1
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Seku K, Bhagavanth Reddy G, Osman AI, Hussaini SS, Kumar NS, Al-Abri M, Pejjai B, Alreshaidan SB, Al-Fatesh AS, Kadimpati KK. Modified frankincense resin stabilized gold nanoparticles for enhanced antioxidant and synergetic activity in in-vitro anticancer studies. Int J Biol Macromol 2024; 278:134935. [PMID: 39179088 DOI: 10.1016/j.ijbiomac.2024.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman.
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University PG Center, Wanaparthy, Telangana State, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom of Great Britain and Northern Ireland.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Salwa B Alreshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Akademicka 2, Silesian University of Technology, 44 - 100 Gliwice, Poland.
| |
Collapse
|
3
|
Uritu CM, Al-Matarneh CM, Bostiog DI, Coroaba A, Ghizdovat V, Filipiuc SI, Simionescu N, Stefanescu C, Jalloul W, Nastasa V, Tamba BI, Maier SS, Pinteala M. Radiolabeled multi-layered coated gold nanoparticles as potential biocompatible PET/SPECT tracers. J Mater Chem B 2024; 12:3659-3675. [PMID: 38530751 DOI: 10.1039/d3tb02654j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The demand for tailored, disease-adapted, and easily accessible radiopharmaceuticals is one of the most persistent challenges in nuclear imaging precision medicine. The aim of this work was to develop two multimodal radiotracers applicable for both SPECT and PET techniques, which consist of a gold nanoparticle core, a shell involved in radioisotope entrapment, peripherally placed targeting molecules, and biocompatibilizing polymeric sequences. Shell decoration with glucosamine units located in sterically hindered molecular environments is expected to result in nanoparticle accumulation in high-glucose-consuming areas. Gold cores were synthesized using the Turkevich method, followed by citrate substitution with linear PEG α,ω-functionalized with thiol and amine groups. The free amine groups facilitated the binding of branched polyethyleneimine through an epoxy ring-opening reaction by using PEG α,ω-diglycidyl ether as a linker. Afterwards, the glucose-PEG-epoxy prepolymer has been grafted onto the surface of AuPEG-PEI conjugates. Finally, the AuPEG-PEI-GA conjugates were radiolabeled with 99mTc or 68Ga. Instant thin-layer chromatography was used to evaluate the radiolabeling yield. The biocompatibility of non-labeled and 99mTc or 68Ga labeled nanoparticles was assessed on normal fibroblasts. The 99mTc complexes remained stable for over 22 hours, while the 68Ga containing ones revealed a slight decrease in stability after 1 hour.
Collapse
Affiliation(s)
- Cristina M Uritu
- Advanced Center for Research and Development in Experimental Medicine "Prof. Ostin C. Mungiu", "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Cristina M Al-Matarneh
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Denisse I Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, Nuclear medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Silviu I Filipiuc
- Advanced Center for Research and Development in Experimental Medicine "Prof. Ostin C. Mungiu", "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics, Nuclear medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Wael Jalloul
- Department of Biophysics and Medical Physics, Nuclear medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Valentin Nastasa
- Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Science, Iasi, Romania.
| | - Bogdan I Tamba
- Advanced Center for Research and Development in Experimental Medicine "Prof. Ostin C. Mungiu", "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Stelian S Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
- Polymers Research Center, "Gheorghe Asachi" Technical University of Iasi, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| |
Collapse
|
4
|
Kwon H, Yang Y, Kim G, Gim D, Ha M. Anisotropy in magnetic materials for sensors and actuators in soft robotic systems. NANOSCALE 2024; 16:6778-6819. [PMID: 38502047 DOI: 10.1039/d3nr05737b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of soft intelligent robots has rapidly developed, revealing extensive potential of these robots for real-world applications. By mimicking the dexterities of organisms, robots can handle delicate objects, access remote areas, and provide valuable feedback on their interactions with different environments. For autonomous manipulation of soft robots, which exhibit nonlinear behaviors and infinite degrees of freedom in transformation, innovative control systems integrating flexible and highly compliant sensors should be developed. Accordingly, sensor-actuator feedback systems are a key strategy for precisely controlling robotic motions. The introduction of material magnetism into soft robotics offers significant advantages in the remote manipulation of robotic operations, including touch or touchless detection of dynamically changing shapes and positions resulting from the actuations of robots. Notably, the anisotropies in the magnetic nanomaterials facilitate the perception and response with highly selective, directional, and efficient ways used for both sensors and actuators. Accordingly, this review provides a comprehensive understanding of the origins of magnetic anisotropy from both intrinsic and extrinsic factors and summarizes diverse magnetic materials with enhanced anisotropy. Recent developments in the design of flexible sensors and soft actuators based on the principle of magnetic anisotropy are outlined, specifically focusing on their applicabilities in soft robotic systems. Finally, this review addresses current challenges in the integration of sensors and actuators into soft robots and offers promising solutions that will enable the advancement of intelligent soft robots capable of efficiently executing complex tasks relevant to our daily lives.
