1
|
Liu K, Shao J, Han B, Liu J, Yan S, Liu B, Liu Y. Conductive MeCbl/PEDOT:PSS/HA hydrogels with electrical stimulation for enhanced peripheral nerve regeneration. Mater Today Bio 2025; 32:101755. [PMID: 40290882 PMCID: PMC12022694 DOI: 10.1016/j.mtbio.2025.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Peripheral nerve regeneration (PNR) represents a substantial challenge in the medical field, primarily due to the limited regenerative capacity of the peripheral nerve system (PNS). Current research efforts are focused on developing advanced medical polymer materials to enhance nerve recovery. Despite significant progress, several critical issues remain unresolved, including biocompatibility, stability, mechanical strength, controlled degradation rates, and sustained release of therapeutic agents. This study examines the utilization of hyaluronic acid hydrogels, doped with mecobalamin (MeCbl) and conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), in combination with exogenous electrical stimulation (ES) for PNR of rats. The strategy utilizes the MeCbl hydrogel to create a regenerative microenvironment and provide nutritional support for nerve cells, while PEDOT:PSS facilitates enhanced electrical signal conduction. ES has been shown to promote PNR and functional recovery, thereby demonstrating considerable potential. This study aims to comprehensively analyze the synergistic effects and potential value of this combined therapeutic approach, providing novel insights and pathways for the effective PNR.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Jiangbo Shao
- Department of Ultrasound Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Beibei Han
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Yao Liu
- Department of Sport Medicine, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| |
Collapse
|
2
|
Chen Y, Han B, Gobbi M, Hou L, Samorì P. Responsive Molecules for Organic Neuromorphic Devices: Harnessing Memory Diversification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418281. [PMID: 40135253 PMCID: PMC12075916 DOI: 10.1002/adma.202418281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/06/2025] [Indexed: 03/27/2025]
Abstract
In the brain, both the recording and decaying of memory information following external stimulus spikes are fundamental learning rules that determine human behaviors. The former is essential to acquire new knowledge and update the database, while the latter filters noise and autorefresh cache data to reduce energy consumption. To execute these functions, the brain relies on different neuromorphic transmitters possessing various memory kinetics, which can be classified as nonvolatile and volatile memory. Inspired by the human brain, nonvolatile and volatile memory electronic devices have been employed to realize artificial neural networks and spiking neural networks, respectively, which have emerged as essential tools in machine learning. Molecular switches, capable of responding to electrical, optical, electrochemical, and magnetic stimuli, display a disruptive potential for emulating information storage in memory devices. This Review highlights recent developments on responsive molecules, their interfacing with low-dimensional nanostructures and nanomaterials, and their integration into electronic devices. By capitalizing on these concepts, a unique account of neurotransmitter-transfer electronic devices based on responsive molecules with ad hoc memory kinetics is provided. Finally, future directions, challenges, and opportunities are discussed on the use of these devices to engineer more complex logic operations and computing functions at the hardware level.
Collapse
Affiliation(s)
- Yusheng Chen
- Université de StrasbourgCNRSISIS8 allée Gaspard MongeStrasbourg67000France
| | - Bin Han
- Université de StrasbourgCNRSISIS8 allée Gaspard MongeStrasbourg67000France
| | - Marco Gobbi
- Centro de Física de Materiales (CFM‐MPC)CSIC‐UPV/EHUDonostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Lili Hou
- School of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjin300072China
| | - Paolo Samorì
- Université de StrasbourgCNRSISIS8 allée Gaspard MongeStrasbourg67000France
| |
Collapse
|
3
|
Lu L, Liu X, Gu P, Hu Z, Liang X, Deng Z, Sun Z, Zhang X, Yang X, Yang J, Zu G, Huang J. Stretchable all-gel organic electrochemical transistors. Nat Commun 2025; 16:3831. [PMID: 40268969 PMCID: PMC12019246 DOI: 10.1038/s41467-025-59240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Stretchable organic electrochemical transistors (OECTs) are promising for flexible electronics. However, the balance between stretchability and electrical properties is a great challenge for OECTs. Here, high-performance stretchable all-gel OECTs based on semiconducting polymer gel active layers and poly(ionic liquid) ionogel electrolytes are developed. The all-gel network structures effectively promote ion penetration/transport and endows the OECTs with high stretchability. The resulting OECTs exhibit an excellent combination of ultra-high transconductance of 86.4 mS, on/off ratio of 1.2 × 105, stretchability up to 50%, and high stretching stability up to 10000 cycles under 30% strain. We demonstrate that the all-gel OECTs can be used as stretchable pressure-sensitive electronic skins with a low detection limit for tactile perception of robotic hands. In addition, the all-gel OECTs can be applied as stretchable artificial synapses for neuromorphic simulation and highly sensitive stretchable gas sensors for simulating olfactory perception process and monitoring food quality. This work provides a general all-gel strategy toward high-performance flexible electronics.
Collapse
Affiliation(s)
- Linlin Lu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xu Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zhiying Deng
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Jie Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| |
Collapse
|
4
|
Chen Z, Zhao X, Wang C, Fang W, Ye G, Chen L, Li J, Zhang Y. Organic electrochemical transistors based on a conjugated diketopyrrolopyrrole-dialkoxybithiazole copolymer. NANOSCALE 2025; 17:8892-8900. [PMID: 40099414 DOI: 10.1039/d5nr00379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Organic electrochemical transistors (OECTs) are promising for bioelectronics due to their ability to amplify signals by converting ionic signals into electronic signals. The performance of OECTs relies heavily on the interaction between electrolyte ions and organic mixed ionic-electronic conductors (OMIECs). We examined how different aqueous electrolytes affect OECTs based on an ethylene glycol-substituted diketopyrrolopyrrole-dialkoxybithiazole copolymer (PDPP-TEG-2Tz), which is primarily p-type and electrochemically doped with anions. Our findings show that compared to the small, highly hydrated chloride anion (Cl-), the larger hexafluorophosphate (PF6-) and bis(trifluoromethanesulfonyl)imide (TFSI-) anions result in a lower threshold voltage and a faster transient response. Cations like Li+, Na+, and K+ have little impact on OECT performance. Additionally, we created a complementary inverter using p-type PDPP-TEG-2Tz with an n-type naphthalene diimide-bithiophene copolymer (PNDI2C8TEG-2T), achieving a maximum voltage gain of 22.6 at a supply voltage of 0.7 V.
Collapse
Affiliation(s)
- Zilan Chen
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Xiaowei Zhao
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Chengdong Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wenxin Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062 China.
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201028, China
| | - Yanxi Zhang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Qiu J, Chen P, Wang M, Yang D, Cao J, Liu M, Yu J, Zhang X, Cheng H, Liu Q, Liu M. Compact Artificial Synapse-Neuron Module with Chemically Mediated Spiking Behaviors. ACS NANO 2025; 19:12298-12307. [PMID: 40114422 DOI: 10.1021/acsnano.5c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Neuromorphic electronic devices mimicking the structure and functionality of biological counterparts have shown promising applications in biorealistic computing and bioelectronic interfaces. However, current neuromorphic systems comprising synapses and neurons typically exhibit complex integrated structures and lack chemically mediated characteristics, hindering them from direct biointerfacing. Here, we report a compact artificial synapse-neuron module (ASNM) by seamlessly integrating an organic electrochemical synaptic transistor and a niobium dioxide Mott memristor, showing the chemically mediated synaptic plasticity and highly stable spiking characteristics (>1010 cycles). Sodium ions and dopamine neurotransmitter induce the short-term and long-term plasticity of synaptic transistors, respectively, thus enabling temporary and long-term modulation of the ASNM's firing frequency in a bioplausible range (0-100 Hz). Furthermore, we construct a chemically mediated artificial neuromuscular system based on the ASNM, which could replicate the learning processes of a shooting basketball. These results demonstrate that our ASNM could achieve multiple biorealistic functionalities including sensing, synaptic plasticity, and spiking in a compact structure, providing a promising way for direct biointerfacing.
