1
|
Yin WH, Liu Y, Huang HH, Li PY, Liu X, Bai FQ. Construction of Photosensitizer Candidates in Photodynamic Therapy: Computer Aided Design, Calculation, and Screening. J Org Chem 2025; 90:1825-1834. [PMID: 39877937 DOI: 10.1021/acs.joc.4c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability. Drawing upon molecular design concepts from OPV, we aim to transcend these limitations in PDT. Given the abundance of candidate molecules, effective screening is crucial. Theoretical calculations and electronic structure analyses serve as precise and practical screening methods. In this study, we adopted strategies successfully employed in OPV molecular design, focusing on donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) structures. Using density functional theory (DFT) and time-dependent density functional theory (TDDFT), we systematically designed combinations of promising organic fragments. These fragments include polythiophene and polypyrrole-dominated donor structures, paired with five electron acceptors: indene (Ind), diketopyrrole (DPP), naphthalimide (Ni), benzothiazole (Btd), and dithiazolyl diketopyrrole (Tbo). Through meticulous calculations, we obtained electronic structures and spectral properties for all candidate molecules, facilitating an efficient screening process. Our findings highlight that those combinations of polypyrrole-based frameworks with DPP, Ni, and Btd show significant promise for PS applications. Approximately 13% of candidates were selected through comprehensive comparison, markedly reducing molecular design time and experimental costs. This interdisciplinary approach holds potential to pave the way for more targeted and successful PS designs.
Collapse
Affiliation(s)
- Wei-Huang Yin
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Yang Liu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hou-Hou Huang
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Peng-Yuan Li
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| |
Collapse
|
2
|
Cho Y, Sun Z, Li G, Zhang D, Yang S, Marks TJ, Yang C, Facchetti A. CF 3-Functionalized Side Chains in Nonfullerene Acceptors Promote Electrostatic Interactions for Highly Efficient Organic Solar Cells. J Am Chem Soc 2025; 147:758-769. [PMID: 39692398 DOI: 10.1021/jacs.4c13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF3-terminated side chains having varying N-(CH2)n-CF3 linker lengths (n = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series. Single-crystal diffraction analyses reveal unusual two-dimensional mesh-like crystal structures, featuring strong interactions between the side chain CF3-terminal and NFA core F substituents. These atomistic and morphological features contribute to enhanced charge mobility and significantly enhanced photovoltaic performance. We show that varying the CF3-terminated side chain linker length strongly modulates light harvesting efficiency as well as charge recombination and the photovoltaic bandgap. The CF3-(CH2)2-based OSC demonstrates the most balanced performance metrics, achieving a remarkable 19.08% power conversion efficiency and an exceptional 80.09% fill-factor. These results imply that introducing CF3-terminated side chains into other OSC conjugated constituents may accelerate next-generation solar cell development.
Collapse
Affiliation(s)
- Yongjoon Cho
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhe Sun
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Guoping Li
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dayong Zhang
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sangjin Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Tobin J Marks
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Changduk Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Antonio Facchetti
- Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Langa F, de la Cruz P, Sharma GD. Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules. CHEMSUSCHEM 2025; 18:e202400361. [PMID: 39240557 DOI: 10.1002/cssc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
The development of narrow bandgap A-D-A- and ADA'DA-type non-fullerene small molecule acceptors (NFSMAs) along with small molecule donors (SMDs) have led to significant progress in all-small molecule organic solar cells. Remarkable power conversion efficiencies, nearing the range of 17-18 %, have been realized. These efficiency values are on par with those achieved in OSCs based on polymeric donors. The commercial application of organic photovoltaic technology requires the design of more efficient organic conjugated small molecule donors and acceptors. In recent years the precise tuning of optoelectronic properties in small molecule donors and acceptors has attracted considerable attention and has contributed greatly to the advancement of all-SM-OSCs. Several reviews have been published in this field, but the focus of this review concerns the advances in research on OSCs using SMDs and NFSMAs from 2018 to the present. The review covers the progress made in binary and ternary OSCs, the effects of solid additives on the performance of all-SM-OSCs, and the recently developed layer-by-layer deposition method for these OSCs. Finally, we present our perspectives and a concise outlook on further advances in all-SM-OSCs for their commercial application.
Collapse
Affiliation(s)
- Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Pilar de la Cruz
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
| |
Collapse
|
4
|
Liu J, Zhang Y, Liu X, Wen L, Wan L, Song C, Xin J, Liang Q. Solution Sequential Deposition Pseudo-Planar Heterojunction: An Efficient Strategy for State-of-Art Organic Solar Cells. SMALL METHODS 2024; 8:e2301803. [PMID: 38386309 DOI: 10.1002/smtd.202301803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Organic solar cells (OSCs) are considered as a promising new generation of clean energy. Bulk heterojunction (BHJ) structure has been widely employed in the active layer of efficient OSCs. However, precise regulation of morphology in BHJ is still challenging due to the competitive coupling between crystallization and phase separation. Recently, a novel pseudo-planar heterojunction (PPHJ) structure, prepared through solution sequential deposition, has attracted much attention. It is an easy-to-prepare structure in which the phase separation structures, interfaces, and molecular packing can be separately controlled. Employing PPHJ structure, the properties of OSCs, such as power conversion efficiency, stability, transparency, flexibility, and so on, are usually better than its BHJ counterpart. Hence, a comprehensive understanding of the film-forming process, morphology control, and device performance of PPHJ structure should be considered. In terms of the representative works about PPHJ, this review first introduces the fabrication process of active layers based on PPHJ structure. Second, the widely applied morphology control methods in PPHJ structure are summarized. Then, the influences of PPHJ structure on device performance and other property are reviewed, which largely expand its application. Finally, a brief prospect and development tendency of PPHJ devices are discussed with the consideration of their challenges.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Yutong Zhang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Xingpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Liangquan Wen
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Longjing Wan
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Chunpeng Song
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Jingming Xin
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Qiuju Liang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| |
Collapse
|
5
|
Niebisch F, Scherf U, Palma-Cando A. Electropolymerization of a New Diketopyrrollopyrrole Derivative into Inherent Chiral Polymer Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1776. [PMID: 39591018 PMCID: PMC11597823 DOI: 10.3390/nano14221776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Electropolymerization is a convenient way to obtain conducting polymers (CPs) directly adhered to an electrode surface. CPs are well-known for their various application fields in photovoltaic cells, chemical sensors, and electronics. By implementing chirality into a CP, the application possibilities will spread further onto chiral sensors or optoelectronics. In this work, we introduce a new inherently chiral polymer based on a macrocyclic 3,4-ethylenedioxythiophene-diketopyrrolopyrrole-3,4-ethylenedioxythiophene triad (EDOT-DPP-EDOT) fused by 1,4-phenylene groups, which was prepared via oxidative electropolymerization directly on the electrode surface. The investigation of the chiroptical properties was performed by circular dichroism spectroscopy in the solid state. The enantiomeric pure polymer films obtained showed dissymmetry factors of up to -2.71 × 10-4, whereby linear dichroism contributions can be widely excluded.