Collapse
Affiliation(s)
- Hyeokju Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Yeonhee Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Geonsu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Dongyeong Gim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Minjeong Ha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
5
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
6
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
7
|
Theodorou IG, Mpekris F, Papagiorgis P, Panagi M, Kalli M, Potamiti L, Kyriacou K, Itskos G, Stylianopoulos T. Gold Nanobipyramids for Near-Infrared Fluorescence-Enhanced Imaging and Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:3693. [PMID: 37509354 PMCID: PMC10378199 DOI: 10.3390/cancers15143693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
There is an imminent need for novel strategies for the diagnosis and treatment of aggressive triple-negative breast cancer (TNBC). Cell-targeted multifunctional nanomaterials hold great potential, as they can combine precise early-stage diagnosis with local therapeutic delivery to specific cell types. In this study, we used mesoporous silica (MS)-coated gold nanobipyramids (MS-AuNBPs) for fluorescence imaging in the near-infrared (NIR) biological window, along with targeted TNBC treatment. Our MS-AuNBPs, acting partly as light amplification components, allow considerable metal-enhanced fluorescence for a NIR dye conjugated to their surfaces compared to the free dye. Fluorescence analysis confirms a significant increase in the dye's modified quantum yield, indicating that MS-AuNBPs can considerably increase the brightness of low-quantum-yield NIR dyes. Meanwhile, we tested the chemotherapeutic efficacy of MS-AuNBPs in TNBC following the loading of doxorubicin within the MS pores and functionalization to target folate receptor alpha (FRα)-positive cells. We show that functionalized particles target FRα-positive cells with significant specificity and have a higher potency than free doxorubicin. Finally, we demonstrate that FRα-targeted particles induce stronger antitumor effects and prolong overall survival compared to the clinically applied non-targeted nanotherapy, Doxil. Together with their excellent biocompatibility measured in vitro, this study shows that MS-AuNBPs are promising tools to detect and treat TNBCs.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Paris Papagiorgis
- Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kyriacos Kyriacou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Grigorios Itskos
- Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
8
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
9
|
Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The existing diagnosis and treatment modalities have major limitations related to their precision and capability to understand several stages of disease development. A superior therapeutic system consists of a multifunctional approach in early diagnosis of the disease with a simultaneous progressive cure, using a precise medical approach towards complex treatment. These challenges can be addressed via nanotheranostics and explore suitable approaches to improve health care. Nanotechnology in combination with theranostics as an unconventional platform paved the way for developing novel strategies and modalities leading to diagnosis and therapy for complex disease conditions, ranging from acute to chronic levels. Among the metal nanoparticles, gold nanoparticles are being widely used for theranostics due to their inherent non-toxic nature and plasmonic properties. The unique optical and chemical properties of plasmonic metal nanoparticles along with theranostics have led to a promising era of plausible early detection of disease conditions, and they enable real-time monitoring with enhanced non-invasive or minimally invasive imaging of several ailments. This review aims to highlight the improvement and advancement brought to nanotheranostics by gold nanoparticles in the past decade. The clinical use of the metal nanoparticles in nanotheranostics is explained, along with the future perspectives on addressing the key applications related to diagnostics and therapeutics, respectively. The scope of gold nanoparticles and their realistic potential to design a sophisticated theranostic system is discussed in detail, along with their implications in clinical advancements which are the needs of the hour. The review concluded with the challenges, opportunities, and implications on translational potential of using gold nanoparticles in nanotheranostics.
Collapse
|
10
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
12
|
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, Abdullah RS, Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022; 23:7400. [PMID: 35806405 PMCID: PMC9266776 DOI: 10.3390/ijms23137400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, Muscat 112, Oman;
| | - Mahmood S. Jameel
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nazila Oladzadabbasabadi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | | | - Raja Saleh Abdullah
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
| | - Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Science, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
13
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|
14
|
Structural and Functional Characterizations of Cancer Targeting Nanoparticles Based on Hepatitis B Virus Capsid. Int J Mol Sci 2021; 22:ijms22179140. [PMID: 34502049 PMCID: PMC8430771 DOI: 10.3390/ijms22179140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer targeting nanoparticles have been extensively studied, but stable and applicable agents have yet to be developed. Here, we report stable nanoparticles based on hepatitis B core antigen (HBcAg) for cancer therapy. HBcAg monomers assemble into spherical capsids of 180 or 240 subunits. HBcAg was engineered to present an affibody for binding to human epidermal growth factor receptor 1 (EGFR) and to present histidine and tyrosine tags for binding to gold ions. The HBcAg engineered to present affibody and tags (HAF) bound specifically to EGFR and exterminated the EGFR-overexpressing adenocarcinomas under alternating magnetic field (AMF) after binding with gold ions. Using cryogenic electron microscopy (cryo-EM), we obtained the molecular structures of recombinant HAF and found that the overall structure of HAF was the same as that of HBcAg, except with the affibody on the spike. Therefore, HAF is viable for cancer therapy with the advantage of maintaining a stable capsid form. If the affibody in HAF is replaced with a specific sequence to bind to another targetable disease protein, the nanoparticles can be used for drug development over a wide spectrum.
Collapse
|
15
|
Doan‐Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thao P. Doan‐Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
| | - Shuai Jiang
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
| |
Collapse
|
16
|
Doan-Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angew Chem Int Ed Engl 2021; 60:18094-18102. [PMID: 34056797 DOI: 10.1002/anie.202103444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Indexed: 11/10/2022]
Abstract
We describe here a method to synthesize ultrasmall nanocapsules with a diameter of 6 nm, exhibiting a well-defined core-shell morphology. Remarkably, the nanocapules are synthesized in a miniemulsion process without the need of large amounts of surfactant as commonly used in the microemulsion process. Ultrasmall nanocapsules with an oil core and a silica shell are formed by the concurrent processes of a sol-gel reaction and Ostwald ripening. Using solvents with different water solubilities and alkoxysilanes with different reactivities, we demonstrate that sizes of obtained nanocapsules depend on the ripening rate and alkoxysilane conversion rate. The method can be also used for encapsulating natural oils such as peppermint oil and limonene. This work shows that the Ostwald ripening phenomenon can be employed beneficially for the preparation of very small colloids.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Shuai Jiang
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
17
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Mendes BB, Sousa DP, Conniot J, Conde J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer 2021; 7:847-862. [PMID: 34090865 DOI: 10.1016/j.trecan.2021.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
The interest in nanomedicine for cancer theranostics has grown significantly over the past few decades. However, these nanomedicines need to overcome several physiological barriers intrinsic to the tumor microenvironment (TME) before reaching their target. Intrinsic tumor genetic/phenotypic variations, along with intratumor heterogeneity, provide different cues to each cancer type, making each patient with cancer unique. This brings additional challenges in translating nanotechnology-based systems into clinically reliable therapies. To develop efficient therapeutic strategies, it is important to understand the dynamic interactions between TME players and the complex mechanisms involved, because they constitute invaluable targets to dismantle tumor progression. In this review, we discuss the latest nanotechnology-based strategies for cancer diagnosis and therapy as well as the potential targets for the design of future anticancer nanomedicines.
Collapse
Affiliation(s)
- Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diana P Sousa
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
19
|
Galúcio JMP, de Souza SGB, Vasconcelos AA, Lima AKO, da Costa KS, de Campos Braga H, Taube PS. Synthesis, Characterization, Applications, and Toxicity of Green Synthesized Nanoparticles. Curr Pharm Biotechnol 2021; 23:420-443. [PMID: 34355680 DOI: 10.2174/1389201022666210521102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1-100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.