Collapse
Affiliation(s)
- Jie Qiu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Pei Chen
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Ming Wang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Dongzi Yang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jie Cao
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Mengyang Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jie Yu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xumeng Zhang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Hongfei Cheng
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qi Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Ming Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| |
Collapse
|
6
|
Doshi S, Forner MOA, Wang P, Hadwe SE, Jin AT, Dijk G, Brinson K, Lim J, Dominguez‐Alfaro A, Lim CYJ, Salleo A, Barone DG, Hong G, Brongersma ML, Melosh NA, Malliaras GG, Keene ST. Thermal Processing Creates Water-Stable PEDOT:PSS Films for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415827. [PMID: 40025942 PMCID: PMC11962680 DOI: 10.1002/adma.202415827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Organic mixed ionic-electronic conductors have emerged as a key material for the development of bioelectronic devices due to their soft mechanical properties, biocompatibility, and high volumetric capacitance. In particular, PEDOT:PSS has become a choice material because it is highly conductive, easily processible, and commercially available. However, PEDOT:PSS is dispersible in water, leading to delamination of films when exposed to biological environments. For this reason, chemical cross-linking agents such as (3-glycidyloxypropyl)trimethoxysilane (GOPS) are used to stabilize PEDOT:PSS films in water, but at the cost of decreased electrical performance. Here, it is shown that PEDOT:PSS thin films become water-stable by simply baking at high temperatures (>150 °C) for a short time (≈ 2 min). It is shown that heat-treated PEDOT:PSS films are as stable as their chemically-cross-linked counterparts, with their performance maintained for >20 days both in vitro and in vivo. The heat-treated films eliminate electrically insulating cross-linkers, resulting in a 3× increase in volumetric capacitance. Applying thermal energy using a focused femtosecond laser enables direct patterning of 3D PEDOT:PSS microstructures. The thermal treatment method is compatible with a wide range of substrates and is readily substituted into existing workflows for manufacturing devices, enabling its rapid adoption in the field of bioelectronics.
Collapse
Affiliation(s)
- Siddharth Doshi
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Margaux O. A. Forner
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Pingyu Wang
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Salim El Hadwe
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0QQUK
| | - Amy T. Jin
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Gerwin Dijk
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Kenneth Brinson
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Juhwan Lim
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
| | - Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Carina Yi Jing Lim
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Alberto Salleo
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Damiano G. Barone
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0QQUK
| | - Guosong Hong
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Mark L. Brongersma
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Nicholas A. Melosh
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Scott T. Keene
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
| |
Collapse
|
7
|
Liang Y, Li H, Tang H, Zhang C, Men D, Mayer D. Bioinspired Electrolyte-Gated Organic Synaptic Transistors: From Fundamental Requirements to Applications. NANO-MICRO LETTERS 2025; 17:198. [PMID: 40122950 PMCID: PMC11930914 DOI: 10.1007/s40820-025-01708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic-electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
Collapse
Affiliation(s)
- Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, People's Republic of China.
| | - Hangyu Li
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hu Tang
- Guangzhou Liby Group Co., Ltd, Guangzhou, 510370, People's Republic of China
| | - Chunyang Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
8
|
Feng T, Xu H, Yang Y, Hu X, Wang T, Zhu H, Sun Q, Zhang DW, Meng J, Chen L. Organic Synaptic Transistors Based on C8-BTBT/PMMA/PbS QDs for UV to NIR Face Recognition Systems. NANO LETTERS 2025; 25:3637-3645. [PMID: 39976455 DOI: 10.1021/acs.nanolett.5c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Developing optoelectronic synaptic devices with low power consumption, broadband response, and biological compatibility is crucial to simulate the functions of optic nerve. Here, an organic synapse transistor based on C8-BTBT/PMMA/PbS quantum dots (PbS QDs) is fabricated, which has good stability, low power consumption (as low as 0.49 fJ per event under 800 nm near-infrared optical pulse), and broadband response from ultraviolet to near-infrared wavelengths. Based on the trap and release of photogenerated carriers by PbS QDs, a series of synaptic behaviors are simulated by the device. Furthermore, we use artificial neural network as the model to realize the recognition of facial feature image in the broad spectral range; the recognition rate reached 96.25% (350 nm ultraviolet), 92.14% (580 nm visible), and 90.03% (800 nm near-infrared). This work is beneficial for advancing the development of future artificial intelligence vision sensing.
Collapse
Affiliation(s)
- Tianyang Feng
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
| | - Hang Xu
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
| | - Yafen Yang
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
| | - Xuemeng Hu
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
| | - Tianyu Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| | - Hao Zhu
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
| | - Qingqing Sun
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
| | - David Wei Zhang
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| | - Jialin Meng
- School of Integrated Circuits, Shandong University, Jinan 250100, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| | - Lin Chen
- School of Microelectronics, State Key Laboratory of Integrated Chip and System, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| |
Collapse
|
9
|
Xia J, Wan Z, Peng C, Liu Y, Chen PA, Wei H, Ding J, Zhang Y, Hu Y. Ion-Gel Gated Perovskite Field-Effect Transistors with Low Power Consumption and High Stability for Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10886-10897. [PMID: 39908040 DOI: 10.1021/acsami.4c19269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Ruddlesden-Popper (RP) tin halide perovskites (THPs), exemplified by PEA2SnI4, are promising two-dimensional semiconductors for optoelectronic applications, yet their field-effect transistors (FETs) often suffer from high operating voltages and stability issues. Addressing these challenges, we developed a novel approach for integrating ion gel dielectrics composed of PVDF-HFP and [EMIM+][TFSI-] with PEA2SnI4, achieving FETs with record-low operating voltages as low as 2 V. Additionally, by substituting PEA+ with BA+ in BA2SnI4 FETs, we achieve enhanced device stability, with these devices exhibiting prolonged functionality exceeding 100 days. Uniform performance was also observed across 30 randomly tested devices fabricated on a 2 inch silicon wafer. These FETs also demonstrated synaptic behavior with ultralow energy consumption (5 × 10-11 J per operation). Leveraging these advancements, we constructed artificial neural networks for item classification, achieving high accuracy (97%). Moreover, the energy consumption for a single training process based on ion-gel gated BA2SnI4 FETs is approximately 2 orders of magnitude lower than that of similar networks based on the NVIDIA GeForce RTX 4060 GPU. Our results highlight the potential of ion-gel gated BA2SnI4 FETs for low-power, high-stability applications, paving the way for the next generation of perovskite-based electronic and neuromorphic devices.
Collapse
Affiliation(s)
- Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| | - Ziyu Wan
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Chengyuan Peng
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huan Wei
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiaqi Ding
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yu Zhang
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| |
Collapse
|
10
|
Wei X, Wu Z, Gao H, Cao S, Meng X, Lan Y, Su H, Qin Z, Liu H, Du W, Wu Y, Liu M, Zhao Z. Mechano-gated iontronic piezomemristor for temporal-tactile neuromorphic plasticity. Nat Commun 2025; 16:1060. [PMID: 39865134 PMCID: PMC11770186 DOI: 10.1038/s41467-025-56393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity. This system utilizes a bicontinuous phase-transition heterogel as a stiffness-governed iontronic mechanogate to achieve bidirectional piezoresistive signals, resulting in wide-span dynamic tactile sensing. By micro-integrating the mechanogate with an oscillatory iontronic memristor, it exhibits stiffness-induced bipolarized excitatory and inhibitory neuromorphics, thereby enabling the activation of temporal-tactile memory and learning functions (e.g., Bienenstock-Cooper-Munro and Hebbian learning rules). Owing to dynamic covalent bond network and iontronic features, reconfigurable tactile plasticity can be achieved. Importantly, bridging to bioneuronal interfaces, these systems possess the capacity to construct a biohybrid perception-actuation circuit. We anticipate that such temporal plastic piezomemristor devices for abiotic-biotic interfaces can serve as promising hardware systems for interfacing dynamic tactile behaviors into diverse neuromodulations.