Collapse
Affiliation(s)
- Felix Niebisch
- Department of Chemistry, Macromolecular Chemistry and Wuppertal Center for Smart Materials @ Systems (CM@S), Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry and Wuppertal Center for Smart Materials @ Systems (CM@S), Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| |
Collapse
|
6
|
Khalid M, Fatima N, Arshad M, Adeel M, Braga AAC, Ahamad T. Unveiling the influence of end-capped acceptors modification on photovoltaic properties of non-fullerene fused ring compounds: a DFT/TD-DFT study. RSC Adv 2024; 14:20441-20453. [PMID: 38946775 PMCID: PMC11208900 DOI: 10.1039/d4ra03170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Herein, unique A-D-A configuration-based molecules (NBD1-NBD7) were designed from the reference compound (NBR) by utilizing the end-capped acceptor modification approach. Various electron-withdrawing units -F, -Cl, -CN, -NO2, -CF3, -HSO3, and -COOCH3, were incorporated into terminals of reference compound to designed NBD1-NBD7, respectively. A theoretical investigation employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) was performed at B3LYP/6-311G(d,p) level. To reveal diverse opto-electronic and photovoltaic properties, the frontier molecular orbitals (FMOs), absorption maxima (λ max), density of states (DOS), exciton binding energy (E b), open-circuit voltage (V oc) and transition density matrix (TDM) analyses were executed at the same functional. Moreover, the global reactivity parameters (GRPs) were calculated using the HOMO-LUMO energy gaps from the FMOs. Significant results were obtained for the designed molecules (NBD1-NBD7) as compared to NBR. They showed lesser energy band gaps (2.024-2.157 eV) as compared to the NBR reference (2.147 eV). The tailored molecules also demonstrated bathochromic shifts in the chloroform (671.087-717.164 nm) and gas phases (623.251-653.404 nm) as compared to NBR compound (674.189 and 626.178 nm, respectively). From the photovoltaic perspectives, they showed promising results (2.024-2.157 V). Furthermore, the existence of intramolecular charge transfer (ICT) in the designed compounds was depicted via their DOS and TDM graphical plots. Among all the investigated molecules, NBD4 was disclosed as the excellent candidate for solar cell applications owing to its favorable properties such as the least band gap (2.024 eV), red-shifted λ max in the chloroform (717.164 nm) and gas (653.404 nm) phases as well as the minimal E b (0.126 eV). This is due to the presence of highly electronegative -NO2 unit at the terminal of electron withdrawing acceptor moiety, which leads to increased conjugation and enhanced the intramolecular charge transfer (ICT) rate. The obtained insights suggested that the designed molecules could be considered as promising materials for potential applications in the realm of OSCs.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Noor Fatima
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Arshad
- Industry Solutions, Northern Alberta Institute of Technology Edmonton Alberta Canada
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University D. I. Khan Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
7
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Guo Y, Wu J, Lin Z, Tang F, Yuan L, Wu H, Peng X. Novel Beta-Functionalized Porphyrins Approaching 11% Efficiency for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17531-17539. [PMID: 38530924 DOI: 10.1021/acsami.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Porphyrins and their derivatives possess high molar extinction coefficients and strong electron-donating abilities and have been widely used in organic solar cells (OSCs). Though porphyrins can be easily functionalized at the four meso-positions and the eight β-positions, nearly all porphyrin photovoltaic materials are reported to be functionalized at the meso-positions, and the porphyrin photovoltaic materials functionalized at the β-positions are to be explored. Herein, the regioselective β-positions of a porphyrin are first brominated without using rare metal iridium catalysts, and then, after two more reactions, two antipodal β-substituted porphyrin donors EHDPP-Por and BODPP-Por are synthesized, in which four DPP (diketopyrrolopyrrole) units are connected symmetrically with acetylene at four of the β-positions, for OSCs. The all-small-molecule organic solar cells based on EHDPP-Por:Y6 and BODPP-Por:Y6 active layers achieved power conversion efficiencies of 10.19 and 10.99%, respectively, which are higher than most of the binary OSCs based on the porphyrins functionalized at the meso-positions, demonstrating that β-functionalized porphyrins are very promising for OSCs.
Collapse
Affiliation(s)
- Yinchun Guo
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhenkun Lin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Lin Yuan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hanping Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
9
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Ge J, Xie L, Peng R, Ge Z. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206566. [PMID: 36482012 DOI: 10.1002/adma.202206566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Indexed: 05/19/2023]
Abstract
The emerging Y-series nonfullerene acceptors (Y-NFA) has prompted the rapid progress of power conversion efficiency (PCE) of all-small-molecule organic solar cells (ASM-OSCs) from around 12% to 17%. The excellent PCE improvement benefits from not only the outstanding properties of Y-series acceptors but also the successful development of small-molecule donors. The short-circuit current density, fill factor, and nonradiative recombination are all optimized to the unprecedented values, providing a scenery that is obviously different from the ITIC-series based ASM-OSCs. In this review, OSCs utilizing small-molecule donors and Y-NFA are summarized and classified in order to provide an up-to-date development overview and give an insight on structure-property correlation. Then, the characteristics of bulk-heterojunction (BHJ) formation of ASM-OSCs are discussed and compared with that of polymer-based OSCs. Finally, the challenges and outlook on designing ground-breaking small-molecule donor and forming an ideal BHJ morphology are discussed.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Gao H, Sun Y, Meng L, Han C, Wan X, Chen Y. Recent Progress in All-Small-Molecule Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205594. [PMID: 36449633 DOI: 10.1002/smll.202205594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Active layer material plays a critical role in promoting the performance of an organic solar cell (OSC). Small-molecule (SM) materials have the merits of well-defined chemical structures, few batch-to-batch variations, facile synthesis and purification procedures, and easily tuned properties. SM-donor and non-fullerene acceptor (NFA) innovations have recently produced all-small-molecule (ASM) devices with power conversion efficiencies that exceed 17% and approach those of their polymer-based counterparts, thereby demonstrating their great future commercialization potential. In this review, recent progress in both SM donors and NFAs to illustrate structure-property relationships and various morphology-regulation strategies are summarized. Finally, ASM-OSC challenges and outlook are discussed.
Collapse
Affiliation(s)
- Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanna Sun
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenyang Han
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiangjian Wan
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Yu W, Zheng S. A computational investigation about the effect of metal substitutions on the electronic spectra of porphyrin donors in the visible and near infrared regions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121676. [PMID: 35921749 DOI: 10.1016/j.saa.2022.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Porphyrin compounds have unique advantages because of their wide absorption range (about 300-1000 nm) and good planarity. At present, the effects of metal substitutions of porphyrin compounds on their photovoltaic properties are still not clear. In this paper, we have systematically modelled a series of porphyrin donors MP-TBO (M = 2H, Mg, Cu, Fe, Co, Zn and Ni), in which ZnP-TBO has been experimentally synthesized and the power conversation efficiency of organic solar cell based on it is up to 12.08 %. The photovoltaic properties of these MP-TBO molecules have been investigated via density functional theory (DFT) and time-dependent DFT. We find that CoP-TBO and NiP-TBO both have worse planarity and smaller dipole moments than other compounds. The electronic absorption spectra of these porphyrin donors all show three main absorption peaks. However, metal substitutions blue-shift the wavelength of absorption peaks and lower total absorption strength in the visible and near-infrared regions. Finally, we find that MgP-TBO and H2P-TBO seem to be potential donors because both have more red-shifted wavelength of absorption peaks and higher absorption strength than other metal substitutions.
Collapse
Affiliation(s)
- Wenyang Yu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy, Southwest University, Chongqing, China
| | - Shaohui Zheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Hajduk B, Jarka P, Tański T, Bednarski H, Janeczek H, Gnida P, Fijalkowski M. An Investigation of the Thermal Transitions and Physical Properties of Semiconducting PDPP4T:PDBPyBT Blend Films. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8392. [PMID: 36499890 PMCID: PMC9741459 DOI: 10.3390/ma15238392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
This work focuses on the study of thermal and physical properties of thin polymer films based on mixtures of semiconductor polymers. The materials selected for research were poly [2,5-bis(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2';5',2″;5″,2'''-quater-thiophen-5,5'''-diyl)]-PDPP4T, a p-type semiconducting polymer, and poly(2,5-bis(2-octyldodecyl)-3,6-di(pyridin-2-yl)-pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2'-bithiophene)-PDBPyBT, a high-mobility n-type polymer. The article describes the influence of the mutual participation of materials on the structure, physical properties and thermal transitions of PDPP4T:PDBPyBT blends. Here, for the first time, we demonstrate the phase diagram for PDPP4T:PDBPyBT blend films, constructed on the basis of variable-temperature spectroscopic ellipsometry and differential scanning calorimetry. Both techniques are complementary to each other, and the obtained results overlap to a large extent. Our research shows that these polymers can be mixed in various proportions to form single-phase mixtures with several thermal transitions, three of which with the lowest characteristic temperatures can be identified as glass transitions. In addition, the RMS roughness value of the PDPP4T:PDBPyBT blended films was lower than that of the pure materials.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska Str., 41-819 Zabrze, Poland
| | - Paweł Jarka
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Tomasz Tański
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Henryk Bednarski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska Str., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska Str., 41-819 Zabrze, Poland
| | - Paweł Gnida
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska Str., 41-819 Zabrze, Poland
| | - Mateusz Fijalkowski
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
14
|
Hou Y, Wang Q, Huang C, Yang T, Shi S, Yao S, Ren D, Liu T, Zhang G, Zou B. Controlling the Treatment Time for Ideal Morphology towards Efficient Organic Solar Cells. Molecules 2022; 27:5713. [PMID: 36080479 PMCID: PMC9457995 DOI: 10.3390/molecules27175713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.
