1
|
Neville AJ, Conrin ME, Schulze TT, Davis PH. A selective C5a-derived peptidomimetic enhances IgG response following inactivated SARS-CoV-2 immunization and confers rapid disease resolution following murine coronavirus infection. Front Immunol 2025; 16:1470034. [PMID: 40255397 PMCID: PMC12006086 DOI: 10.3389/fimmu.2025.1470034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
The host complement system is a critical component of innate immunity and serves as a principal mechanism of pathogen defense in mammals. EP67 is an engineered decapeptide derived from the C terminus of human complement protein C5a, which displays selective immunostimulatory activity. EP67 preferentially activates phagocyte mononuclear cells but shows minimal activity towards inflammatory granulocytes, including neutrophils. Previous studies of viral infection showed that EP67 possessed antiviral efficacy when used following infection and enhanced antibody responses to antigen challenges when used as an adjuvant. Here, we show in a rodent model that immunization with inactivated γ-irradiated SARS-CoV-2 in combination with EP67 can produce elevated nucleocapsid-specific IgG antibodies compared to viral lysate alone, supporting an enhanced adaptive immune response. Additionally, intranasal administration of EP67 following infection with live MHV-A59 coronavirus resulted in a rapid health improvement in symptomatic infections compared to PBS vehicle controls. Taken together, these results suggest EP67 shows efficacy towards betacoronaviruses when used as an adjuvant during immunization or as a therapeutic during active infections. Moreover, these findings continue to support the capability of EP67 as an antiviral agent and a useful immunostimulatory peptide.
Collapse
Affiliation(s)
- Andrew J. Neville
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Mackenzie E. Conrin
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Thomas T. Schulze
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
2
|
Liu L, Zhang L, Hao X, Wang Y, Zhang X, Ge L, Wang P, Tian B, Zhang M. Coronavirus envelope protein activates TMED10-mediated unconventional secretion of inflammatory factors. Nat Commun 2024; 15:8708. [PMID: 39379362 PMCID: PMC11461611 DOI: 10.1038/s41467-024-52818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lijingyao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyan Hao
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Yamamoto S, Ogasawara N, Sudo-Yokoyama Y, Sato S, Takata N, Yokota N, Nakano T, Hayashi K, Takasawa A, Endo M, Hinatsu M, Yoshida K, Sato T, Takahashi S, Takano K, Kojima T, Hiraki J, Yokota SI. Bacillaceae serine proteases and Streptomyces epsilon-poly-L-lysine synergistically inactivate Caliciviridae by inhibiting RNA genome release. Sci Rep 2024; 14:15181. [PMID: 38956295 PMCID: PMC11219925 DOI: 10.1038/s41598-024-65963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.
Collapse
Affiliation(s)
- Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| | - Yuka Sudo-Yokoyama
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sachiko Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nana Yokota
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Tomomi Nakano
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Akira Takasawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Mayumi Endo
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masako Hinatsu
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Keitaro Yoshida
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jun Hiraki
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Shin-Ich Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| |
Collapse
|
4
|
Bang LL, Tornby DR, Pham STD, Assing K, Möller S, Palarasah Y, Madsen LW, Thomsen KG, Johansen IS, Pedersen RM, Andersen TE. Culturing of SARS-CoV-2 from patient samples: Protocol for optimal virus recovery and assessment of infectious viral load. J Virol Methods 2024; 326:114912. [PMID: 38447645 DOI: 10.1016/j.jviromet.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Optimal sampling, preservation, and culturing of SARS-CoV-2 from COVID-19 patients are critical for successful recovery of virus isolates and to accurately estimate contagiousness of the patient. In this study, we investigated the influence of the type of sampling media, storage time, freezing conditions, sterile filtration, and combinations of these to determine the optimal pre-analytic conditions for virus recovery and estimation of infectious viral load in COVID-19 patients. Further, we investigated the viral shedding kinetics and mucosal antibody response in 38 COVID-19 hospitalized patients. We found Universal Transport Medium (Copan) to be the most optimal medium for preservation of SARS-CoV-2 infectivity. Our data showed that the probability of a positive viral culture was strongly correlated to Ct values, however some samples did not follow the general trend. We found a significant correlation between plaque forming units and levels of mucosal antibodies and found that high levels of mucosal antibodies correlated with reduced chance of isolating the virus. Our data reveals essential parameters to consider from specimen collection over storage to culturing technique for optimal chance of isolating SARS-CoV-2 and accurately estimating patient contagiousness.
Collapse
Affiliation(s)
- Line L Bang
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ditte R Tornby
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stephanie T D Pham
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital and Research Unit for Clinical Immunology, University of Southern Denmark, Odense, Denmark
| | - Sören Möller
- Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense 5000, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark; Department of Regional Health Research, University of Southern Denmark, Denmark; Unit for Infectious Diseases, Department of medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Karina G Thomsen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas E Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Zhang M, Leong MW, Mitch WA, Blish CA, Boehm A. Persistence and free chlorine disinfection of human coronaviruses and their surrogates in water. Appl Environ Microbiol 2024; 90:e0005524. [PMID: 38511945 PMCID: PMC11022552 DOI: 10.1128/aem.00055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The coronavirus disease 2019 pandemic illustrates the importance of understanding the behavior and control of human pathogenic viruses in the environment. Exposure via water (drinking, bathing, and recreation) is a known route of transmission of viruses to humans, but the literature is relatively void of studies on the persistence of many viruses, especially coronaviruses, in water and their susceptibility to chlorine disinfection. To fill that knowledge gap, we evaluated the persistence and free chlorine disinfection of human coronavirus OC43 (HCoV-OC43) and its surrogates, murine hepatitis virus (MHV) and porcine transmissible gastroenteritis virus (TGEV), in drinking water and laboratory buffer using cell culture methods. The decay rate constants of human coronavirus and its surrogates in water varied, depending on virus and water matrix. In drinking water without disinfectant addition, MHV showed the largest decay rate constant (estimate ± standard error, 2.25 ± 0.09 day-1) followed by HCoV-OC43 (0.99 ± 0.12 day-1) and TGEV (0.65 ± 0.06 day-1), while in phosphate buffer without disinfectant addition, HCoV-OC43 (0.51 ± 0.10 day-1) had a larger decay rate constant than MHV (0.28 ± 0.03 day-1) and TGEV (0.24 ± 0.02 day-1). Upon free chlorine disinfection, the inactivation rates of coronaviruses were independent of free chlorine concentration and were not affected by water matrix, though they still varied between viruses. TGEV showed the highest susceptibility to free chlorine disinfection with the inactivation rate constant of 113.50 ± 7.50 mg-1 min-1 L, followed by MHV (81.33 ± 4.90 mg-1 min-1 L) and HCoV-OC43 (59.42 ± 4.41 mg-1 min-1 L). IMPORTANCE This study addresses an important knowledge gap on enveloped virus persistence and disinfection in water. Results have immediate practical applications for shaping evidence-based water policies, particularly in the development of disinfection strategies for pathogenic virus control.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Michelle Wei Leong
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - William A. Mitch
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Park Y, Kim C, Park YI, Lee S, So J, Park R, Park J. Compound C inhibits the replication of feline coronavirus. Heliyon 2024; 10:e27641. [PMID: 38500971 PMCID: PMC10945263 DOI: 10.1016/j.heliyon.2024.e27641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Feline Coronavirus (FCoV) is a viral pathogen of cats and a highly contagious virus. Cats in a cattery can be infected by up to 100%, and even household cats are infected by 20-60%. Some strains of FCoV are known to induce a fatal disease in cats named Feline Infectious Peritonitis (FIP). However, no effective treatments are available. We demonstrated that compound C (dorsomorphin) can potentially inhibit feline coronavirus replication. Compound C treatment decreased the FCoV-induced plaque formation and cytopathic effect in FCoV-infected cells. Compound C treatment also significantly reduced the amount of viral RNA and viral protein in the cells in a dose-dependent manner. Our findings suggest that compound C is potentially useful for feline coronavirus-related diseases.
