29 healthy controls. Neuroimaging was qualitatively assessed by four board-certified neuroradiologists who were blinded to outcome assignments: for the presence or absence of NT; for OB, OT, and brain volume loss; and altered T2 signal, white matter T2 hyperintensities, microhemorrhages, enlarged perivascular spaces, and brainstem involvement. Results NT was identifiable in all COVID-19 patients and controls. T2 hyperintensity in the NT, OB, and OT in COVID-19 patients with anosmia or hypogeusia was statistically significant compared to controls and COVID-19 patients without anosmia or hypogeusia. Discussion On 7 T MRI, NT was radiographically identifiable, adjacent to OB and OT. In COVID-19 anosmia and hypogeusia, T2 hyperintensity of NT, OB, and OT was statistically significant compared to COVID-19 patients without anosmia or hypogeusia and controls. The NT may be a potential entry site for SARs-CoV-2 and may play a role in the pathophysiology of COVID-19 anosmia.
Collapse
Affiliation(s)
- Claudia F. E. Kirsch
- Yale Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Syed Ali Khurram
- The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Daniel Lambert
- The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Puneet Belani
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Puneet S. Pawha
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Akbar Alipour
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shams Rashid
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mackenzie T. Herb
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sera Saju
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yijuan Zhu
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley N. Delman
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hung-Mo Lin
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Mastoloni EM, French E, Coelho DH. Impact of Nutritional Status on COVID-19-Induced Olfactory Dysfunction. Laryngoscope 2024; 134:4338-4343. [PMID: 39077963 PMCID: PMC11489014 DOI: 10.1002/lary.31660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Although olfactory dysfunction is one of the most common presenting signs of COVID-19 infection, little is known about which populations are most susceptible. The aim of this study is to evaluate the risk of COVID-19-induced chemosensory dysfunction in malnourished individuals. METHODS The N3C database was queried for adults having positive COVID-19 test result, diagnosis of chemosensory dysfunction within 2 weeks of positive test date, and overnutrition or undernutrition (i.e., deficiency or excess of micro- and macronutrients) related diagnoses prior to COVID-19 infection. Individuals previously diagnosed with chemosensory dysfunction were excluded. COVID-19-positive adults without olfactory dysfunction were similarly analyzed. Statistical analysis was performed using odds ratio calculations (95% confidence interval [CI]). RESULTS Of 3,971,536 patients with COVID-19, 73,211 adults were identified with a diagnosis of undernutrition and 428,747 adults were identified with a diagnosis of overnutrition prior to infection. Of those with undernutrition, 264 (0.36%) individuals were identified with a diagnosis of olfactory dysfunction within 2 weeks of infection. Of those with overnutrition, 2851 (0.66%) individuals were identified with a diagnosis of olfactory dysfunction within 2 weeks of infection. The calculated odds ratio for undernutrition and olfactory dysfunction was 0.731 (p < 0.0001, 95% CI [0.0647, 0.0825]). The calculated odds ratio for overnutrition and olfactory dysfunction was 1.419 (p < 0.0001, 95% CI [1.3359, 1.5081]). CONCLUSION Overnutrition may increase the risk of COVID-19-related olfactory dysfunction, while undernutrition may slightly protect. While reasons are unclear, baseline differences in metabolic, inflammatory, and structural biochemistry deserve closer inspection. LEVEL OF EVIDENCE 3 Laryngoscope, 134:4338-4343, 2024.
Collapse
Affiliation(s)
- Elizabeth M. Mastoloni
- Department of Otolaryngology-Head & Neck Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Evan French
- Department of Otolaryngology-Head & Neck Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Daniel H. Coelho
- Department of Otolaryngology-Head & Neck Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
10
|
Li X, Mi Z, Liu Z, Rong P. SARS-CoV-2: pathogenesis, therapeutics, variants, and vaccines. Front Microbiol 2024; 15:1334152. [PMID: 38939189 PMCID: PMC11208693 DOI: 10.3389/fmicb.2024.1334152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 with staggering economic fallout and human suffering. The unique structure of SARS-CoV-2 and its underlying pathogenic mechanism were responsible for the global pandemic. In addition to the direct damage caused by the virus, SARS-CoV-2 triggers an abnormal immune response leading to a cytokine storm, culminating in acute respiratory distress syndrome and other fatal diseases that pose a significant challenge to clinicians. Therefore, potential treatments should focus not only on eliminating the virus but also on alleviating or controlling acute immune/inflammatory responses. Current management strategies for COVID-19 include preventative measures and supportive care, while the role of the host immune/inflammatory response in disease progression has largely been overlooked. Understanding the interaction between SARS-CoV-2 and its receptors, as well as the underlying pathogenesis, has proven to be helpful for disease prevention, early recognition of disease progression, vaccine development, and interventions aimed at reducing immunopathology have been shown to reduce adverse clinical outcomes and improve prognosis. Moreover, several key mutations in the SARS-CoV-2 genome sequence result in an enhanced binding affinity to the host cell receptor, or produce immune escape, leading to either increased virus transmissibility or virulence of variants that carry these mutations. This review characterizes the structural features of SARS-CoV-2, its variants, and their interaction with the immune system, emphasizing the role of dysfunctional immune responses and cytokine storm in disease progression. Additionally, potential therapeutic options are reviewed, providing critical insights into disease management, exploring effective approaches to deal with the public health crises caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Petersen M, Becker B, Schell M, Mayer C, Naegele FL, Petersen E, Twerenbold R, Thomalla G, Cheng B, Betz C, Hoffmann AS. Reduced olfactory bulb volume accompanies olfactory dysfunction after mild SARS-CoV-2 infection. Sci Rep 2024; 14:13396. [PMID: 38862636 PMCID: PMC11167024 DOI: 10.1038/s41598-024-64367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Despite its high prevalence, the determinants of smelling impairment in COVID-19 remain not fully understood. In this work, we aimed to examine the association between olfactory bulb volume and the clinical trajectory of COVID-19-related smelling impairment in a large-scale magnetic resonance imaging (MRI) analysis. Data of non-vaccinated COVID-19 convalescents recruited within the framework of the prospective Hamburg City Health Study COVID Program between March and December 2020 were analyzed. At baseline, 233 participants underwent MRI and neuropsychological testing as well as a structured questionnaire for olfactory function. Between March and April 2022, olfactory function was assessed at follow-up including quantitative olfactometric testing with Sniffin' Sticks. This study included 233 individuals recovered from mainly mild to moderate SARS-CoV-2 infections. Longitudinal assessment demonstrated a declining prevalence of self-reported olfactory dysfunction from 67.1% at acute infection, 21.0% at baseline examination and 17.5% at follow-up. Participants with post-acute self-reported olfactory dysfunction had a significantly lower olfactory bulb volume at baseline than normally smelling individuals. Olfactory bulb volume at baseline predicted olfactometric scores at follow-up. Performance in neuropsychological testing was not significantly associated with the olfactory bulb volume. Our work demonstrates an association of long-term self-reported smelling dysfunction and olfactory bulb integrity in a sample of individuals recovered from mainly mild to moderate COVID-19. Collectively, our results highlight olfactory bulb volume as a surrogate marker that may inform diagnosis and guide rehabilitation strategies in COVID-19.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Benjamin Becker
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Felix L Naegele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Elina Petersen
- Population Health Research Department, University Heart and Vascular Center, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Raphael Twerenbold
- Population Health Research Department, University Heart and Vascular Center, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna S Hoffmann
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Dias M, Shaida Z, Haloob N, Hopkins C. Recovery rates and long-term olfactory dysfunction following COVID-19 infection. World J Otorhinolaryngol Head Neck Surg 2024; 10:121-128. [PMID: 38855291 PMCID: PMC11156684 DOI: 10.1002/wjo2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Olfactory dysfunction is one of the most recognized symptoms of COVID-19, significantly impacting quality of life, particularly in cases where recovery is prolonged. This review aims to explore patterns of olfactory recovery post-COVID-19 infection, with particular focus on delayed recovery. Data Sources Published literature in the English language, including senior author's own work, online and social media platforms, and patients' anecdotal reports. Method A comprehensive review of the literature was undertaken by the authors with guidance from the senior author with expertise in the field of olfaction. Results Based on self-report, an estimated 95% of patients recover their olfactory function within 6 months post-COVID-19 infection. However, psychophysical testing detects higher rates of persistent olfactory dysfunction. Recovery has been found to continue for at least 2 years postinfection; negative prognostic indicators include severe olfactory loss in the acute phase, female sex, and older age. Variability in quantitative and qualitative disturbance in prolonged cases likely reflects both peripheral and central pathophysiological mechanisms. Limitations of many of the reviewed studies reflect lack of psychophysical testing and baseline olfactory assessment. Conclusions Post-COVID-19 olfactory dysfunction remains a significant health and psychosocial burden. Emerging evidence is improving awareness and knowledge among clinicians to better support patients through their olfactory rehabilitation, with hope of recovery after several months or years. Further research is needed to better understand the underlying pathogenesis of delayed recovery, identify at risk individuals earlier in the disease course, and develop therapeutic targets.