Collapse
Affiliation(s)
- Xiao Wei
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, PR China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, PR China
| | - Shiqi Cao
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Yuqun Lan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Huixue Su
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Zhenglian Qin
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Hang Liu
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, 100191, Beijing, PR China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, PR China.
| | - Mingjie Liu
- School of Mechanical Engineering and Automation, Beihang University, 100191, Beijing, PR China.
| | - Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.
| |
Collapse
|
11
|
Jiang T, Ju P, Bi F, Chi J, Wen S, Jiang F, Chi Z. Target-induced enzymatic cleavage cycle amplification reaction-gated organic photoelectrochemical transistor biosensor for rapid detection of okadaic acid. Biosens Bioelectron 2025; 267:116745. [PMID: 39243448 DOI: 10.1016/j.bios.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Okadaic acid (OA), a predominant toxic entity in Diarrhetic Shellfish Poisoning (DSP), carries substantial significance for both marine ecosystems and human well-being. The nascent organic photoelectrochemical transistor (OPECT) biosensor has emerged as a promising biometric methodology, poised to offer a fresh realm for the detection of marine biotoxins. In this work, a biosensor utilizing signal amplification based on Cd0.5Zn0.5S/ZnIn2S4 quantum dots (CZS/ZIS QDs) in OPECT was proposed for OA detection, where ZIS QDs were labeled on aptamer and a substantial quantity of QDs were generated via cyclic shearing facilitated through target-induced Exo I enzyme. Owing to the sensitizing influence of ZIS QDs on CZS, the photoelectric conversion efficiency was augmented, culminating in a notable anodic photocurrent upon exposure to light, thereby inducing a transformation in the channel state of the polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) and consequently producing a remarkable modification in the channel current. The detection limit of the biosensor as low as 12.5 pM and a superior stability and specificity was confirmed, which also showed commendable outcomes in actual samples testing. Consequently, this study not only introduces a novel pathway for swift OA detection, but unveils a novel perspective for future expedited and convenient on-site detection of marine biotoxins.
Collapse
Affiliation(s)
- Tiantong Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China; Shandong Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, North China Sea Marine Forecasting Center of State Oceanic Administration, Qingdao, 266061, PR China.
| | - Fan Bi
- Shandong Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, North China Sea Marine Forecasting Center of State Oceanic Administration, Qingdao, 266061, PR China
| | - Jingtian Chi
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao, 266100, PR China
| | - Siyu Wen
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Fenghua Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, PR China.
| |
Collapse
|
12
|
Zhang Y, Tan CMJ, Toepfer CN, Lu X, Bayley H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 2024; 386:1024-1030. [PMID: 39607936 DOI: 10.1126/science.adr0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
Hydrogel iontronic devices can emulate biological functions and communicate with living matter. But the fabrication of miniature, soft iontronic devices according to modular designs has not been achieved. In this work, we report the use of surfactant-supported assembly of freestanding microscale hydrogel droplets to construct various iontronic modules, circuits, and biointerfaces. Chemical modifications of silk fibroin produced a pair of oppositely charged hydrogels. Microscale assembly of various combinations of hydrogel droplets produced iontronic diodes, npn- and pnp-type transistors, and diverse reconfigurable logic gates. Through the incorporation of poly(amino acid)s, we have demonstrated a droplet-based synthetic synapse with ionic polymer-mediated long-term plasticity. Further, our iontronic transistor can serve as a biocompatible sensor to record electrophysiological signals from sheets of human cardiomyocytes, paving a way to the building of miniature bioiontronic systems.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Chemistry, University of Oxford, Oxford, UK
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cheryl M J Tan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Zhu Y, Nyberg T, Nyholm L, Primetzhofer D, Shi X, Zhang Z. Wafer-Scale Ag 2S-Based Memristive Crossbar Arrays with Ultra-Low Switching-Energies Reaching Biological Synapses. NANO-MICRO LETTERS 2024; 17:69. [PMID: 39572441 PMCID: PMC11582288 DOI: 10.1007/s40820-024-01559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024]
Abstract
Memristive crossbar arrays (MCAs) offer parallel data storage and processing for energy-efficient neuromorphic computing. However, most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor (CMOS) technology still suffer from substantially larger energy consumption than biological synapses, due to the slow kinetics of forming conductive paths inside the memristive units. Here we report wafer-scale Ag2S-based MCAs realized using CMOS-compatible processes at temperatures below 160 °C. Ag2S electrolytes supply highly mobile Ag+ ions, and provide the Ag/Ag2S interface with low silver nucleation barrier to form silver filaments at low energy costs. By further enhancing Ag+ migration in Ag2S electrolytes via microstructure modulation, the integrated memristors exhibit a record low threshold of approximately - 0.1 V, and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses. The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics. Moreover, the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm. An impressive accuracy of 92.6% in image recognition simulations is demonstrated with the MCAs after the compensation. The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.
Collapse
Affiliation(s)
- Yuan Zhu
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden
| | - Tomas Nyberg
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden
| | - Leif Nyholm
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Zhen Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
14
|
Mariani F, Decataldo F, Bonafè F, Tessarolo M, Cramer T, Gualandi I, Fraboni B, Scavetta E. High-Endurance Long-Term Potentiation in Neuromorphic Organic Electrochemical Transistors by PEDOT:PSS Electrochemical Polymerization on the Gate Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61446-61456. [PMID: 37966461 PMCID: PMC11565569 DOI: 10.1021/acsami.3c10576] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
The brain exhibits extraordinary information processing capabilities thanks to neural networks that can operate in parallel with minimal energy consumption. Memory and learning require the creation of new neural networks through the long-term modification of the structure of the synapses, a phenomenon called long-term plasticity. Here, we use an organic electrochemical transistor to simulate long-term potentiation and depotentiation processes. Similarly to what happens in a synapse, the polymerization of the 3,4-ethylenedioxythiophene (EDOT) on the gate electrode modifies the structure of the device and boosts the ability of the gate potential to modify the conductivity of the channel. Operando AFM measurements were carried out to demonstrate the correlation between neuromorphic behavior and modification of the gate electrode. Long-term enhancement depends on both the number of pulses used and the gate potential, which generates long-term potentiation when a threshold of +0.7 V is overcome. Long-term depotentiation occurs by applying a +3.0 V potential and exploits the overoxidation of the deposited PEDOT:PSS. The induced states are stable for at least 2 months. The developed device shows very interesting characteristics in the field of neuromorphic electronics.
Collapse
Affiliation(s)
- Federica Mariani
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum - University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Decataldo
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Filippo Bonafè
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Marta Tessarolo
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Tobias Cramer
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Isacco Gualandi
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum - University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Fraboni
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Scavetta
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum - University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
15
|
Wei Q, Huang J, Meng Q, Zhang Z, Gu S, Li Y. Open-shell Poly(3,4-dioxythiophene) Radical for Highly Efficient Photothermal Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406800. [PMID: 39234816 PMCID: PMC11538641 DOI: 10.1002/advs.202406800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Open-shell organic radical semiconductor materials have received increasing attention in recent years due to their distinctive properties compared to the traditional materials with closed-shell singlet ground state. However, their poor chemical and photothermal stability in ambient conditions remains a significant challenge, primarily owing to their high reactivity with oxygen. Herein, a novel open-shell poly(3,4-dioxythiophene) radical PTTO2 is designed and readily synthesized for the first time using low-cost raw material via a straightforward BBr3-demethylation of the copolymer PTTOMe2 precursor. The open-shell character of PTTO2 is carefully studied and confirmed via the signal-silent 1H nuclear magnetic resonance spectrum, highly enhanced electron spin resonance signal compared with PTTOMe2, as well as the ultra-wide ultraviolet-visible-near nfraredUV-vis-NIR absorption and other technologies. Interestingly, the powder of PTTO2 exhibits an extraordinary absorption range spanning from 300 to 2500 nm and can reach 274 °C under the irradiation of 1.2 W cm-2, substantially higher than the 108 °C achieved by PTTOMe2. The low-cost PTTO2 stands as one of the best photothermal conversion materials among the pure organic photothermal materials and provides a new scaffold for the design of stable non-doped open-shell polymers.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jiaxing Huang
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Qiao Meng
- Faculty of Materials ScienceMSU‐BIT UniversityShenzhen518172P. R. China
| | - Zesheng Zhang
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sichen Gu
- Faculty of Materials ScienceMSU‐BIT UniversityShenzhen518172P. R. China
| | - Yuan Li
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
16
|
Hou K, Chen S, John RA, He Q, Zhou Z, Mathews N, Lew WS, Leong WL. Exploiting Spatial Ionic Dynamics in Solid-State Organic Electrochemical Transistors for Multi-Tactile Sensing and Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405902. [PMID: 39331857 DOI: 10.1002/advs.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The human nervous system inspires the next generation of sensory and communication systems for robotics, human-machine interfaces (HMIs), biomedical applications, and artificial intelligence. Neuromorphic approaches address processing challenges; however, the vast number of sensors and their large-scale distribution complicate analog data manipulation. Conventional digital multiplexers are limited by complex circuit architecture and high supply voltage. Large sensory arrays further complicate wiring. An 'in-electrolyte computing' platform is presented by integrating organic electrochemical transistors (OECTs) with a solid-state polymer electrolyte. These devices use synapse-like signal transport and spatially dependent bulk ionic doping, achieving over 400 times modulation in channel conductance, allowing discrimination of locally random-access events without peripheral circuitry or address assignment. It demonstrates information processing from 12 tactile sensors with a single OECT output, showing clear advantages in circuit simplicity over existing all-electronic, all-digital implementations. This self-multiplexer platform offers exciting prospects for circuit-free integration with sensory arrays for high-quality, large-volume analog signal processing.