Collapse
Affiliation(s)
- Yeonjeong Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Chansoo Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jaeyeon So
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Rackhyun Park
- Department of Life Science, Yong-In University, Yongin 17092, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
7
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
8
|
Anderson CE, Boehm AB. Sunlight Inactivation of Enveloped Viruses in Clear Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21395-21404. [PMID: 38062652 DOI: 10.1021/acs.est.3c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Enveloped virus fate in the environment is not well understood; there are no quantitative data on sunlight inactivation of enveloped viruses in water. Herein, we measured the sunlight inactivation of two enveloped viruses (Phi6 and murine hepatitis virus, MHV) and a nonenveloped virus (MS2) over time in clear water with simulated sunlight exposure. We attenuated UV sunlight wavelengths using long-pass 50% cutoff filters at 280, 305, and 320 nm. With the lowest UV attenuation tested, all decay rate constants (corrected for UV light screening, k̂) were significantly different from dark controls; the MS2 k̂ was equal to 4.5 m2/MJ, compared to 16 m2/MJ for Phi6 and 52 m2/MJ for MHV. With the highest UV attenuation tested, only k̂ for MHV (6.1 m2/MJ) was different from the dark control. Results indicate that the two enveloped viruses decay faster than the nonenveloped virus studied, and k̂ are significantly impacted by UV attenuation. Differences in k̂ may be due to the presence of viral envelopes but may also be related to other differing intrinsic properties of the viruses, including genome length and composition. Reported k̂ values can inform strategies to reduce the risk from exposure to enveloped viruses in the environment.
Collapse
Affiliation(s)
- Claire E Anderson
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
de Vries M, Ciabattoni GO, Rodriguez-Rodriguez BA, Crosse KM, Papandrea D, Samanovic MI, Dimartino D, Marier C, Mulligan MJ, Heguy A, Desvignes L, Duerr R, Dittmann M. Generation of quality-controlled SARS-CoV-2 variant stocks. Nat Protoc 2023; 18:3821-3855. [PMID: 37833423 DOI: 10.1038/s41596-023-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023]
Abstract
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
Collapse
Affiliation(s)
- Maren de Vries
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Keaton M Crosse
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Dominick Papandrea
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ludovic Desvignes
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Wang J, Li M, Li M. Newcastle disease virus LaSota strain induces apoptosis and activates the TNFα/NF-κB pathway in canine mammary carcinoma cells. Vet Comp Oncol 2023; 21:520-532. [PMID: 37282822 DOI: 10.1111/vco.12915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
Spontaneous canine mammary carcinomas (CMCs) have been widely considered a good research model for human breast cancers, which brings much attention to CMCs. In recent years, the oncolytic effect of Newcastle disease virus (NDV) on cancer cells has been widely studied, but its effect on CMCs is still unclear. This study aims to investigate the oncolytic effect of NDV LaSota strain on canine mammary carcinoma cell line (CMT-U27) in vivo and in vitro. The in vitro cytotoxicity and immunocytochemistry experiments showed that NDV selectively replicated in CMT-U27 cells, and inhibited cell proliferation and migration but not in MDCK cells. KEGG analysis of transcriptome sequencing indicated the importance of the TNFα and NF-κB signalling pathways in the anti-tumour effect of NDV. Subsequently, the significantly increased expression of TNFα, p65, phospho-p65, caspase-8, caspase-3 and cleaved-PARP proteins in the NDV group suggested that NDV induced CMT-U27 cells apoptosis by activating the caspase-8/caspase-3 pathway and the TNFα/NF-κB signalling pathway. Nude mice tumour-bearing experiments showed that NDV could significantly decrease the growth rate of CMC in vivo. In conclusion, our study demonstrates the effective oncolytic effects of NDV on CMT-U27 cells in vivo and in vitro, and suggests NDV as a promising candidate for oncolytic therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Featherstone A, Brown AC, Chitlapilly Dass S. Understanding how different surfaces and environmental biofilms found in food processing plants affect the spread of COVID-19. PLoS One 2023; 18:e0286659. [PMID: 37285373 PMCID: PMC10246802 DOI: 10.1371/journal.pone.0286659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Meat processing plants have been at the center of the SARS-CoV-2 pandemic, with a recent report citing 90% of US facilities having multiple outbreaks during 2020 and 2021. We explored the potential for biofilms to act as a reservoir in protecting, harboring, and dispersing SARS-CoV-2 throughout the meat processing facility environment. To do this, we used Murine Hepatitis Virus (MHV), as a surrogate for SARS-CoV-2, and meat processing facility drain samples to develop mixed-species biofilms on materials found in meat processing facilities (stainless steel (SS), PVC, and ceramic tiles). After exposure to the biofilm organisms for five days post-inoculation at 7°C we conducted quantitative PCR (qPCR) and plaque assays to determine whether MHV could remain both detectable and viable. Our data provides evidence that coronaviruses can remain viable on all the surfaces tested and are also able to integrate within an environmental biofilm. Although a portion of MHV was able to remain infectious after incubation with the environmental biofilm, a large reduction in plaque numbers was identified when compared with the viral inoculum incubated without biofilm on all test surfaces, which ranged from 6.45-9.27-fold higher. Interestingly, we observed a 2-fold increase in the virus-environmental biofilm biovolume when compared to biofilm without virus, indicating that the biofilm bacteria both detected and reacted to the virus. These results indicate a complex virus-environmental biofilm interaction. Although we observed better survival of MHV on a variety of surfaces commonly found in meat processing plants alone than with the biofilm, there is the potential for biofilms to protect virions from disinfecting agents, which has implications for the potential of SARS-CoV-2 prevalence within the meat processing plant environment. Also given the highly infectious nature of SARS-CoV-2, particularly for some of the variant strains such as omicron, having even a residual level of virus present represents a serious health hazard. The increase in biofilm biovolume in response to virus is also a concern for food safety due to the potential of the same being seen with organisms associated with food poisoning and food spoilage.
Collapse
Affiliation(s)
- Austin Featherstone
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Amanda Claire Brown
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Sapna Chitlapilly Dass
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
12
|
Contreras PS, Tapia PJ, Jeong E, Ghosh S, Altan-Bonnet N, Puertollano R. Beta-coronaviruses exploit cellular stress responses by modulating TFEB and TFE3 activity. iScience 2023; 26:106169. [PMID: 36785787 PMCID: PMC9908431 DOI: 10.1016/j.isci.2023.106169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Beta-coronaviruses have emerged as a severe threat to global health. Undercovering the interplay between host and beta-coronaviruses is essential for understanding disease pathogenesis and developing efficient treatments. Here we report that the transcription factors TFEB and TFE3 translocate from the cytosol to the nucleus in response to beta-coronavirus infection by a mechanism that requires activation of calcineurin phosphatase. In the nucleus, TFEB and TFE3 bind to the promoter of multiple lysosomal and immune genes. Accordingly, MHV-induced upregulation of immune regulators is significantly decreased in TFEB/TFE3-depleted cells. Conversely, over-expression of either TFEB or TFE3 is sufficient to increase expression of several cytokines and chemokines. The reduced immune response observed in the absence of TFEB and TFE3 results in increased cellular survival of infected cells but also in reduced lysosomal exocytosis and decreased viral infectivity. These results suggest a central role of TFEB and TFE3 in cellular response to beta-coronavirus infection.
Collapse
Affiliation(s)
- Pablo S. Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo J. Tapia
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sourish Ghosh
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nihal Altan-Bonnet
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Tazawa K, Jadhav R, Azuma MM, Fenno JC, McDonald NJ, Sasaki H. Hypochlorous acid inactivates oral pathogens and a SARS-CoV-2-surrogate. BMC Oral Health 2023; 23:111. [PMID: 36803460 PMCID: PMC9938691 DOI: 10.1186/s12903-023-02820-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/15/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Droplets and aerosols produced during dental procedures are a risk factor for microbial and viral transmission. Unlike sodium hypochlorite, hypochlorous acid (HOCl) is nontoxic to tissues but still exhibits broad microbicidal effect. HOCl solution may be applicable as a supplement to water and/or mouthwash. This study aims to evaluate the effectiveness of HOCl solution on common human oral pathogens and a SARS-CoV-2 surrogate MHV A59 virus, considering the dental practice environment. METHODS HOCl was generated by electrolysis of 3% hydrochloric acid. The effect of HOCl on human oral pathogens, Fusobacterium nucleatum, Prevotella intermedia, Streptococcus intermedius, Parvimonas micra, and MHV A59 virus was studied from four perspectives: concentration; volume; presence of saliva; and storage. HOCl solution in different conditions was utilized in bactericidal and virucidal assays, and the minimum inhibitory volume ratio that is required to completely inhibit the pathogens was determined. RESULTS In the absence of saliva, the minimum inhibitory volume ratio of freshly prepared HOCl solution (45-60 ppm) was 4:1 for bacterial suspensions and 6:1 for viral suspensions. The presence of saliva increased the minimum inhibitory volume ratio to 8:1 and 7:1 for bacteria and viruses, respectively. Applying a higher concentration of HOCl solution (220 or 330 ppm) did not lead to a significant decrease in the minimum inhibitory volume ratio against S. intermedius and P. micra. The minimum inhibitory volume ratio increases in applications of HOCl solution via the dental unit water line. One week of storage of HOCl solution degraded HOCl and increased the minimum growth inhibition volume ratio. CONCLUSIONS HOCl solution (45-60 ppm) is still effective against oral pathogens and SAR-CoV-2 surrogate viruses even in the presence of saliva and after passing through the dental unit water line. This study indicates that the HOCl solution can be used as therapeutic water or mouthwash and may ultimately reduce the risk of airborne infection in dental practice.