Collapse
Affiliation(s)
| | | | | | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Kauê Santana da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Sérgio Taube
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
20
|
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| |
Collapse
|
21
|
Terracciano R, Demarchi D, Ruo Roch M, Aiassa S, Pagana G. Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2760-2777. [PMID: 33653442 DOI: 10.1166/jnn.2021.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years the worldwide research community has highlighted innumerable benefits of nanomaterials in cancer detection and therapy. Nevertheless, the development of cancer nanomedicines and other bionanotechnology requires a huge amount of considerations about the interactions of nanomaterials and biological systems, since long-term effects are not yet fully known. Open issues remain the determination of the nanoparticles distributions patterns and the internalization rate into the tumor while avoiding their accumulation in internal organs or other healthy tissues. The purpose of this work is to provide a standard overview of the most recent advances in nanomaterials to fight cancer and to collect trends and future directions to follow according to some critical aspects still present in this field. Complementary to the very recent review of Wolfram and Ferrari which discusses and classifies successful clinically-approved cancer nanodrugs as well as promising candidates in the pipeline, this work embraces part of their proposed classification system based on the exploitation of multifunctionality and extends the review to peer-reviewed journal articles published in the last 3 years identified through international databases.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Simone Aiassa
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Guido Pagana
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| |
Collapse
|
22
|
Swain DK, Mallik G, Srivastava P, Kushwaha AK, Rajput P, Jha SN, Lim S, Kim S, Rath S. Single Mn Atom Doping in Chiral Sensitive Assembled Gold Clusters to Molecular Magnet. ACS NANO 2021; 15:6289-6295. [PMID: 33666080 DOI: 10.1021/acsnano.0c10260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral stirred optical and magnetic properties, through the doping of assembled ultrasmall metal clusters (AMCs), are promising discernment to rivet the molecule-like quantum devices. Here, the single manganese (Mn) atom doping and assembly of the gold cluster (Au8), leading to the chirality driven magnetism, has been achieved through a ligand-mediated growth. The X-ray absorption near edge structure and electron paramagnetic resonance studies corroborate the tetrahedral coordinated local structure of Mn dopant in the Au host. The optical and vibrational circular dichroic analysis affirms the modulation of chirality (negative to positive) in the presence of the Mn. A distinct ferromagnetic hysteresis loop at 300 K shows Mn ridden chiral sensitive ferromagnetism in contrary to the ligand influenced superparamagnetic undoped AMCs. The spin-polarized density functional theory level of calculations reveal the partial overlapping of spin-up and -down density of states in the doped AMCs, attributing to the ferromagnetic nature as like a molecular magnet suitable for the opto-spintronics application.
Collapse
Affiliation(s)
- Deepak K Swain
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| | - Gyanadeep Mallik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| | - Pooja Srivastava
- Department of Physics, Amity University Uttar Pradesh, Lucknow, 226010, India
| | - Anoop K Kushwaha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| | - Parasmani Rajput
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Shambhu N Jha
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Seokmin Lim
- Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seungchul Kim
- Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Satchidananda Rath
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul Jatni, 752050, India
| |
Collapse
|
23
|
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021; 9:647905. [PMID: 33928072 PMCID: PMC8076689 DOI: 10.3389/fbioe.2021.647905] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer treatments, such as surgical resection, radiotherapy, and chemotherapy, have achieved significant progress in cancer therapy. Nevertheless, some limitations (such as toxic side effects) are still existing for conventional therapies, which motivate efforts toward developing novel theranostic avenues. Owning many merits such as easy surface modification, unique optical properties, and high biocompatibility, gold nanoparticles (AuNPs and GNPs) have been engineered to serve as targeted delivery vehicles, molecular probes, sensors, and so on. Their small size and surface characteristics enable them to extravasate and access the tumor microenvironment (TME), which is a promising solution to realize highly effective treatments. Moreover, stimuli-responsive properties (respond to hypoxia and acidic pH) of nanoparticles to TME enable GNPs’ unrivaled control for effective transport of therapeutic cargos. In this review article, we primarily introduce the basic properties of GNPs, further discuss the recent progress in gold nanoparticles for cancer theranostics, with an additional concern about TME stimuli-responsive studies.
Collapse
Affiliation(s)
- Qinyue Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Luo D, Wang X, Burda C, Basilion JP. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers (Basel) 2021; 13:1825. [PMID: 33920453 PMCID: PMC8069007 DOI: 10.3390/cancers13081825] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the booming of preclinical studies of gold nanoparticles (AuNPs) in biomedical applications, from therapeutics delivery, imaging diagnostics, to cancer therapies. The synthetic versatility, unique optical and electronic properties, and ease of functionalization make AuNPs an excellent platform for cancer theranostics. This review summarizes the development of AuNPs as contrast agents to image cancers. First, we briefly describe the AuNP synthesis, their physical characteristics, surface functionalization and related biomedical uses. Then we focus on the performances of AuNPs as contrast agents to diagnose cancers, from magnetic resonance imaging, CT and nuclear imaging, fluorescence imaging, photoacoustic imaging to X-ray fluorescence imaging. We compare these imaging modalities and highlight the roles of AuNPs as contrast agents in cancer diagnosis accordingly, and address the challenges for their clinical translation.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
25
|
Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Am J Cancer Res 2021; 11:579-601. [PMID: 33391494 PMCID: PMC7738852 DOI: 10.7150/thno.48811] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Current cancer therapies, including chemotherapy and radiotherapy, are imprecise, non-specific, and are often administered at high dosages - resulting in side effects that severely impact the patient's overall well-being. A variety of multifunctional, cancer-targeted nanotheranostic systems that integrate therapy, imaging, and tumor targeting functionalities in a single platform have been developed to overcome the shortcomings of traditional drugs. Among the imaging modalities used, magnetic resonance imaging (MRI) provides high resolution imaging of structures deep within the body and, in combination with other imaging modalities, provides complementary diagnostic information for more accurate identification of tumor characteristics and precise guidance of anti-cancer therapy. This review article presents a comprehensive assessment of nanotheranostic systems that combine MRI-based imaging (T1 MRI, T2 MRI, and multimodal imaging) with therapy (chemo-, thermal-, gene- and combination therapy), connecting a range of topics including hybrid treatment options (e.g. combined chemo-gene therapy), unique MRI-based imaging (e.g. combined T1-T2 imaging, triple and quadruple multimodal imaging), novel targeting strategies (e.g. dual magnetic-active targeting and nanoparticles carrying multiple ligands), and tumor microenvironment-responsive drug release (e.g. redox and pH-responsive nanomaterials). With a special focus on systems that have been tested in vivo, this review is an essential summary of the most advanced developments in this rapidly evolving field.