Collapse
Affiliation(s)
- Kunqi Hou
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rohit Abraham John
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
17
|
Liu Z, Cheng P, Kang R, Zhou J, Wang X, Zhao X, Zhao J, Zuo Z. All-Inorganic CsPbBr 3 Perovskite Planar-Type Memristors as Optoelectronic Synapses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51065-51079. [PMID: 39268654 DOI: 10.1021/acsami.4c09673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Mimicking fundamental synaptic working principles with memristors contributes an essential step toward constructing brain-inspired, high-efficiency neuromorphic systems that surpass von Neumann system computers. Here, an electroforming-free planar-type memristor based on a CsPbBr3 single crystal is proposed and exhibits excellent resistive switching (RS) behaviors including stable endurance, ultralow power consumption, and fast switching speed. Furthermore, an optically tunable RS performance is demonstrated by manipulating irradiation intensity and wavelength. Optical analysis techniques such as steady-state photoluminescence and time-resolved photoluminescence are employed to investigate the distribution of Br ions and vacancies before and after quantitative polarization, describing migration dynamic processes to elucidate the RS mechanism. Importantly, a CsPbBr3 single crystal, as the optoelectronic synapse, shows unique potential to emulate photoenhanced synaptic functions such as excitatory postsynaptic current, paired-pulse facilitation, long-term potentiation/depression, spike-timing-dependent plasticity, spike-voltage-dependent plasticity, and learning-forgetting-relearning process with ultralow per synapse event energy consumption. A classical Pavlov's dog experiment is simulated with a combination of optical and electrical stimulation. Finally, pattern recognition with simulated artificial neural networks based on our synapse reached an accuracy of 93.11%. The special strategy and superior RS characteristics of optoelectronic synapses provide a pathway toward high-performance, energy-efficient neuromorphic electronics.
Collapse
Affiliation(s)
- Zehan Liu
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
| | - Pengpeng Cheng
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
| | - Ruyan Kang
- Institute of Novel Semiconductors, Shandong University, Jinan 250100, P. R. China
| | - Jian Zhou
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
| | - Xiaoshan Wang
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
| | - Xian Zhao
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
| | - Jia Zhao
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhiyuan Zuo
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao 266237, P. R. China
- Institute of Novel Semiconductors, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
18
|
Lee YJ, Kim YH, Lee EK. PEDOT:PSS-Based Prolonged Long-Term Decay Synaptic OECT with Proton-Permeable Material, Nafion. Macromol Rapid Commun 2024; 45:e2400165. [PMID: 38924243 DOI: 10.1002/marc.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a conductive polymer, has gained popularity as the channel layer in organic electrochemical transistors (OECTs) due to its high conductivity and straightforward processing. However, difficulties arise in controlling its conductivity through gate voltage, presenting a challenge. To address this issue, aromatic amidine base, diazabicyclo[4.3.0]non-5-ene (DBN), is used to stabilize the doping state of the PEDOT chain through a reliable chemical de-doping process. Furthermore, the addition of the proton-penetrable material Nafion to the PEDOT:PSS channel layer induces phase separation between the substances. By utilizing a solution containing both PEDOT:PSS and Nafion as the channel layer of OECTs, the efficiency of ion movement into the channel from the electrolyte is enhanced, resulting in improved OECT performance. The inclusion of Nafion in the OECTs' channel layer modifies ion movement dynamics, allowing for the adjustment of synaptic properties such as pulse-paired facilitation, memory level, short-term plasticity, and long-term plasticity. This research aims to introduce new possibilities in the field of neuromorphic computing and contribute to biomimetic technology through the enhancement of electronic component performance.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yong Hyun Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- School of Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
19
|
Wan C, Pei M, Shi K, Cui H, Long H, Qiao L, Xing Q, Wan Q. Toward a Brain-Neuromorphics Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311288. [PMID: 38339866 DOI: 10.1002/adma.202311288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Brain-computer interfaces (BCIs) that enable human-machine interaction have immense potential in restoring or augmenting human capabilities. Traditional BCIs are realized based on complementary metal-oxide-semiconductor (CMOS) technologies with complex, bulky, and low biocompatible circuits, and suffer with the low energy efficiency of the von Neumann architecture. The brain-neuromorphics interface (BNI) would offer a promising solution to advance the BCI technologies and shape the interactions with machineries. Neuromorphic devices and systems are able to provide substantial computation power with extremely high energy-efficiency by implementing in-materia computing such as in situ vector-matrix multiplication (VMM) and physical reservoir computing. Recent progresses on integrating neuromorphic components with sensing and/or actuating modules, give birth to the neuromorphic afferent nerve, efferent nerve, sensorimotor loop, and so on, which has advanced the technologies for future neurorobotics by achieving sophisticated sensorimotor capabilities as the biological system. With the development on the compact artificial spiking neuron and bioelectronic interfaces, the seamless communication between a BNI and a bioentity is reasonably expectable. In this review, the upcoming BNIs are profiled by introducing the brief history of neuromorphics, reviewing the recent progresses on related areas, and discussing the future advances and challenges that lie ahead.
Collapse
Affiliation(s)
- Changjin Wan
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjiao Pei
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Kailu Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hangyuan Cui
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haotian Long
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lesheng Qiao
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qianye Xing
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qing Wan
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
20
|
Chen L, Ren M, Zhou J, Zhou X, Liu F, Di J, Xue P, Li C, Li Q, Li Y, Wei L, Zhang Q. Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc Natl Acad Sci U S A 2024; 121:e2407971121. [PMID: 39110725 PMCID: PMC11331142 DOI: 10.1073/pnas.2407971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Ming Ren
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Jianxian Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Fan Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Jiangtao Di
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou215009, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Yang Li
- School of Microelectronics, Shandong University, Jinan250101, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| |
Collapse
|
21
|
Boratto MH, Graeff CFO, Han S. Highly Stable Flexible Organic Electrochemical Transistors with Natural Rubber Latex Additives. Polymers (Basel) 2024; 16:2287. [PMID: 39204507 PMCID: PMC11359245 DOI: 10.3390/polym16162287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Organic electrochemical transistors (OECTs) have attracted considerable interest in the context of wearable and implantable biosensors due to their remarkable signal amplification combined with seamless integration into biological systems. These properties underlie OECTs' potential utility across a range of bioelectronic applications. One of the main challenges to their practical applications is the mechanical limitation of PEDOT:PSS, the most typical conductive polymer used as a channel layer, when the OECTs are applied to implantable and stretchable bioelectronics. In this work, we address this critical issue by employing natural rubber latex (NRL) as an additive in PEDOT:PSS to improve flexibility and stretchability of the OECT channels. Although the inclusion of NRL leads to a decrease in transconductance, mainly due to a reduced carrier mobility from 0.3 to 0.1 cm2/V·s, the OECTs maintain satisfactory transconductance, exceeding 5 mS. Furthermore, it is demonstrated that the OECTs exhibit excellent mechanical stability while maintaining their performance even after 100 repetitive bending cycles. This work, therefore, suggests that the NRL/PEDOT:PSS composite film can be deployed for wearable/implantable applications, where high mechanical stability is needed. This finding opens up new avenues for practical use of OECTs in more robust and versatile wearable and implantable biosensors.