Collapse
Affiliation(s)
- Kento Tazawa
- grid.214458.e0000000086837370Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109 USA ,grid.265073.50000 0001 1014 9130Division of Oral Health Sciences, Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Rutuja Jadhav
- grid.214458.e0000000086837370Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109 USA
| | - Mariane Maffei Azuma
- grid.214458.e0000000086837370Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109 USA
| | - J. Christopher Fenno
- grid.214458.e0000000086837370Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Neville J. McDonald
- grid.214458.e0000000086837370Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109 USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Nieto-Caballero M, Davis RD, Fuques E, Gomez OM, Huynh E, Handorean A, Ushijima S, Tolbert M, Hernandez M. Carbohydrate vitrification in aerosolized saliva is associated with the humidity-dependent infectious potential of airborne coronavirus. PNAS NEXUS 2023; 2:pgac301. [PMID: 36743472 PMCID: PMC9896139 DOI: 10.1093/pnasnexus/pgac301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
An accepted murine analogue for the environmental behavior of human SARS coronaviruses was aerosolized in microdroplets of its culture media and saliva to observe the decay of its airborne infectious potential under relative humidity (RH) conditions relevant to conditioned indoor air. Contained in a dark, 10 m3 chamber maintained at 22°C, murine hepatitis virus (MHV) was entrained in artificial saliva particles that were aerosolized in size distributions that mimic SARS-CoV-2 virus expelled from infected humans' respiration. As judged by quantitative PCR, more than 95% of the airborne MHV aerosolized was recovered from microdroplets with mean aerodynamic diameters between 0.56 and 5.6 μm. As judged by its half-life, calculated from the median tissue culture infectious dose (TCID50), saliva was protective of airborne murine coronavirus through a RH range recommended for conditioned indoor air (60% < RH < 40%; average half-life = 60 minutes). However, its average half-life doubled to 120 minutes when RH was maintained at 25%. Saliva microaerosol was dominated by carbohydrates, which presented hallmarks of vitrification without efflorescence at low RH. These results suggest that dehydrating carbohydrates can affect the infectious potential coronaviruses exhibit while airborne, significantly extending their persistence under the drier humidity conditions encountered indoors.
Collapse
Affiliation(s)
| | - Ryan D Davis
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
- Materials Reliability Department, Sandia National Laboratories, Albuquerque, NM 82123, USA
| | - Eddie Fuques
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Odessa M Gomez
- Environmental Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Erik Huynh
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Alina Handorean
- Departments of Engineering Design and Society and Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Shuichi Ushijima
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Margaret Tolbert
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Mark Hernandez
- Environmental Engineering Program, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, Selck C, Giang N, Argüello R, Pillay C, Thorley E, Short CE, Quinlan R, Barclay WS, Cooper N, Taylor GP, Davenport EE, Dominguez-Villar M. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun 2022; 13:7947. [PMID: 36572683 PMCID: PMC9791976 DOI: 10.1038/s41467-022-35638-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals. Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis. COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.
Collapse
Affiliation(s)
- Allison K Maher
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma M Jones
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Michelle M H Tan
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Rocel C Saputil
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Claudia Selck
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolas Giang
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Rafael Argüello
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clio Pillay
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Emma Thorley
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Charlotte-Eve Short
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Rachael Quinlan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Nichola Cooper
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Graham P Taylor
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | |
Collapse
|
16
|
Featherstone AB, Brown AC, Chitlapilly Dass S. Murine Hepatitis Virus, a Biosafety Level 2 Model for SARS-CoV-2, Can Remain Viable on Meat and Meat Packaging Materials for at Least 48 Hours. Microbiol Spectr 2022; 10:e0186222. [PMID: 36069589 PMCID: PMC9603800 DOI: 10.1128/spectrum.01862-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
In 2020 and 2021, many meat processing plants faced temporary closures due to outbreaks of COVID-19 cases among the workers. There are several factors that could potentially contribute to the increased numbers of COVID-19 cases in meat processing plants: the survival of viable SARS-CoV-2 on meat and meat packaging materials, difficulties in maintaining workplace physical distancing, personal hygiene, and crowded living and transportation conditions. In this study, we used murine hepatitis virus (MHV) as a biosafety level 2 (BSL2) surrogate for SARS-CoV-2 to determine viral survival on the surface of meat, namely, stew-cut beef and ground beef, and commonly used meat packaging materials, such as plastic wrap, meat-absorbent material, and Styrofoam. From our studies, we observed the infectivity of MHV inoculated on ground beef and stew-cut beef for 48 h and saw no significant loss in infectivity for MHV from 0 to 6 h postinoculation (hpi) (unpaired t test). However, beginning at 9 hpi, viral infectivity steadily decreased, resulting in a 1.12-log reduction for ground beef and a 0.46-log reduction for stew-cut beef by 48 hpi. We also observed a significant persistence of MHV on meat packaging materials, with Styrofoam supporting the highest viability (3.25 × 103 ± 9.57 × 102 PFU/mL, a 0.91-log reduction after 48 hpi), followed by meat-absorbent material (75 ± 50 PFU/mL, a 1.10-log reduction after 48 hpi), and lastly, plastic wrap (no detectable PFU after 3 hpi, a 3.12-log reduction). Despite a notable reduction in infectivity, the virus was able to survive and remain infectious for up to 48 h at 7°C on four of the five test surfaces. Our results provide evidence that coronaviruses, such as SARS-CoV-2, could potentially survive on meat, meat-absorbent materials. and Styrofoam for up to 2 days, and potentially longer. IMPORTANCE The meat industry has been faced with astronomical challenges with the rampant spread of COVID-19 among meat processing plant workers. This has resulted in meat processing and packaging plant closures, creating bottlenecks everywhere in the chain, from farms to consumers, subsequently leading to much smaller production outputs and higher prices for all parties involved. This study tested the viability of meat and meat packaging materials as potential reservoirs for SARS-CoV-2, allowing the virus to survive and potentially spread among the workers. We used murine hepatitis virus (MHV) as a biosafety level 2 (BSL2) surrogate for SARS-CoV-2. Our results suggest that ground beef, stew-cut beef, meat-absorbent material, and Styrofoam can harbor coronavirus particles, which can remain viable for at least 48 h. Furthermore, our study provides evidence that the environmental and physical conditions within meat processing facilities can facilitate the survival of viable virus.
Collapse
Affiliation(s)
| | - Amanda Claire Brown
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
17
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
18
|
Plavec Z, Domanska A, Liu X, Laine P, Paulin L, Varjosalo M, Auvinen P, Wolf SG, Anastasina M, Butcher SJ. SARS-CoV-2 Production, Purification Methods and UV Inactivation for Proteomics and Structural Studies. Viruses 2022; 14:v14091989. [PMID: 36146795 PMCID: PMC9505060 DOI: 10.3390/v14091989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019–2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.
Collapse
Affiliation(s)
- Zlatka Plavec
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Aušra Domanska
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria Anastasina
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (M.A.); (S.J.B.); Tel.: +358-5044-84629 (M.A.); +358-5041-55492 (S.J.B.)
| | - Sarah J. Butcher
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (M.A.); (S.J.B.); Tel.: +358-5044-84629 (M.A.); +358-5041-55492 (S.J.B.)
| |
Collapse
|
19
|
Alexander RW, Tian J, Haddrell AE, Oswin HP, Neal E, Hardy DA, Otero-Fernandez M, Mann JFS, Cogan TA, Finn A, Davidson AD, Hill DJ, Reid JP. Mucin Transiently Sustains Coronavirus Infectivity through Heterogenous Changes in Phase Morphology of Evaporating Aerosol. Viruses 2022; 14:1856. [PMID: 36146663 PMCID: PMC9503081 DOI: 10.3390/v14091856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory pathogens can be spread though the transmission of aerosolised expiratory secretions in the form of droplets or particulates. Understanding the fundamental aerosol parameters that govern how such pathogens survive whilst airborne is essential to understanding and developing methods of restricting their dissemination. Pathogen viability measurements made using Controlled Electrodynamic Levitation and Extraction of Bioaerosol onto Substrate (CELEBS) in tandem with a comparative kinetics electrodynamic balance (CKEDB) measurements allow for a direct comparison between viral viability and evaporation kinetics of the aerosol with a time resolution of seconds. Here, we report the airborne survival of mouse hepatitis virus (MHV) and determine a comparable loss of infectivity in the aerosol phase to our previous observations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the addition of clinically relevant concentrations of mucin to the bioaerosol, there is a transient mitigation of the loss of viral infectivity at 40% RH. Increased concentrations of mucin promoted heterogenous phase change during aerosol evaporation, characterised as the formation of inclusions within the host droplet. This research demonstrates the role of mucus in the aerosol phase and its influence on short-term airborne viral stability.