Collapse
|
26
|
Jain A, Trindade GF, Hicks JM, Potts JC, Rahman R, Hague RJM, Amabilino DB, Pérez-García L, Rawson FJ. Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. J Colloid Interface Sci 2020; 587:150-161. [PMID: 33360888 DOI: 10.1016/j.jcis.2020.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
Abstract
Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorption on the surface of nanoparticles (NPs) is vital for the development of clinically important protein-based nanomedicines. In this work, new insights on the effect of the different orientation of cytochrome c (cyt c) bound to gold nanoparticles (GNPs) using various ligands on its apoptotic activity is reported. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS), electrochemical and circular dichroism (CD) analyses are used to investigate the characteristics of cyt c orientation and structure on functionalized GNPs. These studies indicate that the orientation and position of the heme ring inside the cyt c structure can be altered by changing the surface chemistry on the GNPs. A difference in the apoptosis inducing capability because of different orientation of cyt c bound to the GNPs is observed. These findings indicate that the biological activity of a protein can be modulated on the surface of NPs by varying its adsorption orientation. This study will impact on the rational design of new nanoscale biosensors, bioelectronics, and nanoparticle-protein based drugs.
Collapse
Affiliation(s)
- Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gustavo F Trindade
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jordan C Potts
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J M Hague
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK
| | - David B Amabilino
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, UK
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
27
|
Zhang Y, Wang X, Chu C, Zhou Z, Chen B, Pang X, Lin G, Lin H, Guo Y, Ren E, Lv P, Shi Y, Zheng Q, Yan X, Chen X, Liu G. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun 2020; 11:5421. [PMID: 33110072 PMCID: PMC7591490 DOI: 10.1038/s41467-020-19061-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390 W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1α. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zijian Zhou
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, 117597, Singapore, Singapore
| | - Biaoqi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, 361021, Xiamen, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Yuxin Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, 117597, Singapore, Singapore
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
28
|
Schwartz-Duval AS, Konopka CJ, Moitra P, Daza EA, Srivastava I, Johnson EV, Kampert TL, Fayn S, Haran A, Dobrucki LW, Pan D. Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat Commun 2020; 11:4530. [PMID: 32913195 PMCID: PMC7483505 DOI: 10.1038/s41467-020-17595-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold. We have characterized this process for intracellular gold nanoparticle formation, which progressively accumulates proteins as the ionic gold clusters migrate to the nucleus. This nano-vectorized application of ionic gold emphasizes its potential biomedical opportunities while reducing the quantity of ionic gold and required incubation time. To demonstrate its biomedical potential, we further induce in-situ biosynthesis of gold nanoparticles within MCF7 tumor mouse xenografts which is followed by its photothermal remediation.
Collapse
Affiliation(s)
- Aaron S Schwartz-Duval
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Christian J Konopka
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, Baltimore, MD, 21250, USA
| | - Enrique A Daza
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Indrajit Srivastava
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | | | - Taylor L Kampert
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Stanley Fayn
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anand Haran
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, Baltimore, MD, 21250, USA.
| |
Collapse
|
29
|
Im GB, Jung E, Kim YH, Kim YJ, Kim SW, Jeong GJ, Lee TJ, Kim DI, Kim J, Hyeon T, Yu T, Bhang SH. Endosome-triggered ion-releasing nanoparticles as therapeutics to enhance the angiogenic efficacy of human mesenchymal stem cells. J Control Release 2020; 324:586-597. [PMID: 32454119 DOI: 10.1016/j.jconrel.2020.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/17/2023]
Abstract
Here, we report that Fe ions delivered into human mesenchymal stem cells (hMSCs) by bioreducible metal nanoparticles (NPs) enhance their angiogenic and cell-homing efficacy by controlling ion-triggered intracellular reactive oxygen species (ROS) and improve cell migration, while reducing cytotoxicity. Endosome-triggered iron-ion-releasing nanoparticles (ETIN) were designed to be low-pH responsive to take advantage of the low-pH conditions (4-5) of endosomes for in situ iron-ion release. Due to the different redox potentials of Fe and Au, only Fe could be ionized and released from our novel ETIN, while Au remained intact after ETIN endocytosis. Treatment with an optimal amount of ETIN led to a mild increase in intracellular ROS levels in hMSCs, which enhanced the expression of HIF-1α, a key trigger for angiogenic growth factor secretion from hMSCs. Treatmetn of hMSCs with ETIN significantly enhanced the expression of angiogenesis- and lesion-targeting-related genes and proteins. Transplantation of ETIN-treated hMSCs significantly enhanced angiogenesis and tissue regeneration in a wound-closing mouse model compared with those in untreated mice and mice that underwent conventional hMSC transplantation.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Euiyoung Jung
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gun-Jae Jeong
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Tae-Jin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Medical Biotechnology, Division of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jinheung Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
30
|
Huang N, Liu Y, Fang Y, Zheng S, Wu J, Wang M, Zhong W, Shi M, Xing M, Liao W. Gold Nanoparticles Induce Tumor Vessel Normalization and Impair Metastasis by Inhibiting Endothelial Smad2/3 Signaling. ACS NANO 2020; 14:7940-7958. [PMID: 32413258 DOI: 10.1021/acsnano.9b08460] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (AuNPs) are a promising nanomaterial due to their drug-delivery properties and inherent anti-neoplastic activity. Here, we focused on the anti-neoplastic effects of an improved targeting polymer and folic acid-modified gold nanoparticles (AuNPP-FA) without therapeutic drugs. AuNPP-FA inhibited tumor proliferation both in vitro and in vivo, and tumor metastasis was controlled in vivo. We also found that, in addition to inhibiting tumor angiogenesis, AuNPP-FA normalized tumor vasculature by increasing pericyte coverage and strengthening tight junctions by upregulating VE-cadherin (VE-cad) levels on endothelial cells. This decreased vascular permeability, improved vascular perfusion, and alleviated tissue hypoxia. The immunotherapeutic response was enhanced due to the increased infiltration of CD3+CD8+ T lymphocytes. AuNPP-FA increased the expression and secretion of semaphorin 3A (SEMA3A) in cancer cells to further inhibit Smad2/3 signaling in human umbilical vein endothelial cells (HUVECs). This normalized tumor vasculature and inhibited metastasis. In conclusion, AuNPP-FA normalized tumor vasculature; therefore, AuNPP-FA has great potential for future clinical applications.