Collapse
Affiliation(s)
- Miguel Henrique Boratto
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Carlos F. O. Graeff
- Physics and Meteorology Department, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil;
| | - Sanggil Han
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
- Center for Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
22
|
Bongartz LM, Kantelberg R, Meier T, Hoffmann R, Matthus C, Weissbach A, Cucchi M, Kleemann H, Leo K. Bistable organic electrochemical transistors: enthalpy vs. entropy. Nat Commun 2024; 15:6819. [PMID: 39122689 PMCID: PMC11316041 DOI: 10.1038/s41467-024-51001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Organic electrochemical transistors (OECTs) underpin a range of emerging technologies, from bioelectronics to neuromorphic computing, owing to their unique coupling of electronic and ionic charge carriers. In this context, various OECT systems exhibit significant hysteresis in their transfer curve, which is frequently leveraged to achieve non-volatility. Meanwhile, a general understanding of its physical origin is missing. Here, we introduce a thermodynamic framework that readily explains the emergence of bistable OECT operation via the interplay of enthalpy and entropy. We validate this model through temperature-resolved characterizations, material manipulation, and thermal imaging. Further, we reveal deviations from Boltzmann statistics for the subthreshold swing and reinterpret existing literature. Capitalizing on these findings, we finally demonstrate a single-OECT Schmitt trigger, thus compacting a multi-component circuit into a single device. These insights provide a fundamental advance for OECT physics and its application in non-conventional computing, where symmetry-breaking phenomena are pivotal to unlock new paradigms of information processing.
Collapse
Affiliation(s)
- Lukas M Bongartz
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany.
| | - Richard Kantelberg
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Tommy Meier
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Raik Hoffmann
- Fraunhofer Institute for Photonic Microsystems IPMS, Center Nanoelectronic Technologies, An der Bartlake 5, 01099, Dresden, Germany
| | - Christian Matthus
- Chair of Circuit Design and Network Theory (CCN), Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Helmholtzstr. 18, 01069, Dresden, Germany
| | - Anton Weissbach
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Matteo Cucchi
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Hans Kleemann
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Karl Leo
- IAPP Dresden, Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|
23
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
24
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
25
|
Kim H, Won Y, Song HW, Kwon Y, Jun M, Oh JH. Organic Mixed Ionic-Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306191. [PMID: 38148583 PMCID: PMC11251567 DOI: 10.1002/advs.202306191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 12/28/2023]
Abstract
The field of organic mixed ionic-electronic conductors (OMIECs) has gained significant attention due to their ability to transport both electrons and ions, making them promising candidates for various applications. Initially focused on inorganic materials, the exploration of mixed conduction has expanded to organic materials, especially polymers, owing to their advantages such as solution processability, flexibility, and property tunability. OMIECs, particularly in the form of polymers, possess both electronic and ionic transport functionalities. This review provides an overview of OMIECs in various aspects covering mechanisms of charge transport including electronic transport, ionic transport, and ionic-electronic coupling, as well as conducting/semiconducting conjugated polymers and their applications in organic bioelectronics, including (multi)sensors, neuromorphic devices, and electrochromic devices. OMIECs show promise in organic bioelectronics due to their compatibility with biological systems and the ability to modulate electronic conduction and ionic transport, resembling the principles of biological systems. Organic electrochemical transistors (OECTs) based on OMIECs offer significant potential for bioelectronic applications, responding to external stimuli through modulation of ionic transport. An in-depth review of recent research achievements in organic bioelectronic applications using OMIECs, categorized based on physical and chemical stimuli as well as neuromorphic devices and circuit applications, is presented.
Collapse
Affiliation(s)
- Hyunwook Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yousang Won
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Hyun Woo Song
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
26
|
Kurt I, Krauhausen I, Spolaor S, van de Burgt Y. Predicting Blood Glucose Levels with Organic Neuromorphic Micro-Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308261. [PMID: 38682442 PMCID: PMC11251550 DOI: 10.1002/advs.202308261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Indexed: 05/01/2024]
Abstract
Accurate glucose prediction is vital for diabetes management. Artificial intelligence and artificial neural networks (ANNs) are showing promising results for reliable glucose predictions, offering timely warnings for glucose fluctuations. The translation of these software-based ANNs into dedicated computing hardware opens a route toward automated insulin delivery systems ultimately enhancing the quality of life for diabetic patients. ANNs are transforming this field, potentially leading to implantable smart prediction devices and ultimately to a fully artificial pancreas. However, this transition presents several challenges, including the need for specialized, compact, lightweight, and low-power hardware. Organic polymer-based electronics are a promising solution as they have the ability to implement the behavior of neural networks, operate at low voltage, and possess key attributes like flexibility, stretchability, and biocompatibility. Here, the study focuses on implementing software-based neural networks for glucose prediction into hardware systems. How to minimize network requirements, downscale the architecture, and integrate the neural network with electrochemical neuromorphic organic devices, meeting the strict demands of smart implants for in-body computation of glucose prediction is investigated.
Collapse
Affiliation(s)
- Ibrahim Kurt
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Imke Krauhausen
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
- Max Planck Institute for Polymer Research55128MainzGermany
| | - Simone Spolaor
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Yoeri van de Burgt
- MicrosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| |
Collapse
|
27
|
Bruno U, Rana D, Ausilio C, Mariano A, Bettucci O, Musall S, Lubrano C, Santoro F. An organic brain-inspired platform with neurotransmitter closed-loop control, actuation and reinforcement learning. MATERIALS HORIZONS 2024; 11:2865-2874. [PMID: 38698769 PMCID: PMC11182378 DOI: 10.1039/d3mh02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
Organic neuromorphic platforms have recently received growing interest for the implementation and integration of artificial and hybrid neuronal networks. Here, achieving closed-loop and learning/training processes as in the human brain is still a major challenge especially exploiting time-dependent biosignalling such as neurotransmitter release. Here, we present an integrated organic platform capable of cooperating with standard silicon technologies, to achieve brain-inspired computing via adaptive synaptic potentiation and depression, in a closed-loop fashion. The microfabricated platform could be interfaced and control a robotic hand which ultimately was able to learn the grasping of differently sized objects, autonomously.
Collapse
Affiliation(s)
- Ugo Bruno
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
| | - Daniela Rana
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Ottavia Bettucci
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Simon Musall
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Claudia Lubrano
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| |
Collapse
|
28
|
Nguyen-Dang T, Bao ST, Kaiyasuan C, Li K, Chae S, Yi A, Joy S, Harrison K, Kim JY, Pallini F, Beverina L, Graham KR, Nuckolls C, Nguyen TQ. Air-Stable Perylene Diimide Trimer Material for N-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312254. [PMID: 38521992 DOI: 10.1002/adma.202312254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Tung Nguyen-Dang
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- College of Engineering and Computer Science (CECS) and Center for Environmental Intelligence, VinUniversity, Gia-Lam, Hanoi, 12400, Vietnam
| | - Si Tong Bao
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Chokchai Kaiyasuan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Kunyu Li
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Ahra Yi
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Syed Joy
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kelsey Harrison
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Jae Young Kim
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Francesca Pallini
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Colin Nuckolls
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| |
Collapse
|
29
|
Liu S, Akinwande D, Kireev D, Incorvia JAC. Graphene-Based Artificial Dendrites for Bio-Inspired Learning in Spiking Neuromorphic Systems. NANO LETTERS 2024. [PMID: 38819288 DOI: 10.1021/acs.nanolett.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks.