Collapse
Affiliation(s)
- Robert W. Alexander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jianghan Tian
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Allen E. Haddrell
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Henry P. Oswin
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Edward Neal
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Daniel A. Hardy
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Mara Otero-Fernandez
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Jamie F. S. Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Tristan A. Cogan
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jonathan P. Reid
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
20
|
Hardison RL, Nelson SW, Barriga D, Ruiz NF, Ghere JM, Fenton GA, Lindstrom DJ, James RR, Stewart MJ, Lee SD, Calfee MW, Ryan SP, Howard MW. Evaluation of surface disinfection methods to inactivate the beta coronavirus Murine Hepatitis Virus. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:455-468. [PMID: 35687041 PMCID: PMC9547328 DOI: 10.1080/15459624.2022.2088768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The list of EPA-approved disinfectants for coronavirus features many products for use on hard, non-porous materials. There are significantly fewer products registered for use on porous materials. Further, many common, high-touch surfaces fall in between non-porous materials such as glass and porous materials such as soft fabrics. The objective of this study was to assess the efficacy of selected commercially available disinfectant products against coronaviruses on common, high-touch surfaces. Four disinfectants (Clorox Total 360, Bleach solution, Vital Oxide, and Peroxide Multi-Surface Cleaner) were evaluated against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV in cell culture medium was inoculated onto four materials: stainless steel, latex-painted drywall tape, Styrene Butadiene rubber (rubber), and bus seat fabric. Immediately (T0) or 2-hr (T2) post-inoculation, disinfectants were applied by trigger-pull or electrostatic sprayer and either held for recommended contact times (Spray only) or immediately wiped (Spray and Wipe). Recovered infectious MHV was quantified by median tissue culture infectious dose assay. Bleach solution, Clorox Total 360, and Vital Oxide were all effective (>3-log10 reduction or complete kill of infectious virus) with both the Spray Only and Spray and Wipe methods on stainless steel, rubber, and painted drywall tape when used at recommended contact times at both T0 and T2 hr. Multi-Surface Cleaner unexpectedly showed limited efficacy against MHV on stainless steel within the recommended contact time; however, it showed increased (2.3 times greater efficacy) when used in the Spray and Wipe method compared to Spray Only. The only products to achieve a 3-log10 reduction on fabric were Vital Oxide and Clorox Total 360; however, the efficacy of Vital Oxide against MHV on fabric was reduced to below 3-log10 when applied by an electrostatic sprayer compared to a trigger-pull sprayer. This study highlights the importance of considering the material, product, and application method when developing a disinfection strategy for coronaviruses on high-touch surfaces.
Collapse
Affiliation(s)
| | | | - D. Barriga
- Battelle Memorial Institute, Columbus, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Leong J, Shi D, Tan JPK, Yang C, Yang S, Wang Y, Ngow YS, Kng J, Balakrishnan N, Peng SQ, Yeow CS, Periaswamy B, Venkataraman S, Kwa AL, Liu X, Yao H, Yang YY. Potent Antiviral and Antimicrobial Polymers as Safe and Effective Disinfectants for the Prevention of Infections. Adv Healthc Mater 2022; 11:e2101898. [PMID: 34694749 DOI: 10.1002/adhm.202101898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Disinfection using effective antimicrobials is essential in preventing the spread of infectious diseases. This COVID-19 pandemic has brought the need for effective disinfectants to greater attention due to the fast transmission of SARS-CoV-2. Current active ingredients in disinfectants are small molecules that microorganisms can develop resistance against after repeated long-term use and may penetrate the skin, causing harmful side-effects. To this end, a series of membrane-disrupting polyionenes that contain quaternary ammoniums and varying hydrophobic components is synthesized. They are effective against bacteria and fungi. They are also fast acting against clinically isolated drug resistant strains of bacteria. Formulating them with thickeners and nonionic surfactants do not affect their killing efficiency. These polyionenes are also effective in preventing infections caused by nonenveloped and enveloped viruses. Their effectiveness against mouse coronavirus (i.e., mouse hepatitis virus-MHV) depends on their hydrophobicity. The polyionenes with optimal compositions inactivates MHV completely in 30 s. More importantly, the polyionenes are effective in inhibiting SARS-CoV-2 by >99.999% within 30 s. While they are effective against the microorganisms, they do not cause damage to the skin and have a high oral lethal dose. Overall, these polyionenes are promising active ingredients for disinfection and prevention of viral and microbial infections.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chuan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shengcai Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yeen Shian Ngow
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Jessica Kng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Nithiyaa Balakrishnan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shu Qin Peng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chun Siang Yeow
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Balamurugan Periaswamy
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Andrea Lay‐Hoon Kwa
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119288 Singapore
| |
Collapse
|
22
|
Crocker LB, Lee JH, Mital S, Mills GC, Schack S, Bistrović-Popov A, Franck CO, Mela I, Kaminski CF, Christie G, Fruk L. Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Sci Rep 2022; 12:6580. [PMID: 35449377 PMCID: PMC9022420 DOI: 10.1038/s41598-022-10394-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.
Collapse
Affiliation(s)
- Leander B Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ju Hyun Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabrielle C Mills
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sina Schack
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Andrea Bistrović-Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Christoph O Franck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
23
|
Delpuech O, Douthwaite JA, Hill T, Niranjan D, Malintan NT, Duvoisin H, Elliott J, Goodfellow I, Hosmillo M, Orton AL, Taylor MA, Brankin C, Pitt H, Ross-Thriepland D, Siek M, Cuthbert A, Richards I, Ferdinand JR, Barker C, Shaw R, Ariani C, Waddell I, Rees S, Green C, Clark R, Upadhyay A, Howes R. Heat inactivation of clinical COVID-19 samples on an industrial scale for low risk and efficient high-throughput qRT-PCR diagnostic testing. Sci Rep 2022; 12:2883. [PMID: 35190592 PMCID: PMC8861189 DOI: 10.1038/s41598-022-06888-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
We report the development of a large scale process for heat inactivation of clinical COVID-19 samples prior to laboratory processing for detection of SARS-CoV-2 by RT-qPCR. With more than 266 million confirmed cases, over 5.26 million deaths already recorded at the time of writing, COVID-19 continues to spread in many parts of the world. Consequently, mass testing for SARS-CoV-2 will remain at the forefront of the COVID-19 response and prevention for the near future. Due to biosafety considerations the standard testing process requires a significant amount of manual handling of patient samples within calibrated microbiological safety cabinets. This makes the process expensive, effects operator ergonomics and restricts testing to higher containment level laboratories. We have successfully modified the process by using industrial catering ovens for bulk heat inactivation of oropharyngeal/nasopharyngeal swab samples within their secondary containment packaging before processing in the lab to enable all subsequent activities to be performed in the open laboratory. As part of a validation process, we tested greater than 1200 clinical COVID-19 samples and showed less than 1 Cq loss in RT-qPCR test sensitivity. We also demonstrate the bulk heat inactivation protocol inactivates a murine surrogate of human SARS-CoV-2. Using bulk heat inactivation, the assay is no longer reliant on containment level 2 facilities and practices, which reduces cost, improves operator safety and ergonomics and makes the process scalable. In addition, heating as the sole method of virus inactivation is ideally suited to streamlined and more rapid workflows such as 'direct to PCR' assays that do not involve RNA extraction or chemical neutralisation methods.