Collapse
Affiliation(s)
- Yiwen Hou
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Qiuning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Ciyuan Huang
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Shasha Shi
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shangfei Yao
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Donglou Ren
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Liu
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Bingsuo Zou
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Polak DW, do Casal MT, Toldo JM, Hu X, Amoruso G, Pomeranc O, Heeney M, Barbatti M, Ashfold MNR, Oliver TAA. Probing the electronic structure and photophysics of thiophene-diketopyrrolopyrrole derivatives in solution. Phys Chem Chem Phys 2022; 24:20138-20151. [PMID: 35993400 PMCID: PMC9429679 DOI: 10.1039/d2cp03238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
Diketopyrrolopyrroles are a popular class of electron-withdrawing unit in optoelectronic materials. When combined with electron donating side-chain functional groups such as thiophenes, they form a very broad class of donor-acceptor molecules: thiophene-diketopyrrolopyrroles (TDPPs). Despite their widescale use in biosensors and photovoltaic materials, studies have yet to establish the important link between the electronic structure of the specific TDPP and the critical optical properties. To bridge this gap, ultrafast transient absorption with 22 fs time resolution has been used to explore the photophysics of three prototypical TDPP molecules: a monomer, dimer and polymer in solution. Interpretation of experimental data was assisted by a recent high-level theoretical study, and additional density functional theory calculations. These studies show that the photophysics of these molecular prototypes under visible photoexcitation are determined by just two excited electronic states, having very different electronic characters (one is optically bright, the other dark), their relative energetic ordering and the timescales for internal conversion from one to the other and/or to the ground state. The underlying difference in electronic structure alters the branching between these excited states and their associated dynamics. In turn, these factors dictate the fluorescence quantum yields, which are shown to vary by ∼1-2 orders of magnitude across the TDPP prototypes investigated here. The fast non-radiative transfer of molecules from the bright to dark states is mediated by conical intersections. Remarkably, wavepacket signals in the measured transient absorption data carry signatures of the nuclear motions that enable mixing of the electronic-nuclear wavefunction and facilitate non-adiabatic coupling between the bright and dark states.
Collapse
Affiliation(s)
- Daniel W Polak
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.
| | | | | | - Xiantao Hu
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Giordano Amoruso
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.
| | - Olivia Pomeranc
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Mario Barbatti
- Aix Marseille Université, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231, Paris, France
| | - Michael N R Ashfold
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.
| | - Thomas A A Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
16
|
Gao W, Jiang M, Wu Z, Fan B, Jiang W, Cai N, Xie H, Lin FR, Luo J, An Q, Woo HY, Jen AK. Intramolecular Chloro–Sulfur Interaction and Asymmetric Side‐Chain Isomerization to Balance Crystallinity and Miscibility in All‐Small‐Molecule Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202205168. [DOI: 10.1002/anie.202205168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Gao
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University Seoul 136-713 Republic of Korea
| | - Baobing Fan
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Wenlin Jiang
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Ning Cai
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Hua Xie
- School of Water Resources and Hydropower Wuhan University Wuhan 430072 China
| | - Francis R. Lin
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Jingdong Luo
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University Seoul 136-713 Republic of Korea
| | - Alex K.‐Y. Jen
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering University of Washington Seattle WA 98195-2120 USA
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| |
Collapse
|
17
|
The structure-performance correlation of bulk-heterojunction organic solar cells with multi-length-scale morphology. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1268-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Gao W, Jiang M, Wu Z, Fan B, Jiang W, Cai N, Xie H, Lin FR, Luo J, An Q, Woo HY, Jen AKY. Intramolecular Choloro‐Sulfur Interaction and Asymmetric Side‐Chain Isomerization to Balance Crystallinity and Miscibility in All‐Small‐Molecule Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Gao
- City University of Hong Kong Department of Chemistry 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077 Hong Kong CHINA
| | - Mengyun Jiang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering 100081 Beijing CHINA
| | - Ziang Wu
- Korea University Department of Chemistry 136-713 Seoul KOREA, REPUBLIC OF
| | - Baobing Fan
- City University of Hong Kong Department of Materials Science and Engineering 999077 Hong Kong CHINA
| | - Wenlin Jiang
- City University of Hong Kong Department of Materials Science and Engineering 999077 Hong Kong CHINA
| | - Ning Cai
- Guangdong University of Technology School of Chemical Engineering and Light Industry 510006 Guangzhou CHINA
| | - Hua Xie
- Wuhan University School of Water Resources and Hydropower 430072 Wuhan CHINA
| | - Francis R. Lin
- City University of Hong Kong Department of Chemistry 999077 Hong Kong CHINA
| | - Jingdong Luo
- City University of Hong Kong Department of Chemistry 999077 Hong Kong CHINA
| | - Qiaoshi An
- Beijing Institute of Technology School of Chemistry and Chemical Engineering 100081 Beijing CHINA
| | - Han Young Woo
- Korea University Department of Chemistry Seoul KOREA, REPUBLIC OF
| | - Alex K.-Y. Jen
- City University of Hong Kong Chemistry Tat Chee Ave 999077 Kowloon CHINA
| |
Collapse
|
19
|
Zhao ZW, Del Cueto M, Troisi A. Limitations of machine learning models when predicting compounds with completely new chemistries: possible improvements applied to the discovery of new non-fullerene acceptors. DIGITAL DISCOVERY 2022; 1:266-276. [PMID: 35769202 PMCID: PMC9189862 DOI: 10.1039/d2dd00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022]
Abstract
We try to determine if machine learning (ML) methods, applied to the discovery of new materials on the basis of existing data sets, have the power to predict completely new classes of compounds (extrapolating) or perform well only when interpolating between known materials. We introduce the leave-one-group-out cross-validation, in which the ML model is trained to explicitly perform extrapolations of unseen chemical families. This approach can be used across materials science and chemistry problems to improve the added value of ML predictions, instead of using extrapolative ML models that were trained with a regular cross-validation. We consider as a case study the problem of the discovery of non-fullerene acceptors because novel classes of acceptors are naturally classified into distinct chemical families. We show that conventional ML methods are not useful in practice when attempting to predict the efficiency of a completely novel class of materials. The approach proposed in this work increases the accuracy of the predictions to enable at least the categorization of materials with a performance above and below the median value.
Collapse
Affiliation(s)
- Zhi-Wen Zhao
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Marcos Del Cueto
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
20
|
Trung ND, Huy DTN, Jade Catalan Opulencia M, Lafta HA, Abed AM, Bokov DO, Shomurodov K, Van Thuc Master H, Thaeer Hammid A, Kianfar E. Conductive Gels: Properties and Applications of Nanoelectronics. NANOSCALE RESEARCH LETTERS 2022; 17:50. [PMID: 35499625 PMCID: PMC9061932 DOI: 10.1186/s11671-022-03687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electrical and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhydrophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wearable electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive polymers and organic charge transfer complexes, there is another class of organic matter called "conductive gels" that are used in the organic nanoelectronics industry. The main features of this family of organic materials include controllable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and optical behaviors depending on the applications. If the conjugated molecules with π bonds come together spontaneously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence properties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.
