1
|
Brandolini M, Rocculi P, Morbarigazzi M, De Pascali AM, Dirani G, Zannoli S, Lelli D, Lavazza A, Battioni F, Grumiro L, Semprini S, Guerra M, Gatti G, Dionisi L, Ingletto L, Colosimo C, Marzucco A, Montanari MS, Cricca M, Scagliarini A, Sambri V. Development and in vivo evaluation of a SARS-CoV-2 inactivated vaccine using high hydrostatic pressure. NPJ Vaccines 2025; 10:83. [PMID: 40280930 PMCID: PMC12032236 DOI: 10.1038/s41541-025-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Developing low-cost vaccine production strategies is crucial to achieving global health equity and mitigating the spread and impact of disease outbreaks. High hydrostatic pressure (HHP) technology is a widely used technology employed in the food industry for long-term preservation. This project aims at validating HHP as a cost-effective method for the production of highly immunogenic thermal stable whole-virus SARS-CoV-2 vaccines. Structural studies on HHP-inactivated viruses demonstrated pressure-dependent effects, with higher pressures (500-600 MPa) destabilizing viral morphology. Immunogenicity assessments, in animal models, revealed that 500 MPa treatment elicited the most robust humoral and cellular immune responses, outperforming heat inactivation. Additionally, HHP-inactivated viral preparation retained thermostability for 30 days at 4 °C, reducing cold-chain dependencies and enabling vaccine distribution also in low-resource settings. With its rapid, cost-effective, and scalable production process, HHP presents a transformative, equitable solution for global vaccine development, particularly for emerging pathogens.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy.
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy.
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 47521, Cesena, Italy
| | | | - Alessandra Mistral De Pascali
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), 25124, Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), 25124, Brescia, Italy
| | - Francesca Battioni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), 25124, Brescia, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Simona Semprini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Massimiliano Guerra
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Giulia Gatti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Laura Dionisi
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Ludovica Ingletto
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Claudia Colosimo
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Anna Marzucco
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Maria Sofia Montanari
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Alessandra Scagliarini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
2
|
Del Mármol C, Scalese G, Moreira R, Veiga N, Machado I, Faccio R, Lima A, Peralta RA, Pérez-Díaz L, Gambino D. Exploring a series of multifunctional Mn(I) tricarbonyls as prospective agents against trypanosomatid parasites: a comparative study with the Re(I) analogues. Dalton Trans 2025; 54:6495-6516. [PMID: 40138200 DOI: 10.1039/d5dt00241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Diseases caused by trypanosomatid parasites are among the most pressing neglected illnesses. Chagas disease, caused by Trypanosoma cruzi, and visceral Leishmaniasis, caused by Leishmania infantum, have a severe health impact in developing countries. Searching for prospective metal-based drugs against these diseases, five multifunctional fac-[Mn(CO)3(CTZ)(NN)](PF6) compounds, including four new derivatives, were synthesized and thoroughly characterized, featuring NN polypyridyl derivatives and Clotrimazole (CTZ) as bioactive ligands. The biological behavior was compared with that previously reported for the Re analogues. Mn compounds showed EC50 values in the low micromolar range against the infective trypomastigote form of Trypanosoma cruzi and the promastigote form of Leishmania infantum and moderate selectivity indexes. While their potency against T. cruzi was comparable to the Re analogues, their selectivity was lower. Key physicochemical properties relevant to drug development were assessed: Mn(I) compounds showed lower stability in relevant tested media compared with their Re(I) counterparts and higher lipophilicity than the free ligands and the Re analogues. To gain insight into the potential mechanisms of action, the interaction with DNA and the effects on ergosterol biosynthesis in T. cruzi and L. infantum were investigated. Minimal DNA association (<1%) and moderate interaction with this target discarded DNA binding as the primary mechanism of action. In contrast, inhibition of lanosterol 14-α-demethylase (CYP51), key enzyme involved in the parasites' ergosterol biosynthetic pathway, was experimentally confirmed. Metallomic study revealed an uptake by T. cruzi of the most promising compound, fac-[Mn(CO)3(CTZ)(tmp)](PF6), more than twice that of the Re(I) analogue and preferential association to soluble proteins. Proteomic analysis of T. cruzi epimastigotes treated with the Mn(I) and Re(I) analogues showed no change in CYP51 abundance, suggesting that reduced ergosterol levels may arise from post-translational modifications of the enzyme. Raman confocal microscopy allowed us to detect effects of the most promising Mn compound in treated T. cruzi. Furthermore, the photoinduced CO release properties of both Mn and Re analogues were examined, searching for an additional and yet non-studied potential mechanism of action of metal-tricarbonyls in these trypanosomatid parasites. Collectively, the results highlight the potential of Mn(I) tricarbonyls as promising candidates for further drug development.
Collapse
Affiliation(s)
- Carolina Del Mármol
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
- Programa de Posgrado de Facultad de Química, Universidad de la República, Uruguay
- PEDECIBA - Programa de Desarrollo de las Ciencias Básicas, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Rodrigo Moreira
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
- Programa de Posgrado de Facultad de Química, Universidad de la República, Uruguay
- PEDECIBA - Programa de Desarrollo de las Ciencias Básicas, Uruguay
| | - Nicolás Veiga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Ignacio Machado
- Área Química Analítica, DEC, Facultad de Química, Universidad de la República, Uruguay
| | - Ricardo Faccio
- Área Física, DETEMA, Facultad de Química, Universidad de la República, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Uruguay
- Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| |
Collapse
|
3
|
Cruz-Bustos T, Feix AS, Hummel K, Schlosser S, Razzazi-Fazeli E, Joachim A. The proteomic landscape of Toxoplasma gondii extracellular vesicles across diverse host cell types. Front Cell Infect Microbiol 2025; 15:1565684. [PMID: 40171158 PMCID: PMC11958994 DOI: 10.3389/fcimb.2025.1565684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) are emerging as powerful tools used by pathogens to manipulate host cells, delivering molecular cargo that rewires cellular processes and the immune response. Toxoplasma gondii, a globally distributed parasite capable of infecting nearly all nucleated animal cells, uses this strategy to thrive in diverse host species and tissue environments. Methods Here, we reveal the adaptability of T. gondii EVs through proteomic analysis of vesicles released from tachyzoites cultured in four different host cell types: human fibroblasts, green monkey kidney epithelial cells, mouse myoblasts and porcine intestinal epithelial cells. Results A core set of 1,244 proteins was consistently identified across TgEVs, defining a conserved signature. Beyond this conserved cargo, host-cell specific variation revealed how T. gondii fine-tunes EV content to exploit different cellular environments. Functional enrichment analyses revealed roles for TgEVs in targeting host protein synthesis and stress response pathways, with implications for immune evasion and infection spread. Discussion These findings provide insight into the potential role of EVs in host-pathogen interactions and help us understand the adaptive strategies used by T. gondii to survive and spread.
Collapse
Affiliation(s)
- Teresa Cruz-Bustos
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Sophia Feix
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Albahri G, Badran A, Baki ZA, Alame M, Hijazi A, Daou A, Mesmar JE, Baydoun E. Mandragora autumnalis Distribution, Phytochemical Characteristics, and Pharmacological Bioactivities. Pharmaceuticals (Basel) 2025; 18:328. [PMID: 40143106 PMCID: PMC11944648 DOI: 10.3390/ph18030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
In the Mediterranean and Himalayan regions, the genus Mandragora (family Solanaceae), sometimes called mandrake, is widely utilized in herbal therapy and is well-known for its mythical associations. Objective: To compile up-to-date information on M. autumnalis's therapeutic properties. Its pharmacological properties and phytochemical composition are particularly covered in managing several illnesses, including diabetes, cancer, and heart disease. Methods: Articles on the review topic were found by searching major scientific literature databases, such as PubMed, Scopus, ScienceDirect, SciFinder, Chemical Abstracts, and Medicinal and Aromatic Plants Abstracts. Additionally, general online searches were conducted using Google Scholar and Google. The time frame for the search included items released from 1986 to 2023. Results:Mandragora has been shown to contain a variety of phytochemicals, including coumarins, withanolides, and alkaloids. The pharmacological characteristics of M. autumnalis, such as increasing macrophage anti-inflammatory activity, free radicals inhibition, bacterial and fungal growth inhibition, cytotoxic anticancer activities in vivo and in vitro against cancer cell lines, and enzyme-inhibitory properties, are attributed to these phytochemicals. Furthermore, M. autumnalis also inhibits cholinesterase, tyrosinase, α-amylase, α-glucosidase, and free radicals. On the other hand, metabolic risk factors, including the inhibition of diabetes-causing enzymes and obesity, have been treated using dried ripe berries. Conclusions: Investigations into the pharmacological and phytochemical characteristics of M. autumnalis have revealed that this plant is a rich reservoir of new bioactive substances. This review aims to provide insight into the botanical and ecological characteristics of Mandragora autumnalis, including a summary of its phytochemical components and antioxidant, antimicrobial, antidiabetic, anticancer, enzyme-inhibitory properties, as well as toxicological implications, where its low cytotoxic activity against the normal VERO cell line has been shown. More research on this plant is necessary to ensure its efficacy and safety. Still, it is also necessary to understand the molecular mechanism of action behind the observed effects to clarify its therapeutic potential.
Collapse
Affiliation(s)
- Ghosoon Albahri
- Doctoral School of Science and Technology-Platform of Research and Analysis in Environmental Sciences (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107, Lebanon;
| | - Adnan Badran
- Department of Nutrition, University of Petra Amman Jordan, Amman P.O. Box 961343, Jordan;
| | - Zaher Abdel Baki
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Alame
- Doctoral School of Science and Technology-Platform of Research and Analysis in Environmental Sciences (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Akram Hijazi
- Doctoral School of Science and Technology-Platform of Research and Analysis in Environmental Sciences (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
- Faculty of Sciences, Kut University College, Wasit 52001, Iraq
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107, Lebanon;
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107, Lebanon;
| |
Collapse
|
5
|
Govindaraj S, Karuppur Thiagarajan M, Ravindran S, Mayilvakanam S, Ravi A, Annamalai S. Biocompatibility Analysis of a Herbal Amalgamation Containing Nochi, Vilvam, and Adhimadhuram Ethanolic Extracts on Vero Cell Line. Cureus 2025; 17:e77680. [PMID: 39974254 PMCID: PMC11835787 DOI: 10.7759/cureus.77680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 02/21/2025] Open
Abstract
Objective This study aimed to examine the biocompatibility and potential synergistic therapeutic effects of a blend of ethanolic extracts derived from the medicinal herbs Vilvam, Nochi, and Adhimadhuram on the Vero cell line. Materials and methods The Vero cell line was obtained from the National Centre for Cell Sciences (NCCS), Pune. A herbal formulation was prepared by blending Nochi, Vilvam, and Adhimadhuram ethanolic extracts. The Vero cell line was then evaluated for the effects of the herbal amalgamation at concentrations of 1000 µg, 500 µg, 250 µg, 125 µg, 62.5 µg, 31.2 µg, 15.6 µg, and 7.8 µg with assessments conducted at 24-h and 48-h time points. Untreated cells served as the control. Results The herbal elixir exhibited heightened cytotoxicity on the Vero cells, leading to a corresponding decline in the viable cell percentage as the concentration of the formulation was increased. To evaluate the biocompatibility of the herbal consortium on the Vero cell line, a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was carried out over a 24-48-h period of incubation with seven different concentrations as follows: 500 µg, 250 µg, 125 µg, 62.5 µg, 31.2 µg, 15.6 µg, and 7.8 µg. A dose-dependent cell viability was observed. Every experiment was conducted three times. Conclusion The herbal formulation showcases impressive biocompatibility. The promising initial results from Vero cell testing represent the first step in a potentially lengthy journey toward clinical application. Vero cell testing demonstrated the herbal blend's exceptional capacity to support cell viability with negligible toxicity, strongly indicating its suitability for future biomedical applications. However, realizing the full potential of this promising herbal consortium will necessitate extensive further research, including rigorous animal studies and clinical trials to meticulously evaluate its safety and efficacy. A deeper investigation into the underlying biocompatibility mechanisms and therapeutic properties will be pivotal to unlocking the transformative possibilities of this innovative herbal blend. Given the burgeoning interest in natural and herbal remedies, this formulation holds tremendous promise; however, its full potential can only be realized through rigorous, systematic scientific evaluation.