Collapse
Affiliation(s)
- Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yuqing Liu
- Department of Mechanical Engineering, Faculty of Agriculture, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Miaohong Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wen Zhong
- Department of Biosystem Engineering, Faculty of Agriculture, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Malcolm Xing
- Department of Mechanical Engineering, Faculty of Agriculture, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
31
|
Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang XJ, Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 2020; 10:4944-4957. [PMID: 32308760 PMCID: PMC7163431 DOI: 10.7150/thno.42471] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/15/2020] [Indexed: 12/19/2022] Open
Abstract
Due to their lower systemic toxicity, faster kidney clearance and higher tumor accumulation, ultrasmall gold nanoparticles (less than 10 nm in diameter) have been proved to be promising in biomedical applications. However, their potential applications in cancer imaging and treatment have not been reviewed yet. This review summarizes the efforts to develop systems based on ultrasmall gold nanoparticles for use in cancer diagnosis and therapy. First, we describe the methods for controlling the size and surface functionalization of ultrasmall gold nanoparticles. Second, we review the research on ultrasmall gold nanoparticles in cancer imaging and treatment. Specifically, we focus on the applications of ultrasmall gold nanoparticles in tumor visualization and bioimaging in different fields such as magnetic resonance imaging, photoacoustic imaging, fluorescence imaging, and X-ray scatter imaging. We also highlight the applications of ultrasmall gold nanoparticles in tumor chemotherapy, radiotherapy, photodynamic therapy and gene therapy.
Collapse
|
32
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
33
|
Au nanoparticle-based probe for selenol in living cells and selenium-rich tea and rice. Talanta 2019; 212:120583. [PMID: 32113570 DOI: 10.1016/j.talanta.2019.120583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/09/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Selenocysteine (Sec) is a primary kind of reactive selenium species in cells, and its vital roles in physiological processes have been characterized. Therefore, the highly effective method for sensing Sec in metabolic processes and selenium-rich food must be developed. This study presents a new fluorescent probe, namely, GSH-NB@AuNPs, for highly selective detection of selenol based on the fluorescence quenching quality on the surface of gold nanoparticles (AuNPs). The probe consists of glutathione (GSH) and Nile blue (NB) moieties assembled on AuNPs. The probe exhibits excellent sensitivity and selectivity for Sec and is applied in imaging endogenous and exogenous Sec in living cells through confocal fluorescence microscopy. The proposed probe provides a promising and powerful method for detecting selenol in foodstuff (such as selenium-rich rice and tea) with the detection limit of 9.5 nM.
Collapse
|
34
|
Wang L, Zhang T, Huo M, Guo J, Chen Y, Xu H. Construction of Nucleus-Targeting Iridium Nanocrystals for Photonic Hyperthermia-Synergized Cancer Radiotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903254. [PMID: 31549785 DOI: 10.1002/smll.201903254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Prominent tumor-cell nucleus targeting of radiosensitizer substantially affects the therapeutic consequence of advanced tumor radiotherapy via lethal nucleus DNA damage. Herein, ultrasmall iridium nanocrystals (Ir NCs, <5 nm) are constructed for efficient tumor-specific photonic hyperthermia-synergized radiotherapy. To endow the NCs with qualified cell nucleus-targeting performance, polyethylene glycol (PEG)-modified Ir NCs are decorated with αv β3 integrin-targeting cyclic arginine-glycine-aspartic (c(RGDyC)), designated as RGD, peptides and human immunodeficiency virus-1 transactivator of transcription protein(TAT), respectively, facilitating the tumor-cell-membrane (with overexpressed αv β3 integrin) and cell-nucleus targeting. The formulated Ir-RGD-TAT (Ir-R/T) NCs are demonstrated to accumulate inside the nucleus of tumor cells and generate effective DNA lesions upon X-ray irradiation. Further in vivo evaluations verify the satisfactory carcinoma destruction performance against 4T1 tumor xenografts. Importantly, the intriguing photonic NIR adsorption of Ir-R/T NCs has enabled the hyperthermia therapeutics accompanied with photoacoustic imaging modalities, achieving clinically promising biocompatible multifunctional radiosensitized nanoplatforms for effective tumor therapeutics.
Collapse
Affiliation(s)
- Liying Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, 301 Middle Yanchang Rd, Shanghai, 200072, P. R. China
| | - Tingting Zhang
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, P. R. China
- The 985 Hospital of PLA, 30 Qiaodong Rd, Taiyuan, 030001, P. R. China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd, Shanghai, 200050, P. R. China
| | - Jia Guo
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd, Shanghai, 200050, P. R. China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, 301 Middle Yanchang Rd, Shanghai, 200072, P. R. China
| |
Collapse
|
35
|
Chen J, Liu J, Hu Y, Tian Z, Zhu Y. Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:1043-1054. [PMID: 31723371 PMCID: PMC6844413 DOI: 10.1080/14686996.2019.1682467] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 05/19/2023]
Abstract
In nanoplatform-based tumor treatment, combining chemotherapy with hyperthermia therapy is an interesting strategy to achieve enhanced therapeutic efficacy with low dose of delivery drugs. Compared to photothermal therapy, magnetic hyperthermia has few restrictions on penetrating tissue by an alternating magnetic field, and thereby could cure various solid tumors, even deep-tissue ones. In this work, we proposed to construct magnetic nanocomposites (Fe3O4@PDA@ZIF-90) by the external growth of metal-organic framework ZIF-90 on polydopamine (PDA)-coated Fe3O4 nanoparticles for synergistic magnetic hyperthermia and chemotherapy. In such multifunctional platform, Fe3O4 nanoparticle was utilized as a magnetic heating seed, PDA layer acted as an inducer for the growth of ZIF-90 shell and porous ZIF-90 shell served as drug nanocarrier to load doxorubicin (DOX). The well-defined Fe3O4@PDA@ZIF-90 core-shell nanoparticles were displayed with an average size of ca. 200 nm and possessed the abilities to load high capacity of DOX as well as trigger drug release in a pH-responsive way. Furthermore, the Fe3O4@PDA@ZIF-90 nanoparticles can raise the local temperature to meet hyperthermia condition under an alternating magnetic field owing to the magnetocaloric effect of Fe3O4 cores. In the in vitro experiments, the Fe3O4@PDA@ZIF-90 nanoparticles showed a negligible cytotoxicity to Hela cells. More significantly, after cellular internalization, the DOX-loaded Fe3O4@PDA@ZIF-90 nanoparticles exhibited distinctively synergistic effect to kill tumor cells with higher efficacy compared to chemotherapy or magnetic hyperthermia alone, presenting a great potential for efficient tumor therapy.