Collapse
Affiliation(s)
| | - Dinh Tran Ngoc Huy
- Banking University HCMC, Ho Chi Minh city, Vietnam
- International University of Japan, Niigata, Japan
| | | | | | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Kahramon Shomurodov
- Department of Maxillo-Facial Surgery, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan, 100147
| | - Hoang Van Thuc Master
- Thai Nguyen University, University of Information and Communication Technology, Thái Nguyên, Vietnam
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Ehsan Kianfar
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| |
Collapse
|
21
|
Meng L, Li M, Lu G, Shen Z, Wu S, Liang H, Li Z, Lu G, Yao Z, Li C, Wan X, Chen Y. All-Small-Molecule Organic Solar Cells with Efficiency Approaching 16% and FF over 80. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201400. [PMID: 35451222 DOI: 10.1002/smll.202201400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Molecule engineering has been demonstrated as a valid strategy to adjust the active layer morphology in all-small-molecule organic solar cells (ASM-OSCs). In this work, two non-fullerene acceptors (NFAs), FO-2Cl and FO-EH-2Cl, with different alkyl side chains are reported and applied in ASC-OSCs. Compared with FO-2Cl, FO-EH-2Cl is designed by replacing the octyl alkyl chains with branched iso-octyl alkyl chains, leading to an enhanced molecular packing, crystallinity, and redshifted absorption. With a small molecule BSFTR as donor, the device of BSFTR:FO-EH-2Cl obtains a better morphology and achieves a higher power conversion efficiency (PCE) of 15.78% with a notable fill factor (FF) of 80.44% than that of the FO-2Cl-based device with a PCE of 15.27% and FF of 78.41%. To the authors' knowledge, the FF of 80.44% is the highest value in ASM-OSCs. These results demonstrate a good example of fine-tuning the molecular structure to achieve suitable active layer morphology with promising performance for ASM-OSCs, which can provide valuable insight into material design for high-efficiency ASM-OSCs.
Collapse
Affiliation(s)
- Lingxian Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingpeng Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Guanyu Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Zichao Shen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Simin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Huazhe Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhixiang Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Cai S, Huang P, Cai G, Lu X, Hu D, Hu C, Lu S. Symmetrically Fluorinated Benzo[1,2- b:4,5- b']dithiophene-Cored Donor for High-Performance All-Small-Molecule Organic Solar Cells with Improved Active Layer Morphology and Crystallinity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14532-14540. [PMID: 35298146 DOI: 10.1021/acsami.1c24017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Side-chain engineering is an efficient molecular design strategy for morphology optimization and performance improvement of organic solar cells (OSCs). Herein, a novel small-molecule donor C-2F, which owns a benzo[1,2-b:4,5-b']dithiophene (BDT) central unit with a symmetrically difluorinated benzene ring as a conjugated side chain, has been synthesized. The conjugated side chain possesses both the symmetry and halogenation effect in novel small molecular donor material. The photovoltaic devices were fabricated with N3 as an acceptor. C-2F:N3 based devices achieved an outstanding power conversion efficiency of 14.64% with a Jsc of 24.87 mA/cm2, a Voc of 0.85 V, and an FF of 69.33%. Then, we investigated the basic material properties, photovoltaic mechanism, and active layer morphology, and the results show that this molecular design strategy of the symmetrically difluorinated moiety as the conjugated side chain provides an effective method for fine-tuning the molecular stacking pattern and active layer phase separation morphology, to improve the all-small-molecule (ASM) OSCs' performances.
Collapse
Affiliation(s)
- Songming Cai
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
- Thin-film Solar Technology Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
| | - Peihao Huang
- Thin-film Solar Technology Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
| | - Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| | - Dingqin Hu
- Thin-film Solar Technology Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
| | - Chao Hu
- Thin-film Solar Technology Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
| | - Shirong Lu
- Thin-film Solar Technology Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
23
|
Cuesta V, Singh MK, Gutierrez-Fernandez E, Martín J, Domínguez R, de la Cruz P, Sharma GD, Langa F. Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11708-11717. [PMID: 35195997 PMCID: PMC8915169 DOI: 10.1021/acsami.1c22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited, which hinders the discovery of new, high-performing donor:acceptor combinations. Here, we present a new, efficient electron-accepting compound based on a hitherto unexplored family of well-known molecules: gold porphyrins. The electronic properties of our electron-accepting gold porphyrin, named VC10, were studied by UV-Vis spectroscopy and by cyclic voltammetry (CV) , revealing two intense optical absorption bands at 500-600 and 700-920 nm and an optical bandgap of 1.39 eV. Blending VC10 with PTB7-Th, a donor polymer, which gives rise to an absorption band at 550-780 nm complementary to that of VC10, enables the fabrication of organic solar cells (OSCs) featuring a power conversion efficiency of 9.24% and an energy loss of 0.52 eV. Hence, this work establishes a new approach in the search for efficient acceptor molecules for solar cells and new guidelines for future photovoltaic material design.
Collapse
Affiliation(s)
- Virginia Cuesta
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Manish Kumar Singh
- Department
of Physics, The LNM Institute of Information
Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India
| | | | - Jaime Martín
- POLYMAT, University of the Basque Country, UPV/EHU Av. de Tolosa 72, San Sebastián 20018, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48013, Spain
- Universidade
da Coruña, Grupo de Polímeros, Centro de Investigacións
Tecnolóxicas (CIT), Esteiro, Ferrol 15471, Spain
| | - Rocío Domínguez
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Pilar de la Cruz
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Ganesh D. Sharma
- Department
of Physics, The LNM Institute of Information
Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India
| | - Fernando Langa
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| |
Collapse
|
24
|
Liu X, Liang Z, Du S, Niu X, Tong J, Yang C, Lu X, Bao X, Yan L, Li J, Xia Y. Two Compatible Acceptors as an Alloy Model with a Halogen-Free Solvent for Efficient Ternary Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9386-9397. [PMID: 35148049 DOI: 10.1021/acsami.1c23332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A ternary strategy of halogen-free solvent processing can open up a promising pathway for the preparation of polymer solar cells (PSCs) on a large scale and can effectively improve the power conversion efficiency with an appropriate third component. Herein, the green solvent o-xylene (o-XY) is used as the main solvent, and the non-fullerene acceptor Y6-DT-4F as the third component is introduced into the PBB-F:IT-4F binary system to broaden the spectral absorption and optimize the morphology to achieve efficient PSCs. The third component, Y6-DT-4F, is compatible with IT-4F and can form an "alloy acceptor", which can synergistically optimize the photon capture, carrier transport, and collection capabilities of the ternary device. Meanwhile, Y6-DT-4F has strong crystallinity, so when introduced into the binary system as the third component can enhance the crystallization, which is conducive to the charge transport. Consequently, the optimal ternary system based on PBB-F:IT-4F:Y6-DT-4F achieved an efficiency of 15.24%, which is higher than that of the binary device based on PBB-F:IT-4F (13.39%).
Collapse
Affiliation(s)
- Xingpeng Liu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sanshan Du
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xixi Niu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chunyan Yang
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xubin Lu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianfeng Li
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yangjun Xia
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
25
|
Mao D, Chen XR, Li DH, Liu XY, Cui G, Li L. Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Phys Chem Chem Phys 2022; 24:27173-27183. [DOI: 10.1039/d2cp03822f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The combination of nonadiabatic dynamics simulation and optimally tuned range-separated functional might be a powerful tool for elucidating the ultrafast charge transfer in nonfullerene all-small-molecule organic solar cells.
Collapse
Affiliation(s)
- Dan Mao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xin-Rui Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Dong-Heng Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
26
|
Qiu N, Liu C, Lang H, Xu J, Su R, Jiang J, Tian J, Li J. Efficient all-small-molecule organic solar cells based on a fluorinated small-molecule donor. NEW J CHEM 2022. [DOI: 10.1039/d2nj00505k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A fluorinated donor with a deep HOMO energy level enables efficient all-small-molecule organic solar cells.