Collapse
Affiliation(s)
- Shalini Govindaraj
- Oral Pathology and Microbiology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Magesh Karuppur Thiagarajan
- Oral Pathology and Microbiology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Swaathi Ravindran
- Oral Pathology and Microbiology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Sathyakumar Mayilvakanam
- Oral Pathology and Microbiology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Aravindhan Ravi
- Oral Pathology and Microbiology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Sivachandran Annamalai
- Oral Pathology and Microbiology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, IND
| |
Collapse
|
6
|
Altinok FA, Dallali I, Boubekka A, Hasan A, Ozturk Y. Optimized primary dorsal root ganglion cell culture protocol for reliable K + current patch-clamp recordings. Neurosci Lett 2025; 844:138038. [PMID: 39536901 DOI: 10.1016/j.neulet.2024.138038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
DRG primary neuron cultures, derived from rodents, closely mimic properties of sensory neurons in vivo and are highly useful for studying pain and neurological disorders. These cultures are pivotal in patch-clamp electrophysiology for sensory neuron properties analysis. A detailed, replicable protocol in scientific research ensures experiment accuracy and reproducibility. This paper provides comprehensive details for replicating the protocol and achieving consistent results in primary DRG cell culture as used for patch-clamp recordings. We outlined a comprehensive protocol for establishing primary DRG cell culture, optimized for improved gigaseal formation in whole-cell patch-clamp recordings. Additionally, we conducted a simulation study focused on recording macroscopic K+ channels. The findings established an optimized novel protocol that works reliably for whole-cell patch-clamp recordings and data analysis using primary DRG cells prepared as described in this publication. The details for the protocol in the literature are dispersed across various publications, making it challenging to find a comprehensive summary in one source. This study confirms, for the first time, the efficacy of using fewer protocol steps, which reduces stress and variability in obtaining suitable cells for patch-clamp recordings compared to existing methods in the literature. Given the challenges posed by the dissociation process of primary DRG cells and the importance of comprehensive method documentation in the literature, the protocol presented provides improved and consistent applications of primary DRG cell culture in patch-clamp recordings.
Collapse
Affiliation(s)
- Feyza Alyu Altinok
- Department of Pharmacology, Anadolu University Faculty of Pharmacy, 26470 Eskisehir, Turkey.
| | - Ilhem Dallali
- Graduate School of Education, Anadolu University, 26470 Eskisehir, Turkey
| | - Abderaouf Boubekka
- Graduate School of Education, Anadolu University, 26470 Eskisehir, Turkey
| | - Ahmed Hasan
- Graduate School of Education, Anadolu University, 26470 Eskisehir, Turkey
| | - Yusuf Ozturk
- Department of Pharmacology, Istanbul Aydin University Faculty of Pharmacy, 34295 Istanbul, Turkey
| |
Collapse
|
7
|
Salvo LM, Joineau MEG, Santiago MR. In vitro cytotoxicity assessment of different solvents used in pesticide dilution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:778-782. [PMID: 39558613 DOI: 10.1080/03601234.2024.2429298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Pesticides are diluted in products called solvents for spraying fields and for cell viability studies. This study aimed to determine whether pesticide solvents can alter the toxicity of endosulfan and Vero cell viability. Thus, the cytotoxicity of some diluents commonly used in pesticide solutions was evaluated by the neutral red incorporation technique and cell growth. Vero cells were exposed to endosulfan dissolved in sunflower (Helianthus annus, Linnaeus) oil, corn (Zea mays, Linnaeus) oil, dimethylsulfoxide (DMSO), and Tween 80, at a concentration of 1 µg L-1 for a period of 96 h. The results showed that both DMSO and Tween 80 induced a significant increase in cytotoxicity compared to sunflower oil and corn oil. Moreover, Tween 80 had a significant cytotoxic effect (P < 0.05) when compared to DMSO. The solvent can alter the toxicity of endosulfan, decreasing Vero cell viability, as was the case with DMSO and Tween 80.
Collapse
Affiliation(s)
- Ligia Maria Salvo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mara Elisa Gazino Joineau
- Animal Sanitary Defense Agency of Paraná State | ADAPAR Centro de Diagnóstico "Marcos Enrietti", Curitiba, Brazil
| | - Magda Regina Santiago
- Centre of Research and Development of Environmental Protection, Biological Institute, APTA, São Paulo, Brazil
| |
Collapse
|
8
|
Velez FJ, Bosilevac JM, Salazar G, Kaur Kapoor H, Mishra A, Madoroba E, Stanford K, Fach P, Delannoy S, Stephan R, Singh P. Hydrolysis probe assays for the detection of pathogenic Enterohemorrhagic Escherichia coli: Multi-Country validation study. Food Res Int 2024; 196:115105. [PMID: 39614514 DOI: 10.1016/j.foodres.2024.115105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are foodborne pathogens frequently associated with outbreaks linked to red meat, posing significant global food safety concerns. While several commercial assays exist for detecting EHEC strains belonging to serogroups O26, O103, O111, and O121, they often fail to distinguish pathogenic strains from non-pathogenic strains lacking virulence genes. These non-pathogenic E. coli interfere with the accuracy of existing assays, resulting in false-positives rates between 81 - 100 % for beef products. This study aimed to standardize and validate four hydrolysis probe assays for the specific detection of pathogenic strains of E. coli O26, O103, O111, and O121. Primers and probes were designed to target single nucleotide polymorphisms conserved among pathogenic strains of each target serogroup. The standardized assays were validated using a comprehensive collection of pure culture and DNA samples (n = 248) from Canada, France, Switzerland, and the United States; laboratory-inoculated beef and spinach (n = 132), fractionally inoculated ground beef (n = 390), and samples from the federal red meat surveillance program (n = 166). The results demonstrated an overall accuracy of 94.8 % in predicting the virulence profile of pure culture strains. These four assays are a single-step PCR screening tool that can determine the presence of virulent strains. These assays provide food testing laboratories worldwide with a set of reliable methods for identifying pathogenic O26, O103, O111, and O121 strains. Thus, this assay will help to reduce product waste and financial losses caused by misleading positive results caused by presence of non-pathogenic strains.
Collapse
Affiliation(s)
- Frank J Velez
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA
| | | | - Abhinav Mishra
- Food Science & Technology, University of Georgia, 100 Cedar St., Athens, GA, USA
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa
| | - Kim Stanford
- Department of Biological Science, University of Lethbridge, Lethbridge, AB T1J 4V6, Canada
| | - Patrick Fach
- Anses, Laboratory for Food Safety, Unit of 'Pathogenic E. coli' (COLiPATH) & Genomics platform 'IdentyPath' (IDPA), FR-94701 Maisons-Alfort, France
| | - Sabine Delannoy
- Anses, Laboratory for Food Safety, Unit of 'Pathogenic E. coli' (COLiPATH) & Genomics platform 'IdentyPath' (IDPA), FR-94701 Maisons-Alfort, France
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Prashant Singh
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
9
|
Singh S, Aw TG, Rose JB. Evaluation of an Automated Ultrafiltration System for Concentrating a Range of Viruses from Saline Waters. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:422-431. [PMID: 38951381 PMCID: PMC11422421 DOI: 10.1007/s12560-024-09602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/03/2024]
Abstract
Pathogenic viruses in environmental water are usually present in levels too low for direct detection and thus, a concentration step is often required to increase the analytical sensitivity. The objective of this study was to evaluate an automated filtration device, the Innovaprep Concentrating Pipette Select (CP Select) for the rapid concentration of viruses in saline water samples, while considering duration of process and ease of use. Four bacteriophages (MS2, P22, Phi6, and PhiX174) and three animal viruses (adenovirus, coronavirus OC43, and canine distemper virus) were seeded in artificial seawater, aquarium water, and bay water samples, and processed using the CP Select. The recovery efficiencies of viruses were determined either using a plaque assay or droplet digital PCR (ddPCR). Using plaque assays, the average recovery efficiencies for bacteriophages ranged from 4.84 ± 3.8% to 82.73 ± 27.3%, with highest recovery for P22 phage. The average recovery efficiencies for the CP Select were 39.31 ± 26.6% for adenovirus, 19.04 ± 11.6% for coronavirus OC43, and 19.84 ± 13.6% for canine distemper virus, as determined by ddPCR. Overall, viral genome composition, not the size of the virus, affected the recovery efficiencies for the CP Select. The small sample volume size used for the ultrafilter pipette of the system hinders the use of this method as a primary concentration step for viruses in marine waters. However, the ease of use and rapid processing time of the CP Select are especially beneficial when rapid detection of viruses in highly contaminated water, such as wastewater or sewage-polluted surface water, is needed.
Collapse
Affiliation(s)
- Simran Singh
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
de Freitas Silva M, Juliet Cristancho Ortiz C, Ferreira Coelho L, Pruccoli L, Pagliarani B, Pisani L, Catto M, Poli G, Tuccinardi T, Cardoso Vilela F, Giusti-Paiva A, Amaral Alves M, Ribeiro de Souza HM, Tarozzi A, Silva Gontijo V, Viegas C. Synthesis and pharmacological evaluation of novel N-aryl-cinnamoyl-hydrazone hybrids designed as neuroprotective agents for the treatment of Parkinson's disease. Bioorg Chem 2024; 150:107587. [PMID: 38941700 DOI: 10.1016/j.bioorg.2024.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1β, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.