Collapse
Affiliation(s)
- Jiajie Chen
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jiaxing Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yaping Hu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institutes of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: does size matter for targeted particles? Chem Sci 2019; 10:8119-8128. [PMID: 31588336 PMCID: PMC6764472 DOI: 10.1039/c9sc02290b] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023] Open
Abstract
Since the introduction of PSA testing, significantly more men have been diagnosed and treated for prostate cancer. Localized prostate cancer typically is treated with prostatectomy, however there is still a high risk of recurrence after surgery, and adjuvant radiation has been shown to mitigate disease progression. X-ray therapy is frequently used as an adjuvant to treat prostate cancer, but is an imperfect tool. In this report we describe the development of a targeted-radiosensitizing nanoparticle that significantly improves X-ray therapy. Taking advantage of the demonstrated radiosensitizing activity of gold nanoparticles (AuNPs) we developed targeted AuNPs and varied both surface ligand density and AuNP size to develop an optimized AuNP for X-ray radiotherapy. We conjugated a prostate-specific membrane antigen (PSMA) targeting ligand, PSMA-1, to AuNPs and found that the targeting ligand dramatically improved gold uptake by PSMA-expressing PC3pip cells compared with PC3flu cells lacking the PSMA receptors. Further, enhancement of radiotherapy was significantly more pronounced by internalization of smaller PSMA targeted-AuNPs. Our studies provide a foundation for design of size-selected AuNPs for targeted radiotherapy and, for the first time, systematically investigate both the effect of ligand and AuNP size on the cell uptake, tumor targeting and radiotherapy efficacy.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology , Case Western Reserve University , Cleveland , OH , USA .
| | - Xinning Wang
- Department of Radiology , Case Western Reserve University , Cleveland , OH , USA .
- Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA
| | - Sophia Zeng
- Department of Radiology , Case Western Reserve University , Cleveland , OH , USA .
- Department of Chemistry , Case Western Reserve University , Cleveland , OH , USA .
| | | | - Clemens Burda
- Department of Chemistry , Case Western Reserve University , Cleveland , OH , USA .
| | - James P Basilion
- Department of Radiology , Case Western Reserve University , Cleveland , OH , USA .
- Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
37
|
Wu M, Li Z, Yao J, Shao Z, Chen X. Pea Protein/Gold Nanocluster/Indocyanine Green Ternary Hybrid for Near-Infrared Fluorescence/Computed Tomography Dual-Modal Imaging and Synergistic Photodynamic/Photothermal Therapy. ACS Biomater Sci Eng 2019; 5:4799-4807. [DOI: 10.1021/acsbiomaterials.9b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhao Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
38
|
Wang D, Xie W, Gao Q, Yan H, Zhang J, Lu J, Liaw B, Guo Z, Gao F, Yin L, Zhang G, Zhao L. Non-Magnetic Injectable Implant for Magnetic Field-Driven Thermochemotherapy and Dual Stimuli-Responsive Drug Delivery: Transformable Liquid Metal Hybrid Platform for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900511. [PMID: 30913375 DOI: 10.1002/smll.201900511] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Transformable liquid metal (LM)-based materials have attracted considerable research interest in biomedicine. However, the potential biomedical applications of LMs have not yet been fully explored. Herein, for the first trial, the inductive heating property of gallium-indium eutectic alloy (EGaIn) under alterative magnetic field is systematically investigated. By virtue of its inherent metallic nature, LM possesses excellent magnetic heating property as compared to the conventional magnetite nanoparticles, therefore enabling its unique application as non-magnetic agents in magnetic hyperthermia. Moreover, the extremely high surface tension of LM could be dramatically lowered by a rather facile PEGylation approach, making LM an ideal carrier for other theranostic cargos. By incorporating doxorubicin (DOX)-loaded mesoporous silica (DOX-MS) within PEGylated LM, a magnetic field-driven transformable LM hybrid platform capable of pH/AFM dual stimuli-responsive drug release and magnetic thermochemotherapy are successfully fabricated. The potential application for breast cancer treatment is demonstrated. Furthermore, the large X-ray attenuation ability of LM endows the hybrid with the promising ability for CT imaging. This work explores a new biomedical use of LM and a promising cancer treatment protocol based on LM hybrid for magnetic hyperthermia combined with dual stimuli-responsive chemotherapy and CT imaging.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wensheng Xie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qin Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hao Yan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junxin Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - BorShuang Liaw
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lan Yin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Das P, Fatehbasharzad P, Colombo M, Fiandra L, Prosperi D. Multifunctional Magnetic Gold Nanomaterials for Cancer. Trends Biotechnol 2019; 37:995-1010. [PMID: 30862388 DOI: 10.1016/j.tibtech.2019.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
The integration of multiple imaging and therapeutic agents into a customizable nanoplatform for accurate identification and rapid prevention of cancer is attracting great attention. Among the available theranostic nanosystems, magnetic gold nanoparticles are particularly promising as they exhibit unique physicochemical properties that can support multiple functions, including cancer diagnosis by magnetic resonance imaging, X-ray computed tomography, Raman and photoacoustic imaging, drug delivery, and plasmonic photothermal and photodynamic therapies. This review gives an overview of recent advances in the fabrication of multifunctional gold nanohybrids with magnetic and optical properties and their successful demonstration in multimodal imaging and therapy of cancer. Concerns around toxicity of these nanomaterials are also discussed in view of an imminent transition to clinical practice.