Collapse
Affiliation(s)
- Nailiang Qiu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Chunyan Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin, China
| | - Haijiao Lang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jingyang Xu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Rui Su
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jie Jiang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jiaqi Tian
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jisen Li
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| |
Collapse
|
27
|
Rafiq M, Salim M, Noreen S, Ahmad Khera R, Noor S, Yaqoob U, Iqbal J. End-capped modification of dithienosilole based small donor molecules for high performance organic solar cells using DFT approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
|
29
|
Wang GD, Liu ZX, Qiu BB, Zhang ZG, Wang R, Wang XY, Ma J, Li YF, Xiao M, Zhang CF. Ultrafast electron transfer in all-small-molecule photovoltaic blends promoted by intermolecular interactions in cyanided donors. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Guo-dong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhi-xing Liu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Bei-bei Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-guo Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-yong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yong-fang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Chun-feng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Gong F, Li H, Yuan X, Huang J, Xia D, Papavassiliou DV, Xiao R, Yamauchi Y, Wu KCW, Ok YS. Recycling Polymeric Solid Wastes for Energy-Efficient Water Purification, Organic Distillation, and Oil Spill Cleanup. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102459. [PMID: 34590405 DOI: 10.1002/smll.202102459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional approaches (e.g., pyrolysis) for managing waste polymer foams typically require highly technical skills and consume large amounts of energy resources. This paper presents an ultrafacile, cost-effective, and highly efficient alternative method for recycling waste packaging and cleaning foam (e.g., polymelamine-formaldehyde foam). The designed solar absorber, a polypyrrole-coated melamine foam (PMF), features a highly porous structure, excellent mechanical strength, low thermal conductivity, and rapid water transport capacity. These exceptional properties render the PMF suitable for multiple applications, including energy-efficient solar-powered water purification, ethanol distillation, and oil absorption. In water purification, the PMF yields a solar-thermal conversion efficiency as high as 87.7%, stability that is maintained for more than 35 operation cycles, and antifouling capabilities (when purifying different water types). In solar distillation, the PMF achieves a concentration increase up to 75 vol% when distilling a 10 vol% ethanol solution. In oil absorption, the PMF offers an oil-absorption capacity of ≈70 g g-1 with only a 7% loss in capacity after 100 absorbing-squeezing cycles. Thus, systems combining solar energy with various waste foams are highly promising as durable, renewable, and portable systems for water purification, organic distillation, and oil absorption, especially in remote regions or emergency situations.
Collapse
Affiliation(s)
- Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Hao Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xiangzhou Yuan
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jigang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Dawei Xia
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Dimitrios V Papavassiliou
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
31
|
Liang Q, Hu Z, Yao J, Yin Y, Wei P, Chen Z, Li W, Liu J. Recent advances in intermixed phase of organic solar cells: Characterization, regulating strategies and device applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiuju Liang
- Northwestern Polytechnical University Xi'an China
| | - Zhangbo Hu
- Northwestern Polytechnical University Xi'an China
| | - Jianhong Yao
- Northwestern Polytechnical University Xi'an China
| | - Yukai Yin
- Northwestern Polytechnical University Xi'an China
| | - Puxin Wei
- Northwestern Polytechnical University Xi'an China
| | - Zhikang Chen
- Northwestern Polytechnical University Xi'an China
| | - Wangchang Li
- Northwestern Polytechnical University Xi'an China
| | - Jiangang Liu
- Northwestern Polytechnical University Xi'an China
| |
Collapse
|
32
|
Cigánek M, Richtár J, Weiter M, Krajčovič J. Organic π‐Conjugated Molecules: From Nature to Artificial Applications. Where are the Boundaries? Isr J Chem 2021. [DOI: 10.1002/ijch.202100061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Martin Cigánek
- Brno University of Technology Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Jan Richtár
- Brno University of Technology Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Martin Weiter
- Brno University of Technology Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Jozef Krajčovič
- Brno University of Technology Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| |
Collapse
|
33
|
Cuesta V, Singhal R, de la Cruz P, Sharma GD, Langa F. Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. CHEMSUSCHEM 2021; 14:3494-3501. [PMID: 33274829 DOI: 10.1002/cssc.202002664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The effect of central donor core on the properties of A-π-D-π-A donors, where D is a porphyrin macrocycle, cyclopenta[2,1-b:3,4-b']dithiophene is the π bridge, and A is a dicyanorhodanine terminal unit, was investigated for the fabrication of the organic solar cells (OSCs), along [6,6]-phenyl-C71-butyric acid methyl ester (PC71 BM) as electron acceptor. A new molecule consisting of Ni-porphyrin central donor core (VC9) showed deep HOMO energy level and OSCs based on optimized VC9:PC71 BM realized overall power conversion efficiency (PCE) of 10.66 % [short-circuit current density (JSC )=15.48 mA/cm2 , fill factor (FF)=0.65] with high open circuit voltage (VOC ) of 1.06 V and very low energy loss of 0.49 eV, whereas the Zn-porphyrin analogue VC8:PC71 BM showed PCE of 9.69 % with VOC of 0.89 V, JSC of 16.25 mA/cm2 and FF of 0.67. Although the OSCs based on VC8 showed higher JSC in comparison to VC9, originating from the broader absorption profile of VC8 that led to more exciton generation, the higher value of PCE of VC9 is owing to the higher VOC and reduced energy loss.
Collapse
Affiliation(s)
- Virginia Cuesta
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| | - Rahul Singhal
- Department of Physics, Malviya National Institute of Technology, JLN Marg, Jaipur (Raj.), 302017, India
| | - Pilar de la Cruz
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Deemed University, Rupa ki Nangal, Jamdoli, Jaipur (Raj.), 302031, India
| | - Fernando Langa
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| |
Collapse
|
34
|
Su W, Wang Y, Yin Z, Fan Q, Guo X, Yu L, Li Y, Hou L, Zhang M, Peng Q, Li Y, Wang E. 13.4 % Efficiency from All-Small-Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions. CHEMSUSCHEM 2021; 14:3535-3543. [PMID: 34057293 PMCID: PMC8518815 DOI: 10.1002/cssc.202100860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Indexed: 05/29/2023]
Abstract
How to simultaneously achieve both high open-circuit voltage (Voc ) and high short-circuit current density (Jsc ) is a big challenge for realising high power conversion efficiency (PCE) in all-small-molecule organic solar cells (all-SM OSCs). Herein, a novel small molecule (SM)-donor, namely FYSM-SiCl, with trialkylsilyl and chlorine substitutions was designed and synthesized. Compared to the original SM-donor FYSM-H, FYSM-Si with trialkylsilyl substitution showed a decreased crystallinity and lower highest occupied molecular orbital (HOMO) level, while FYSM-SiCl had an improved crystallinity, more ordered packing arrangement, significantly lower HOMO level, and predominant "face-on" orientation. Matched with a SM-acceptor Y6, the FYSM-SiCl-based all-SM OSCs exhibited both high Voc of 0.85 V and high Jsc of 23.7 mA cm-2 , which is rare for all-SM OSCs and could be attributed to the low HOMO level of FYSM-SiCl donor and the delicate balance between high crystallinity and suitable blend morphology. As a result, FYSM-SiCl achieved a high PCE of 13.4 % in all-SM OSCs, which was much higher than those of the FYSM-H- (10.9 %) and FYSM-Si-based devices (12.2 %). This work demonstrated a promising method for the design of efficient SM-donors by a side-chain engineering strategy via the introduction of trialkylsilyl and chlorine substitutions.
Collapse
Affiliation(s)
- Wenyan Su
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsSiyuan Laboratory, Department of PhysicsJinan UniversityGuangzhou510632P. R. China
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Yang Wang
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Zhihong Yin
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qunping Fan
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liyang Yu
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuxiang Li
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054P. R. China
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsSiyuan Laboratory, Department of PhysicsJinan UniversityGuangzhou510632P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qiang Peng
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Ergang Wang
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
35
|
Pan X, Wu J, Xiao L, Yap B, Xia R, Peng X. Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells. CHEMSUSCHEM 2021; 14:3614-3621. [PMID: 34107177 DOI: 10.1002/cssc.202100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Three small-molecule acceptors (Por-PDI, TEHPor-PDI, and BBOPor-PDI) with different side chains were synthesized by using a porphyrin core as the electron-donating unit and connecting electron-withdrawing perylene diimide dimers via acetylene bridges. The bulk heterojunction organic solar cells based on the three acceptors and a polymer donor provided power conversion efficiencies (PCEs) of 3.68-5.21 % when the active layers were fabricated with pyridine additives. Though the synthesis of Por-PDI is easier with fewer reaction steps and higher yields, the devices based on Por-PDI showed the best performance with a PCE of 5.21 %. The more ordered intermolecular packing due to the reduced steric hindrance at the porphyrin core of Por-PDI could contribute to the more balanced hole/electron mobilities, higher maximum charge generation rate, and less bimolecular recombination in Por-PDI devices, which are beneficial for the higher PCE.