Collapse
Affiliation(s)
- Matheus de Freitas Silva
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil; Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil
| | - Letícia Ferreira Coelho
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Barbara Pagliarani
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianopolis, Brazil
| | - Marina Amaral Alves
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil
| | - Hygor M Ribeiro de Souza
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Vanessa Silva Gontijo
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil
| | - Claudio Viegas
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil.
| |
Collapse
|
11
|
Lukic I, Blagojevic V, Minic R, Ivanovic S, Borozan S, Cupic V, Zivkovic I. Comparison of cytotoxicity methods for studying Vipera ammodytes venom and the anticytotoxic potency of antivenom. Cent Eur J Immunol 2024; 49:94-104. [PMID: 39381561 PMCID: PMC11457567 DOI: 10.5114/ceji.2024.142417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Alternative in vitro tests that can be used instead of animal experiments are those that can most closely evaluate the biological activity of the drug of interest. For testing the potency of antivenom, these are the methods used to assess cytotoxicity. The aim of this study was to evaluate the most commonly used cytotoxicity methods for determining the protective potency of the antivenom Viekvin, which neutralizes Vipera ammodytes venom. Material and methods The selected methods are based on different biological mechanisms: MTT assay, based on the activity of cell oxidoreductase enzymes; crystal violet staining, based on the degree of cell adhesion; trypan blue staining, based on cell membrane permeability, and propidium iodide staining, based on measurement of nucleic acids of dead cells. The pro-apoptotic effect of the venom was also determined with annexin V staining. Results The IC50 value of V. ammodytes venom obtained by these methods was very similar, while the EC50 values differed significantly. Conclusions We concluded that the choice of the method used to measure the anticytotoxic anti-venom potency depends on the immunogenicity of the venom components that cause cell death; for each venom/antivenom pair, it is necessary to select the appropriate assay separately, and at present, none of the standard cytotoxic methods can be universally applied to determine antivenom potency.
Collapse
Affiliation(s)
- Ivana Lukic
- Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | | | - Rajna Minic
- Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Sasa Ivanovic
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Suncica Borozan
- Faculty of Veterinary Medicine, Department of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Vitomir Cupic
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Irena Zivkovic
- Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| |
Collapse
|
12
|
Kakish JE, Mehrani Y, Kodeeswaran A, Geronimo K, Clark ME, van Vloten JP, Karimi K, Mallard BA, Meng B, Bridle BW, Knapp JP. Investigating the effect of reduced temperatures on the efficacy of rhabdovirus-based viral vector platforms. J Gen Virol 2024; 105:002010. [PMID: 39172037 PMCID: PMC11340643 DOI: 10.1099/jgv.0.002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Rhabdoviral vectors can induce lysis of cancer cells. While studied almost exclusively at 37 °C, viruses are subject to a range of temperatures in vivo, including temperatures ≤31 °C. Despite potential implications, the effect of temperatures <37 °C on the performance of rhabdoviral vectors is unknown. We investigated the effect of low anatomical temperatures on two rhabdoviruses, vesicular stomatitis virus (VSV) and Maraba virus (MG1). Using a metabolic resazurin assay, VSV- and MG1-mediated oncolysis was characterized in a panel of cell lines at 28, 31, 34 and 37 °C. The oncolytic ability of both viruses was hindered at 31 and 28 °C. Cold adaptation of both viruses was attempted as a mitigation strategy. Viruses were serially passaged at decreasing temperatures in an attempt to induce mutations. Unfortunately, the cold-adaptation strategies failed to potentiate the oncolytic activity of the viruses at temperatures <37 °C. Interestingly, we discovered that viral replication was unaffected at low temperatures despite the abrogation of oncolytic activity. In contrast, the proliferation of cancer cells was reduced at low temperatures. Equivalent oncolytic effects could be achieved if cells at low temperatures were treated with viruses for longer times. This suggests that rhabdovirus-mediated oncolysis could be compromised at low temperatures in vivo where therapeutic windows are limited.
Collapse
Affiliation(s)
- Julia E. Kakish
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Arthane Kodeeswaran
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Katrina Geronimo
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
13
|
Embo-Ibouanga AW, Nguyen M, Joly JP, Coustets M, Augereau JM, Paloque L, Vanthuyne N, Bikanga R, Robert A, Benoit-Vical F, Audran G, Mellet P, Boissier J, Marque SRA. Peptide-Alkoxyamine Drugs: An Innovative Approach to Fight Schistosomiasis: "Digging Their Graves with Their Forks". Pathogens 2024; 13:482. [PMID: 38921780 PMCID: PMC11206678 DOI: 10.3390/pathogens13060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents of schistosomiasis. Indeed, the peptide tag of the hybrid compounds can be hydrolyzed by worm's digestive enzymes to afford a highly labile alkoxyamine which homolyzes spontaneously and instantaneously into radicals-which are then used as a drug against Schistosome adult parasites. This approach is nicely summarized as digging their graves with their forks. Several hybrid peptide-alkoxyamines were prepared and clearly showed an activity: two of the tested compounds kill 50% of the parasites in two hours at a concentration of 100 µg/mL. Importantly, the peptide and alkoxyamine fragments that are unable to generate alkyl radicals display no activity. This strong evidence validates the proposed mechanism: a specific activation of the prodrugs by the parasite proteases leading to parasite death through in situ alkyl radical generation.
Collapse
Affiliation(s)
- Ange W. Embo-Ibouanga
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Mathilde Coustets
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Michel Augereau
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Lucie Paloque
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Nicolas Vanthuyne
- Aix-Marseille University, CNRS, Centrale Marseille ISM2, Case 531, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France
| | - Raphaël Bikanga
- Université des Sciences et Techniques de Masuku, LASNSOM, Franceville BP 901, Gabon;
| | - Anne Robert
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
| | - Françoise Benoit-Vical
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Philippe Mellet
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France
- INSERM, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France
| | - Jérôme Boissier
- IHPE, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France
| | - Sylvain R. A. Marque
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| |
Collapse
|
14
|
Harada M, Matsuu A, Park ES, Inoue Y, Uda A, Kaku Y, Okutani A, Posadas-Herrera G, Ishijima K, Inoue S, Maeda K. Construction of Vero cell-adapted rabies vaccine strain by five amino acid substitutions in HEP-Flury strain. Sci Rep 2024; 14:12559. [PMID: 38822013 PMCID: PMC11143356 DOI: 10.1038/s41598-024-63337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine.
Collapse
Affiliation(s)
- Michiko Harada
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yusuke Inoue
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Guillermo Posadas-Herrera
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
15
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
16
|
Montiel Schneider MG, Martín MJ, Cuello N, Favatela MF, Gentili C, Elias V, Eimer G, Lassalle V. Morin loaded mesoporous molecular sieves as novel devices to the potential treatment of tumor pathologies. J Biomater Appl 2024; 38:1000-1009. [PMID: 38456269 DOI: 10.1177/08853282241238408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Morin is an antioxidant and anticancer flavonoid, extracted from natural sources, that may exert beneficial effects for several pathologies. Despite this, the administration of morin represents a challenge due to its low aqueous solubility. Mesoporous silica materials have emerged as biocompatible tools for drug delivery, as their pore size can be modulated for maximum surface area to volume ratio. In this contribution, we evaluate the ability of iron-modified mesoporous materials, for morin loading and controlled delivery. The SBA-15 and MCM-41 sieves were synthesized and modified with iron (metal content 4.02 and 6.27 % wt, respectivily). Characterization by transmission electron microscopy, XRD and UV-Vis revealed adequate pore size and agglomerates of very small metallic nanospecies (nanoclusters), without larger iron oxide nanoparticles. FT-IR spectra confirmed the presence of silanol groups in the solid hosts, which can interact with different groups present in morin molecules. SBA-15 materials were more efficient in terms of morin loading capacity (LC) due to their larger pore diameter. LC was more than 35% for SBA-15 materials when adsorptions studies were carried out with 9 mg of drug. Antioxidant activity were assayed by using DPPH test. Free iron materials presented a significate improvement as antioxidants after morin incorporation, reaching a scavenging activity of almost a 90%. On the other hand, in iron modified mesoporous materials, the presence of morin did not affect the scavenging activity. The results could be related with the formation of a complex between the flavonoid and the iron. Finally, biosafety studies using normal epithelial cells revealed that neither the loaded nor the unloaded materials exerted toxicity, even at doses of 1 mg/ml. These findings expand knowledge about mesoporous materials as suitable carriers of flavonoids with the aim of improving therapies for a wide range of pathologies.
Collapse
Affiliation(s)
| | - María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Natalia Cuello
- Centro de Investigacion y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Cordoba, Maestro Lopez y Cruz Roja Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - María Florencia Favatela
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Verónica Elias
- Centro de Investigacion y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Cordoba, Maestro Lopez y Cruz Roja Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - Griselda Eimer
- Centro de Investigacion y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Cordoba, Maestro Lopez y Cruz Roja Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
17
|
Lorenzetti L, Brandolini M, Gatti G, Bernardi E, Chiavari C, Gualandi P, Galliani G, Sambri V, Martini C. Cu-based thin rolled foils: relationship among alloy composition, micromechanical and antiviral properties against SARS-CoV-2. Heliyon 2024; 10:e28238. [PMID: 38560697 PMCID: PMC10979200 DOI: 10.1016/j.heliyon.2024.e28238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The healthcare-associated infections (HAIs) and pandemics caused by multidrug-resistant (MDR) and new-generation pathogens threaten the whole world community. Cu and its alloys have been attracting widespread interest as anti-contamination materials due to the rapid inactivation of MDR-superbugs and viruses. Applying thin Cu-based foils on pre-existing surfaces in hygiene-sensitive areas represents a quick, simple, cost-effective self-sanitising practice. However, the influence of chemical composition and microstructure should be deeply investigated when evaluating the antimicrobial capability and durability of Cu-based materials. The effect of composition on micromechanical and antiviral properties was investigated by comparing Cu15Zn and Cu18Ni20Zn (foil thickness from 13 to 27 μm) with Phosphorous High-Conductivity (PHC) Cu. The influence of recrystallisation annealing of PHC Cu was also investigated. Microstructural characterisation was carried out by optical (OM) and scanning electron (FEG-SEM) microscopy, Energy-dispersive Spectroscopy (EDS) and Electron-Backscattered Diffraction (EBSD). The micromechanical behaviour was assessed by microhardness, microscale abrasion and scratch tests. Cu-based foils were exposed to SARS-CoV-2 for different time points in quasi-dry conditions (artificial sweat solution), evaluating their antiviral capability by quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Surface morphology, contact angle measurements and Cu release were measured. All Cu-based surfaces completely inactivated SARS-CoV-2 in 10 min: pure Cu was the best option regarding antiviral efficiency, while Cu15Zn showed the best trade-off between micromechanical and antiviral properties.