Collapse
|
13
|
Lengacher NA, Tomlinson JJ, Jochum AK, Franz J, Hasan Ali O, Flatz L, Jochum W, Penninger J, Stadelmann C, Woulfe JM, Schlossmacher MG. Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19. Acta Neuropathol Commun 2024; 12:70. [PMID: 38698465 PMCID: PMC11067107 DOI: 10.1186/s40478-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.
Collapse
Affiliation(s)
- Nathalie A Lengacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julianna J Tomlinson
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ann-Kristin Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jonas Franz
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Omar Hasan Ali
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Josef Penninger
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Christine Stadelmann
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - John M Woulfe
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Michael G Schlossmacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
14
|
Williams GP, Yu ED, Shapiro K, Wang E, Freuchet A, Frazier A, Lindestam Arlehamn CS, Sette A, da Silva Antunes R. Investigating viral and autoimmune T cell responses associated with post-acute sequelae of COVID-19. Hum Immunol 2024; 85:110770. [PMID: 38433036 PMCID: PMC11144566 DOI: 10.1016/j.humimm.2024.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Post-acute sequelae of COVID-19 (PASC), or Long COVID, is a chronic condition following acute SARS-CoV-2 infection. Symptoms include exertion fatigue, respiratory issues, myalgia, and neurological manifestations such as 'brain fog,' posing concern for their debilitating nature and potential role in other neurological disorders. However, the underlying potential pathogenic mechanisms of the neurological complications of PASC is largely unknown. Herein, we investigated differences in antigen-specific T cell responses from the peripheral blood towards SARS-CoV-2, latent viruses, or neuronal antigens in 14 PASC individuals with neurological manifestations (PASC-N) versus 22 individuals fully recovered from COVID-19. We employed Activation Induced Marker (AIM), ICS and FluoroSpot assays to determine the specificity and magnitude of CD4+ and CD8+ T cell responses towards SARS-CoV-2 (Spike and rest of proteome), latent viruses (CMV, EBV), and several neuronal antigens. Overall, we observed similar antigen-specific T cell frequencies and cytokine effector T cell responses between PASC donors compared to recovered controls for all antigens tested (viral or autoantigen) in both CD4+ and CD8+ T cell compartments. Our findings suggest that PASC-N does not appear to be associated with changes in antigen-specific T cell responses towards a subset of disease-relevant targets, but more studies in a larger cohort are needed to confirm these unaltered responses.
Collapse
Affiliation(s)
- Gregory P Williams
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | - Esther Dawen Yu
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | - Kendra Shapiro
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | - Eric Wang
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | - Antoine Freuchet
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA; University of California San Diego School of Medicine, La Jolla, San Diego, CA, USA
| | | |
Collapse
|
15
|
Power Guerra N, Bierkämper M, Pablik J, Hummel T, Witt M. Histochemical Evidence for Reduced Immune Response in Nasal Mucosa of Patients with COVID-19. Int J Mol Sci 2024; 25:4427. [PMID: 38674011 PMCID: PMC11050322 DOI: 10.3390/ijms25084427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The primary entry point of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nasal mucosa, where viral-induced inflammation occurs. When the immune response fails against SARS-CoV-2, understanding the altered response becomes crucial. This study aimed to compare SARS-CoV-2 immunological responses in the olfactory and respiratory mucosa by focusing on epithelia and nerves. Between 2020 and 2022, we obtained post mortem tissues from the olfactory cleft from 10 patients with histologically intact olfactory epithelia (OE) who died with or from COVID-19, along with four age-matched controls. These tissues were subjected to immunohistochemical reactions using antibodies against T cell antigens CD3, CD8, CD68, and SARS spike protein for viral evidence. Deceased patients with COVID-19 exhibited peripheral lymphopenia accompanied by a local decrease in CD3+ cells in the OE. However, SARS-CoV-2 spike protein was sparsely detectable in the OE. With regard to the involvement of nerve fibers, the present analysis suggested that SARS-CoV-2 did not significantly alter the immune response in olfactory or trigeminal fibers. On the other hand, SARS spike protein was detectable in both nerves. In summary, the post mortem investigation demonstrated a decreased T cell response in patients with COVID-19 and signs of SARS-CoV-2 presence in olfactory and trigeminal fibers.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany; (N.P.G.); (M.B.); (T.H.)
| | - Martin Bierkämper
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany; (N.P.G.); (M.B.); (T.H.)
| | - Jessica Pablik
- Department of Pathology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany;
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany; (N.P.G.); (M.B.); (T.H.)
| | - Martin Witt
- Department of Anatomy, Institute of Biostructural Foundations of Medical Sciences, Poznań University of Medical Sciences, 61-781 Poznań, Poland
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
| |
Collapse
|
16
|
Maniaci A, Lavalle S, Masiello E, Lechien JR, Vaira L, Boscolo-Rizzo P, Musa M, Gagliano C, Zeppieri M. Platelet-Rich Plasma (PRP) in the Treatment of Long COVID Olfactory Disorders: A Comprehensive Review. Biomedicines 2024; 12:808. [PMID: 38672163 PMCID: PMC11048638 DOI: 10.3390/biomedicines12040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Long COVID has brought numerous challenges to healthcare, with olfactory dysfunction (OD) being a particularly distressing outcome for many patients. The persistent loss of smell significantly diminishes the affected individual's quality of life. Recent attention has been drawn to the potential of platelet-rich plasma (PRP) therapy as a treatment for OD. This comprehensive review aims to evaluate the effectiveness of PRP therapy in ameliorating OD, especially when associated with long-term COVID-19. Methods: We executed a comprehensive search of the literature, encompassing clinical trials and observational studies that utilized PRP in treating OD limited to COVID-19. We retrieved and comprehensively discussed data such as design, participant demographics, and reported outcomes, focusing on the efficacy and safety of PRP therapy for OD in COVID-19 patients. Results: Our comprehensive analysis interestingly found promising perspectives for PRP in OD following COVID-19 infection. The collective data indicate that PRP therapy contributed to a significant improvement in olfactory function after COVID-19 infection. Conclusions: The evidence amassed suggests that PRP is a promising and safe therapeutic option for OD, including cases attributable to Long COVID-19. The observed uniform enhancement of olfactory function in patients receiving PRP highlights the necessity for well-designed, controlled trials. Such studies would help to refine treatment protocols and more definitively ascertain the efficacy of PRP in a broader, more varied patient cohort.
Collapse
Affiliation(s)
- Antonino Maniaci
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, EN, Italy; (A.M.)