Collapse
Affiliation(s)
- Oona Delpuech
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Julie A Douthwaite
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
- In Vivo Expressed Biologics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Thomas Hill
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - Dhevahi Niranjan
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Nancy T Malintan
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Hannah Duvoisin
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jane Elliott
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | - Alexandra L Orton
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Molly A Taylor
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Christopher Brankin
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Haidee Pitt
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Animal Science and Technologies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Magdalena Siek
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Facilities Management, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Anna Cuthbert
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Clinical Operations, Late-Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ian Richards
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - John R Ferdinand
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Robert Shaw
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | | | - Ian Waddell
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - Steve Rees
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Clive Green
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Roger Clark
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | | | - Rob Howes
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
24
|
Shuipys T, Montazeri N. Optimized Protocols for the Propagation and Quantification of Infectious Murine Hepatitis Virus (MHV-A59) Using NCTC Clone 1469 and 929 Cells. Methods Protoc 2022; 5:5. [PMID: 35076547 PMCID: PMC8788426 DOI: 10.3390/mps5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Murine hepatitis virus (MHV) is a non-human pathogen betacoronavirus that is evolutionarily and structurally related to the human pathogenic viruses SARS-CoV, MERS-CoV, and SARS-CoV-2. However, unlike the human SARS and MERS viruses, MHV requires a biosafety level 2 laboratory for propagating and safe handling, making it a potentially suitable surrogate virus. Despite this utility, few papers discussed the propagation and quantification of MHV using cell lines readily available in biorepositories making their implementations not easily reproducible. This article provides protocols for propagating and quantifying MHV-A59 using the recommended NCTC clone 1469 and clone 929 cell lines from American Type Culture Collection (ATCC). More specifically, the methods detail reviving cells, routine cell passaging, preparing freeze stocks, infection of NCTC clone 1469 with MHV and subsequent harvesting, and plaque assay quantification of MHV using NCTC clone 929 cells. Using these protocols, a BSL-2 laboratory equipped for cell culture work would generate at least 6.0 log plaque-forming units (PFU) per mL of MHV lysate and provide an optimized overlay assay using either methylcellulose or agarose as overlays for the titration of infectious virus particles. The protocols described here are intended to be utilized for persistence and inactivation studies of coronaviruses.
Collapse
Affiliation(s)
| | - Naim Montazeri
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
25
|
Dangi T, Palacio N, Sanchez S, Park M, Class J, Visvabharathy L, Ciucci T, Koralnik IJ, Richner JM, Penaloza-MacMaster P. Cross-protective immunity following coronavirus vaccination and coronavirus infection. J Clin Invest 2021; 131:151969. [PMID: 34623973 DOI: 10.1172/jci151969] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have shown efficacy against SARS-CoV-2, it is unknown if coronavirus vaccines can also protect against other coronaviruses that may infect humans in the future. Here, we show that coronavirus vaccines elicited cross-protective immune responses against heterologous coronaviruses. In particular, we show that a severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) vaccine developed in 2004 and known to protect against SARS-CoV-1 conferred robust heterologous protection against SARS-CoV-2 in mice. Similarly, prior coronavirus infections conferred heterologous protection against distinct coronaviruses. Cross-reactive immunity was also reported in patients with coronavirus disease 2019 (COVID-19) and in individuals who received SARS-CoV-2 vaccines, and transfer of plasma from these individuals into mice improved protection against coronavirus challenges. These findings provide the first demonstration to our knowledge that coronavirus vaccines (and prior coronavirus infections) can confer broad protection against heterologous coronaviruses and establish a rationale for universal coronavirus vaccines.
Collapse
Affiliation(s)
- Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nicole Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mincheol Park
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacob Class
- Department of Microbiology and Immunology, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas Ciucci
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA.,Department of Microbiology and Immunology, Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Igor J Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Justin M Richner
- Department of Microbiology and Immunology, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
26
|
Shah SR, Kane SR, Elsheikh M, Alfaro TM. Development of a rapid viability RT-PCR (RV-RT-PCR) method to detect infectious SARS-CoV-2 from swabs. J Virol Methods 2021; 297:114251. [PMID: 34380012 PMCID: PMC8349479 DOI: 10.1016/j.jviromet.2021.114251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/23/2022]
Abstract
Since the rapid onset of the COVID-19 pandemic, its causative virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), continues to spread and increase the number of fatalities. To expedite studies on understanding potential surface transmission of the virus and to aid environmental epidemiological investigations, we developed a rapid viability reverse transcriptase PCR (RV-RT-PCR) method that detects viable (infectious) SARS-CoV-2 from swab samples in <1 day compared to several days required by current gold-standard cell-culture-based methods. The method integrates cell-culture-based viral enrichment in a 96-well plate format with gene-specific RT-PCR-based analysis before and after sample incubation to determine the cycle threshold (CT) difference (ΔCT). An algorithm based on ΔCT ≥ 6 representing ∼ 2-log or more increase in SARS-CoV-2 RNA following enrichment determines the presence of infectious virus. The RV-RT-PCR method with 2-hr viral infection and 9-hr post-infection incubation periods includes ultrafiltration to concentrate virions, resulting in detection of <50 SARS-CoV-2 virions in swab samples in 17 h (for a batch of 12 swabs), compared to days typically required by the cell-culture-based method. The SARS-CoV-2 RV-RT-PCR method may also be useful in clinical sample analysis and antiviral drug testing, and could serve as a model for developing rapid methods for other viruses of concern.
Collapse
Affiliation(s)
- Sanjiv R Shah
- Homeland Security and Materials Management Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | - Staci R Kane
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Maher Elsheikh
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | |
Collapse
|
27
|
Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proc Natl Acad Sci U S A 2021; 118:2101071118. [PMID: 34479991 PMCID: PMC8463849 DOI: 10.1073/pnas.2101071118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has disproportionately affected patients with comorbidities, namely, obesity and type 2 diabetes. Macrophages (Mφs) are a key innate immune cell primarily responsible for the harmful, hyperinflammatory “cytokine storm” in patients that develop severe COVID-19. We describe a mechanism for this Mφ-mediated cytokine storm in response to coronavirus. In response to coronavirus infection, expression of the chromatin-modifying enzyme, SETDB2, decreases in Mφs, leading to increased transcription of inflammatory cytokines. Further, we find SETDB2 is regulated by an interferon beta (IFNβ)/JaK/STAT3 mechanism, and that exogenous administration of IFNβ can reverse inflammation, particularly in diabetic Mφs via an increase in SETDB2. Together, these results suggest therapeutic targeting of the IFNβ/SETDB2 axis in diabetic patients with COVID-19 may decrease pathologic inflammation. COVID-19 induces a robust, extended inflammatory “cytokine storm” that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNβ directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNβ reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNβ/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.
Collapse
|
28
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
29
|
Fernandez-Cassi X, Scheidegger A, Bänziger C, Cariti F, Tuñas Corzon A, Ganesanandamoorthy P, Lemaitre JC, Ort C, Julian TR, Kohn T. Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. WATER RESEARCH 2021; 200:117252. [PMID: 34048984 DOI: 10.1101/2021.03.25.21254344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been shown to coincide with, or anticipate, confirmed COVID-19 case numbers. During periods with high test positivity rates, however, case numbers may be underreported, whereas wastewater does not suffer from this limitation. Here we investigated how the dynamics of new COVID-19 infections estimated based on wastewater monitoring or confirmed cases compare to true COVID-19 incidence dynamics. We focused on the first pandemic wave in Switzerland (February to April, 2020), when test positivity ranged up to 26%. SARS-CoV-2 RNA loads were determined 2-4 times per week in three Swiss wastewater treatment plants (Lugano, Lausanne and Zurich). Wastewater and case data were combined with a shedding load distribution and an infection-to-case confirmation delay distribution, respectively, to estimate infection incidence dynamics. Finally, the estimates were compared to reference incidence dynamics determined by a validated compartmental model. Incidence dynamics estimated based on wastewater data were found to better track the timing and shape of the reference infection peak compared to estimates based on confirmed cases. In contrast, case confirmations provided a better estimate of the subsequent decline in infections. Under a regime of high-test positivity rates, WBE thus provides critical information that is complementary to clinical data to monitor the pandemic trajectory.