Collapse
Affiliation(s)
- L. Lorenzetti
- Dept. Industrial Engineering (DIN), University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - M. Brandolini
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
- Dept. Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - G. Gatti
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
- Dept. Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - E. Bernardi
- Dept. Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| | - C. Chiavari
- Dept. Cultural Heritage (DBC), University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - P. Gualandi
- Pietro Galliani SpA, Via Molino Malpasso 65, 40038 Vergato (BO), Italy
| | - G. Galliani
- Pietro Galliani SpA, Via Molino Malpasso 65, 40038 Vergato (BO), Italy
| | - V. Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
- Dept. Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - C. Martini
- Dept. Industrial Engineering (DIN), University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
18
|
Dawant T, Wang W, Spriggs M, Magela de Faria Junior G, Horton L, Szafranski NM, Waap H, Jokelainen P, Gerhold RW, Su C. Isolation of Toxoplasma gondii in cell culture: an alternative to bioassay. Int J Parasitol 2024; 54:131-137. [PMID: 38097034 DOI: 10.1016/j.ijpara.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
Toxoplasma gondii is an apicomplexan protozoan parasite that can infect mammals and birds. The infection can cause acute toxoplasmosis and death in susceptible hosts. Bioassay using cats and mice has been the standard for the isolation of T. gondii from infected hosts for the past several decades. However, bioassay is labor-intensive, expensive, and involves using laboratory animals. To search alternative approaches and o work towards replacement of animal experiments, we summarized the key literature and conducted four experiments to isolate T. gondii in vitro by cell culture. A few heart tissue samples from animals with the highest antibody titers in a given collection were used for T. gondii isolation. These experiments included samples from five out of 51 wild ducks, four of 46 wild turkeys, six of 24 white-tailed deer, as well as from six kangaroos that had died with acute toxoplasmosis in a zoo. These experiments resulted in three isolates from five chronically infected wild ducks (60%), four isolates from four chronically infected wild turkeys (100%), one isolate from six chronically infected white-tailed deer (17%), and four isolates from six kangaroos with acute toxoplasmosis (67%). In addition, five isolates from the five chronically infected wild ducks were obtained by bioassay in mice, showing a 100% success rate, which is higher than the 60% rate by direct cell culture. These T. gondii isolates were successfully propagated in human foreskin fibroblast (HFF) or Vero cells, and genotyped by multilocus PCR-RFLP markers. The results showed that it is practical to isolate T. gondii directly in cell culture. Although the cell culture approach may not be as sensitive as the bioassay, it does provide an alternative that is simple, cost-effective, ethically more acceptable, and less time-sensitive to isolate T. gondii. In this paper we propose a procedure that may be applied and further optimized for isolation of T. gondii.
Collapse
Affiliation(s)
- Tania Dawant
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN. USA
| | - Wei Wang
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Maria Spriggs
- SeaWorld Parks and Entertainment, Busch Gardens, 3605 E. Bougainvillea Avenue, Tampa, Florida 33612, USA
| | | | - Laura Horton
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN. USA
| | - Nicole M Szafranski
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN. USA
| | - Helga Waap
- Laboratório de Parasitologia, Unidade Estratégica de Investigação e Serviços, de Produção e Saúde Anima (UEISPSA), Portugal; Animal Behaviour and Welfare Laboratory, Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Lisbon University, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal; Centre for Infectious Disease Control-Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Richard W Gerhold
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN. USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
19
|
Rossi IV, de Almeida RF, Sabatke B, de Godoy LMF, Ramirez MI. Trypanosoma cruzi interaction with host tissues modulate the composition of large extracellular vesicles. Sci Rep 2024; 14:5000. [PMID: 38424216 PMCID: PMC10904747 DOI: 10.1038/s41598-024-55302-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Trypanosoma cruzi is the protozoan that causes Chagas disease (CD), an endemic parasitosis in Latin America distributed around the globe. If CD is not treated in acute phase, the parasite remains silent for years in the host's tissues in a chronic form, which may progress to cardiac, digestive or neurological manifestations. Recently, studies indicated that the gastrointestinal tract represents an important reservoir for T. cruzi in the chronic phase. During interaction T. cruzi and host cells release extracellular vesicles (EVs) that modulates the immune system and infection, but the dynamics of secretion of host and parasite molecules through these EVs is not understood. Now, we used two cell lines: mouse myoblast cell line C2C12, and human intestinal epithelial cell line Caco-2to simulate the environments found by the parasite in the host. We isolated large EVs (LEVs) from the interaction of T. cruzi CL Brener and Dm28c/C2C12 and Caco-2 cells upon 2 and 24 h of infection. Our data showed that at two hours there is a strong cellular response mediated by EVs, both in the number, variety and enrichment/targeting of proteins found in LEVs for diverse functions. Qualitative and quantitative analysis showed that proteins exported in LEVs of C2C12 and Caco-2 have different patterns. We found a predominance of host proteins at early infection. The parasite-host cell interaction induces a switch in the functionality of proteins carried by LEVs and a heterogeneous response depending on the tissues analyzed. Protein-protein interaction analysis showed that cytoplasmic and mitochondrial homologues of the same parasite protein, tryparedoxin peroxidase, were differentially packaged in LEVs, also impacting the interacting molecule of this protein in the host. These data provide new evidence that the interaction with T. cruzi leads to a rapid tissue response through the release of LEVs, reflecting the enrichment of some proteins that could modulate the infection environment.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- EVAHPI Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Rafael Fogaça de Almeida
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Bruna Sabatke
- Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- EVAHPI Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Marcel Ivan Ramirez
- EVAHPI Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil.
| |
Collapse
|
20
|
Prescott MA, Moulton H, Pastey MK. An alternative strategy to increasing influenza virus replication for vaccine production in chicken embryo fibroblast (DF-1) cells by inhibiting interferon alpha and beta using peptide-conjugated phosphorodiamidate morpholino oligomers. J Med Microbiol 2024; 73. [PMID: 38353513 DOI: 10.1099/jmm.0.001807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction. Influenza is a global health issue causing substantial health and economic burdens on affected populations. Routine, annual vaccination for influenza virus is recommended for all persons older than 6 months of age. The propagation of the influenza virus for vaccine production is predominantly through embryonated chicken eggs.Hypothesis/Gap Statement. Many challenges face the propagation of the virus, including but not limited to low yields and lengthy production times. The development of a method to increase vaccine production in eggs or cell lines by suppressing cellular gene expression would be helpful to overcome some of the challenges facing influenza vaccine production.Aims. This study aimed to increase influenza virus titres by using a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO), an antisense molecule, to suppress protein expression of the host genes interferon alpha (IFN-α) and interferon beta (IFN-β) in chicken embryo fibroblast (DF-1) cells.Methods. The toxicity of PPMOs was evaluated by cytotoxicity assays, and their specificity to inhibit IFN-α and IFN-β proteins was measured by ELISA. We evaluated the potential of anti-IFN-α and anti-IFN-β PPMOs to reduce the antiviral proteins in influenza virus-infected DF-1 cells and compared the virus titres to untreated controls, nonsense-PPMO and JAK/STAT inhibitors. The effects of complementation and reconstitution of IFN-α and IFN-β proteins in PPMO-treated-infected cells were evaluated, and the virus titres were compared between treatment groups.Results. Suppression of IFN-α by PPMO resulted in significantly reduced levels of IFN-α protein in treated wells, as measured by ELISA and was shown to not have any cytotoxicity to DF-1 cells at the effective concentrations tested. Treatment of the self-directing PPMOs increased the ability of the influenza virus to replicate in DF-1 cells. Over a 2-log10 increase in viral production was observed in anti-IFN-α and IFN-β PPMO-treated wells compared to those of untreated controls at the initial viral input of 0.1 multiplicity of infection. The data from complementation and reconstitution of IFN-α and IFN-β proteins in PPMO-treated-infected cells was about 82 and 97% compared to the combined PPMO-treated but uncomplemented group and untreated group, respectively. There was a 0.5-log10 increase in virus titre when treated with anti-IFN-α and IFN-β PPMO compared to virus titre when treated with JAK/STAT inhibitors.Conclusions. This study emphasizes the utility of PPMO in allowing cell cultures to produce increased levels of influenza for vaccine production or alternatively, as a screening tool to cheaply test targets prior to the development of permanent knockouts of host gene expression.
Collapse
Affiliation(s)
- Meagan A Prescott
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis Oregon 97331, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
| | - Manoj K Pastey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
| |
Collapse
|
21
|
Machado ACHR, Marinheiro LJ, Benson HAE, Grice JE, Martins TDS, Lan A, Lopes PS, Andreo-Filho N, Leite-Silva VR. A Novel Handrub Tablet Loaded with Pre- and Post-Biotic Solid Lipid Nanoparticles Combining Virucidal Activity and Maintenance of the Skin Barrier and Microbiome. Pharmaceutics 2023; 15:2793. [PMID: 38140133 PMCID: PMC10747770 DOI: 10.3390/pharmaceutics15122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE This study aimed to develop a holobiont tablet with rapid dispersibility to provide regulation of the microbiota, virucidal activity, and skin barrier protection. METHODS A 23 factorial experiment was planned to define the best formulation for the development of the base tablet, using average weight, hardness, dimensions, swelling rate, and disintegration time as parameters to be analyzed. To produce holobiont tablets, the chosen base formulation was fabricated by direct compression of prebiotics, postbiotics, and excipients. The tablets also incorporated solid lipid nanoparticles containing postbiotics that were obtained by high-pressure homogenization and freeze-drying. The in vitro virucidal activity against alpha-coronavirus particles (CCoV-VR809) was determined in VERO cell culture. In vitro analysis, using monolayer cells and human equivalent skin, was performed by rRTq-PCR to determine the expression of interleukins 1, 6, 8, and 17, aquaporin-3, involucrin, filaggrin, FoxO3, and SIRT-1. Antioxidant activity and collagen-1 synthesis were also performed in fibroblast cells. Metagenomic analysis of the skin microbiome was determined in vivo before and after application of the holobiont tablet, during one week of continuous use, and compared to the use of alcohol gel. Samples were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. RESULTS A handrub tablet with rapid dispersibility was developed for topical use and rinse off. After being defined as safe, the virucidal activity was found to be equal to or greater than that of 70% alcohol, with a reduction in interleukins and maintenance or improvement of skin barrier gene markers, in addition to the reestablishment of the skin microbiota after use. CONCLUSIONS The holobiont tablets were able to improve the genetic markers related to the skin barrier and also its microbiota, thereby being more favorable for use as a hand sanitizer than 70% alcohol.