Collapse
Affiliation(s)
- Xiaojie Pan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Boonkar Yap
- The International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, 43000, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Selangor, 43000, Malaysia
| | - Ruidong Xia
- The International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
36
|
Cai C, Yao J, Chen L, Yuan Z, Zhang Z, Hu Y, Zhao X, Zhang Y, Chen Y, Li Y. Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunsheng Cai
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Jia Yao
- State Key Laboratory of Organic/Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Zhongyi Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Zhi‐Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Xiaohong Zhao
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Youdi Zhang
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
37
|
Guo J, Hu K, Qiu B, Zhang J, Yang D, Zhou L, Li S, Meng L, Zhang Z, Li Y. Fine-Tuning Miscibility and π-π Stacking by Alkylthio Side Chains of Donor Molecules Enables High-Performance All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36033-36043. [PMID: 34288666 DOI: 10.1021/acsami.1c06830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optimization of morphology and precise control of miscibility between donors and acceptors play an important role in improving the power conversion efficiencies (PCEs) of all-small-molecule organic solar cells (SM-OSCs). Besides device optimization, methods such as additives and thermal annealing are applied for finely tuning bulk-heterojunction morphology; strategies of molecular design are also the key to achieve efficient phase separation. Here, a series of A-D-A-type small-molecule donors (SM4, SM8, and SM12) based on benzodithiophene units were synthesized with different lengths of alkylthio side chains to regulate crystallinity, and their miscibility with the acceptor (BO-4Cl) was investigated. Consequently, SM4 with a short alkylthio substituent had a high crystallization propensity, leading to the oversized molecular domains and the poor morphology of the active layer. Meanwhile, SM12 with a longer alkylthio substituent showed weak crystallinity, causing a relatively looser π-π stacking and thus adversely affecting charge-carrier transport. The SM-OSC based on the small-molecule donor SM8 with a mid-length alkylthio substituent achieved a better PCE over 13%, which was attributed to a more harmonious blend miscibility without sacrificing carrier-charge transport. Eventually, the modulation of phase separation and miscibility via controlling the lateral side chains has proven its potential in optimizing the blend morphology to aid the development of highly efficient SM-OSCs.
Collapse
Affiliation(s)
- Jing Guo
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Hu
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Beibei Qiu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jinyuan Zhang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dengchen Yang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuyang Zhou
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaman Li
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Meng
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Zhang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfang Li
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
38
|
Tang C, Ma X, Wang J, Zhang X, Liao R, Ma Y, Wang P, Wang P, Wang T, Zhang F, Zheng Q. High‐Performance Ladder‐Type Heteroheptacene‐Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Changquan Tang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
| | - Xiaoling Ma
- School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jin‐Yun Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
| | - Xue Zhang
- School of Materials Science & Engineering Wuhan University of Technology Wuhan Hubei 430070 P. R. China
| | - Ruochuan Liao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yunlong Ma
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
| | - Peng Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 P. R. China
| | - Pengsong Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Wang
- School of Materials Science & Engineering Wuhan University of Technology Wuhan Hubei 430070 P. R. China
| | - Fujun Zhang
- School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Qingdong Zheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao West Road Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
39
|
Tang C, Ma X, Wang JY, Zhang X, Liao R, Ma Y, Wang P, Wang P, Wang T, Zhang F, Zheng Q. High-Performance Ladder-Type Heteroheptacene-Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angew Chem Int Ed Engl 2021; 60:19314-19323. [PMID: 34128575 DOI: 10.1002/anie.202105861] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Nonfullerene acceptors (MQ3, MQ5, MQ6) are synthesized using asymmetric and symmetric ladder-type heteroheptacene cores with selenophene heterocycles. Although MQ3 and MQ5 are constructed with the same number of selenophene heterocycles, the heteroheptacene core of MQ5 is end-capped with selenophene rings while that of MQ3 is flanked with thiophene rings. With the enhanced noncovalent interaction of O⋅⋅⋅Se compared to that of O⋅⋅⋅S, MQ5 shows a bathochromically shifted absorption band and greatly improved carrier transport, leading to a higher power conversion efficiency (PCE) of 15.64 % compared to MQ3, which shows a PCE of 13.51 %. Based on the asymmetric heteroheptacene core, MQ6 shows an improved carrier transport induced by the reduced π-π stacking distance, related with the increased dipole moment in comparison with the nonfullerene acceptors based on symmetric cores. MQ6 exhibits a PCE of 16.39 % with a VOC of 0.88 V, a FF of 75.66 %, and a JSC of 24.62 mA cm-2 .
Collapse
Affiliation(s)
- Changquan Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoling Ma
- School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
| | - Xue Zhang
- School of Materials Science & Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Ruochuan Liao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunlong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
| | - Peng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Pengsong Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Wang
- School of Materials Science & Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Fujun Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Qingdong Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
40
|
Cai C, Yao J, Chen L, Yuan Z, Zhang ZG, Hu Y, Zhao X, Zhang Y, Chen Y, Li Y. Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2021; 60:19053-19057. [PMID: 34160863 DOI: 10.1002/anie.202106364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/20/2021] [Indexed: 11/10/2022]
Abstract
Naphthalocyanine derivatives (SiNcTI-N and SiNcTI-Br) were firstly used as excellent cathode interlayer materials (CIMs) in organic solar cells, via introducing four electron-withdrawing imide groups and two hydrophilic alkyls. Both of them showed deep LUMO energy levels (below -3.90 eV), good thermal stability (Td >210 °C), and strong self-doping property. The SiNcTI-Br CIM displayed high conductivity (4.5×10-5 S cm-1 ) and electron mobility (7.81×10-5 cm2 V-1 s-1 ), which could boost the efficiencies of the PM6:Y6-based OSCs over a wide range of CIM layer thicknesses (4-25 nm), with maximum efficiency of 16.71 %.
Collapse
Affiliation(s)
- Chunsheng Cai
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yao
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhongyi Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaohong Zhao
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Youdi Zhang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
41
|
Álvaro-Martins MJ, Sánchez JG, Lavarda G, Molina D, Pallarès J, Torres T, Marsal LF, Sastre-Santos Á. Subphthalocyanine-Diketopyrrolopyrrole Conjugates: 3D Star-Shaped Systems as Non-Fullerene Acceptors in Polymer Solar Cells with High Open-Circuit Voltage. Chempluschem 2021; 86:1366-1373. [PMID: 33973731 DOI: 10.1002/cplu.202100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Indexed: 01/28/2023]
Abstract
Four star-shaped electron acceptors (C1 -OPh, C3 -OPh, C1 -Cl and C3 -Cl) based on a subphthalocyanine core bearing three diketopyrrolopyrrole wings linked by an acetylene bridge have been synthesized. These derivatives feature two different axial substituents (i. e., 4-tert-butylphenoxy (OPh) or chlorine (Cl)) and for each of them, both the C1 and the C3 regioisomers have been investigated. The four compounds exhibit a broad absorption band in the 450-700 nm region, with bandgap values near to 2 eV. These materials were applied in the active layer of inverted bulk-heterojunction polymer solar cells in combination with the donor polymer PBDB-T. Derivatives bearing the OPh axial group showed the best performances, with C1 -OPh being the most promising with a PCE of 3.27 % and a Voc as high as 1.17 V. Despite presenting the widest absorption range, the photovoltaic results obtained with C1 -Cl turned out to be the lowest (PCE=1.01 %).