Collapse
Affiliation(s)
- Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andreas Scheidegger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Carola Bänziger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Federica Cariti
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alex Tuñas Corzon
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Joseph C Lemaitre
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christoph Ort
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Timothy R Julian
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland; University of Basel, CH-4055 Basel, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
30
|
Fernandez-Cassi X, Scheidegger A, Bänziger C, Cariti F, Tuñas Corzon A, Ganesanandamoorthy P, Lemaitre JC, Ort C, Julian TR, Kohn T. Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. WATER RESEARCH 2021; 200:117252. [PMID: 34048984 PMCID: PMC8126994 DOI: 10.1016/j.watres.2021.117252] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has been shown to coincide with, or anticipate, confirmed COVID-19 case numbers. During periods with high test positivity rates, however, case numbers may be underreported, whereas wastewater does not suffer from this limitation. Here we investigated how the dynamics of new COVID-19 infections estimated based on wastewater monitoring or confirmed cases compare to true COVID-19 incidence dynamics. We focused on the first pandemic wave in Switzerland (February to April, 2020), when test positivity ranged up to 26%. SARS-CoV-2 RNA loads were determined 2-4 times per week in three Swiss wastewater treatment plants (Lugano, Lausanne and Zurich). Wastewater and case data were combined with a shedding load distribution and an infection-to-case confirmation delay distribution, respectively, to estimate infection incidence dynamics. Finally, the estimates were compared to reference incidence dynamics determined by a validated compartmental model. Incidence dynamics estimated based on wastewater data were found to better track the timing and shape of the reference infection peak compared to estimates based on confirmed cases. In contrast, case confirmations provided a better estimate of the subsequent decline in infections. Under a regime of high-test positivity rates, WBE thus provides critical information that is complementary to clinical data to monitor the pandemic trajectory.
Collapse
Affiliation(s)
- Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andreas Scheidegger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Carola Bänziger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Federica Cariti
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alex Tuñas Corzon
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Joseph C Lemaitre
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christoph Ort
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Timothy R Julian
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland; University of Basel, CH-4055 Basel, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
31
|
Firpo MR, Mastrodomenico V, Hawkins GM, Prot M, Levillayer L, Gallagher T, Simon-Loriere E, Mounce BC. Targeting Polyamines Inhibits Coronavirus Infection by Reducing Cellular Attachment and Entry. ACS Infect Dis 2021; 7:1423-1432. [PMID: 32966040 PMCID: PMC7539557 DOI: 10.1021/acsinfecdis.0c00491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Coronaviruses first garnered widespread attention in 2002 when the severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from bats in China and rapidly spread in human populations. Since then, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged and still actively infects humans. The recent SARS-CoV-2 outbreak and the resulting disease (coronavirus disease 2019, COVID19) have rapidly and catastrophically spread and highlighted significant limitations to our ability to control and treat infection. Thus, a basic understanding of entry and replication mechanisms of coronaviruses is necessary to rationally evaluate potential antivirals. Here, we show that polyamines, small metabolites synthesized in human cells, facilitate coronavirus replication and the depletion of polyamines with FDA-approved molecules significantly reduces coronavirus replication. We find that diverse coronaviruses, including endemic and epidemic coronaviruses, exhibit reduced attachment and entry into polyamine-depleted cells. We further demonstrate that several molecules targeting the polyamine biosynthetic pathway are antiviral in vitro. In sum, our data suggest that polyamines are critical to coronavirus replication and represent a highly promising drug target in the current and any future coronavirus outbreaks.
Collapse
Affiliation(s)
- Mason R. Firpo
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Vincent Mastrodomenico
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Grant M. Hawkins
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris 75015, France
| | - Laura Levillayer
- Functional Genetics of Infectious diseases Unit, Institut Pasteur, Paris 75015, France
| | - Thomas Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | - Bryan C. Mounce
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
32
|
GABA A-Receptor Agonists Limit Pneumonitis and Death in Murine Coronavirus-Infected Mice. Viruses 2021; 13:v13060966. [PMID: 34071034 PMCID: PMC8224554 DOI: 10.3390/v13060966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/20/2023] Open
Abstract
There is an urgent need for new approaches to limit the severity of coronavirus infections. Many cells of the immune system express receptors for the neurotransmitter γ-aminobutyric acid (GABA), and GABA-receptor (GABA-R) agonists have anti-inflammatory effects. Lung epithelial cells also express GABA-Rs, and GABA-R modulators have been shown to limit acute lung injuries. There is currently, however, no information on whether GABA-R agonists might impact the course of a viral infection. Here, we assessed whether clinically applicable GABA-R agonists could be repurposed for the treatment of a lethal coronavirus (murine hepatitis virus 1, MHV-1) infection in mice. We found that oral GABA administration before, or after the appearance of symptoms, very effectively limited MHV-1-induced pneumonitis, severe illness, and death. GABA treatment also reduced viral load in the lungs, suggesting that GABA-Rs may provide a new druggable target to limit coronavirus replication. Treatment with the GABAA-R-specific agonist homotaurine, but not the GABAB-R-specific agonist baclofen, significantly reduced the severity of pneumonitis and death rates in MHV-1-infected mice, indicating that the therapeutic effects were mediated primarily through GABAA-Rs. Since GABA and homotaurine are safe for human consumption, they are promising candidates to help treat coronavirus infections.
Collapse
|
33
|
Forés E, Bofill-Mas S, Itarte M, Martínez-Puchol S, Hundesa A, Calvo M, Borrego CM, Corominas LL, Girones R, Rusiñol M. Evaluation of two rapid ultrafiltration-based methods for SARS-CoV-2 concentration from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144786. [PMID: 33429117 PMCID: PMC7789912 DOI: 10.1016/j.scitotenv.2020.144786] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 05/18/2023]
Abstract
Quantitative measurements of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in raw wastewater have been implemented worldwide since the beginning of the pandemic. Recent efforts are being made to evaluate different viral concentration methodologies to overcome supplier shortages during lockdowns. A set of 22-wastewater samples seeded with murine hepatitis virus (MHV), a member of the Coronaviridae family, and the bacteriophage MS2, were used to characterize and compare two ultrafiltration-based methods: a centrifugal ultrafiltration device (Centricon® Plus-70) and the automated concentrating pipette CP-Select™. Based on the recovery efficiencies, significant differences were observed for MHV, with Centricon® Plus-70 (24%) being the most efficient method. Nevertheless, concentrations of naturally occurring SARS-CoV-2, Human adenoviruses and JC polyomaviruses in these samples did not result in significant differences between methods suggesting that testing naturally occurring viruses may complement the evaluation of viral concentration methodologies. Based on the virus adsorption to solids and the necessity of a pre-centrifugation step to remove larger particles and avoid clogging when using ultrafiltration methods, we assessed the percentage of viruses not quantified after ultrafiltration. Around 23% of the detected SARS-CoV-2 would be discarded during the debris removal step. The CP-Select™ provided the highest concentration factor (up to 333×) and the lowest LoD (6.19 × 103 GC/l) for MHV and proved to be fast, automatic, highly reproducible and suitable to work under BSL-2 measures.
Collapse
Affiliation(s)
- E Forés
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain; The Water Institute of the University of Barcelona, Spain
| | - S Bofill-Mas
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain; The Water Institute of the University of Barcelona, Spain
| | - M Itarte
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain; The Water Institute of the University of Barcelona, Spain
| | - S Martínez-Puchol
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain; The Water Institute of the University of Barcelona, Spain
| | - A Hundesa
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - M Calvo
- Section of Statistics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - C M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, E-17003 Girona, Spain
| | - L L Corominas
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, Spain; University of Girona, E-17003 Girona, Spain
| | - R Girones
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain; The Water Institute of the University of Barcelona, Spain
| | - M Rusiñol
- Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain.
| |
Collapse
|
34
|
Pathak L, Gayan S, Pal B, Talukdar J, Bhuyan S, Sandhya S, Yeger H, Baishya D, Das B. Coronavirus Activates an Altruistic Stem Cell-Mediated Defense Mechanism that Reactivates Dormant Tuberculosis: Implications in Coronavirus Disease 2019 Pandemic. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1255-1268. [PMID: 33887214 PMCID: PMC8054533 DOI: 10.1016/j.ajpath.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
We postulate that similar to bacteria, adult stem cells may also exhibit an altruistic defense mechanism to protect their niche against external threat. Herein, we report mesenchymal stem cell (MSC)–based altruistic defense against a mouse model of coronavirus, murine hepatitis virus-1 (MHV-1) infection of lung. MHV-1 infection led to reprogramming of CD271+ MSCs in the lung to an enhanced stemness phenotype that exhibits altruistic behavior, as per previous work in human embryonic stem cells. The reprogrammed MSCs exhibited transient expansion for 2 weeks, followed by apoptosis and expression of stemness genes. The conditioned media of the reprogrammed MSCs exhibited direct antiviral activity in an in vitro model of MHV-1–induced toxicity to type II alveolar epithelial cells by increasing their survival/proliferation and decreasing viral load. Thus, the reprogrammed MSCs can be identified as altruistic stem cells (ASCs), which exert a unique altruistic defense against MHV-1. In a mouse model of MSC-mediated Mycobacterium tuberculosis (MTB) dormancy, MHV-1 infection in the lung exhibited 20-fold lower viral loads than the MTB-free control mice on the third week of viral infection, and exhibited six-fold increase of ASCs, thereby enhancing the altruistic defense. Notably, these ASCs exhibited intracellular replication of MTB, and their extracellular release. Animals showed tuberculosis reactivation, suggesting that dormant MTB may exploit ASCs for disease reactivation.