Collapse
Affiliation(s)
- Ana Carolina Henriques Ribeiro Machado
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, Rua Pedro de Toledo, 720, Sao Paulo 04039-002, SP, Brazil; (A.C.H.R.M.); (V.R.L.-S.)
| | - Laís Júlio Marinheiro
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
| | | | - Jeffrey Ernest Grice
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Tereza da Silva Martins
- Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, 2° Andar, Diadema 09913-030, SP, Brazil;
| | - Alexandra Lan
- Shanghai Pechoin Daily Chemical Corporation, Shanghai 200060, China;
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
| | - Newton Andreo-Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Vania Rodrigues Leite-Silva
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, Rua Pedro de Toledo, 720, Sao Paulo 04039-002, SP, Brazil; (A.C.H.R.M.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| |
Collapse
|
22
|
Sobek E, Elias DA. Bipolar ionization rapidly inactivates real-world, airborne concentrations of infective respiratory viruses. PLoS One 2023; 18:e0293504. [PMID: 37992037 PMCID: PMC10664916 DOI: 10.1371/journal.pone.0293504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 11/24/2023] Open
Abstract
The SARS-CoV-2 (COVID-19) pandemic has highlighted the urgent need for strategies that rapidly inactivate airborne respiratory viruses and break the transmission cycle of indoor spaces. Air ions can reduce viable bacteria, mold, and virus counts, however, most studies use small test enclosures with target microbes and ion sources in close vicinity. To evaluate ion performance in real-world spaces, experiments were conducted in a large, room-size BSL-3 Chamber. Negative and positive ions were delivered simultaneously using a commercially available bipolar air ion device. The device housed Needle Point Bipolar ionization (NPBI) technology. Large chamber studies often use unrealistically high virus concentrations to ensure measurable virus is present at the trial end. However, excessively high viral concentrations bias air cleaning devices towards underperformance. Hence, devices that provide a substantial impact for protecting occupants in real-world spaces with real-world virus concentrations are often dismissed as poor performers. Herein, both real-world and excessive virus concentrations were studied using Influenza A and B, Human Respiratory Syncytial Virus (RSV), and the SARS-CoV-2 Alpha and Delta strains. The average ion concentrations ranged from 4,100 to 24,000 per polarity over 60-minute and 30-minute time trials. The reduction rate was considerably greater for trials that used real-world virus concentrations, reducing infectivity for Influenza A and B, RSV, and SARS-CoV-2 Delta by 88.3-99.98% in 30 minutes, whereas trials using in-excess concentrations showed 49.5-61.2% in 30 minutes. These findings strongly support the addition of NPBI ion technology to building management strategies aimed to protect occupants from contracting and spreading infective respiratory viruses indoors.
Collapse
Affiliation(s)
- Edward Sobek
- Global Plasma Solutions, Charlotte, NC, United States of America
| | - Dwayne A. Elias
- Elias Consulting, LLC, Knoxville, TN, United States of America
| |
Collapse
|
23
|
Grosche VR, Souza LPF, Ferreira GM, Guevara-Vega M, Carvalho T, Silva RRDS, Batista KLR, Abuna RPF, Silva JS, Calmon MDF, Rahal P, da Silva LCN, Andrade BS, Teixeira CS, Sabino-Silva R, Jardim ACG. Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses 2023; 15:1886. [PMID: 37766292 PMCID: PMC10536204 DOI: 10.3390/v15091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Leandro Peixoto Ferreira Souza
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Giulia Magalhães Ferreira
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Tamara Carvalho
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | | | - Rodrigo Paolo Flores Abuna
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - Marília de Freitas Calmon
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Paula Rahal
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Jequié 45205-490, Brazil;
| | - Claudener Souza Teixeira
- Center of Agrarian Science and Biodiversity, Federal University of Cariri (UFCA), Crato 63130-025, Brazil; (R.R.d.S.S.); (C.S.T.)
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| |
Collapse
|
24
|
da Silva VA, Bobotis BC, Correia FF, Lima-Vasconcellos TH, Chiarantin GMD, De La Vega L, Lombello CB, Willerth SM, Malmonge SM, Paschon V, Kihara AH. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. Int J Mol Sci 2023; 24:13642. [PMID: 37686446 PMCID: PMC10488158 DOI: 10.3390/ijms241713642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Tissue engineering for spinal cord injury (SCI) remains a complex and challenging task. Biomaterial scaffolds have been suggested as a potential solution for supporting cell survival and differentiation at the injury site. However, different biomaterials display multiple properties that significantly impact neural tissue at a cellular level. Here, we evaluated the behavior of different cell lines seeded on chitosan (CHI), poly (ε-caprolactone) (PCL), and poly (L-lactic acid) (PLLA) scaffolds. We demonstrated that the surface properties of a material play a crucial role in cell morphology and differentiation. While the direct contact of a polymer with the cells did not cause cytotoxicity or inhibit the spread of neural progenitor cells derived from neurospheres (NPCdn), neonatal rat spinal cord cells (SCC) and NPCdn only attached and matured on PCL and PLLA surfaces. Scanning electron microscopy and computational analysis suggested that cells attached to the material's surface emerged into distinct morphological populations. Flow cytometry revealed a higher differentiation of neural progenitor cells derived from human induced pluripotent stem cells (hiPSC-NPC) into glial cells on all biomaterials. Immunofluorescence assays demonstrated that PCL and PLLA guided neuronal differentiation and network development in SCC. Our data emphasize the importance of selecting appropriate biomaterials for tissue engineering in SCI treatment.
Collapse
Affiliation(s)
- Victor A. da Silva
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Bianca C. Bobotis
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Felipe F. Correia
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Théo H. Lima-Vasconcellos
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Gabrielly M. D. Chiarantin
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Laura De La Vega
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christiane B. Lombello
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sônia M. Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Vera Paschon
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Alexandre H. Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| |
Collapse
|
25
|
Anderson MW, Binette P, Richards C, Beare PA, Heinzen RA, Long CM. A simple method for enrichment of phase I Coxiella burnetii. J Microbiol Methods 2023; 211:106787. [PMID: 37453478 PMCID: PMC10529119 DOI: 10.1016/j.mimet.2023.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Coxiella burnetii is the bacterial causative agent of the zoonosis Q fever. This bacterium undergoes lipopolysaccharide (LPS) phase transition similar to Enterobacteriaciae upon in vitro passage. Full-length, phase I C. burnetii LPS is a critical virulence factor and profoundly impacts vaccine-induced immunogenicity; thus, LPS phase is an important consideration in C. burnetii experimentation and Q fever vaccine design. Typically, phase I LPS-expressing organisms are obtained from the tissues of infected experimental animals. In this process, residual phase II LPS-expressing organisms are thought to be cleared by the host immune system. Here, we propose an efficient and non-animal-based method for the enrichment of C. burnetii phase I LPS-expressing bacteria in vitro. We utilize both Vero cell culture to selectively enrich solutions with phase I and intermediate phase LPS-expressing bacteria. This simple and quick method decreases reliance on experimental animals and is a sustainable solution for Q fever diagnostic and vaccine development hurdles.
Collapse
Affiliation(s)
- Matthew W Anderson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Picabo Binette
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Crystal Richards
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Carrie M Long
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
26
|
Li H, Smith G, Goolia M, Marszal P, Pickering BS. Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods. Virol J 2023; 20:128. [PMID: 37337294 DOI: 10.1186/s12985-023-02089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a biosafety level 4 and World Health Organization top priority pathogen. Infection leads to an often fatal hemorrhagic fever disease in humans. The tick-borne virus is endemic in countries across Asia, Europe and Africa, with signs of spreading into new regions. Despite the severity of disease and the potential of CCHFV geographic expansion to cause widespread outbreaks, no approved vaccine or treatment is currently available. Critical for basic research and the development of diagnostics or medical countermeasures, CCHFV viral stocks are commonly produced in Vero E6 and SW-13 cell lines. While a variety of in-house methods are being used across different laboratories, there has been no clear, specific consensus on a standard, optimal system for CCHFV growth and titration. In this study, we perform a systematic, side-by-side characterization of Vero E6 and SW-13 cell lines concerning the replication kinetics of CCHFV under different culture conditions. SW-13 cells are typically cultured in a CO2-free condition (SW-13 CO2-) according to the American Type Culture Collection. However, we identify a CO2-compatible culture condition (SW-13 CO2+) that demonstrates the highest viral load (RNA concentration) and titer (infectious virus concentration) in the culture supernatants, in comparison to SW-13 CO2- and Vero E6 cultures. This optimal viral propagation system also leads to the development of two titration methods: an immunostaining-based plaque assay using a commercial CCHFV antibody and a colorimetric readout, and an antibody staining-free, cytopathic effect-based median tissue culture infectious dose assay using a simple excel calculator. These are anticipated to serve as a basis for a reproducible, standardized and user-friendly platform for CCHFV propagation and titration.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Peter Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
27
|
Allam S, Elsakka EGE, Ismail A, Doghish AS, Yehia AM, Elkady MA, Mokhlis HA, Sayed SM, Abd Elaziz AI, Hashish AA, Amin MM, El Shahat RM, Mohammed OA. Androgen receptor blockade by flutamide down-regulates renal fibrosis, inflammation, and apoptosis pathways in male rats. Life Sci 2023; 323:121697. [PMID: 37061126 DOI: 10.1016/j.lfs.2023.121697] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
AIM this study aims to explore the effect of androgen receptor (AR) blockade by flutamide on some renal pathologic changes such as inflammation, apoptosis, and fibrosis in male rats. MAIN METHODS Firstly, we investigated the potential effect of AR blockade on renal inflammatory intermediates including IL-1β, IL-6, TNF-α, NF-Қβ proteins, and the renal gene expression of NF-Қβ. Besides inflammation, we also assessed the apoptosis pathways including the caspases 3 & 9, mTOR, pAKT proteins, and BAX gene expression. Besides inflammation and apoptosis pathways, we also investigated the effect of androgen blockade on renal fibrosis intermediates including vimentin, TGFβ-1, α-SMA, MMP-9, collagen type-III, collagen type-IV, and the renal expression of the col1A1 gene. Besides previous pathological pathways, we assessed the expression of chloride channel protein-5 (ClC-5), as an important regulator of many renal pathological changes. Finally, we assessed the impact of previous pathological changes on renal function at biochemical and pathological levels. KEY FINDINGS We found that AR blockade by flutamide was associated with the down-regulation of renal inflammation, apoptosis, and fibrosis markers. It was associated with expression down-regulation of IL-1β & IL-6, TNF-α, NF-Қβ, caspases 3 & 9, mTOR, MMP-9, collagens, TGFβ-1, and α-SMA. Away from down-regulation, we also found that AR blockade has upregulated ClC-5 and pAKT proteins. SIGNIFICANCE AR is a major player in androgens-induced nephrotoxicity. AR blockade downregulates renal fibrosis, inflammation, and apoptosis pathways. It may be helpful as a strategy for alleviation of renal side effects associated with some drugs. However; this needs further investigations.