- Research Committee of Young Otolaryngologists of International Federation of Otorhinolaryngological Societies (World Ear, Nose, and Throat Federation), 13005 Paris, France
| | - Salvatore Lavalle
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, EN, Italy; (A.M.)
| | - Edoardo Masiello
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, MI, Italy
| | - Jerome R. Lechien
- Research Committee of Young Otolaryngologists of International Federation of Otorhinolaryngological Societies (World Ear, Nose, and Throat Federation), 13005 Paris, France
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7000 Mons, Belgium
| | - Luigi Vaira
- Research Committee of Young Otolaryngologists of International Federation of Otorhinolaryngological Societies (World Ear, Nose, and Throat Federation), 13005 Paris, France
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, SS, Italy
- Biomedical Science Department, Biomedical Science Ph.D. School, University of Sassari, 07100 Sassari, SS, Italy
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical, and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, TS, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, EN, Italy; (A.M.)
- Eye Clinic Catania, University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, CT, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, UD, Italy
| |
Collapse
|
17
|
Chang K, Zaikos T, Kilner-Pontone N, Ho CY. Mechanisms of COVID-19-associated olfactory dysfunction. Neuropathol Appl Neurobiol 2024; 50:e12960. [PMID: 38419211 PMCID: PMC10906737 DOI: 10.1111/nan.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Olfactory dysfunction is one of the most common symptoms of COVID-19. In the first 2 years of the pandemic, it was frequently reported, although its incidence has significantly decreased with the emergence of the Omicron variant, which has since become the dominant viral strain. Nevertheless, many patients continue to suffer from persistent dysosmia and dysgeusia, making COVID-19-associated olfactory dysfunction an ongoing health concern. The proposed pathogenic mechanisms of COVID-19-associated olfactory dysfunction are complex and likely multifactorial. While evidence suggests that infection of sustentacular cells and associated mucosal inflammation may be the culprit of acute, transient smell loss, alterations in other components of the olfactory system (e.g., olfactory receptor neuron dysfunction, olfactory bulb injury and alterations in the olfactory cortex) may lead to persistent, long-term olfactory dysfunction. This review aims to provide a comprehensive summary of the epidemiology, clinical manifestations and current understanding of the pathogenic mechanisms of COVID-19-associated olfactory dysfunction.
Collapse
Affiliation(s)
- Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department and Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Thomas Zaikos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Stave GM, Nabeel I, Durand-Moreau Q. Long COVID-ACOEM Guidance Statement. J Occup Environ Med 2024; 66:349-357. [PMID: 38588073 DOI: 10.1097/jom.0000000000003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
ABSTRACT Persistent symptoms are common after acute COVID-19, often referred to as long COVID. Long COVID may affect the ability to perform activities of daily living, including work. Long COVID occurs more frequently in those with severe acute COVID-19. This guidance statement reviews the pathophysiology of severe acute COVID-19 and long COVID and provides pragmatic approaches to long COVID symptoms, syndromes, and conditions in the occupational setting. Disability laws and workers' compensation are also addressed.
Collapse
Affiliation(s)
- Gregg M Stave
- From the Division of Occupational and Environmental Medicine, Duke University, Durham, NC (G.M.S.); Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY (I.N.); and Division of Preventive Medicine, University of Alberta, Edmonton, Canada (Q.D.-M.)
| | | | | |
Collapse
|
19
|
Marin C, Alobid I, López-Chacón M, VanStrahlen CR, Mullol J. Type 2 and Non-type 2 Inflammation in the Upper Airways: Cellular and Molecular Alterations in Olfactory Neuroepithelium Cell Populations. Curr Allergy Asthma Rep 2024; 24:211-219. [PMID: 38492160 PMCID: PMC11008081 DOI: 10.1007/s11882-024-01137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE OF REVIEW Neurogenesis occurring in the olfactory epithelium is critical to continuously replace olfactory neurons to maintain olfactory function, but is impaired during chronic type 2 and non-type 2 inflammation of the upper airways. In this review, we describe the neurobiology of olfaction and the olfactory alterations in chronic rhinosinusitis with nasal polyps (type 2 inflammation) and post-viral acute rhinosinusitis (non-type 2 inflammation), highlighting the role of immune response attenuating olfactory neurogenesis as a possibly mechanism for the loss of smell in these diseases. RECENT FINDINGS Several studies have provided relevant insights into the role of basal stem cells as direct participants in the progression of chronic inflammation identifying a functional switch away from a neuro-regenerative phenotype to one contributing to immune defense, a process that induces a deficient replacement of olfactory neurons. The interaction between olfactory stem cells and immune system might critically underlie ongoing loss of smell in type 2 and non-type 2 inflammatory upper airway diseases. In this review, we describe the neurobiology of olfaction and the olfactory alterations in type 2 and non-type 2 inflammatory upper airway diseases, highlighting the role of immune response attenuating olfactory neurogenesis, as a possibly mechanism for the lack of loss of smell recovery.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain.
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.
| | - Isam Alobid
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Mauricio López-Chacón
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Camilo R VanStrahlen
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain.
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Grant RA, Poor TA, Sichizya L, Diaz E, Bailey JI, Soni S, Senkow KJ, Pérez-Leonor XG, Abdala-Valencia H, Lu Z, Donnelly HK, Simons LM, Ozer EA, Tighe RM, Lomasney JW, Wunderink RG, Singer BD, Misharin AV, Budinger GS. Prolonged exposure to lung-derived cytokines is associated with activation of microglia in patients with COVID-19. JCI Insight 2024; 9:e178859. [PMID: 38502186 PMCID: PMC11141878 DOI: 10.1172/jci.insight.178859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.METHODSWe measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 and 3 patients who died from other causes for single-cell RNA-sequencing.RESULTSMicroglia from patients with COVID-19 exhibited a transcriptomic signature suggestive of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression of COVID-19-specific cytokines.CONCLUSIONProlonged lung inflammation results in sustained elevations in circulating cytokines in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to inflammatory cytokines. These findings support data from rodent models causally linking systemic inflammation with cognitive dysfunction in pneumonia and support further investigation into the role of microglia in pneumonia-related cognitive dysfunction.FUNDINGSCRIPT U19AI135964, UL1TR001422, P01AG049665, P01HL154998, R01HL149883, R01LM013337, R01HL153122, R01HL147290, R01HL147575, R01HL158139, R01ES034350, R01ES027574, I01CX001777, U01TR003528, R21AG075423, T32AG020506, F31AG071225, T32HL076139.
Collapse
Affiliation(s)
- Rogan A. Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Taylor A. Poor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Estefani Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Joseph I. Bailey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Sahil Soni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Karolina J. Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | | | | | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Helen K. Donnelly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert M. Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
- Department of Biochemistry and Molecular Genetics, and Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and
| | | |
Collapse
|
21
|
Clijsters M, Khan M, Backaert W, Jorissen M, Speleman K, Van Bulck P, Van Den Bogaert W, Vandenbriele C, Mombaerts P, Van Gerven L. Protocol for postmortem bedside endoscopic procedure to sample human respiratory and olfactory cleft mucosa, olfactory bulbs, and frontal lobe. STAR Protoc 2024; 5:102831. [PMID: 38277268 PMCID: PMC10837096 DOI: 10.1016/j.xpro.2023.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024] Open
Abstract
We present a protocol for the rapid postmortem bedside procurement of selected tissue samples using an endoscopic endonasal surgical technique that we adapted from skull base surgery. We describe steps for the postmortem collection of blood, cerebrospinal fluid, a nasopharyngeal swab, and tissue samples; the clean-up procedure; and the initial processing and storage of the samples. This protocol was validated with tissue samples procured postmortem from COVID-19 patients and can be applied in another emerging infectious disease. For complete details on the use and execution of this protocol, please refer to Khan et al. (2021)1 and Khan et al. (2022).2.
