1
|
Xu A, Ma Y, Yan D, Li F, Zhou T, Liu J, Wang F. Unraveling Electron Transfer in the Oxidation of Yttrium Metal Atoms: Dual Pathways from Reactive and Nonreactive Imaging. J Phys Chem Lett 2025; 16:3998-4005. [PMID: 40227481 DOI: 10.1021/acs.jpclett.5c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The intricate mechanisms underlying electron transfer and structural evolution are essential to understanding the oxidation dynamics of transition metal atoms; however, accurately measuring the mechanisms remains challenging. In this study, utilizing laser ablation-crossed beam and time-sliced ion velocity imaging techniques, we identified two distinct electron transfer mechanisms in the reactions of Y and O2 based on reactive and nonreactive scattering measurements across varying collision energies. (1) Low-barrier end-on pathway: Electron transfer occurs through a collinear Y-O-O geometry with a low activation barrier, evidenced by rebound scattering of YO products at low collision energy and backward scattering of Y reactants at higher energies. (2) High-barrier side-on pathway: Electron transfer proceeds through a side-on geometry, presenting a higher activation barrier that facilitates the formation of long-lived O-Y-O intermediates, which is characterized by the backward-forward peaking angular distribution of YO products and broad energy distributions of O2 reactants at high collision energy.
Collapse
Affiliation(s)
- Ang Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Yujie Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Dong Yan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Fangfang Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Ti Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Jiaxing Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Fengyan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Xue S, Dong Y, Wang Z, Zhao X, Zhang T, Qiu F, Zhao L, Pan J. Electrocatalytic 4e - Oxygen Reduction through the Innovative Design of a Trinuclear Cobalt Porphyrin(2.1.2.1) Nanobelt. Inorg Chem 2024; 63:24494-24500. [PMID: 39692247 DOI: 10.1021/acs.inorgchem.4c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Trinuclear cobalt porphyrin(2.1.2.1) nanobelts have been synthesized. The oxygen reduction reaction (ORR) study reveals that the catalyst featuring a nanobelt cyclic structure with three cobalt active sites favors the 4e- ORR pathway, attaining a selectivity for H2O formation that approaches 100%. This research provides a novel strategy for ORR catalyst design, where the expansive pore structure of the nanobelt complex facilitates substrate binding, while multiple active sites are provided by the multimetallic cavity.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziyi Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaohui Zhao
- School of Optical and Electronic Information, Jiangsu/Suzhou Key Laboratory of Biophotonics, and International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou 215104, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
3
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Zhu CN, Chen X, Xu YQ, Wang F, Zheng DY, Liu C, Zhang XH, Yi Y, Cheng DB. Advanced Preparation Methods and Biomedical Applications of Single-Atom Nanozymes. ACS Biomater Sci Eng 2024; 10:7352-7371. [PMID: 39535074 DOI: 10.1021/acsbiomaterials.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles with inherent defects can harness biomolecules to catalyze reactions within living organisms, thereby accelerating the advancement of multifunctional diagnostic and therapeutic technologies. In the quest for superior catalytic efficiency and selectivity, atomically dispersed single-atom nanozymes (SANzymes) have garnered significant interest recently. This review concentrates on the development of SANzymes, addressing potential challenges such as fabrication strategies, surface engineering, and structural characteristics. Notably, we elucidate the catalytic mechanisms behind some key reactions to facilitate the biomedical application of SANzymes. The diverse biomedical uses of SANzymes including in cancer therapy, wound disinfection, biosensing, and oxidative stress cytoprotection are comprehensively summarized, revealing the link between material structure and catalytic performance. Lastly, we explore the future prospects of SANzymes in biomedical fields.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xin Chen
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fei Wang
- Department of Biology and the School of Natural Sciences, Wentworth College, University of York, Wentworth Way, Heslington, York YO10 5DD, England
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
5
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
6
|
Zhao W, Chen H, Zhang J, Low PJ, Sun H. Photocatalytic overall water splitting endowed by modulation of internal and external energy fields. Chem Sci 2024:d4sc05065g. [PMID: 39397813 PMCID: PMC11467725 DOI: 10.1039/d4sc05065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