Collapse
Affiliation(s)
- Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511 Menoufia, Egypt
| | - Elsayed G E Elsakka
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ahmed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Amr Mohamed Yehia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Elkady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada Ahmed Mokhlis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sara M Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (girls) Al-Azhar University, Nasr City, Cairo, Egypt
| | - Adel I Abd Elaziz
- Department of Pharmacology, Faculty of Medicine (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdullah A Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mona M Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rehab M El Shahat
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| |
Collapse
|
28
|
Farkas CB, Dudás G, Babinszky GC, Földi L. Analysis of the Virus SARS-CoV-2 as a Potential Bioweapon in Light of International Literature. Mil Med 2023; 188:531-540. [PMID: 35569934 PMCID: PMC9384074 DOI: 10.1093/milmed/usac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/06/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION As of early 2022, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic still represents a worldwide medical emergency situation. The ongoing vaccination programs can slow down the spread of the virus; however, from time to time, the newly emerging variants of concern and antivaccination movements carry the possibility for the disease to remain in our daily lives. After the appearance of SARS-CoV-2, there was scholarly debate whether the virus was of natural origin, or it emerged from a laboratory, some even thinking the agent's potential biological weapon properties suggest the latter scenario. Later, the bioweapon theory was dismissed by the majority of experts, but the question remains that despite its natural origin, how potent a biological weapon the SARS-CoV-2 virus can become over time. MATERIALS AND METHODS Based on 12 bioweapon threat assessment criteria already published in 2018, we performed a literature search and review, focusing on relevant potential bioweapon properties of the virus SARS-CoV-2. Instead of utilizing a survey among experts, we tried to qualify and quantify characteristics according to the available data found in peer-reviewed papers. We also identified other key elements not mentioned in the original 12 bioweapon criteria, which can play an important role in assessing future biological weapons. RESULTS According to the international literature we analyzed, SARS-CoV-2 is a moderately infectious agent (ID50 estimated between 100 and 1,000), with high infection-to-disease ratio (35%-45% rate of asymptomatic infected) and medium incubation period (1-34 days, mean 6-7 days). Its morbidity and mortality rate can be categorized as medium (high morbidity rate with significant mortality rate). It can be easily produced in large quantities, has high aerosol stability, and has moderate environmental stability. Based on laboratory experiments and statistical model analysis, it can form and is contagious with droplet nuclei, and with spray technique utilization, it could be weaponized effectively. Several prophylactic countermeasures are available in the form of vaccines; however, specific therapeutic options are much more limited. In connection with the original assessment criteria, the SARS-CoV-2 only achieved a "0" score on the ease of detection because of readily available, relatively sensitive, and specific rapid antigen tests. Based on the pandemic experience, we also propose three new assessment categories: one that establishes a mean to measure the necessary quarantine restrictions related to a biological agent, another one that can represent the personal protective equipment required to work safely with a particular agent, and a third one that quantifies the overall disruptive capability, based on previous real-life experiences. These factors could further specify the threat level related to potential biological weapons. CONCLUSIONS Our results show that the virus can become a potent bioweapon candidate in the future, achieving a total score of 24 out of 36 on the original 12 criteria. The SARS-CoV-2 has already proven its pandemic generating potential and, despite worldwide efforts, still remains an imminent threat. In order to be prepared for the future possibility of the virus arising as a bioweapon, we must remain cautious and take the necessary countermeasures.
Collapse
Affiliation(s)
- Csaba Bence Farkas
- Department of Pathology, Medical Centre, Hungarian Defence Forces, Budapest 1134, Hungary
| | - Gábor Dudás
- Mobile Biological Laboratory, Medical Centre, Hungarian Defence Forces, Budapest 1134, Hungary
| | - Gergely Csaba Babinszky
- Mobile Biological Laboratory, Medical Centre, Hungarian Defence Forces, Budapest 1134, Hungary
| | - László Földi
- Department of Operations and Support, Faculty of Military Sciences and Officer Training, University of Public Service, Budapest 1101, Hungary
| |
Collapse
|
29
|
Spangenberg J, Zu Siederdissen CH, Žarković M, Triebel S, Rose R, Christophersen CM, Paltzow L, Hegab MM, Wansorra A, Srivastava A, Krumbholz A, Marz M. Magnipore: Prediction of differential single nucleotide changes in the Oxford Nanopore Technologies sequencing signal of SARS-CoV-2 samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533105. [PMID: 36993667 PMCID: PMC10055291 DOI: 10.1101/2023.03.17.533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxford Nanopore Technologies (ONT) allows direct sequencing of ribonucleic acids (RNA) and, in addition, detection of possible RNA modifications due to deviations from the expected ONT signal. The software available so far for this purpose can only detect a small number of modifications. Alternatively, two samples can be compared for different RNA modifications. We present Magnipore, a novel tool to search for significant signal shifts between samples of Oxford Nanopore data from similar or related species. Magnipore classifies them into mutations and potential modifications. We use Magnipore to compare SARS-CoV-2 samples. Included were representatives of the early 2020s Pango lineages (n=6), samples from Pango lineages B.1.1.7 (n=2, Alpha), B.1.617.2 (n=1, Delta), and B.1.529 (n=7, Omicron). Magnipore utilizes position-wise Gaussian distribution models and a comprehensible significance threshold to find differential signals. In the case of Alpha and Delta, Magnipore identifies 55 detected mutations and 15 sites that hint at differential modifications. We predicted potential virus-variant and variant-group-specific differential modifications. Magnipore contributes to advancing RNA modification analysis in the context of viruses and virus variants.
Collapse
Affiliation(s)
- Jannes Spangenberg
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | | | - Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Sandra Triebel
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
| | | | - Lea Paltzow
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Mohsen M Hegab
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Anna Wansorra
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Akash Srivastava
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
- European Virus Bioinformatics Center 2, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
30
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
31
|
Buberg ML, Wasteson Y, Lindstedt BA, Witsø IL. In vitro digestion of ESC-resistant Escherichia coli from poultry meat and evaluation of human health risk. Front Microbiol 2023; 14:1050143. [PMID: 36846779 PMCID: PMC9947789 DOI: 10.3389/fmicb.2023.1050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. Methods In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. Results and discussion All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla CMY2-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.
Collapse
Affiliation(s)
- May Linn Buberg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørn Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ingun Lund Witsø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway,*Correspondence: Ingun Lund Witsø ✉
| |
Collapse
|
32
|
Experimental spectroscopy, eco-friendly solvents effect on transitions, reactive sites and biological research on methyl gallate – MTT assay (cytotoxicity). J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Development and Validation of Rapid Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification for Detection of Rift Valley Fever Virus. Adv Virol 2023; 2023:1863980. [PMID: 36755743 PMCID: PMC9902148 DOI: 10.1155/2023/1863980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a high-priority zoonotic pathogen with the ability to cause massive loss during its outbreak within a very short period of time. Lack of a highly sensitive, instant reading diagnostic method for RVFV, which is more suitable for on-site testing, is a big gap that needs to be addressed. The aim of this study was to develop a novel one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the rapid detection of RVFV. To achieve this, the selected RVFV M segment nucleotide sequences were aligned using Multiple Sequence Comparison by Log-Expectation (MUSCLE) software in MEGA11 version 11.0.11 program to identify conserved regions. A 211 pb sequence was identified and six different primers to amplify it were designed using NEB LAMP Primer design tool version 1.1.0. The specificity of the designed primers was tested using primer BLAST, and a primer set, specific to RVFV and able to form a loop, was selected. In this study, we developed a single-tube test based on calorimetric RT-LAMP that enabled the visual detection of RVFV within 30 minutes at 65°C. Diagnostic sensitivity and specificity of the newly developed kit were compared with RVFV qRT-PCR, using total RNA samples extracted from 118 blood samples. The colorimetric RT-LAMP assay had a sensitivity of 98.36% and a specificity of 96.49%. The developed RT-LAMP was found to be tenfold more sensitive compared to the RVFV qRT-PCR assay commonly used in the confirmatory diagnosis of RVFV.
Collapse
|
34
|
Brandolini M, Gatti G, Grumiro L, Zannoli S, Arfilli V, Cricca M, Dirani G, Denicolò A, Marino MM, Manera M, Mancini A, Taddei F, Semprini S, Sambri V. Omicron Sub-Lineage BA.5 and Recombinant XBB Evasion from Antibody Neutralisation in BNT162b2 Vaccine Recipients. Microorganisms 2023; 11:microorganisms11010191. [PMID: 36677483 PMCID: PMC9866687 DOI: 10.3390/microorganisms11010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The recent emergence of a number of new SARS-CoV-2 variants resulting from recombination between two distinct parental lineages or sub-lineages within the same lineage has sparked the debate regarding potential enhanced viral infectivity and immune escape. Among these, XBB, recombinant of BA.2.10 and BA.2.75, has caused major concern in some countries due to its rapid increase in prevalence. In this study, we tested XBB escape capacity from mRNA-vaccine-induced (BNT162b2) neutralising antibodies compared to B.1 ancestral lineage and another co-circulating variant (B.1.1.529 BA.5) by analysing sera collected 30 days after the second dose in 92 healthcare workers. Our data highlighted an enhanced and statistically significant immune escape ability of the XBB recombinant. Although these are preliminary results, this study highlights the importance of immune escape monitoring of new and forthcoming variants and of the reformulation of existing vaccines.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Giulia Gatti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Valentina Arfilli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Agnese Denicolò
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Maria Michela Marino
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Martina Manera
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Andrea Mancini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Francesca Taddei
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Simona Semprini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Correspondence:
| |
Collapse
|
35
|
In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010141. [PMID: 36671342 PMCID: PMC9854575 DOI: 10.3390/antibiotics12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The prospective application of probiotics is an adjuvant for the advancement of novel antimicrobial and wound-healing agents. Currently, probiotic bacteria are utilized for the biosynthesis of nanoparticles in the development of innovative therapeutics. The present study aimed at using nanoparticle-conjugated probiotic bacteria for enhanced antibacterial and wound-healing activity. In the present investigation, the probiotic bacteria were isolated from a dairy source (milk from domestic herbivores). They screened for antibacterial activity against infection-causing Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus subtilis and Staphylococcus aureus) pathogens. Further, the probiotic strain with higher bactericidal activity was used to synthesize silver, selenium, and copper nanoparticles. The isolated strain was found to be Lactiplantibacillus plantarum and it only has the ability to synthesize silver nanoparticles. This was verified using Ultra violet-Visible (UV-Vis) spectroscopy, where the test solution turned brown and the greatest UV-Vis absorptions peaked at 425 nm. Optimization studies on the synthesis of AgNPs (silver nanoparticles) are presented and the results show that stable synthesis was obtained by using a concentration of 1mM silver nitrate (AgNO3) at a temperature of 37 °C with pH 8. The FTIR (Fourier transform infrared spectroscopy) study confirmed the involvement of functional groups from the cell biomass that were involved in the reduction process. Additionally, biosynthesized AgNPs showed increased antioxidant and antibacterial activities. The nano silver had a size distribution of 14 nm and was recorded with HR-TEM (high-resolution transmission electron microscopy) examination. The EDX (energy dispersive X-ray) analysis revealed 57% of silver groups found in the nanoparticle production. The biosynthesized AgNPs show significant wound-healing capabilities with 96% of wound closure (fibroblast cells) being observed through an in vitro scratch-wound assay. The cytotoxic experiments demonstrated that the biosynthesized AgNPs are not extremely hazardous to the fibroblast cells. The present study provides a new platform for the green synthesis of AgNPs using probiotic bacteria, showing significant antibacterial and wound-healing potentials against infectious pathogens.