Collapse
Affiliation(s)
- Pradip Das
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Parisa Fatehbasharzad
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Luisa Fiandra
- Dipartimento di Scienze dell'Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Davide Prosperi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Nanomedicine Laboratory, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
40
|
Wang C, Gai S, Yang G, Zhong C, He F, Yang P. Switchable up-conversion luminescence bioimaging and targeted photothermal ablation in one core–shell-structured nanohybrid by alternating near-infrared light. Dalton Trans 2019; 48:5817-5830. [DOI: 10.1039/c8dt04871a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Upon NIR irradiation, a GdOF:Yb/Er@(GNRs@BSA)-FA nanohybrid was expected to be a potential multifunctional imaging tracer and photothermal ablation agent switched controllably for cancer theranostics.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| |
Collapse
|
41
|
Yang W, Shi X, Shi Y, Yao D, Chen S, Zhou X, Zhang B. Beyond the Roles in Biomimetic Chemistry: An Insight into the Intrinsic Catalytic Activity of an Enzyme for Tumor-Selective Phototheranostics. ACS NANO 2018; 12:12169-12180. [PMID: 30418734 DOI: 10.1021/acsnano.8b05797] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein-assisted biomimetic synthesis has been an emerging offshoot of nanofabrication in recent years owing to its features of green chemistry, facile process, and ease of multi-integration. As a result, many proteins have been used for biomimetic synthesis of varying kinds of nanostructures. Although the efforts on exploring new proteins and investigating their roles in biomimetic chemistry are increasing, the most essential intrinsic properties of proteins are largely neglected. Herein we report a frequently used enzyme (horseradish peroxidase, HRP) to demonstrate the possibility of enzymatic activity retaining after accomplishing the roles in biomimetic synthesis of ultrasmall gadolinium (Gd) nanodots and stowing its substrate 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS), denoted as Gd@HRPABTS. It was found that ca. 70% of the enzymatic activity of HRP was preserved. The associated changes of protein structure with chemical treatments were studied by spectroscopic analysis. Leveraging on the highly retained catalytic activity, Gd@HRPABTS exerts strong catalytic oxidation of peroxidase substrate ABTS into photoactive counterparts in the presence of intrinsic H2O2 inside the tumor, therefore enabling tumor-selective catalytic photoacoustic (PA) imaging and photothermal therapy (PTT). In addition, the MR moiety of Gd@HRPABTS provides guidance for PTT and further diagrams that Gd@HRPABTS is clearable from the body via kidneys. Preliminary toxicity studies show no observed adverse effects by administration of them. This study demonstrates beyond the well-known roles in biomimetic chemistry that HRP can also preserve its enzymatic activity for tumor catalytic theranostics.
Collapse
Affiliation(s)
- Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200443 , China
| | - Xiudong Shi
- Department of Radiology , Shanghai Public Health Clinical Center, Fudan University , Shanghai 201508 , China
| | - Yuxin Shi
- Department of Radiology , Shanghai Public Health Clinical Center, Fudan University , Shanghai 201508 , China
| | - Defan Yao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200443 , China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200443 , China
| |
Collapse
|
42
|
Cardoso BD, Rio ISR, Rodrigues ARO, Fernandes FCT, Almeida BG, Pires A, Pereira AM, Araújo JP, Castanheira EMS, Coutinho PJG. Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181017. [PMID: 30473847 PMCID: PMC6227978 DOI: 10.1098/rsos.181017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/13/2018] [Indexed: 05/24/2023]
Abstract
Magnesium ferrite nanoparticles, with diameters around 25 nm, were synthesized by coprecipitation method. The magnetic properties indicate a superparamagnetic behaviour, with a maximum magnetization of 16.2 emu g-1, a coercive field of 22.1 Oe and a blocking temperature of 183.2 K. These MgFe2O4 nanoparticles were used to produce aqueous and solid magnetoliposomes, with sizes below 130 nm. The potential drug curcumin was successfully incorporated in these nanosystems, with high encapsulation efficiencies (above 89%). Interaction by fusion between both types of drug-loaded magnetoliposomes (with or without PEGylation) and models of biological membranes was demonstrated, using FRET or fluorescence quenching assays. These results point to future applications of magnetoliposomes containing MgFe2O4 nanoparticles in cancer therapy, allowing combined magnetic hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irina S. R. Rio
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - B. G. Almeida
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - A. Pires
- IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal
| | - A. M. Pereira
- IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal
| | - J. P. Araújo
- IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal
| | | | - Paulo J. G. Coutinho
- Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
43
|
Veloso SRS, Ferreira PMT, Martins JA, Coutinho PJG, Castanheira EMS. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018; 10:E145. [PMID: 30181472 PMCID: PMC6161300 DOI: 10.3390/pharmaceutics10030145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
Drug delivery nanosystems have been thriving in recent years as a promising application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy targeting and add further features such as enhanced magnetic resonance imaging, biosensing and hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new generation of nanosystems, the magnetogels, which combine the advantages of both nanomaterials, apart from showing interesting properties unobtainable when both systems are separated. The presence of magnetic nanoparticles allows the control and targeting of the nanosystem to a specific location by an externally applied magnetic field gradient. Moreover, the application of an alternating magnetic field (AMF) not only allows therapy through hyperthermia, but also enhances drug delivery and chemotherapeutic desired effects, which combined with the hydrogel specificity, confer a high therapeutic efficiency. Therefore, the present review summarizes the magnetogels properties and critically discusses their current and recent biomedical applications, apart from an outlook on future goals and perspectives.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
44
|
Lee B, Jo E, Yoon HY, Yoon CJ, Lee H, Kwon KC, Kim TW, Lee J. Nonimmunogenetic Viral Capsid Carrier with Cancer Targeting Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800494. [PMID: 30128257 PMCID: PMC6097151 DOI: 10.1002/advs.201800494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Indexed: 05/13/2023]
Abstract
Although protein nanoparticles (PNPs) (e.g., viral capsids) capable of delivering a broad range of drug agents have shown distinctive advantages over synthetic nanomaterials, PNPs have an intrinsic drawback that hampers their clinical application, that is, potential immunogenicity. Here, a novel method for resolving the immunogenicity problem of PNPs, which is based on the genetic presentation of albumin-binding peptides (ABPs) on the surface of PNP, is reported. ABPs are inserted into the surface of a viral capsid (hepatitis B virus capsid/HBVC) while preserving the native self-assembly function of HBVC. The ABPs effectively gather human serum albumins around HBVC and significantly reduce both inflammatory response and immunoglobulin titer in live mice compared to ABP-free HBVC. Furthermore, ABP-conjugated HBVCs remain within tumors for a longer period than HBVCs conjugated to tumor cell receptor-bindingpeptides, indicating that the ABPs are also capable of enhancing tumor-targeting performance. Although applied to HBVC for proof of concept, this novel approach may provide a general platform for resolving immunogenicity and cancer-targeting problems of PNPs, which enables the development of a variety of PNP-based drug delivery carriers with high safety and efficacy.