Collapse
Affiliation(s)
- Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, 3000 Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, 3000 Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, 8000 Bruges, Belgium
| | - Pauline Van Bulck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Wouter Van Den Bogaert
- Department of Imaging & Pathology, Forensic Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium; Department of Forensic Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, 3000 Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
van der Knaap N, Ariës MJH, van der Horst ICC, Jansen JFA. On the merits and potential of advanced neuroimaging techniques in COVID-19: A scoping review. Neuroimage Clin 2024; 42:103589. [PMID: 38461701 PMCID: PMC10938171 DOI: 10.1016/j.nicl.2024.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Many Coronavirus Disease 2019 (COVID-19) patients are suffering from long-term neuropsychological sequelae. These patients may benefit from a better understanding of the underlying neuropathophysiological mechanisms and identification of potential biomarkers and treatment targets. Structural clinical neuroimaging techniques have limited ability to visualize subtle cerebral abnormalities and to investigate brain function. This scoping review assesses the merits and potential of advanced neuroimaging techniques in COVID-19 using literature including advanced neuroimaging or postmortem analyses in adult COVID-19 patients published from the start of the pandemic until December 2023. Findings were summarized according to distinct categories of reported cerebral abnormalities revealed by different imaging techniques. Although no unified COVID-19-specific pattern could be subtracted, a broad range of cerebral abnormalities were revealed by advanced neuroimaging (likely attributable to hypoxic, vascular, and inflammatory pathology), even in absence of structural clinical imaging findings. These abnormalities are validated by postmortem examinations. This scoping review emphasizes the added value of advanced neuroimaging compared to structural clinical imaging and highlights implications for brain functioning and long-term consequences in COVID-19.
Collapse
Affiliation(s)
- Noa van der Knaap
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marcel J H Ariës
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
23
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.24.523981. [PMID: 36747753 PMCID: PMC9900813 DOI: 10.1101/2023.01.24.523981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Joy Barrett
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Tibor Kristian
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Catherine Pei-Ju Lu
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
24
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
25
|
Wang M, Wang J, Ren Y, Lu L, Xiong W, Li L, Xu S, Tang M, Yuan Y, Xie Y, Li W, Chen L, Zhou D, Ying B, Li J. Current clinical findings of acute neurological syndromes after SARS-CoV-2 infection. MedComm (Beijing) 2024; 5:e508. [PMID: 38463395 PMCID: PMC10924641 DOI: 10.1002/mco2.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Neuro-COVID, a condition marked by persistent symptoms post-COVID-19 infection, notably affects various organs, with a particular focus on the central nervous system (CNS). Despite scant evidence of SARS-CoV-2 invasion in the CNS, the increasing incidence of Neuro-COVID cases indicates the onset of acute neurological symptoms early in infection. The Omicron variant, distinguished by heightened neurotropism, penetrates the CNS via the olfactory bulb. This direct invasion induces inflammation and neuronal damage, emphasizing the need for vigilance regarding potential neurological complications. Our multicenter study represents a groundbreaking revelation, documenting the definite presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of a significant proportion of Neuro-COVID patients. Furthermore, notable differences emerged between RNA-CSF-positive and negative patients, encompassing aspects such as blood-brain barrier integrity, extent of neuronal damage, and the activation status of inflammation. Despite inherent limitations, this research provides pivotal insights into the intricate interplay between SARS-CoV-2 and the CNS, underscoring the necessity for ongoing research to fully comprehend the virus's enduring effects on the CNS. The findings underscore the urgency of continuous investigation Neuro-COVID to unravel the complexities of this relationship, and pivotal in addressing the long-term consequences of COVID-19 on neurological health.
Collapse
Affiliation(s)
- Minjin Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Jierui Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yan Ren
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lu Lu
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Weixi Xiong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lifeng Li
- Genskey Medical biotechnology Company LimitedBeijingChina
| | - Songtao Xu
- National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Meng Tang
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yushang Yuan
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yi Xie
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Lei Chen
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Binwu Ying
- Department of Laboratory MedicineWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Jinmei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐inspired TechnologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
26
|
Hu B, Gong M, Xiang Y, Qu S, Zhu H, Ye D. Mechanism and treatment of olfactory dysfunction caused by coronavirus disease 2019. J Transl Med 2023; 21:829. [PMID: 37978386 PMCID: PMC10657033 DOI: 10.1186/s12967-023-04719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the start of the pandemic, olfactory dysfunction (OD) has been reported as a common symptom of COVID-19. In some asymptomatic carriers, OD is often the first and even the only symptom. At the same time, persistent OD is also a long-term sequela seen after COVID-19 that can have a serious impact on the quality of life of patients. However, the pathogenesis of post-COVID-19 OD is still unclear, and there is no specific treatment for its patients. The aim of this paper was to review the research on OD caused by SARS-CoV-2 infection and to summarize the mechanism of action, the pathogenesis, and current treatments.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315600, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hai Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
27
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
28
|
Wei ZYD, Liang K, Shetty AK. Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. Aging Dis 2023; 14:1492-1510. [PMID: 37163427 PMCID: PMC10529748 DOI: 10.14336/ad.2023.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades human cells by binding to the angiotensin-converting-enzyme-2 (ACE-2) using a spike protein and leads to Coronavirus disease-2019 (COVID-19). COVID-19 primarily causes a respiratory infection that can lead to severe systemic inflammation. It is also common for some patients to develop significant neurological and psychiatric symptoms. The spread of SARS-CoV-2 to the CNS likely occurs through several pathways. Once spread in the CNS, many acute symptoms emerge, and such infections could also transpire into severe neurological complications, including encephalitis or ischemic stroke. After recovery from the acute infection, a significant percentage of patients develop "long COVID," a condition in which several symptoms of COVID-19 persist for prolonged periods. This review aims to discuss acute and chronic neurological problems after SARS-CoV-2 infection. The potential mechanisms by which SARS-CoV-2 enters the CNS and causes neuroinflammation, neuropathological changes observed in post-mortem brains of COVID-19 patients, and cognitive and mood problems in COVID-19 survivors are discussed in the initial part. The later part of the review deliberates the causes of long COVID, approaches for noninvasive tracking of neuroinflammation in long COVID patients, and the potential therapeutic strategies that could ease enduring CNS symptoms observed in long COVID.
Collapse
Affiliation(s)
- Zhuang-Yao D Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
29
|
Bispo DDDC, Brandão PRDP, Pereira DA, Maluf FB, Dias BA, Paranhos HR, von Glehn F, de Oliveira ACP, Soares AADSM, Descoteaux M, Regattieri NAT. Altered structural connectivity in olfactory disfunction after mild COVID-19 using probabilistic tractography. Sci Rep 2023; 13:12886. [PMID: 37558765 PMCID: PMC10412532 DOI: 10.1038/s41598-023-40115-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
We aimed to investigate changes in olfactory bulb volume and brain network in the white matter (WM) in patients with persistent olfactory disfunction (OD) following COVID-19. A cross-sectional study evaluated 38 participants with OD after mild COVID-19 and 24 controls, including Sniffin' Sticks identification test (SS-16), MoCA, and brain magnetic resonance imaging. Network-Based Statistics (NBS) and graph theoretical analysis were used to explore the WM. The COVID-19 group had reduced olfactory bulb volume compared to controls. In NBS, COVID-19 patients showed increased structural connectivity in a subnetwork comprising parietal brain regions. Regarding global network topological properties, patients exhibited lower global and local efficiency and higher assortativity than controls. Concerning local network topological properties, patients had reduced local efficiency (left lateral orbital gyrus and pallidum), increased clustering (left lateral orbital gyrus), increased nodal strength (right anterior orbital gyrus), and reduced nodal strength (left amygdala). SS-16 test score was negatively correlated with clustering of whole-brain WM in the COVID-19 group. Thus, patients with OD after COVID-19 had relevant WM network dysfunction with increased connectivity in the parietal sensory cortex. Reduced integration and increased segregation are observed within olfactory-related brain areas might be due to compensatory plasticity mechanisms devoted to recovering olfactory function.
Collapse
Affiliation(s)
- Diógenes Diego de Carvalho Bispo
- Diagnostic Imaging Unit, Brasilia University Hospital, University of Brasilia, Darcy Ribeiro Campus, Asa Norte, Brasilia, Distrito Federal, Brazil.
- Faculty of Medicine, University of Brasilia, Brasilia, Distrito Federal, Brazil.