Collapse
|
36
|
Mungall BA. In Vitro Antiviral Screening for Henipaviruses at BSL4. Methods Mol Biol 2023; 2682:93-102. [PMID: 37610576 DOI: 10.1007/978-1-0716-3283-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In vitro screening for antivirals is an essential step in the development of effective treatments against new and emerging pathogens. Here, we describe a simple, cell-based screening assay for evaluating antiviral effectiveness against Hendra and Nipah live virus infection under BSL4 conditions.
Collapse
Affiliation(s)
- Bruce A Mungall
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong, VIC, Australia
- GlaxoSmithKline Vaccines, Seoul, South Korea
- Vaccines and Immune Therapies, Astra Zeneca, Singapore, Singapore
| |
Collapse
|
37
|
Imran M. Ethionamide and Prothionamide Based Coumarinyl-Thiazole Derivatives: Synthesis, Antitubercular Activity, Toxicity Investigations and Molecular Docking Studies. Pharm Chem J 2022; 56:1215-1225. [PMID: 36531826 PMCID: PMC9734486 DOI: 10.1007/s11094-022-02782-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The goal of this research work was to prepare and evaluate the antitubercular (anti-TB) activity of ethionamide (ETH) and prothionamide (PTH) based coumarinyl-thiazole derivatives. ETH and PTH were reacted with coumarin intermediates (3a-3e) to provide the target compounds (4a-4e and 4f-4j, respectively). Spectral studies confirmed the assigned structures of 4a-4j. The Microplate Alamar Blue Assay was utilized to evaluate the anti-TB activity of compounds 4a-4j against Mycobacterium tuberculosis H37Rv strain in comparison to ETH, PTH, isoniazid (INH), and pyrazinamide (PYZ) as standard drugs. The cytotoxicity studies were carried out versus HepG2 and Vero cell lines. In addition. molecular docking studies of 4a-4j concerning the DprE1 enzyme and the in-silico evaluation of physicochemical and pharmacokinetic parameters were performed. Compounds 4a, 4b, 4f, and 4g displayed equal minimum inhibitory concentration (MIC) values in comparison to INH (3.125 μg/ml) and PYZ (3.125 μg/ml), whereas 4c-4e and 4h-4j displayed better MIC values (1.562 μg/mL) than INH and PYZ. All compounds presented better anti-TB potential than ETH (6.25 μg/mL) and PTH (6.25 μg/mL). The studies of toxicity revealed that 4a-4j were safe up to 300 μg/mL concentration versus Vero and HepG2 cell lines. The molecular docking studies suggested that 4a-4j could possess anti-TB activity through the inhibition of the DprE1 enzyme. The in silico studies showed that 4a-4j followed Lipinski's rule (drug-likeliness) and exhibited better gastrointestinal absorption than BTZ043 and macozinone. In conclusion, the ETH and PTH-based coumarinyl-thiazole template can help developing selective DprE1 enzyme inhibitors as potent anti-TB agents.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
38
|
Bergeron HC, Tripp RA. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022; 14:v14112396. [PMID: 36366494 PMCID: PMC9692685 DOI: 10.3390/v14112396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease. RSV studies have typically focused on using continuous cell lines and conventional RSV strains to establish vaccine development and various antiviral countermeasures. This review outlines how the RSV G protein influences viral features, including replication, transmission, and disease, and how understanding the role of the G protein can improve the understanding of preclinical studies.
Collapse
|
39
|
Sène M, Xia Y, Kamen AA. From functional genomics of vero cells to CRISPR-based genomic deletion for improved viral production rates. Biotechnol Bioeng 2022; 119:2794-2805. [PMID: 35869699 PMCID: PMC9540595 DOI: 10.1002/bit.28190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Despite their wide use in the vaccine manufacturing field for over 40 years, one of the main limitations to recent efforts to develop Vero cells as high-throughput vaccine manufacturing platforms is the lack of understanding of virus-host interactions during infection and cell-based virus production in Vero cells. To overcome this limitation, this manuscript uses the recently generated reference genome for the Vero cell line to identify the factors at play during influenza A virus (IAV) and recombinant vesicular stomatitis virus (rVSV) infection and replication in Vero host cells. The best antiviral gene candidate for gene editing was selected using Differential Gene Expression analysis, Gene Set Enrichment Analysis and Network Topology-based Analysis. After selection of the ISG15 gene for targeted CRISPR genomic deletion, the ISG15 genomic sequence was isolated for CRISPR guide RNAs design and the guide RNAs with the highest knockout efficiency score were selected. The CRISPR experiment was then validated by confirmation of genomic deletion via PCR and further assessed via quantification of ISG15 protein levels by western blot. The gene deletion effect was assessed thereafter via quantification of virus production yield in the edited Vero cell line. A 70-fold and an 87-fold increase of total viral particles productions in ISG15-/- Vero cells was achieved for, respectively, IAV and rVSV while the ratio of infectious viral particles/total viral particles also significantly increased from 0.0316 to 0.653 for IAV and from 0.0542 to 0.679 for rVSV-GFP.
Collapse
Affiliation(s)
| | - Yu Xia
- Department of BioengineeringMcGill UniversityMontrealQuébecCanada
| | - Amine A. Kamen
- Department of BioengineeringMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
40
|
Integrated System Pharmacology Approaches to Elucidate Multi-Target Mechanism of Solanum surattense against Hepatocellular Carcinoma. Molecules 2022; 27:molecules27196220. [PMID: 36234758 PMCID: PMC9570789 DOI: 10.3390/molecules27196220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysiological mechanisms of HCC make it a challenging task and a serious economic burden in health care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia to treat many disorders including various types of cancer. Previous in vitro studies revealed the medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were performed to find the molecular mechanism of S. surattense against HCC. In this study, the network pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were figured out. Furthermore, the molecular docking technique was employed for the validation of the successful activity of bioactive constituents against potential genes of HCC. The present study investigated the active “constituent–target–pathway” networks and determined the tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha (HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense on human liver cells. The result showed that S. surattense appeared to act on HCC via modulating different molecular functions, many biological processes, and potential targets implicated in 11 different pathways. Furthermore, molecular docking was employed to validate the successful activity of the active compounds against potential targets. The results showed that quercetin was successfully docked to inhibit the potential targets of HCC. This study indicates that active constituents of S. surattense and their therapeutic targets are responsible for their pharmacological activities and possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of S. surattense act on potential genes along with their influencing pathways to give a network analysis in system pharmacology, which has a vital role in the development and utilization of drugs. The current study lays a framework for further experimental research and widens the clinical usage of S. surattense.
Collapse
|
41
|
Torres-Vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-Brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022; 10:974218. [PMID: 36186591 PMCID: PMC9521742 DOI: 10.3389/fchem.2022.974218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12–24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| |
Collapse
|
42
|
Lezin C, Mauduit P, Uzan G, Abdelgawad ME. An Evaluation of Different Types of Peptone as Partial Substitutes for Animal-derived Serum in Vero Cell Culture. Altern Lab Anim 2022; 50:339-348. [PMID: 36062749 DOI: 10.1177/02611929221122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vero cells are one of the most frequently used cell types in virology. They can be used not only as a vehicle for the replication of viruses, but also as a model for investigating viral infectivity, cytopathology and vaccine production. There is increasing awareness of the need to limit the use of animal-derived components in cell culture media for a number of reasons, which include reducing the risk of contamination and decreasing costs related to the downstream processing of commercial products obtained via cell culture. The current study evaluates the use of protein hydrolysates (PHLs), also known as peptones, as partial substitutes for fetal bovine serum (FBS) in Vero cell culture. Eleven plant-based, two yeast-based, and three casein-based peptones were assessed, with different batches evaluated in the study. We tested the effects of three concentration ratios of FBS and peptone on Vero cell proliferation, four days after the initial cell seeding. Some of the tested peptones, when in combination with a minimal 1% level of FBS, supported cell proliferation rates equivalent to those achieved with 10% FBS. Collectively, our findings showed that plant-based peptones could represent promising options for the successful formulation of serum-reduced cell culture media for vaccine production. This is especially relevant in the context of the current COVID-19 pandemic, in view of the urgent need for SARS-CoV-2 virus production for certain types of vaccine. The current study contributes to the Three Rs principle of reduction, as well as addressing animal ethics concerns associated with FBS, by repurposing PHLs for use in cell culture.
Collapse
Affiliation(s)
- Chloe Lezin
- UMR-S-MD 1197, 27102Inserm, Villejuif, France.,Paris-Saclay University, Villejuif, France.,Organotechnie, R&D Department, La Courneuve, France
| | - Philippe Mauduit
- UMR-S-MD 1197, 27102Inserm, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Georges Uzan
- UMR-S-MD 1197, 27102Inserm, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Mohamed Essameldin Abdelgawad
- Biochemistry & Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.,Innovative Cellular Microenvironment Optimization Platform (ICMOP), Helwan University, Cairo, Egypt.,Precision Therapy Unit, Helwan University, Cairo, Egypt
| |
Collapse
|
43
|
Synthesis, Leishmanicidal, Trypanocidal, Antiproliferative Assay and Apoptotic Induction of (2-Phenoxypyridin-3-yl)naphthalene-1(2 H)-one Derivatives. Molecules 2022; 27:molecules27175626. [PMID: 36080388 PMCID: PMC9457600 DOI: 10.3390/molecules27175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
The coexistence of leishmaniasis, Chagas disease, and neoplasia in endemic areas has been extensively documented. The use of common drugs in the treatment of these pathologies invites us to search for new molecules with these characteristics. In this research, we report 16 synthetic chalcone derivatives that were investigated for leishmanicidal and trypanocidal activities as well as for antiproliferative potential on eight human cancers and two nontumor cell lines. The final compounds 8−23 were obtained using the classical base-catalyzed Claisen−Schmidt condensation. The most potent compounds as parasiticidal were found to be 22 and 23, while compounds 18 and 22 showed the best antiproliferative activity and therapeutic index against CCRF-CEM, K562, A549, and U2OS cancer cell lines and non-toxic VERO, BMDM, MRC-5, and BJ cells. In the case of K562 and the corresponding drug-resistant K562-TAX cell lines, the antiproliferative activity has shown a more significant difference for compound 19 having 10.3 times higher activity against the K562-TAX than K562 cell line. Flow cytometry analysis using K562 and A549 cell lines cultured with compounds 18 and 22 confirmed the induction of apoptosis in treated cells after 24 h. Based on the structural analysis, these chalcones represent new compounds potentially useful for Leishmania, Trypanosoma cruzi, and some cancer treatments.