Collapse
Affiliation(s)
- Samuel Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jean Anne C Incorvia
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
30
|
Suzuki D, Terasaki N. Aerosol Doping System for Microscale Seamless p-n Patterning of Carbon Nanotube Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27596-27604. [PMID: 38760008 PMCID: PMC11145590 DOI: 10.1021/acsami.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Carbon nanotube (CNT) films are extensively researched as a promising material for wearable thermoelectric generators (TEGs) owing to their good flexibility and high thermoelectric conversion ability. Miniaturizing a pair of p- and n-type thermocouples and increasing the number of repeating elements can effectively increase the power of TEGs. However, conventional p-n patterning methods, such as dipping and printing, have a coarse resolution at the submillimeter level, thereby limiting the miniaturization rate. This study developed an aerosol doping system as a fine n-doping method. A dopant aerosol with a <3 μm diameter was formed through ultrasonic nebulization and air separation, while n-doping was achieved by exposing the CNT film to the dopant aerosol. Microscale p-n patterning of 1 μm was achieved through exposure using small-sized aerosols at an exceptionally slow rate of 3 Å/min. This resolution is 100 times higher than those of conventional p-n patterning methods. The developed aerosol doping system for CNTs can also be used on organic semiconductor materials, such as PEDOT/PSS and perovskite materials. Therefore, it has the potential to significantly impact the realization of Internet of Things (IoT) terminals, such as flexible TEGs, transistors, and solar cells.
Collapse
Affiliation(s)
- Daichi Suzuki
- Sensing System Research Center, National Institute of Advanced Industrial Science
and Technology (AIST), Saga 841-0052, Japan
| | - Nao Terasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science
and Technology (AIST), Saga 841-0052, Japan
| |
Collapse
|
31
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
32
|
Lee J, Lee J, Bang H, Yoon TW, Ko JH, Zhang G, Park JS, Jeon I, Lee S, Kang B. One-Shot Remote Integration of Macromolecular Synaptic Elements on a Chip for Ultrathin Flexible Neural Network System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2402361. [PMID: 38762775 DOI: 10.1002/adma.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Indexed: 05/20/2024]
Abstract
The field of biomimetic electronics that mimic synaptic functions has expanded significantly to overcome the limitations of the von Neumann bottleneck. However, the scaling down of the technology has led to an increasingly intricate manufacturing process. To address the issue, this work presents a one-shot integrable electropolymerization (OSIEP) method with remote controllability for the deposition of synaptic elements on a chip by exploiting bipolar electrochemistry. Condensing synthesis, deposition, and patterning into a single fabrication step is achieved by combining alternating-current voltage superimposed on direct-current voltage-bipolar electropolymerization and a specially designed dual source/drain bipolar electrodes. As a result, uniform 6 × 5 arrays of poly(3,4-ethylenedioxythiophene) channels are successfully fabricated on flexible ultrathin parylene substrates in one-shot process. The channels exhibited highly uniform characteristics and are directly used as electrochemical synaptic transistor with synaptic plasticity over 100 s. The synaptic transistors have demonstrated promising performance in an artificial neural network (NN) simulation, achieving a high recognition accuracy of 95.20%. Additionally, the array of synaptic transistor is easily reconfigured to a multi-gate synaptic circuit to implement the principles of operant conditioning. These results provide a compelling fabrication strategy for realizing cost-effective and disposable NN systems with high integration density.
Collapse
Affiliation(s)
- Jiyun Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Jaehoon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Hyeonsu Bang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Tae Woong Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Jong Hwan Ko
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- College of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Guobing Zhang
- Special Display and Imaging Innovation Center of Anhui Province, National Engineering Lab of Special Display Technology, Academy of Opto-Electronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Chemistry and Chemical Engineering, Hefei University of Technology, Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Ji-Sang Park
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Il Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Sungjoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| |
Collapse
|
33
|
Guo J, Chen SE, Giridharagopal R, Bischak CG, Onorato JW, Yan K, Shen Z, Li CZ, Luscombe CK, Ginger DS. Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. NATURE MATERIALS 2024; 23:656-663. [PMID: 38632374 DOI: 10.1038/s41563-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.
Collapse
Affiliation(s)
- Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Shinya E Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | | | - Connor G Bischak
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jonathan W Onorato
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kangrong Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Ziqiu Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Christine K Luscombe
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Liu X, Dai S, Zhao W, Zhang J, Guo Z, Wu Y, Xu Y, Sun T, Li L, Guo P, Yang J, Hu H, Zhou J, Zhou P, Huang J. All-Photolithography Fabrication of Ion-Gated Flexible Organic Transistor Array for Multimode Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312473. [PMID: 38385598 DOI: 10.1002/adma.202312473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Organic ion-gated transistors (OIGTs) demonstrate commendable performance for versatile neuromorphic systems. However, due to the fragility of organic materials to organic solvents, efficient and reliable all-photolithography methods for scalable manufacturing of high-density OIGT arrays with multimode neuromorphic functions are still missing, especially when all active layers are patterned in high-density. Here, a flexible high-density (9662 devices per cm2) OIGT array with high yield and minimal device-to-device variation is fabricated by a modified all-photolithography method. The unencapsulated flexible array can withstand 1000 times' bending at a radius of 1 mm, and 3 months' storage test in air, without obvious performance degradation. More interesting, the OIGTs can be configured between volatile and nonvolatile modes, suitable for constructing reservoir computing systems to achieve high accuracy in classifying handwritten digits with low training costs. This work proposes a promising design of organic and flexible electronics for affordable neuromorphic systems, encompassing both array and algorithm aspects.
Collapse
Affiliation(s)
- Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shilei Dai
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Weidong Zhao
- School of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yutong Xu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jie Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junhe Zhou
- School of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
35
|
Bong JH, Grebenchuk S, Nikolaev KG, Chee CPT, Yang K, Chen S, Baranov D, Woods CR, Andreeva DV, Novoselov KS. Graphene oxide-DNA/graphene oxide-PDDA sandwiched membranes with neuromorphic function. NANOSCALE HORIZONS 2024; 9:863-872. [PMID: 38533738 DOI: 10.1039/d3nh00570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.
Collapse
Affiliation(s)
- Jia Hui Bong
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Sergey Grebenchuk
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Konstantin G Nikolaev
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Celestine P T Chee
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Kou Yang
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Siyu Chen
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Denis Baranov
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Colin R Woods
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
36
|
He Y, Zhu Y, Wan Q. Oxide Ionic Neuro-Transistors for Bio-inspired Computing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:584. [PMID: 38607119 PMCID: PMC11013937 DOI: 10.3390/nano14070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Current computing systems rely on Boolean logic and von Neumann architecture, where computing cells are based on high-speed electron-conducting complementary metal-oxide-semiconductor (CMOS) transistors. In contrast, ions play an essential role in biological neural computing. Compared with CMOS units, the synapse/neuron computing speed is much lower, but the human brain performs much better in many tasks such as pattern recognition and decision-making. Recently, ionic dynamics in oxide electrolyte-gated transistors have attracted increasing attention in the field of neuromorphic computing, which is more similar to the computing modality in the biological brain. In this review article, we start with the introduction of some ionic processes in biological brain computing. Then, electrolyte-gated ionic transistors, especially oxide ionic transistors, are briefly introduced. Later, we review the state-of-the-art progress in oxide electrolyte-gated transistors for ionic neuromorphic computing including dynamic synaptic plasticity emulation, spatiotemporal information processing, and artificial sensory neuron function implementation. Finally, we will address the current challenges and offer recommendations along with potential research directions.
Collapse
Affiliation(s)
- Yongli He
- Yongjiang Laboratory (Y-LAB), Ningbo 315202, China; (Y.H.); (Y.Z.)
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yixin Zhu
- Yongjiang Laboratory (Y-LAB), Ningbo 315202, China; (Y.H.); (Y.Z.)
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Qing Wan
- Yongjiang Laboratory (Y-LAB), Ningbo 315202, China; (Y.H.); (Y.Z.)