- Department of Radiology, Hospital Santa Marta, Taguatinga, Distrito Federal, Brazil.
| | - Pedro Renato de Paula Brandão
- Neuroscience and Behavior Lab, University of Brasilia, Brasilia, Distrito Federal, Brazil
- Hospital Sírio-Libanês, Brasilia, Distrito Federal, Brazil
| | - Danilo Assis Pereira
- Advanced Psychometry Laboratory, Brazilian Institute of Neuropsychology and Cognitive Sciences, Brasilia, Distrito Federal, Brazil
| | | | - Bruna Arrais Dias
- Department of Radiology, Hospital Santa Marta, Taguatinga, Distrito Federal, Brazil
| | - Hugo Rafael Paranhos
- Department of Radiology, Hospital Santa Marta, Taguatinga, Distrito Federal, Brazil
| | - Felipe von Glehn
- Faculty of Medicine, University of Brasilia, Brasilia, Distrito Federal, Brazil
- Hospital Sírio-Libanês, Brasilia, Distrito Federal, Brazil
| | | | | | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, University of Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions Inc, Sherbrooke, QC, Canada
| | | |
Collapse
|
30
|
Ramasamy A, Wang C, Brode WM, Verduzco-Gutierrez M, Melamed E. Immunologic and Autoimmune-Related Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Clinical Symptoms and Mechanisms of Disease. Phys Med Rehabil Clin N Am 2023; 34:623-642. [PMID: 37419536 PMCID: PMC10086105 DOI: 10.1016/j.pmr.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The COVID-19 pandemic has resulted in a significant number of people developing long-term health effects of postacute sequelae SARS-CoV-2 infection (PASC). Both acute COVID-19 and PASC are now recognized as multiorgan diseases with multiple symptoms and disease causes. The development of immune dysregulation during acute COVID-19 and PASC is of high epidemiologic concern. Both conditions may also be influenced by comorbid conditions such as pulmonary dysfunction, cardiovascular disease, neuropsychiatric conditions, prior autoimmune conditions and cancer. This review discusses the clinical symptoms, pathophysiology, and risk factors that affect both acute COVID-19 and PASC.
Collapse
Affiliation(s)
- Akshara Ramasamy
- Department of Neurology, Dell Medical School, University of Texas at Austin, Health Discovery Building, 1601 Trinity Street, Austin, TX 78712, USA
| | - Chumeng Wang
- Department of Neurology, Dell Medical School, University of Texas at Austin, Health Discovery Building, 1601 Trinity Street, Austin, TX 78712, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School, University of Texas at Austin, 1601 Trinity Street, Austin, TX 78712, USA
| | - Monica Verduzco-Gutierrez
- Department of Physical Medicine and Rehabilitation, University of Texas at San Antonio, 7703 Floyd Curl Drive, Mail Code 7798, San Antonio, TX 78229, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Health Discovery Building, 1601 Trinity Street, Austin, TX 78712, USA.
| |
Collapse
|
31
|
Grant RA, Poor TA, Sichizya L, Diaz E, Bailey JI, Soni S, Senkow KJ, Pérez-Leonor XG, Abdala-Valencia H, Lu Z, Donnelly HK, Tighe RM, Lomasney JW, Wunderink RG, Singer BD, Misharin AV, Budinger GS. Prolonged exposure to lung-derived cytokines is associated with inflammatory activation of microglia in patients with COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550765. [PMID: 37546860 PMCID: PMC10402123 DOI: 10.1101/2023.07.28.550765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neurological impairment is the most common finding in patients with post-acute sequelae of COVID-19. Furthermore, survivors of pneumonia from any cause have an elevated risk of dementia1-4. Dysfunction in microglia, the primary immune cell in the brain, has been linked to cognitive impairment in murine models of dementia and in humans5. Here, we report a transcriptional response in human microglia collected from patients who died following COVID-19 suggestive of their activation by TNF-α and other circulating pro-inflammatory cytokines. Consistent with these findings, the levels of 55 alveolar and plasma cytokines were elevated in a cohort of 341 patients with respiratory failure, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. While peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, cumulative cytokine exposure was higher in patients with COVID-19. Corticosteroid treatment, which has been shown to be beneficial in patients with COVID-196, was associated with lower levels of CXCL10, CCL8, and CCL2-molecules that sustain inflammatory circuits between alveolar macrophages harboring SARS-CoV-2 and activated T cells7. These findings suggest that corticosteroids may break this cycle and decrease systemic exposure to lung-derived cytokines and inflammatory activation of microglia in patients with COVID-19.
Collapse
Affiliation(s)
- Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Taylor A Poor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Estefani Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph I Bailey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sahil Soni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xochítl G Pérez-Leonor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Helen K Donnelly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Jon W Lomasney
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gr Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
32
|
Liu ZY, Vaira LA, Boscolo-Rizzo P, Walker A, Hopkins C. Post-viral olfactory loss and parosmia. BMJ MEDICINE 2023; 2:e000382. [PMID: 37841969 PMCID: PMC10568123 DOI: 10.1136/bmjmed-2022-000382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/26/2023] [Indexed: 10/17/2023]
Abstract
The emergence of SARS-CoV-2 has brought olfactory dysfunction to the forefront of public awareness, because up to half of infected individuals could develop olfactory dysfunction. Loss of smell-which can be partial or total-in itself is debilitating, but the distortion of sense of smell (parosmia) that can occur as a consequence of a viral upper respiratory tract infection (either alongside a reduction in sense of smell or as a solo symptom) can be very distressing for patients. Incidence of olfactory loss after SARS-CoV-2 infection has been estimated by meta-analysis to be around 50%, with more than one in three who will subsequently report parosmia. While early loss of sense of smell is thought to be due to infection of the supporting cells of the olfactory epithelium, the underlying mechanisms of persistant loss and parosmia remain less clear. Depletion of olfactory sensory neurones, chronic inflammatory infiltrates, and downregulation of receptor expression are thought to contribute. There are few effective therapeutic options, so support and olfactory training are essential. Further research is required before strong recommendations can be made to support treatment with steroids, supplements, or interventions applied topically or injected into the olfactory epithelium in terms of improving recovery of quantitative olfactory function. It is not yet known whether these treatments will also achieve comparable improvements in parosmia. This article aims to contextualise parosmia in the setting of post-viral olfactory dysfunction, explore some of the putative molecular mechanisms, and review some of the treatment options available.
Collapse
Affiliation(s)
- Zhen Yu Liu
- Department of ENT Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Luigi Angelo Vaira
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Sardegna, Italy
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical, and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Abigail Walker
- Department of ENT, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | |
Collapse
|
33
|
Zhong W, Wu Y, Yue W, Fang J, Xie B, Xu N, Lin M, Zhu X, Su Z, Chen Y, Li H, Li H. Distinguishing COVID-19 from seasonal influenza in patients under age 65 years-a retrospective observational cohort study comparing the 2009 influenza A (H1N1) and 2022 SARS-CoV-2 pandemics. Front Cell Infect Microbiol 2023; 13:1179552. [PMID: 37533930 PMCID: PMC10393466 DOI: 10.3389/fcimb.2023.1179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction This study explored the differences in clinical characteristics between the 2009 pandemic influenza A (H1N1) and SARS-CoV-2 BA.2 variant (Omicron) infections in patients younger than age 65 years, to improve identification of these diseases and better respond to the current epidemic. Methods Data from 127 patients with the 2009 pandemic influenza A (H1N1) diagnosed between May and July of 2009 and 3,265 patients with Omicron diagnosed between March and May of 2022 were collected. Using a 1:2 match based on age (difference <2 years), sex, and underlying diseases, data from 115 patients with the 2009 pandemic influenza A (H1N1) infection (H1N1 group) and 230 patients with SARS-CoV-2 Omicron BA.2 infection (Omicron group) were analyzed. The clinical manifestations were compared between the groups, logistic regression was performed to identify possible independent risk factors for each group, and multiple linear regression was used to analyze the factors predicting time for nucleic acid negativization (NAN). Results The median [interquartile range] age of the two groups was 21 [11, 26] years. Compared with the H1N1 group, the Omicron group had: lower white blood cell counts and C-reactive protein levels; less fever, nasal congestion, sore throat, cough, sputum, and headache; and more olfactory loss, muscle soreness, and lactate dehydrogenase (LDH) abnormalities. Patients in the Omicron group used fewer antibiotics and antiviral drugs, and the time for NAN was longer (17 [14,20] VS 4 [3,5] days, P<0.001). Logistic regression showed that fever, cough, headache, and increased white blood cell count were more strongly correlated with the H1N1 group, while muscle soreness and LDH abnormalities were more strongly correlated with the Omicron group. Fever (B 1.529, 95% confidence interval [0.149,2.909], P=0.030) significantly predicted a longer time for NAN in patients with Omicron. Discussion There are significant differences in clinical characteristics between SARS-CoV-2 Omicron infection and the 2009 pandemic influenza A (H1N1) infection. Recognition of these differences has important implications for clinical practice.