Collapse
Affiliation(s)
- Bo‐Ram Lee
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Eunji Jo
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Hong Yeol Yoon
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology39‐1 Hawolgok‐dong, Seongbuk‐guSeoul136‐791Republic of Korea
| | - Chul Joo Yoon
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Hyo‐Jung Lee
- Division of Infection and ImmunologyGraduate School of MedicineKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Koo Chul Kwon
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Tae Woo Kim
- Division of Infection and ImmunologyGraduate School of MedicineKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| |
Collapse
|
45
|
A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther 2018; 3:16. [PMID: 29942660 PMCID: PMC6013461 DOI: 10.1038/s41392-018-0019-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistance, accounting for therapeutic failure in the clinic, remains a major challenge to effectively manage cancer. Cyclosporin A (CsA) can reverse multidrug resistance (MDR), especially resistance to epidermal growth factor receptor tyrosine kinase inhibitors. However, the application of both drugs in cancer therapies is hampered by their poor aqueous solubility and low bioavailability due to oral administration. CsA augments the potency of gefitinib (Gef) in both Gef-sensitive and Gef-resistant cell lines. Here, we show that the simultaneous encapsulation of CsA and Gef within polyethylene glycol-block-poly(D, L-lactic acid) (PEG-PLA) produced a stable and systemically injectable nanomedicine, which exhibited a sub-50-nm diameter and spherical structures. Impressively, the co-delivery of therapeutics via single nanoparticles (NPs) outperformed the oral administration of the free drug combination at suppressing tumor growth. Furthermore, in vivo results indicated that CsA formulated in NPs sensitized Gef-resistant cells and Gef-resistant tumors to Gef treatment by inactivating the STAT3/Bcl-2 signaling pathway. Collectively, our nanomedicine approach not only provides an alternative administration route for the drugs of choice but also effectively reverses MDR, facilitating the development of effective therapeutic modalities for cancer. Injection of nanoparticles containing the anticancer drug gefitinib and the immunosuppressant cyclosporin A reverses drug-resistant cancer growth in mice. The development of multidrug resistance is the main reason why many forms of chemotherapy fail. Cyclosporin A, a drug used to prevent immune rejection after organ transplantation, has previously been shown to enhance the potency of gefitinib. Hangxiang Wang and colleagues at Zhejiang University, Hangzhou, China, have successfully combined cyclosporin A and gefitinib, two poorly water-soluble and slowly absorbed drugs, into stable injectable nanoparticles that delay the growth of gefitinib resistant human lung cancer cells as well as the growth of drug resistant tumors in mice. Importantly, this novel co-formulation was more effective than oral co-administration of the two drugs. Further investigation into this drug delivery route could yield much needed alternative treatments for patients with multidrug-resistant cancers.
Collapse
|
46
|
Jo E, Heo JS, Lim JY, Lee BR, Yoon CJ, Kim J, Lee J. Peptide ligand-mediated endocytosis of nanoparticles to cancer cells: Cell receptor-binding- versus cell membrane-penetrating peptides. Biotechnol Bioeng 2018; 115:1437-1449. [DOI: 10.1002/bit.26575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Eunji Jo
- Department of Chemical and Biological Engineering, College of Engineering; Korea University; Seoul Republic of Korea
| | - June Seok Heo
- Department of Integrated Biomedical and Life Sciences, College of Health Science; Korea University; Seoul Republic of Korea
| | - Ja-Yun Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science; Korea University; Seoul Republic of Korea
| | - Bo-Ram Lee
- Department of Chemical and Biological Engineering, College of Engineering; Korea University; Seoul Republic of Korea
| | - Chul Joo Yoon
- Department of Chemical and Biological Engineering, College of Engineering; Korea University; Seoul Republic of Korea
| | - Jinkwan Kim
- Department of Biomedical Laboratory Science, College of Health Science; Jungwon University; Chung-buk Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of Engineering; Korea University; Seoul Republic of Korea
| |
Collapse
|
47
|
Near-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis. Sci Rep 2017; 7:17327. [PMID: 29229979 PMCID: PMC5725556 DOI: 10.1038/s41598-017-17714-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Here we report a novel assembly structure of near-infrared plasmonic gold nanoparticles (AuNPs), possessing both photoacoustic (PA) and photothermal (PT) properties. The template for the plasmonic AuNP assembly is a bioconjugate between short double-strand DNA (sh-dsDNA) and human methyl binding domain protein 1 (MBD1). MBD1 binds to methylated cytosine-guanine dinucleotides (mCGs) within the sequence of sh-dsDNA. Hexahistidine peptides on the engineered MBD1 function as a nucleation site for AuNP synthesis, allowing the construction of hybrid conjugates, sh-dsDNA-MBD1-AuNPs (named DMAs). By varying the length of sh-dsDNA backbone and the spacer between two adjacent mCGs, we synthesized three different DMAs (DMA_5mCG, DMA_9mCG, and DMA_21mCG), among which DMA_21mCG exhibited a comparable photothermal and surprisingly a higher photoacoustic signals, compared to a plasmonic gold nanorod. Further, epidermal growth factor receptor I (EGFR)-binding peptides are genetically attached to the MBD1 of DMA_21mCG, enabling its efficient endocytosis into EGFR-overexpressing cancer cells. Notably, the denaturation of MBD1 disassembled the DMA and accordingly released the individual small AuNPs (<5 nm) that can be easily cleared from the body through renal excretion without causing accumulation/toxicity problems. This DMA-based novel approach offers a promising platform for targeted cancer theragnosis based on simultaneous PA imaging and PT therapy.
Collapse
|