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
37
|
Catacchio M, Caputo M, Sarcina L, Scandurra C, Tricase A, Marchianò V, Macchia E, Bollella P, Torsi L. Spiers Memorial Lecture: Challenges and prospects in organic photonics and electronics. Faraday Discuss 2024; 250:9-42. [PMID: 38380468 DOI: 10.1039/d3fd00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While a substantial amount of research activity has been conducted in fields related to organic photonics and electronics, including the development of devices such as organic field-effect transistors, organic photovoltaics, and organic light-emitting diodes for applications encompassing organic thermoelectrics, organic batteries, excitonic organic materials for photochemical and optoelectronic applications, and organic thermoelectrics, this perspective review will primarily concentrate on the emerging and rapidly expanding domain of organic bioelectronics and neuromorphics. Here we present the most recent research findings on organic transistors capable of sensing biological biomarkers down at the single-molecule level (i.e., oncoproteins, genomes, etc.) for the early diagnosis of pathological states and to mimic biological synapses, paving the way to neuromorphic applications that surpass the limitations of the traditional von Neumann computing architecture. Both organic bioelectronics and neuromorphics exhibit several challenges but will revolutionize human life, considering the development of artificial synapses to counteract neurodegenerative disorders and the development of ultrasensitive biosensors for the early diagnosis of cancer to prevent its development. Moreover, organic bioelectronics for sensing applications have also triggered the development of several wearable, flexible and stretchable biodevices for continuous biomarker monitoring.
Collapse
Affiliation(s)
- Michele Catacchio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Angelo Tricase
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Verdiana Marchianò
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
38
|
Wang J, Ilyas N, Ren Y, Ji Y, Li S, Li C, Liu F, Gu D, Ang KW. Technology and Integration Roadmap for Optoelectronic Memristor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307393. [PMID: 37739413 DOI: 10.1002/adma.202307393] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Optoelectronic memristors (OMs) have emerged as a promising optoelectronic Neuromorphic computing paradigm, opening up new opportunities for neurosynaptic devices and optoelectronic systems. These OMs possess a range of desirable features including minimal crosstalk, high bandwidth, low power consumption, zero latency, and the ability to replicate crucial neurological functions such as vision and optical memory. By incorporating large-scale parallel synaptic structures, OMs are anticipated to greatly enhance high-performance and low-power in-memory computing, effectively overcoming the limitations of the von Neumann bottleneck. However, progress in this field necessitates a comprehensive understanding of suitable structures and techniques for integrating low-dimensional materials into optoelectronic integrated circuit platforms. This review aims to offer a comprehensive overview of the fundamental performance, mechanisms, design of structures, applications, and integration roadmap of optoelectronic synaptic memristors. By establishing connections between materials, multilayer optoelectronic memristor units, and monolithic optoelectronic integrated circuits, this review seeks to provide insights into emerging technologies and future prospects that are expected to drive innovation and widespread adoption in the near future.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Changcun Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
39
|
Gao Y, Zhou Y, Ji X, Graham AJ, Dundas CM, Miniel Mahfoud IE, Tibbett BM, Tan B, Partipilo G, Dodabalapur A, Rivnay J, Keitz BK. A hybrid transistor with transcriptionally controlled computation and plasticity. Nat Commun 2024; 15:1598. [PMID: 38383505 PMCID: PMC10881478 DOI: 10.1038/s41467-024-45759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium Shewanella oneidensis that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from S. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.
Collapse
Affiliation(s)
- Yang Gao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuchen Zhou
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Microelectronics Research Center, University of Texas at Austin, Austin, TX, 78758, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ismar E Miniel Mahfoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Bailey M Tibbett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Benjamin Tan
- Microelectronics Research Center, University of Texas at Austin, Austin, TX, 78758, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ananth Dodabalapur
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Microelectronics Research Center, University of Texas at Austin, Austin, TX, 78758, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
40
|
Shakya J, Kang MA, Li J, VahidMohammadi A, Tian W, Zeglio E, Hamedi MM. 2D MXene electrochemical transistors. NANOSCALE 2024; 16:2883-2893. [PMID: 38259225 DOI: 10.1039/d3nr06540e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The solid-state field-effect transistor, FET, and its theories were paramount in the discovery and studies of graphene. In the past two decades another transistor based on conducting polymers, called organic electrochemical transistor (ECT), has been developed and largely studied. The main difference between organic ECTs and FETs is the mode and extent of channel doping; while in FETs the channel only has surface doping through dipoles, the mixed ionic-electronic conductivity of the channel material in organic ECTs enables bulk electrochemical doping. As a result, organic ECTs maximize conductance modulation at the expense of speed. To date ECTs have been based on conducting polymers, but here we show that MXenes, a class of 2D materials beyond graphene, enable the realization of electrochemical transistors (ECTs). We show that the formulas for organic ECTs can be applied to these 2D ECTs and used to extract parameters like mobility. These MXene ECTs have high transconductance values but low on-off ratios. We further show that conductance switching data measured using ECT, in combination with other in situ-ex situ electrochemical measurements, is a powerful tool for correlating the change in conductance to that of the redox state, to our knowledge, this is the first report of this important correlation for MXene films. 2D ECTs can draw great inspiration and theoretical tools from the field of organic ECTs and have the potential to considerably extend the capabilities of transistors beyond those of conducting polymer ECTs, with added properties such as extreme heat resistance, tolerance for solvents, and higher conductivity for both electrons and ions than conducting polymers.
Collapse
Affiliation(s)
- Jyoti Shakya
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Min-A Kang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jian Li
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Armin VahidMohammadi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
- Innovation Partnership Building, UConn Tech Park, University of Conneticut, Storrs, CT 06269, USA
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Erica Zeglio
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology and Digital Futures, Solna, Sweden.
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 114 18, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| |
Collapse
|
41
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
42
|
Wu W, Feng K, Wang Y, Wang J, Huang E, Li Y, Jeong SY, Woo HY, Yang K, Guo X. Selenophene Substitution Enabled High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors and Glucose Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310503. [PMID: 37961011 DOI: 10.1002/adma.202310503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
High-performance n-type polymeric mixed ionic-electronic conductors (PMIECs) are essential for realizing organic electrochemical transistors (OECTs)-based low-power complementary circuits and biosensors, but their development still remains a great challenge. Herein, by devising two novel n-type polymers (f-BTI2g-SVSCN and f-BSeI2g-SVSCN) containing varying selenophene contents together with their thiophene-based counterpart as the control, it is demonstrated that gradually increasing selenophene loading in polymer backbones can simultaneously yield lowered lowest unoccupied molecular orbital levels, boosted charge-transport properties, and improved ion-uptake capabilities. Therefore, a remarkable volumetric capacitance (C*) of 387.2 F cm-3 and a state-of-the-art OECT electron mobility (µe,OECT ) of 0.48 cm2 V-1 s-1 are synchronously achieved for f-BSeI2g-SVSCN having the highest selenophene content, yielding an unprecedented geometry-normalized transconductance (gm,norm ) of 71.4 S cm-1 and record figure of merit (µC*) value of 191.2 F cm-1 V-1 s-1 for n-type OECTs. Thanks to such excellent performance of f-BSeI2g-SVSCN-based OECTs, a glucose sensor with a remarkably low detection limit of 10 nMm and decent selectivity is further implemented, demonstrating the power of selenophene substitution strategy in enabling high-performance n-type PMIECs for biosensing applications.