Collapse
|
44
|
De Maio F, Rullo M, de Candia M, Purgatorio R, Lopopolo G, Santarelli G, Palmieri V, Papi M, Elia G, De Candia E, Sanguinetti M, Altomare CD. Evaluation of Novel Guanidino-Containing Isonipecotamide Inhibitors of Blood Coagulation Factors against SARS-CoV-2 Virus Infection. Viruses 2022; 14:v14081730. [PMID: 36016352 PMCID: PMC9415951 DOI: 10.3390/v14081730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Coagulation factor Xa (fXa) and thrombin (thr) are widely expressed in pulmonary tissues, where they may catalyze, together with the transmembrane serine protease 2 (TMPRSS2), the coronaviruses spike protein (SP) cleavage and activation, thus enhancing the SP binding to ACE2 and cell infection. In this study, we evaluate in vitro the ability of approved (i.e., dabigatran and rivaroxaban) and newly synthesized isonipecotamide-based reversible inhibitors of fXa/thr (cmpds 1-3) to hinder the SARS-CoV-2 infectivity of VERO cells. Nafamostat, which is a guanidine/amidine antithrombin and antiplasmin agent, disclosed as a covalent inhibitor of TMPRSS2, was also evaluated. While dabigatran and rivaroxaban at 100 μM concentration did not show any effect on SARS-CoV-2 infection, the virus preincubation with new guanidino-containing fXa-selective inhibitors 1 and 3 did decrease viral infectivity of VERO cells at subtoxic doses. When the cells were pre-incubated with 3, a reversible nanomolar inhibitor of fXa (Ki = 15 nM) showing the best in silico docking score toward TMPRSS2 (pdb 7MEQ), the SARS-CoV-2 infectivity was completely inhibited at 100 μM (p < 0.0001), where the cytopathic effect was just about 10%. The inhibitory effects of 3 on SARS-CoV-2 infection was evident (ca. 30%) at lower concentrations (3-50 μM). The covalent TMPRSS2 and the selective inhibitor nafamostat mesylate, although showing some effect (15-20% inhibition), did not achieve statistically significant activity against SARS-CoV-2 infection in the whole range of test concentrations (3-100 μM). These findings suggest that direct inhibitors of the main serine proteases of the blood coagulation cascade may have potential in SARS-CoV-2 drug discovery. Furthermore, they prove that basic amidino-containing fXa inhibitors with a higher docking score towards TMPRSS2 may be considered hits for optimizing novel small molecules protecting guest cells from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Mariagrazia Rullo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Modesto de Candia
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Rosa Purgatorio
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Gianfranco Lopopolo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Valentina Palmieri
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Massimiliano Papi
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, I-70125 Bari, Italy;
| | - Erica De Candia
- Department of Translational Medicine and Surgery, Catholic University of Rome, I-00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
- Correspondence: (M.S.); (C.D.A.)
| | - Cosimo Damiano Altomare
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
- Correspondence: (M.S.); (C.D.A.)
| |
Collapse
|
45
|
Brandolini M, Dirani G, Taddei F, Zannoli S, Denicolò A, Arfilli V, Battisti A, Manera M, Mancini A, Grumiro L, Marino MM, Gatti G, Fantini M, Semprini S, Sambri V. Mutational induction in SARS-CoV-2 major lineages by experimental exposure to neutralising sera. Sci Rep 2022; 12:12479. [PMID: 35864211 PMCID: PMC9302871 DOI: 10.1038/s41598-022-16533-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
The ongoing evolution of SARS-CoV-2 and the emergence of new viral variants bearing specific escape mutations responsible for immune evasion from antibody neutralisation has required a more accurate characterisation of the immune response as one of the evolutive forces behind viral adaptation to a largely immunised human population. In this work, culturing in the presence of neutralising sera vigorously promoted mutagenesis leading to the acquisition of known escape mutations on the spike as well as new presumptive escape mutations on structural proteins whose role as target of the neutralizing antibody response might have been thus far widely neglected. From this perspective, this study, in addition to tracing the past evolution of the species back to interactions with neutralising antibody immune response, also offers a glimpse into future evolutive scenarios.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Francesca Taddei
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Agnese Denicolò
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Valentina Arfilli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Arianna Battisti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Martina Manera
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Andrea Mancini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Maria Michela Marino
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Giulia Gatti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Michela Fantini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Simona Semprini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522, Cesena, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
46
|
Zaliani A, Vangeel L, Reinshagen J, Iaconis D, Kuzikov M, Keminer O, Wolf M, Ellinger B, Esposito F, Corona A, Tramontano E, Manelfi C, Herzog K, Jochmans D, De Jonghe S, Chiu W, Francken T, Schepers J, Collard C, Abbasi K, Claussen C, Summa V, Beccari AR, Neyts J, Gribbon P, Leyssen P. Cytopathic SARS-CoV-2 screening on VERO-E6 cells in a large-scale repurposing effort. Sci Data 2022; 9:405. [PMID: 35831315 PMCID: PMC9279437 DOI: 10.1038/s41597-022-01532-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/29/2022] [Indexed: 01/13/2023] Open
Abstract
Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Collapse
Affiliation(s)
- Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100, L'Aquila, Italy
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100, L'Aquila, Italy
| | - Katja Herzog
- EU-OPENSCREEN ERIC, Campus Berlin Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Thibault Francken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Joost Schepers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Caroline Collard
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Kayvan Abbasi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Vincenzo Summa
- Department of Excellence of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100, L'Aquila, Italy
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Pieter Leyssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium
| |
Collapse
|
47
|
Kang CK, Shin HM, Choe PG, Park J, Hong J, Seo JS, Lee YH, Chang E, Kim NJ, Kim M, Kim YW, Kim HR, Lee CH, Seo JY, Park WB, Oh MD. Broad humoral and cellular immunity elicited by one-dose mRNA vaccination 18 months after SARS-CoV-2 infection. BMC Med 2022; 20:181. [PMID: 35508998 PMCID: PMC9067342 DOI: 10.1186/s12916-022-02383-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Practical guidance is needed regarding the vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals in resource-limited countries. It includes the number of vaccine doses that should be given to unvaccinated patients who experienced COVID-19 early in the pandemic. METHODS We recruited COVID-19 convalescent individuals who received one or two doses of an mRNA vaccine within 6 or around 18 months after a diagnosis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Their samples were assessed for IgG-binding or neutralizing activity and cell-mediated immune responses against SARS-CoV-2 wild-type and variants of concern. RESULTS A total of 43 COVID-19 convalescent individuals were analyzed in the present study. The results showed that humoral and cellular immune responses against SARS-CoV-2 wild-type and variants of concern, including the Omicron variant, were comparable among patients vaccinated within 6 versus around 18 months. A second dose of vaccine did not significantly increase immune responses. CONCLUSION One dose of mRNA vaccine should be considered sufficient to elicit a broad immune response even around 18 months after a COVID-19 diagnosis.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jiyoung Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jisu Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jung Seon Seo
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yung Hie Lee
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Internal Medicine, Seoul Asan Medical Center, Seoul, 05505, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yong-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 08030, South Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
48
|
Meloni D, Franzoni G, Oggiano A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines (Basel) 2022; 10:707. [PMID: 35632463 PMCID: PMC9144233 DOI: 10.3390/vaccines10050707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus-host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation.
Collapse
Affiliation(s)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (D.M.); (A.O.)
| | | |
Collapse
|
49
|
A Human Skin Model for Assessing Arboviral Infections. JID INNOVATIONS 2022; 2:100128. [PMID: 35812722 PMCID: PMC9256657 DOI: 10.1016/j.xjidi.2022.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Arboviruses such as flaviviruses and alphaviruses cause a significant human healthcare burden on a global scale. Transmission of these viruses occurs during human blood feeding at the mosquito-skin interface. Not only do pathogen immune evasion strategies influence the initial infection and replication of pathogens delivered, but arthropod salivary factors also influence transmission foci. In vitro cell cultures do not provide an adequate environment to study complex interactions between viral, mosquito, and host factors. To address this need for a whole tissue system, we describe a proof of concept model for arbovirus infection using adult human skin ex vivo with Zika virus (flavivirus) and Mayaro virus (alphavirus). Replication of these viruses in human skin was observed up to 4 days after infection. Egressed viruses could be detected in the culture media as well. Antiviral and proinflammatory genes, including chemoattractant chemokines, were expressed in infected tissue. Immunohistochemical analysis showed the presence of virus in the skin tissue 4 days after infection. This model will be useful to further investigate: (i) the immediate molecular mechanisms of arbovirus infection in human skin, and (ii) the influence of arthropod salivary molecules during initial infection of arboviruses in a more physiologically relevant system.
Collapse
|
50
|
Jung O, Tung YT, Sim E, Chen YC, Lee E, Ferrer M, Song MJ. Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform. Biofabrication 2022; 14. [PMID: 35166694 PMCID: PMC10053540 DOI: 10.1088/1758-5090/ac32a5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
The COVID-19 pandemic has highlighted the need for human respiratory tract-based assay platforms for efficient discovery and development of antivirals and disease-modulating therapeutics. Physiologically relevant tissue models of the lower respiratory tract (LRT), including the respiratory bronchioles and the alveolar sacs, are of high interest because they are the primary site of severe SARS-CoV-2 infection and are most affected during the terminal stage of COVID-19. Current epithelial lung models used to study respiratory viral infections include lung epithelial cells at the air-liquid interface (ALI) with fibroblasts and endothelial cells, but such models do not have a perfusable microvascular network to investigate both viral infectivity and viral infection-induced thrombotic events. Using a high throughput, 64-chip microfluidic plate-based platform, we have developed two novel vascularized, LRT multi-chip models for the alveoli and the small airway. Both models include a perfusable microvascular network consisting of human primary microvascular endothelial cells, fibroblasts and pericytes. The established biofabrication protocols also enable the formation of differentiated lung epithelial layers at the ALI on top of the vascularized tissue bed. We validated the physiologically relevant cellular composition, architecture and perfusion of the vascularized lung tissue models using fluorescence microscopy, flow cytometry, and electrical resistance measurements. These vascularized, perfusable microfluidic lung tissue on high throughput assay platforms will enable the development of respiratory viral infection and disease models for research investigation and drug discovery.
Collapse
Affiliation(s)
- Olive Jung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America.,Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Esther Sim
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Emily Lee
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|