Collapse
Affiliation(s)
| | - José G Sánchez
- Departament d'Enginyeria Electronica Electrica i Automatica, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Giulia Lavarda
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Spain
| | - Desiré Molina
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | - Josep Pallarès
- Departament d'Enginyeria Electronica Electrica i Automatica, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Spain
| | - Lluis F Marsal
- Departament d'Enginyeria Electronica Electrica i Automatica, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | | |
Collapse
|
42
|
Liang Z, Gao M, Zhang B, Wu J, Peng Z, Li M, Ye L, Geng Y. Fluorination Enables Tunable Molecular Interaction and Photovoltaic Performance in Non-Fullerene Solar Cells Based on Ester-Substituted Polythiophene. Front Chem 2021; 9:687996. [PMID: 34041227 PMCID: PMC8141579 DOI: 10.3389/fchem.2021.687996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to the advantages of low synthetic cost and high scalability of synthesis, polythiophene and its derivatives (PTs) have been of interest in the community of organic photovoltaics (OPVs). Nevertheless, the typical efficiency of PT based photovoltaic devices reported so far is much lower than those of the prevailing push-pull type conjugated polymer donors. Recent studies have underscored that the excessively low miscibility between PT and nonfullerene acceptor is the major reason accounting for the unfavorable active layer morphology and the inferior performance of OPVs based on a well-known PT, namely PDCBT-Cl and a non-halogenated nonfullerene acceptor IDIC. How to manipulate the miscibility between PT and acceptor molecule is important for further improving the device efficiency of this class of potentially low-cost blend systems. In this study, we introduced different numbers of F atoms to the end groups of IDIC to tune the intermolecular interaction of the hypo-miscible blend system (PDCBT-Cl:IDIC). Based on calorimetric, microscopic, and scattering characterizations, a clear relationship between the number of F atoms, miscibility, and device performance was established. With the increased number of F atoms in IDIC, the resulting acceptors exhibited enhanced miscibility with PDCBT-Cl, and the domain sizes of the blend films were reduced substantially. As a result, distinctively different photovoltaic performances were achieved for these blend systems. This study demonstrates that varying the number of F atoms in the acceptors is a feasible way to manipulate the molecular interaction and the film morphology toward high-performance polythiophene:nonfullerene based OPVs.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Bo Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Junjiang Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| |
Collapse
|
43
|
Keshtov ML, Konstantinov IO, Ostapov ILE, Khokhlov AR, Alekseev VG, Xie Z, Dahiya H, Sharma GD. New Dithiazole Side Chain Benzodithiophene Containing D–A Copolymers for Highly Efficient Nonfullerene Solar Cells. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muhammed L. Keshtov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 Moscow 119991 Russian Federation
| | - Ionv O. Konstantinov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 Moscow 119991 Russian Federation
| | - ILya E. Ostapov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 Moscow 119991 Russian Federation
| | - Alexei R. Khokhlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 Moscow 119991 Russian Federation
| | | | - Zhiyuan Xie
- Changchun Institute of Applied Chemistry of Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry Changchun 130022 China
| | - Hemraj Dahiya
- Department of Physics The LNM Institute for Information Technology Jamdoli Jaipur Rajasthan 302031 India
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute for Information Technology Jamdoli Jaipur Rajasthan 302031 India
| |
Collapse
|
44
|
Hu D, Yang Q, Zheng Y, Tang H, Chung S, Singh R, Lv J, Fu J, Kan Z, Qin B, Chen Q, Liao Z, Chen H, Xiao Z, Sun K, Lu S. 15.3% Efficiency All-Small-Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004262. [PMID: 33898196 PMCID: PMC8061398 DOI: 10.1002/advs.202004262] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Indexed: 05/22/2023]
Abstract
Single junction binary all-small-molecule (ASM) organic solar cells (OSCs) with power conversion efficiency (PCE) beyond 14% are achieved by using non-fullerene acceptor Y6 as the electron acceptor, but still lag behind that of polymer OSCs. Herein, an asymmetric Y6-like acceptor, BTP-FCl-FCl, is designed and synthesized to match the recently reported high performance small molecule donor BTR-Cl, and a record efficiency of 15.3% for single-junction binary ASM OSCs is achieved. BTP-FCl-FCl features a F,Cl disubstitution on the same end group affording locally asymmetric structures, and so has a lower total dipole moment, larger average electronic static potential, and lower distribution disorder than those of the globally asymmetric isomer BTP-2F-2Cl, resulting in improved charge generation and extraction. In addition, BTP-FCl-FCl based active layer presents more favorable domain size and finer phase separation contributing to the faster charge extraction, longer charge carrier lifetime, and much lower recombination rate. Therefore, compared with BTP-2F-2Cl, BTP-FCl-FCl based devices provide better performance with FF enhanced from 71.41% to 75.36% and J sc increased from 22.35 to 24.58 mA cm-2, leading to a higher PCE of 15.3%. The locally asymmetric F, Cl disubstitution on the same end group is a new strategy to achieve high performance ASM OSCs.
Collapse
Affiliation(s)
- Dingqin Hu
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems (Ministry of Education)School of Energy and Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Qianguang Yang
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of SciencesChongqing400714China
| | - Yujie Zheng
- Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems (Ministry of Education)School of Energy and Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Hua Tang
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of SciencesChongqing400714China
| | - Sein Chung
- Department of Chemical EngineeringPohang University of Science and Technology PohangPohang790‐784South Korea
| | - Ranbir Singh
- Department of Energy and Materials EngineeringDongguk UniversitySeoul100–715Republic of Korea
| | - Jie Lv
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
| | - Jiehao Fu
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of SciencesChongqing400714China
| | - Bo Qin
- Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems (Ministry of Education)School of Energy and Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Qianqian Chen
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems (Ministry of Education)School of Energy and Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Zhihui Liao
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of SciencesChongqing400714China
| | - Haiyan Chen
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems (Ministry of Education)School of Energy and Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of SciencesChongqing400714China
| | - Kuan Sun
- Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems (Ministry of Education)School of Energy and Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent TechnologyChongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of SciencesChongqing400714China
| |
Collapse
|
45
|
Ullah A, Ahmad S, Rahman GU, Alqarni MM, Mahmoud EE. Impact of pangolin bootleg market on the dynamics of COVID-19 model. RESULTS IN PHYSICS 2021; 23:103913. [PMID: 33623730 PMCID: PMC7892304 DOI: 10.1016/j.rinp.2021.103913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
In this paper we consider ant-eating pangolin as a possible source of the novel corona virus (COVID-19) and propose a new mathematical model describing the dynamics of COVID-19 pandemic. Our new model is based on the hypotheses that the pangolin and human populations are divided into measurable partitions and also incorporates pangolin bootleg market or reservoir. First we study the important mathematical properties like existence, boundedness and positivity of solution of the proposed model. After finding the threshold quantity for the underlying model, the possible stationary states are explored. We exploit linearization as well as Lyapanuv function theory to exhibit local stability analysis of the model in terms of the threshold quantity. We then discuss the global stability analyses of the newly introduced model and found conditions for its stability in terms of the basic reproduction number. It is also shown that for certain values of R 0 , our model exhibits a backward bifurcation. Numerical simulations are performed to verify and support our analytical findings.