Collapse
Affiliation(s)
- Lekhika Pathak
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bidisha Pal
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts
| | - Joyeeta Talukdar
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Seema Bhuyan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sorra Sandhya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Herman Yeger
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Debabrat Baishya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts.
| |
Collapse
|
35
|
Li Y, Wang J, Hou W, Shan Y, Wang S, Liu F. Dynamic Dissection of the Endocytosis of Porcine Epidemic Diarrhea Coronavirus Cooperatively Mediated by Clathrin and Caveolae as Visualized by Single-Virus Tracking. mBio 2021; 12:e00256-21. [PMID: 33785615 PMCID: PMC8092227 DOI: 10.1128/mbio.00256-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses (CoVs) have caused severe diseases in humans and animals. Endocytic pathways, such as clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME), play an important role for CoVs to penetrate the cell membrane barrier. In this study, a novel CoV entry manner is unraveled in which clathrin and caveolae can cooperatively mediate endocytosis of porcine epidemic diarrhea coronavirus (PEDV). Using multicolor live-cell imaging, the dynamics of the fluorescently labeled clathrin structures, caveolae structures, and PEDV were dissected. During CavME of PEDV, we found that clathrin structures can fuse with caveolae near the cell plasma membrane, and the average time of PEDV penetrating the cell membrane was within ∼3 min, exhibiting a rapid course of PEDV entry. Moreover, based on the dynamic recruitment of clathrin and caveolae structures and viral motility, the direct evidence also shows that about 20% of PEDVs can undergo an abortive entry via CME and CavME. Additionally, the dynamic trafficking of PEDV from clathrin and caveolae structures to early endosomes, and from early endosomes to late endosomes, and viral fusion were directly dissected, and PEDV fusion mainly occurred in late endosomes within ∼6.8 min after the transport of PEDV to late endosomes. Collectively, this work systematically unravels the early steps of PEDV infection, which expands our understanding of the mechanism of CoV infection.IMPORTANCE Emerging and re-emerging coronaviruses cause serious human and animal epidemics worldwide. For many enveloped viruses, including coronavirus, it is evident that breaking the plasma membrane barrier is a pivotal and complex process, which contains multiple dynamic steps. Although great efforts have been made to understand the mechanisms of coronavirus endocytic pathways, the direct real-time imaging of individual porcine epidemic diarrhea coronavirus (PEDV) internalization has not been achieved yet. In this study, we not only dissected the kinetics of PEDV entry via clathrin-mediated endocytosis and caveolae-mediated endocytosis and the kinetics of endosome trafficking and viral fusion but also found a novel productive coronavirus entry manner in which clathrin and caveolae can cooperatively mediate endocytosis of PEDV. Moreover, we uncovered the existence of PEDV abortive endocytosis. In summary, the productive PEDV entry via the cooperation between clathrin and caveolae structures and the abortive endocytosis of PEDV provide new insights into coronavirus penetrating the plasma membrane barrier.
Collapse
Affiliation(s)
- Yangyang Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jian Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Hou
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
- Computational Optics Laboratory, Jiangnan University, Wuxi, Jiangsu, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
37
|
β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell 2020; 183:1520-1535.e14. [PMID: 33157038 PMCID: PMC7590812 DOI: 10.1016/j.cell.2020.10.039] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
β-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that β-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of β-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. β-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.
Collapse
|
38
|
Rusiñol M, Martínez-Puchol S, Forés E, Itarte M, Girones R, Bofill-Mas S. Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 17:21-28. [PMID: 32839746 PMCID: PMC7437508 DOI: 10.1016/j.coesh.2020.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As the novel SARS-CoV-2 was detected in faeces, environmental researchers have been using centrifugal ultrafiltration, polyethylene glycol precipitation and aluminium hydroxide flocculation to describe its presence in wastewater samples. High recoveries (up to 65%) are described with electronegative filtration when using surrogate viruses, but few literature reports recovery efficiencies using accurate quantification of enveloped viruses. Considering that every single virus will have a different behaviour during viral concentration, it is recommended to use an enveloped virus, and if possible, a betacoronaviruses as murine hepatitis virus, as a surrogate. In this review, we show new data from a newly available technology that provides a quick ultrafiltration protocol for SARS-CoV-2. Wastewater surveillance is an efficient system for the evaluation of the relative prevalence of SARS-CoV-2 infections in a community, and there is the need of using reliable concentration methods for an accurate and sensitive quantification of the virus in water.
Collapse
Affiliation(s)
- Marta Rusiñol
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics. Faculty of Biology, University of Barcelona, Catalonia, Spain
- GHS, Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Sandra Martínez-Puchol
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics. Faculty of Biology, University of Barcelona, Catalonia, Spain
- The Water Institute of the University of Barcelona, Spain
| | - Eva Forés
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics. Faculty of Biology, University of Barcelona, Catalonia, Spain
- The Water Institute of the University of Barcelona, Spain
| | - Marta Itarte
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics. Faculty of Biology, University of Barcelona, Catalonia, Spain
- The Water Institute of the University of Barcelona, Spain
| | - Rosina Girones
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics. Faculty of Biology, University of Barcelona, Catalonia, Spain
- The Water Institute of the University of Barcelona, Spain
| | - Sílvia Bofill-Mas
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics. Faculty of Biology, University of Barcelona, Catalonia, Spain
- The Water Institute of the University of Barcelona, Spain
| |
Collapse
|
39
|
Scheller C, Krebs F, Minkner R, Astner I, Gil‐Moles M, Wätzig H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020; 41:1137-1151. [PMID: 32469436 PMCID: PMC7283733 DOI: 10.1002/elps.202000121] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
The material properties of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its proteins are discussed. We review the viral structure, size, rigidity, lipophilicity, isoelectric point, buoyant density and centrifugation conditions, stability against pH, temperature, UV light, gamma radiation, and susceptibility to various chemical agents including solvents and detergents. Possible inactivation, downstream, and formulation conditions are given including suitable buffers and some first ideas for quality-control methods. This information supports vaccine development and discussion with competent authorities during vaccine approval and is certainly related to drug-targeting strategies and hygienics. Several instructive tables are given, including the pI and grand average of hydropathicity (GRAVY) of SARS-CoV-1 and -2 proteins in comparison. SARS-CoV-1 and SARS-CoV-2 are similar in many regards, so information can often be derived. Both are unusually stable, but sensitive at their lipophilic membranes. However, since seemingly small differences can have strong effects, for example, on immunologically relevant epitope settings, unevaluated knowledge transfer from SARS-CoV-1 to SARS-CoV-2 cannot be advised. Published knowledge regarding downstream processes, formulations and quality assuring methods is, as yet, limited. However, standard approaches employed for other viruses and vaccines seem to be feasible including virus inactivation, centrifugation conditions, and the use of adjuvants.
Collapse
Affiliation(s)
- Christin Scheller
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Finja Krebs
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Robert Minkner
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Isabel Astner
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Maria Gil‐Moles
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
40
|
Wippold JA, Wang H, Tingling J, Leibowitz J, de Figueiredo P, Han A. PRESCIENT: platform for the rapid evaluation of antibody success using integrated microfluidics enabled technology. LAB ON A CHIP 2020; 20:1628-1638. [PMID: 32196032 PMCID: PMC7269184 DOI: 10.1039/c9lc01165j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Identifying antibodies (Abs) that neutralize infectious agents is the first step for developing therapeutics, vaccines, and diagnostic tools for these infectious agents. However, current approaches for identifying neutralizing Abs (nAbs) typically rely on dilution-based assays that are costly, inefficient, and only survey a small subset of the entire repertoire. There are also intrinsic biases in many steps of conventional nAb identification processes. More importantly, conventional assays rely on simple Ab-antigen binding assays, which may not result in identifying the most potent nAbs, as the strongest binder may not be the most potent nAb. Droplet microfluidic systems have the capability to overcome such limitations by conducting complex multi-step assays with high reliability, resolution, and throughput in a pico-liter volume water-in-oil emulsion droplet format. Here, we describe the development of PRESCIENT (Platform for the Rapid Evaluation of antibody SucCess using Integrated microfluidics ENabled Technology), a droplet microfluidic system that can enable high-throughput single-cell resolution identification of nAb repertoires elicited in response to viral infection. We demonstrate PRESCIENT's ability to identify Abs that neutralize a model viral agent, Murine coronavirus (murine hepatitis virus), which causes high mortality rates in experimentally infected mice. In-droplet infection of host cells by the virus was first demonstrated, followed by demonstration of in-droplet neutralization by nAbs produced from a single Ab-producing hybridoma cell. Finally, fluorescence intensity analyses of two populations of hybridoma cell lines (nAb-producing and non-nAb-producing hybridoma cell lines) successfully discriminated between the two populations. The presented strategy and platform have the potential to identify and investigate neutralizing activities against a broad range of potential infectious agents for which nAbs have yet to be discovered, significantly advancing the nAb identification process as well as reinvigorating the field of Ab discovery, characterization, and development.