Collapse
Affiliation(s)
- Wen Zhong
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yisong Wu
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Wenxiang Yue
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jiabin Fang
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Baosong Xie
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Nengluan Xu
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ming Lin
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital, Quanzhou, China
| | - Zhijun Su
- Department of Infectious Diseases, Quanzhou First Hospital, Fuzhou, China
| | - Yusheng Chen
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hongru Li
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Big Data Engineering, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
34
|
Oka N, Shimada K, Ishii A, Kobayashi N, Kondo K. SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral acetylcholine production. iScience 2023; 26:106954. [PMID: 37275532 PMCID: PMC10208654 DOI: 10.1016/j.isci.2023.106954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Neurological complications that occur in SARS-CoV-2 infection, such as olfactory dysfunction, brain inflammation, malaise, and depressive symptoms, are thought to contribute to long COVID. However, in autopsies of patients who have died from COVID-19, there is normally no direct evidence that central nervous system damage is due to proliferation of SARS-CoV-2. For this reason, many aspects of the pathogenesis mechanisms of such symptoms remain unknown. Expressing SARS-CoV-2 S1 protein in the nasal cavity of mice was associated with increased apoptosis of the olfactory system and decreased intracerebral acetylcholine production. The decrease in acetylcholine production was associated with brain inflammation, malaise, depressive clinical signs, and decreased expression of the cytokine degrading factor ZFP36. Administering the cholinesterase inhibitor donepezil to the mice improved brain inflammation, malaise and depressive clinical signs. These findings could contribute to the elucidation of the pathogenesis mechanisms of neurological complications associated with COVID-19 and long COVID.
Collapse
Affiliation(s)
- Naomi Oka
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
35
|
Tan L, Zhong MM, Liu Q, Chen Y, Zhao YQ, Zhao J, Dusenge MA, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Zhou YH, Guo Y, Feng YZ. Potential interaction between the oral microbiota and COVID-19: a meta-analysis and bioinformatics prediction. Front Cell Infect Microbiol 2023; 13:1193340. [PMID: 37351182 PMCID: PMC10282655 DOI: 10.3389/fcimb.2023.1193340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Objectives The purpose of this study was to evaluate available evidence on the association between the human oral microbiota and coronavirus disease 2019 (COVID-19) and summarize relevant data obtained during the pandemic. Methods We searched EMBASE, PubMed, and the Cochrane Library for human studies published up to October 2022. The main outcomes of the study were the differences in the diversity (α and β) and composition of the oral microbiota at the phylum and genus levels between patients with laboratory-confirmed SARS-CoV-2 infection (CPs) and healthy controls (HCs). We used the Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA) database, Protein-protein interaction (PPI) network (STRING) and Gene enrichment analysis (Metascape) to evaluate the expression of dipeptidyl peptidase 4 (DPP4) (which is the cell receptor of SARS CoV-2) in oral tissues and evaluate its correlation with viral genes or changes in the oral microbiota. Results Out of 706 studies, a meta-analysis of 9 studies revealed a significantly lower alpha diversity (Shannon index) in CPs than in HCs (standardized mean difference (SMD): -0.53, 95% confidence intervals (95% CI): -0.97 to -0.09). Subgroup meta-analysis revealed a significantly lower alpha diversity (Shannon index) in older than younger individuals (SMD: -0.54, 95% CI: -0.86 to -0.23/SMD: -0.52, 95% CI: -1.18 to 0.14). At the genus level, the most significant changes were in Streptococcus and Neisseria, which had abundances that were significantly higher and lower in CPs than in HCs based on data obtained from six out of eleven and five out of eleven studies, respectively. DPP4 mRNA expression in the oral salivary gland was significantly lower in elderly individuals than in young individuals. Spearman correlation analysis showed that DPP4 expression was negatively correlated with the expression of viral genes. Gene enrichment analysis showed that DPP4-associated proteins were mainly enriched in biological processes, such as regulation of receptor-mediated endocytosis of viruses by host cells and bacterial invasion of epithelial cells. Conclusion The oral microbial composition in COVID-19 patients was significantly different from that in healthy individuals, especially among elderly individuals. DPP4 may be related to viral infection and dysbiosis of the oral microbiome in elderly individuals.
Collapse
Affiliation(s)
- Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Cong Y, Lee JH, Perry DL, Cooper K, Wang H, Dixit S, Liu DX, Feuerstein IM, Solomon J, Bartos C, Seidel J, Hammoud DA, Adams R, Anthony SM, Liang J, Schuko N, Li R, Liu Y, Wang Z, Tarbet EB, Hischak AMW, Hart R, Isic N, Burdette T, Drawbaugh D, Huzella LM, Byrum R, Ragland D, St Claire MC, Wada J, Kurtz JR, Hensley LE, Schmaljohn CS, Holbrook MR, Johnson RF. Longitudinal analyses using 18F-Fluorodeoxyglucose positron emission tomography with computed tomography as a measure of COVID-19 severity in the aged, young, and humanized ACE2 SARS-CoV-2 hamster models. Antiviral Res 2023; 214:105605. [PMID: 37068595 PMCID: PMC10105383 DOI: 10.1016/j.antiviral.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ji Hyun Lee
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, Bethesda, MD, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Hui Wang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Irwin M Feuerstein
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jeffrey Solomon
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christopher Bartos
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jurgen Seidel
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Scott M Anthony
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nicolette Schuko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - E Bart Tarbet
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Amanda M W Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nejra Isic
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Tracey Burdette
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Danny Ragland
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Marisa C St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jonathan R Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Reed F Johnson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; SARS-CoV-2 Virology Core Laboratory, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Iwasaki M, Nishizawa T, Iida E, Arioka H. Third cranial nerve palsy due to COVID-19 infection. BMJ Case Rep 2023; 16:16/5/e255142. [PMID: 37137545 PMCID: PMC10163548 DOI: 10.1136/bcr-2023-255142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
We report a case of a previously healthy man in his 40s who presented with mild SARS-CoV-2 infection (COVID-19) concomitant with acute onset of left third cranial nerve palsy with restricted supraduction, adduction and infraduction. Our patient did not present any history of hypertension, hyperlipidaemia, diabetes mellitus or smoking. The patient recovered spontaneously without any antiviral treatment. To our knowledge, this is the second report of third cranial nerve palsy spontaneously resolved without any risk factors of vascular disease, specific image findings, nor any possible causes other than COVID-19. In addition, we reviewed 10 other cases of third cranial nerve palsy associated with COVID-19, which suggested that the aetiology varies greatly. As a clinician, it is important to recognise COVID-19 as a differential diagnosis for third cranial nerve palsy. Finally, we aimed to encapsulate the aetiologies and the prognosis of the third cranial nerve palsy associated with COVID-19.