Collapse
Affiliation(s)
- Abd Ullah
- Department of Mathematics, University of Malakand Chakdara, Dir (L), Pakhtunkhwa, Pakistan
| | - Saeed Ahmad
- Department of Mathematics, University of Malakand Chakdara, Dir (L), Pakhtunkhwa, Pakistan
| | - Ghaus Ur Rahman
- Department of Mathematics and Statistics, University of Swat, District Swat, Pakistan
| | - M M Alqarni
- Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Emad E Mahmoud
- Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
46
|
Bin H, Wang J, Li J, Wienk MM, Janssen RAJ. Efficient Electron Transport Layer Free Small-Molecule Organic Solar Cells with Superior Device Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008429. [PMID: 33656220 PMCID: PMC11468755 DOI: 10.1002/adma.202008429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Electron transport layers (ETLs) placed between the electrodes and a photoactive layer can enhance the performance of organic solar cells but also impose limitations. Most ETLs are ultrathin films, and their deposition can disturb the morphology of the photoactive layers, complicate device fabrication, raise cost, and also affect device stability. To fully overcome such drawbacks, efficient organic solar cells that operate without an ETL are preferred. In this study, a new small-molecule electron donor (H31) based on a thiophene-substituted benzodithiophene core unit with trialkylsilyl side chains is designed and synthesized. Blending H31 with the electron acceptor Y6 gives solar cells with power conversion efficiencies exceeding 13% with and without 2,9-bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d'e'f ']diisoquinoline-1,3,8,10(2H,9H)-tetrone (PDINO) as the ETL. The ETL-free cells deliver a superior shelf life compared to devices with an ETL. Small-molecule donor-acceptor blends thus provide interesting perspectives for achieving efficient, reproducible, and stable device architectures without electrode interlayers.
Collapse
Affiliation(s)
- Haijun Bin
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Junke Wang
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Martijn M. Wienk
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - René A. J. Janssen
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Dutch Institute for Fundamental Energy ResearchDe Zaale 20, 5612 AJEindhovenThe Netherlands
| |
Collapse
|
47
|
Kitisriworaphan W, Chawanpunyawat T, Manyum T, Chasing P, Namuangruk S, Sudyoadsuk T, Promarak V. The improvement in hole-transporting and electroluminescent properties of diketopyrrolopyrrole pigment by grafting with carbazole dendrons. RSC Adv 2021; 11:12710-12719. [PMID: 35423806 PMCID: PMC8696974 DOI: 10.1039/d1ra00805f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Diketopyrrolopyrrole (DPP) pigments are essential and have been intensively exploited as building-blocks for the synthesis of organic semiconducting polymers and small molecules; however, DPP derivatives as emissive materials for electroluminescent (EL) devices have rarely been explored. In this work, a series of new DPP derivatives grafted with carbazole dendrons in a non-conjugated fashion using an amide linkage was designed to improve the performance of DPP in EL devices. Three DPP derivatives (G0DPP, G1DPP and G2DPP) bearing di(p-chlorophenyl)-DPP (Pigment Red 254) as the core substituted with a hexyl chain, N-hexyl carbazole and N-hexyl-N'-9,3':6',N''-tercarbazole, respectively, were synthesized to afford improved hole-transporting properties without affecting the photophysical and electronic properties of the DPP core. The synthesized DPP derivatives displayed an intense yellow fluorescence emission peaked at 536 nm with an absolute photoluminescence quantum yield close to unity in solution. The hole-transporting capability of molecules was improved when carbazole dendrons were incorporated, which increased with an increase in the generation of substituent carbazole dendrons in the order of G0DPP < G1DPP < G2DPP. Significantly, the use of G2DPP, showing the highest hole mobility, in an EL device yielded a strong and stable yellow emission peaked at 556 nm (CIE x, y color coordinates of (0.45, 0.53)) with a brightness of 3060 cd m-2, maximum luminous efficiency of 9.24 cd A-1 and a maximum EQE of 3.11%.
Collapse
Affiliation(s)
- Wipaporn Kitisriworaphan
- School of Chemistry, Institute of Science, Suranaree University of Technology Muang District Nakhon Ratchasima 30000 Thailand
| | - Thanyarat Chawanpunyawat
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Thanaporn Manyum
- School of Chemistry, Institute of Science, Suranaree University of Technology Muang District Nakhon Ratchasima 30000 Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Taweesak Sudyoadsuk
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| |
Collapse
|
48
|
Liu X, Ma R, Wang Y, Du S, Tong J, Shi X, Li J, Bao X, Xia Y, Liu T, Yan H. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11117-11124. [PMID: 33635064 DOI: 10.1021/acsami.0c22014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional additives like 1,8-diiodooctane and 1-chloronaphthalene were successfully utilized morphology optimization of various polymer solar cells (PSCs) in an active layer, but their toxicity brought by halogen atoms limits their corresponding large-scale manufacturing. Herein, a new nontoxic halogen-free additive named benzyl benzoate (BB) was introduced into the classic PSCs (PTB7-Th:PC71BM), and an optimal power conversion efficiency (PCE) of 9.43% was realized, while there was a poor PCE for additive free devices (4.83%). It was shown that BB additives could inhibit PC71BM's overaggregation, which increased the interface contact area and formed a better penetration path of an active layer. In addition, BB additives could not only boost the distribution of a PTB7-Th donor at the surface, beneficial to suppressing exciton recombination in inverted devices but also boost the crystallinity of a blend layer, which is conducive to exciton dissociation and charge transport. Our work effectively improved a device performance by using a halogen-free additive, which can be referential for industrialization.
Collapse
Affiliation(s)
- Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yufei Wang
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanshan Du
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyan Shi
- College of Science, Henan University of Technology, Zhengzhou 450001, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yangjun Xia
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Liu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
49
|
Du F, Wang H, Zhang Z, Yang L, Cao J, Yu J, Tang W. An unfused-ring acceptor with high side-chain economy enabling 11.17% as-cast organic solar cells. MATERIALS HORIZONS 2021; 8:1008-1016. [PMID: 34821331 DOI: 10.1039/d0mh01585g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Side-chain engineering on nonfullerene acceptors (NFAs) is crucial for modulating their solubility and crystallinity as well as packing behaviours in active layers to pursue high-performance organic solar cells (OSCs). High weight ratios of side chains are generally used by NFAs for the desired device efficiencies. Side-chain economy has seldom been discussed despite increased cost and difficulties in synthesis when optimizing the molecular design. Herein, we introduce 7H-dibenzo[c,g]carbazole (DCB) as an electron-donating core to design unfused-ring acceptors (UFAs) with a dramatically low weight ratio of side chains. DCB-4F has thus been designed and compared with the carbazole cored analogue (CB-4F). The unique conformation of the DCB core endows DCB-4F with higher solubility (8.2 mg mL-1 in chloroform) compared to CB-4F (2.2 mg mL-1) when using the same side chains. Featuring a lowest unoccupied molecular orbital (LUMO) level of -3.86 eV and an optical bandgap of 1.55 eV, the DCB-4F film exhibits an absorption profile (maximum 667 nm) complementary to polymer donor PM6. The PM6:DCB-4F as-cast OSCs deliver a power conversion efficiency (PCE) of 9.56% with a high open-circuit voltage (VOC) of 1.00 V. By adding 10 wt% PC71BM into the casting solutions, a greatly improved PCE of 11.17% is readily achieved, which is one of the highest PCEs for as-cast single-junction UFA-based devices. The PM6:DCB-4F based blends show homogeneous nano-fiberous morphology and higher hydrophobicity. The design of conformation-tuned NFAs using sterically hindered DCB-like cores is promising to achieve highly efficient as-cast OSCs.
Collapse
Affiliation(s)
- Fuqiang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zając D, Honisz D, Łapkowski M, Sołoducho J. 2,1,3-Benzothiadiazole Small Donor Molecules: A DFT Study, Synthesis, and Optoelectronic Properties. Molecules 2021; 26:1216. [PMID: 33668393 PMCID: PMC7956540 DOI: 10.3390/molecules26051216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
We herein report the design and synthesis of small-donor molecules, 2,1,3-benzothiadiazole derivatives (2a-d), by Stille or Suzuki reaction. The synthesized compounds were characterized by spectroscopic and electrochemical methods. The compounds 2a-d absorb the light in a wide range (the UV-green/yellow light (2c)) and emit from green to red/near IR light (2c). Furthermore, these compounds show a narrow energy gap (1.75-2.38 eV), and high Ea values increasing for polymers, which prove their electron-donating nature and semiconductor properties. The measurements were enhanced by theoretical modeling.
Collapse
Affiliation(s)
- Dorota Zając
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Damian Honisz
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (D.H.); (M.Ł.)
| | - Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (D.H.); (M.Ł.)
- Centre of Polymer and Carbon Materials, Polish Academy of Science, 34 Curie Sklodowska Str., 41-819 Zabrze, Poland
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|