Collapse
Affiliation(s)
- Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410080, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
43
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
44
|
Cheng YH, Kuo CT, Lian BY. Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity. MICROMACHINES 2023; 14:2254. [PMID: 38138423 PMCID: PMC10745728 DOI: 10.3390/mi14122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
In recent decades, vapor sensors have gained substantial attention for their crucial roles in environmental monitoring and pharmaceutical applications. Herein, we introduce a chameleon-inspired colorimetric (CIC) sensor, detailing its design, fabrication, and versatile applications. The sensor seamlessly combines a PEDOT:PSS vapor sensor with a colorimetric display, using thermochromic liquid crystal (TLC). We further explore the electrical characteristics of the CIC sensor when doped with ethylene glycol (EG) and polyvinyl alcohol (PVA). Comparative analyses of resistance change rates for different weight ratios of EG and PVA provide insights into fine-tuning the sensor's responsiveness to varying humidity levels. The CIC sensor's proficiency in measuring ambient humidity is investigated under a voltage input as small as 2.6 V, capturing resistance change rates and colorimetric shifts at relative humidity (RH) levels ranging from 20% to 90%. Notably, the sensor exhibits distinct resistance sensitivities of 9.7 mΩ (0.02% ∆R/R0)/%RH, 0.5 Ω (0.86% ∆R/R0)/%RH, and 5.7 Ω (9.68% ∆R/R0)/%RH at RH 20% to 30%, RH 30% to 80%, and RH 80% to 90%, respectively. Additionally, a linear temperature change is observed with a sensitivity of -0.04 °C/%RH. The sensor also demonstrates a colorimetric temperature sensitivity of -82,036 K/%RH at RH 20% to 30% and -514 K/%RH at RH 30% to 90%, per captured image. Furthermore, real-time measurements of ethanol vapor with varying concentrations showcase the sensor's applicability in gas sensing applications. Overall, we present a comprehensive exploration of the CIC sensor, emphasizing its design flexibility, electrical characteristics, and diverse sensing capabilities. The sensor's potential applications extend to real-time environmental monitoring, highlighting its promising role in various gas sensing fields.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ching-Te Kuo
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Bo-Yao Lian
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| |
Collapse
|
45
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
46
|
Bisquert J. Hysteresis in Organic Electrochemical Transistors: Distinction of Capacitive and Inductive Effects. J Phys Chem Lett 2023; 14:10951-10958. [PMID: 38037745 PMCID: PMC10726359 DOI: 10.1021/acs.jpclett.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Organic electrochemical transistors (OECTs) are effective devices for neuromorphic applications, bioelectronics, and sensors. Numerous reports in the literature show persistent dynamical hysteresis effects in the current-voltage curves, attributed to the slow ionic charging of the channel under the applied gate voltage. Here we present a model that considers the dominant electrical and electrochemical operation aspects of the device based on a thermodynamic function of ion insertion. We identify the volume capacitance as the derivative of the thermodynamic function, associated with the chemical capacitance of the ionic-electronic film. The dynamical analysis shows that the system contains both capacitive and inductive hysteresis effects. The inductor response, which can be observed in impedance spectroscopy, is associated with ionic diffusion from the surface to fill the channel up to the equilibrium value. The model reveals the multiple dynamical features associated with specific kinetic relaxations that control the transient and impedance response of the OCET.
Collapse
Affiliation(s)
- Juan Bisquert
- Institute of Advanced Materials
(INAM), Universitat Jaume I, 12006 Castelló, Spain
| |
Collapse
|
47
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
48
|
Wu M, Zhuang Q, Yao K, Li J, Zhao G, Zhou J, Li D, Shi R, Xu G, Li Y, Zheng Z, Yang Z, Yu J, Yu X. Stretchable, skin‐conformable neuromorphic system for tactile sensory recognizing and encoding. INFOMAT 2023; 5. [DOI: 10.1002/inf2.12472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 04/02/2025]
Abstract
AbstractExpanding wearable technologies to artificial tactile perception will be of significance for intelligent human–machine interface, as neuromorphic sensing devices are promising candidates due to their low energy consumption and highly effective operating properties. Skin‐compatible and conformable features are required for the purpose of realizing wearable artificial tactile perception. Here, we report an intrinsically stretchable, skin‐integrated neuromorphic system with triboelectric nanogenerators as tactile sensing and organic electrochemical transistors as information processing. The integrated system provides desired sensing, synaptic, and mechanical characteristics, such as sensitive response (~0.04 kPa−1) to low‐pressure, short‐ and long‐term synaptic plasticity, great switching endurance (>10 000 pulses), symmetric weight update, together with high stretchability of 100% strain. With neural encoding, demonstrations are capable of recognizing, extracting, and encoding features of tactile information. This work provides a feasible approach to wearable, skin‐conformable neuromorphic sensing system with great application prospects in intelligent robotics and replacement prosthetics.
Collapse
Affiliation(s)
- Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China (UESTC) Chengdu the People's Republic of China
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
| | - Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices School of Fashion and Textiles, The Hong Kong Polytechnic University Hong Kong the People's Republic of China
| | - Kuanming Yao
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
| | - Jian Li
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering, Hong Kong Science Park Hong Kong the People's Republic of China
| | - Guangyao Zhao
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
| | - Jingkun Zhou
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering, Hong Kong Science Park Hong Kong the People's Republic of China
| | - Dengfeng Li
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering, Hong Kong Science Park Hong Kong the People's Republic of China
| | - Rui Shi
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
| | - Guoqiang Xu
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology Shenzhen the People's Republic of China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices School of Fashion and Textiles, The Hong Kong Polytechnic University Hong Kong the People's Republic of China
| | - Zhihui Yang
- Department of Pathology The Affiliated Hospital of Southwest Medical University Luzhou the People's Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China (UESTC) Chengdu the People's Republic of China
| | - Xinge Yu
- Department of Biomedical Engineering City University of Hong Kong Hong Kong the People's Republic of China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering, Hong Kong Science Park Hong Kong the People's Republic of China
| |
Collapse
|
49
|
Chen W, Zhai L, Zhang S, Zhao Z, Hu Y, Xiang Y, Liu H, Xu Z, Jiang L, Wen L. Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 2023; 382:559-565. [PMID: 37917701 DOI: 10.1126/science.adg0059] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Currently, electronics and iontronics in abiotic-biotic systems can only use electrons and single-species ions as unitary signal carriers. Thus, a mechanism of gating transmission for multiple biosignals in such devices is needed to match and modulate complex aqueous-phase biological systems. Here we report the use of cascade-heterogated biphasic gel iontronics to achieve diverse electronic-to-multi-ionic signal transmission. The cascade-heterogated property determined the transfer free energy barriers experienced by ions and ionic hydration-dehydration states under an electric potential field, fundamentally enhancing the distinction of cross-interface transmission between different ions by several orders of magnitude. Such heterogated or chemical-heterogated iontronics with programmable features can be coupled with multi-ion cross-interface mobilities for hierarchical and selective cross-stage signal transmission. We expect that such iontronics would be ideal candidates for a variety of biotechnology applications.
Collapse
Affiliation(s)
- Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Linxin Zhai
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Ziguang Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yun Xiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
50
|
Sylvander LA, Le PY, Tran HN, Murdoch BJ, Guo E, McKenzie DR, McCulloch DG, Partridge JG. Neuromorphic sensing of biomolecules covalently immobilised on polydimethyl glutarimide. Anal Chim Acta 2023; 1279:341787. [PMID: 37827635 DOI: 10.1016/j.aca.2023.341787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023]
Abstract
Polydimethyl glutarimide (PMGI) layers with sub-micron thicknesses have been modified in a 2.5 kV Ar plasma immersion ion implantation (PIII) process to introduce free radical covalent binding sites. The surface roughness of the PMGI increased after the PIII treatment but no through-layer defects were observed. When applied to the treated PMGI, horseradish peroxidase (HRP) enzyme remained bound to the surface after extended immersion in sodium dodecyl sulfate solution (SDS). Hence, covalent binding between the activated surface and enzyme was confirmed. This covalent binding was achieved up to 24-h after the PIII process. The treated PMGI was then incorporated as a gate dielectric layer within a lateral three-terminal electrolyte-gated device. The device output characteristics resembled those of post-synaptic outputs; as successive (pre-synaptic) voltage pulses were applied to the gate, paired pulse depression and spike rate dependent plasticity were observed in the source-drain (post-synaptic) current. These characteristics were altered by the presence of HRP immobilised on the plasma-modified PMGI gate dielectric layer thus providing readout detection. These results and preliminary device characteristics show the potential for the plasma functionalized PMGI as a sensitive and reproducible biosensing technology.
Collapse
Affiliation(s)
- Luke A Sylvander
- School of Science, RMIT University, Melbourne VIC 3001, Australia.
| | - Phuong Y Le
- School of Science, RMIT University, Melbourne VIC 3001, Australia
| | - Hiep N Tran
- School of Engineering, RMIT University, Melbourne VIC 3001, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3000, Australia
| | - Enyi Guo
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - David R McKenzie
- School of Physics, The University of Sydney, NSW 2006, Australia
| | | | - Jim G Partridge
- School of Science, RMIT University, Melbourne VIC 3001, Australia
| |
Collapse
|