Collapse
Affiliation(s)
- Jose A. Wippold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, CHINA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Tingling
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Julian Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Medicine, Texas A&M University, College Station, TX 77843
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, CHINA
| |
Collapse
|
41
|
Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5077-85. [PMID: 27111122 PMCID: PMC7099725 DOI: 10.1021/acs.est.6b00876] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 05/17/2023]
Abstract
Many of the devastating pandemics and outbreaks of the 20th and 21st centuries have involved enveloped viruses, including influenza, HIV, SARS, MERS, and Ebola. However, little is known about the presence and fate of enveloped viruses in municipal wastewater. Here, we compared the survival and partitioning behavior of two model enveloped viruses (MHV and ϕ6) and two nonenveloped bacteriophages (MS2 and T3) in raw wastewater samples. We showed that MHV and ϕ6 remained infective on the time scale of days. Up to 26% of the two enveloped viruses adsorbed to the solid fraction of wastewater compared to 6% of the two nonenveloped viruses. Based on this partitioning behavior, we assessed and optimized methods for recovering enveloped viruses from wastewater. Our optimized ultrafiltration method resulted in mean recoveries (±SD) of 25.1% (±3.6%) and 18.2% (±9.5%) for the enveloped MHV and ϕ6, respectively, and mean recoveries of 55.6% (±16.7%) and 85.5% (±24.5%) for the nonenveloped MS2 and T3, respectively. A maximum of 3.7% of MHV and 2% of MS2 could be recovered from the solids. These results shed light on the environmental fate of an important group of viruses and the presented methods will enable future research on enveloped viruses in water environments.
Collapse
Affiliation(s)
- Yinyin Ye
- Department of Civil and Environmental Engineering,
University of Michigan, Ann Arbor,
Michigan 48109-2125, United States
| | - Robert M. Ellenberg
- Department of Civil and Environmental Engineering,
University of Michigan, Ann Arbor,
Michigan 48109-2125, United States
| | - Katherine E. Graham
- Department of Civil and Environmental Engineering,
University of Michigan, Ann Arbor,
Michigan 48109-2125, United States
| | - Krista R. Wigginton
- Department of Civil and Environmental Engineering,
University of Michigan, Ann Arbor,
Michigan 48109-2125, United States
| |
Collapse
|
42
|
Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5077-5085. [PMID: 27111122 DOI: 10.1021/acs.est.6b00876.s001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many of the devastating pandemics and outbreaks of the 20th and 21st centuries have involved enveloped viruses, including influenza, HIV, SARS, MERS, and Ebola. However, little is known about the presence and fate of enveloped viruses in municipal wastewater. Here, we compared the survival and partitioning behavior of two model enveloped viruses (MHV and ϕ6) and two nonenveloped bacteriophages (MS2 and T3) in raw wastewater samples. We showed that MHV and ϕ6 remained infective on the time scale of days. Up to 26% of the two enveloped viruses adsorbed to the solid fraction of wastewater compared to 6% of the two nonenveloped viruses. Based on this partitioning behavior, we assessed and optimized methods for recovering enveloped viruses from wastewater. Our optimized ultrafiltration method resulted in mean recoveries (±SD) of 25.1% (±3.6%) and 18.2% (±9.5%) for the enveloped MHV and ϕ6, respectively, and mean recoveries of 55.6% (±16.7%) and 85.5% (±24.5%) for the nonenveloped MS2 and T3, respectively. A maximum of 3.7% of MHV and 2% of MS2 could be recovered from the solids. These results shed light on the environmental fate of an important group of viruses and the presented methods will enable future research on enveloped viruses in water environments.
Collapse
Affiliation(s)
- Yinyin Ye
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| | - Robert M Ellenberg
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| | - Katherine E Graham
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| |
Collapse
|
43
|
Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016. [PMID: 27111122 DOI: 10.1021/acs.est.6b0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many of the devastating pandemics and outbreaks of the 20th and 21st centuries have involved enveloped viruses, including influenza, HIV, SARS, MERS, and Ebola. However, little is known about the presence and fate of enveloped viruses in municipal wastewater. Here, we compared the survival and partitioning behavior of two model enveloped viruses (MHV and ϕ6) and two nonenveloped bacteriophages (MS2 and T3) in raw wastewater samples. We showed that MHV and ϕ6 remained infective on the time scale of days. Up to 26% of the two enveloped viruses adsorbed to the solid fraction of wastewater compared to 6% of the two nonenveloped viruses. Based on this partitioning behavior, we assessed and optimized methods for recovering enveloped viruses from wastewater. Our optimized ultrafiltration method resulted in mean recoveries (±SD) of 25.1% (±3.6%) and 18.2% (±9.5%) for the enveloped MHV and ϕ6, respectively, and mean recoveries of 55.6% (±16.7%) and 85.5% (±24.5%) for the nonenveloped MS2 and T3, respectively. A maximum of 3.7% of MHV and 2% of MS2 could be recovered from the solids. These results shed light on the environmental fate of an important group of viruses and the presented methods will enable future research on enveloped viruses in water environments.
Collapse
Affiliation(s)
- Yinyin Ye
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| | - Robert M Ellenberg
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| | - Katherine E Graham
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109-2125, United States
| |
Collapse
|
44
|
Abstract
Human papillomaviruses (HPV) are the major factor in causing cervical cancer as well as being implicated in causing oral and anal cancers. The life cycle of HPV is tied to the epithelial differentiation system, as only native virus can be produced in stratified human skin. Initially, HPV research was only possible utilizing recombinant systems in monolayer culture. With new cell culture technology, systems using differentiated skin have allowed HPV to be studied in its native environment. Here, we describe current research studying native virions in differentiated skin including viral assembly, maturation, capsid protein interactions, and L2 cross-neutralizing epitopes. In doing so, we hope to show how differentiating skin systems have increased our knowledge of HPV biology and identify gaps in our knowledge about this important virus.
Collapse
|
45
|
Identification of novel functional regions within the spike glycoprotein of MHV-A59 based on a bioinformatics approach. Virus Res 2014; 189:177-88. [PMID: 24910120 PMCID: PMC4134989 DOI: 10.1016/j.virusres.2014.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 01/23/2023]
Abstract
Identification of functional regions within MHV-A59 spike (S) protein through analysis of sequence similarities with FcγR. C547 substitution abolishes the recognition of cleaved S by monoclonal antibodies. Substitution of residues 547 and 581–586 in S prevents the recovery of a viable virus. Amino acid replacements at positions 562/589 and 667/687 in S affect viral replication. Replacement of residue 939 in S affects the fusogenic properties of the virus.
Mouse Hepatitis Virus (MHV) is a single-stranded positive sense RNA virus with the ability to promote acute and chronic diseases in mice. The MHV spike protein (S) is a major virulence determinant which in addition to binding to cellular receptors to mediate cell entry and facilitate virus spread to adjacent cells by cell–cell fusion, also is a molecular mimic of the FcγRII receptor. This molecular mimicry of FcγRII by the MHV S protein is also exhibited by other lineage 2a betacoronaviruses, with the exception of the human coronavirus HCoV-OC43. In this work we undertook a mutational analysis to attempt to identify specific amino acid sequences within the spike glycoprotein crucial for molecular mimicry of FcγRII. Although we were unsuccessful in isolating mutant viruses which were specifically defective in that property, we identified several mutations with interesting phenotypes. Mutation of the cysteine in position 547 to alanine and alanine replacements at residues 581–586 was lethal. Replacing proline 939 with the corresponding HCoV-OC43 residue, leucine, decreased the ability MHV to induce cell–cell fusion, providing experimental support for an earlier proposal that residues 929–944 make up the fusion peptide of the MHV S protein.
Collapse
|