Collapse
Affiliation(s)
- Monika Iwasaki
- Department of General Internal Medicine, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | - Toshinori Nishizawa
- Department of General Internal Medicine, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | - Eiki Iida
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | - Hiroko Arioka
- Department of General Internal Medicine, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
38
|
Muccioli L, Sighinolfi G, Mitolo M, Ferri L, Jane Rochat M, Pensato U, Taruffi L, Testa C, Masullo M, Cortelli P, Lodi R, Liguori R, Tonon C, Bisulli F. Cognitive and functional connectivity impairment in post-COVID-19 olfactory dysfunction. Neuroimage Clin 2023; 38:103410. [PMID: 37104928 PMCID: PMC10165139 DOI: 10.1016/j.nicl.2023.103410] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES To explore the neuropsychological profile and the integrity of the olfactory network in patients with COVID-19-related persistent olfactory dysfunction (OD). METHODS Patients with persistent COVID-19-related OD underwent olfactory assessment with Sniffin' Sticks and neuropsychological evaluation. Additionally, both patients and a control group underwent brain MRI, including T1-weighted and resting-state functional MRI (rs-fMRI) sequences on a 3 T scanner. Morphometrical properties were evaluated in olfaction-associated regions; the rs-fMRI data were analysed using graph theory at the whole-brain level and within a standard parcellation of the olfactory functional network. All the MR-derived quantities were compared between the two groups and their correlation with clinical scores in patients were explored. RESULTS We included 23 patients (mean age 37 ± 14 years, 12 females) with persistent (mean duration 11 ± 5 months, range 2-19 months) COVID-19-related OD (mean score 23.63 ± 5.32/48, hyposmia cut-off: 30.75) and 26 sex- and age-matched healthy controls. Applying population-derived cut-off values, the two cognitive domains mainly impaired were visuospatial memory and executive functions (17 % and 13 % of patients). Brain MRI did not show gross morphological abnormalities. The lateral orbital cortex, hippocampus, and amygdala volumes exhibited a reduction trend in patients, not significant after the correction for multiple comparisons. The olfactory bulb volumes did not differ between patients and controls. Graph analysis of the functional olfactory network showed altered global and local properties in the patients' group (n = 19, 4 excluded due to artifacts) compared to controls. Specifically, we detected a reduction in the global modularity coefficient, positively correlated with hyposmia severity, and an increase of the degree and strength of the right thalamus functional connections, negatively correlated with short-term verbal memory scores. DISCUSSION Patients with persistent COVID-19-related OD showed an altered olfactory network connectivity correlated with hyposmia severity and neuropsychological performance. No significant morphological alterations were found in patients compared with controls.
Collapse
Affiliation(s)
- Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Sighinolfi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Mitolo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Umberto Pensato
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lisa Taruffi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Marco Masullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
39
|
Solomon IH, Singh A, Folkerth RD, Mukerji SS. What Can We Still Learn from Brain Autopsies in COVID-19? Semin Neurol 2023. [PMID: 37023787 DOI: 10.1055/s-0043-1767716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Neuropathological findings have been published from ∼900 patients who died with or from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, representing less than 0.01% of the close to 6.4 million deaths reported to the World Health Organization 2 years into the coronavirus disease 2019 (COVID-19) pandemic. In this review, we extend our prior work summarizing COVID-19 neuropathology by including information on published autopsies up to June 2022, and neuropathological studies in children, COVID-19 variants, secondary brain infections, ex vivo brain imaging, and autopsies performed in countries outside of the United States or Europe. We also summarize research studies that investigate mechanisms of neuropathogenesis in nonhuman primates and other models. While a pattern of cerebrovascular pathology and microglial-predominant inflammation remains the primary COVID-19-associated neuropathological finding, there is no singular understanding of the mechanisms that underlie neurological symptoms in acute COVID-19 or the post-acute COVID-19 condition. Thus, it is paramount that we incorporate microscopic and molecular findings from brain tissue into what we know about the clinical disease so that we attain best practice guidance and direct research priorities for the study of the neurological morbidity of COVID-19.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Arjun Singh
- Division of Neuroimmunology and Neuro-Infectious Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Healing Hospital, Chandigarh, India
| | - Rebecca D Folkerth
- Office of Chief Medical Examiner and Department of Forensic Medicine, New York University School of Medicine, New York, New York
| | - Shibani S Mukerji
- Harvard Medical School, Boston, Massachusetts
- Division of Neuroimmunology and Neuro-Infectious Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
40
|
Bergmann S, Bohn MC, Dornbusch S, Becker SC, Stern M. Influence of RVFV Infection on Olfactory Perception and Behavior in Drosophila melanogaster. Pathogens 2023; 12:pathogens12040558. [PMID: 37111444 PMCID: PMC10142484 DOI: 10.3390/pathogens12040558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In blood-feeding dipterans, olfaction plays a role in finding hosts and, hence, in spreading pathogens. Several pathogens are known to alter olfactory responses and behavior in vectors. As a mosquito-borne pathogen, Rift Valley Fever Virus (RVFV) can affect humans and cause great losses in livestock. We test the influence of RVFV infection on sensory perception, olfactory choice behavior and activity on a non-biting insect, Drosophila melanogaster, using electroantennograms (EAG), Y-maze, and locomotor activity monitor. Flies were injected with RVFV MP12 strain. Replication of RVFV and its persistence for at least seven days was confirmed by quantitative reverse transcription-PCR (RT-qPCR). One day post injection, infected flies showed weaker EAG responses towards 1-hexanol, vinegar, and ethyl acetate. In the Y-maze, infected flies showed a significantly lower response for 1-hexanol compared to uninfected flies. At days six or seven post infection, no significant difference between infected and control flies could be found in EAG or Y-maze anymore. Activity of infected flies was reduced at both time points. We found an upregulation of the immune-response gene, nitric oxide synthase, in infected flies. An infection with RVFV is able to transiently reduce olfactory perception and attraction towards food-related odors in Drosophila, while effects on activity and immune effector gene expression persist. A similar effect in blood-feeding insects could affect vector competence in RVFV transmitting dipterans.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Maja C. Bohn
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
41
|
Churchill NW, Roudaia E, Chen JJ, Gilboa A, Sekuler A, Ji X, Gao F, Lin Z, Jegatheesan A, Masellis M, Goubran M, Rabin JS, Lam B, Cheng I, Fowler R, Heyn C, Black SE, MacIntosh BJ, Graham SJ, Schweizer TA. Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Front Neurol 2023; 14:1136408. [PMID: 37051059 PMCID: PMC10083436 DOI: 10.3389/fneur.2023.1136408] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionThe long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection.MethodsData were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded.ResultsIndividuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions.DiscussionThese results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan W. Churchill
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, ON, Canada
- *Correspondence: Nathan W. Churchill,
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Asaf Gilboa
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Xiang Ji
- LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Zhongmin Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Aravinthan Jegatheesan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Mario Masellis
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jennifer S. Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Benjamin Lam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ivy Cheng
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Integrated Community Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert Fowler
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Emergency and Critical Care Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chris Heyn
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Computational Radiology and Artificial Intelligence Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon J. Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A. Schweizer
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Josephson SA. JAMA Neurology-The Year in Review, 2022. JAMA Neurol 2023; 80:434-435. [PMID: 36939743 DOI: 10.1001/jamaneurol.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Affiliation(s)
- S Andrew Josephson
- Editor, JAMA Neurology.,Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
43
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
44
|
Takao M, Ohira M. Neurological post-acute sequelae of SARS-CoV-2 infection. Psychiatry Clin Neurosci 2023; 77:72-83. [PMID: 36148558 PMCID: PMC9538807 DOI: 10.1111/pcn.13481] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
The novel coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can have two phases: acute (generally 4 weeks after onset) and chronic (>4 weeks after onset). Both phases include a wide variety of signs and symptoms including neurological and psychiatric symptoms. The signs and symptoms that are considered sequelae of COVID-19 are termed post-COVID condition, long COVID-19, and post-acute sequelae of SARS-CoV-2 infection (PASC). PASC symptoms include fatigue, dyspnea, palpitation, dysosmia, subfever, hypertension, alopecia, sleep problems, loss of concentration, amnesia, numbness, pain, gastrointestinal symptoms, depression, and anxiety. Because the specific pathophysiology of PASC has not yet been clarified, there are no definite criteria of the condition, hence the World Health Organization's definition is quite broad. Consequently, it is difficult to correctly diagnose PASC. Approximately 50% of patients may show at least one PASC symptom up to 12 months after COVID-19 infection; however, the exact prevalence of PASC has not been determined. Despite extensive research in progress worldwide, there are currently no clear diagnostic methodologies or treatments for PASC. In this review, we discuss the currently available information on PASC and highlight the neurological sequelae of COVID-19 infection. Furthermore, we provide clinical suggestions for diagnosing and caring for patients with PASC based on our outpatient clinic experience.
Collapse
Affiliation(s)
- Masaki Takao
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| | - Masayuki Ohira
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| |
Collapse
|
45
|
Cao M, Qiao M, Sohail M, Zhang X. Non-anticoagulant heparin derivatives for COVID-19 treatment. Int J Biol Macromol 2023; 226:974-981. [PMID: 36528145 PMCID: PMC9749384 DOI: 10.1016/j.ijbiomac.2022.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The ongoing pandemic of COVID-19, caused by the infection of SARS-CoV-2, has generated significant harm to the world economy and taken numerous lives. This syndrome is characterized by an acute inflammatory response, mainly in the lungs and kidneys. Accumulated evidence suggests that exogenous heparin might contribute to the alleviation of COVID-19 severity through anticoagulant and various non-anticoagulant mechanisms, including heparanase inhibition, chemokine and cytokine neutralization, leukocyte trafficking interference, viral cellular-entry obstruction, and extracellular cytotoxic histone neutralization. However, the side effects of heparin and potential drawbacks of administering heparin therapy need to be considered. Here, the current heparin therapy drawbacks were covered in great detail: structure-activity relationship (SAR) mystery, potential contamination, and anticoagulant activity. Considering these unfavorable effects, specific non-anticoagulant heparin derivatives with antiviral activity could be promising candidates to treat COVID-19. Furthermore, a structurally diverse library of non-anticoagulant heparin derivatives, constructed by chemical modification and enzymatic depolymerization, would contribute to a deeper understanding of SAR mystery. In short, targeting non-anticoagulant mechanisms may produce better therapeutic effects, overcoming the side effects in patients suffering from COVID-19 and other inflammatory disorders.
Collapse
Affiliation(s)
- Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
46
|
Bremer J, Friemann J, von Stillfried S, Boor P, Weis J. Reduced T-cell densities in cranial nerves of patients who died with SARS-CoV-2 infection. Acta Neuropathol Commun 2023; 11:10. [PMID: 36641524 PMCID: PMC9839948 DOI: 10.1186/s40478-022-01502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Affiliation(s)
- Juliane Bremer
- grid.412301.50000 0000 8653 1507Institute of Neuropathology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Johannes Friemann
- grid.500061.20000 0004 0390 4873Institute of Pathology, Märkische Kliniken GmbH, Klinikum Lüdenscheid, Lüdenscheid, Germany
| | - Saskia von Stillfried
- grid.412301.50000 0000 8653 1507Institute of Pathology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Peter Boor
- grid.412301.50000 0000 8653 1507Institute of Pathology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Joachim Weis
- grid.412301.50000 0000 8653 1507Institute of Neuropathology, Uniklinik RWTH Aachen, Aachen, Germany
| |
Collapse
|
47
|
COVID-19-associated monocytic encephalitis (CAME): histological and proteomic evidence from autopsy. Signal Transduct Target Ther 2023; 8:24. [PMID: 36609561 PMCID: PMC9816522 DOI: 10.1038/s41392-022-01291-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor β receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.
Collapse
|
48
|
Butowt R, Bilinska K, von Bartheld CS. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46:75-90. [PMID: 36470705 PMCID: PMC9666374 DOI: 10.1016/j.tins.2022.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The mechanisms of olfactory dysfunction in COVID-19 are still unclear. In this review, we examine potential mechanisms that may explain why the sense of smell is lost or altered. Among the current hypotheses, the most plausible is that death of infected support cells in the olfactory epithelium causes, besides altered composition of the mucus, retraction of the cilia on olfactory receptor neurons, possibly because of the lack of support cell-derived glucose in the mucus, which powers olfactory signal transduction within the cilia. This mechanism is consistent with the rapid loss of smell with COVID-19, and its rapid recovery after the regeneration of support cells. Host immune responses that cause downregulation of genes involved in olfactory signal transduction occur too late to trigger anosmia, but may contribute to the duration of the olfactory dysfunction.
Collapse
Affiliation(s)
- Rafal Butowt
- Global Consortium of Chemosensory Research - Poland, Przybory Str 3/2, 85-791 Bydgoszcz, Poland
| | - Katarzyna Bilinska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland.
| | - Christopher S von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA.
| |
Collapse
|
49
|
Yang Z, Ma Y, Bi W, Tang J. Exploring the research landscape of COVID-19-induced olfactory dysfunction: A bibliometric study. Front Neurosci 2023; 17:1164901. [PMID: 37034158 PMCID: PMC10079987 DOI: 10.3389/fnins.2023.1164901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Since the outbreak of COVID-19, olfactory dysfunction (OD) has become an important and persistent legacy problem that seriously affects the quality of life. The purpose of this paper is to quantitatively analyze and visualize the current research status and development trend of COVID-19 related OD by using VOSviewer software. Based on the Web of Science database, a total of 1,592 relevant documents were retrieved in January 2023, with publication time spanning from 2020 to 2023. The bibliometric analysis revealed that the most influential research results in the field of COVID-19 related OD were concentrated in journals of related disciplines such as otorhinolaryngology, medicine, general and internal, virology, neurosciences, etc. The knowledge base of the research is mainly formed in two fields: COVID-19 clinical research and OD specialized research. The research hotspots are mainly concentrated in six directions: COVID-19, long COVID, smell, anosmia, OD, and recovery. Based on the results of the bibliometric analysis, the temporal trends of COVID-19 related OD studies were visually revealed, and relevant suggestions for future research were proposed.
Collapse
Affiliation(s)
- Zhirong Yang
- Library of Zhuhai Campus, Jinan University, Zhuhai, China
| | - Yukun Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Wei Bi
| | - Jingqian Tang
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou, China
- Intellectual Property Information Service Center, Jinan University, Guangzhou, China
- Jingqian Tang
| |
Collapse
|
50
|
Ferrulli A, Senesi P, Terruzzi I, Luzi L. Eating Habits and Body Weight Changes Induced by Variation in Smell and Taste in Patients with Previous SARS-CoV-2 Infection. Nutrients 2022; 14:nu14235068. [PMID: 36501098 PMCID: PMC9738767 DOI: 10.3390/nu14235068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Olfactory and gustatory dysfunction are recognized as common symptoms in patients with COVID-19, with a prevalence ranging, respectively, between 41-61% and 38.2-49%. This review focused on relating the variations in dietary habits with the reduction/loss of smell and/or taste in patients who contracted the COVID-19 infection. Primarily, we reviewed the main pathological mechanisms involved in COVID 19-induced anosmia/dysosmia and ageusia/dysgeusia. Then, we explored and summarized the behavioural changes in food intake and body weight during the COVID-19 pandemic in relation to sensory impairment and the underlying mechanisms. Most studies on this topic argue that the altered chemosensory perception (taste and smell) mainly induces reduced appetite, leading to a faster fullness sensation during the consumption of a meal and, therefore, to a decrease in body weight. On the other hand, a reduced perception of the food's sensory properties may trigger compensatory responses that lead some individuals to increase food intake with a different effect on body weight. Regarding body weight, most studies evaluated malnutrition in patients hospitalized for COVID-19; more studies are warranted to investigate nutritional status specifically in non-hospitalized patients with olfactory and gustatory dysfunctions caused by COVID-19 infection.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence: or ; Tel.: +39-02-8599-4572
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|