The pursuit of sustainable and clean energy sources has driven extensive research into the generation and use of novel energy vectors. The photocatalytic overall water splitting (POWS) reaction has been identified as a promising approach for harnessing solar energy to produce hydrogen to be used as a clean energy carrier. Materials chemistry and associated photocatalyst design are key to the further improvement of the efficiency of the POWS reaction through the optimization of charge carrier separation, migration and interfacial reaction kinetics. This review examines the latest progress in POWS, ranging from key catalyst materials to modification strategies and reaction design. Critical analysis focuses on carrier separation and promotion from the perspective of internal and external energy fields, aiming to trace the driving force behind the POWS process and explore the potential for industrial development of this technology. This review concludes by presenting perspectives on the emerging opportunities for this technology, and the challenges to be overcome by future studies.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| | - Haijun Chen
- Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University Nanjing 211816 Jiangsu China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| |
Collapse
|
7
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
8
|
Suresh P, Natarajan A, Rajaram A. Multi-Active Sites Loaded NiCu-MOF@MWCNTs as a Bifunctional Electrocatalyst for Electrochemical Water Splitting Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9509-9519. [PMID: 38648179 DOI: 10.1021/acs.langmuir.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Water can be sustainably and ecologically converted by electrocatalysts into hydrogen and oxygen, which, in turn, can be converted into energy. However, the advancement of using water as green energy is hampered by limitations in the study of high-performance catalysts. The purpose of this study was to construct an electrocatalyst by anchoring well-dispersed multiwalled carbon nanotubes (MWCNTs) on nickel-copper (NiCu-MOF) nanoblocks through a simple solvothermal method. The synthesis of NiCu-MOF@MWCNTs demonstrated exceptional electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. At 10 mA cm-2 in 1.0 M KOH, the OER and HER performance of the catalyst displays a relatively low overpotential, with only 220 and 78 mV, respectively. Furthermore, the catalytic activity remained unchanged for 24 h in 1.0 M KOH. This performance was superior to the majority of electrocatalysts that have been reported. This was achieved by utilizing the strong synergy that exists between MWCNTs and bimetallic (Ni-Cu) nano blocks present in the metal-organic framework. The enhanced electrocatalytic activity of the nanocomposite can be attributed to the synergistic impact caused by its various components.
Collapse
Affiliation(s)
- Pavithra Suresh
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Abirami Natarajan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Arulmozhi Rajaram
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
9
|
Miao J, Lin C, Yuan X, An Y, Yang Y, Li Z, Zhang K. Supramolecular catalyst with [FeCl 4] unit boosting photoelectrochemical seawater splitting via water nucleophilic attack pathway. Nat Commun 2024; 15:2023. [PMID: 38448472 PMCID: PMC10918074 DOI: 10.1038/s41467-024-46342-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Propelled by the structure of water oxidation co-catalysts in natural photosynthesis, molecular co-catalysts have long been believed to possess the developable potential in artificial photosynthesis. However, the interfacial complexity between light absorber and molecular co-catalyst limits its structural stability and charge transfer efficiency. To overcome the challenge, a supramolecular scaffold with the [FeCl4] catalytic units is reported, which undergo a water-nucleophilic attack of the water oxidation reaction, while the supramolecular matrix can be in-situ grown on the surface of photoelectrode through a simple chemical polymerization to be a strongly coupled interface. A well-defined BiVO4 photoanode hybridized with [FeCl4] units in polythiophene reaches 4.72 mA cm-2 at 1.23 VRHE, which also exhibits great stability for photoelectrochemical seawater splitting due to the restraint on chlorine evolution reaction by [FeCl4] units and polythiophene. This work provides a novel solution to the challenge of the interface charge transfer of molecular co-catalyst hybridized photoelectrode.
Collapse
Affiliation(s)
- Jiaming Miao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaojia Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang An
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Yang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhaosheng Li
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
10
|
Cai D, Yang Z, Tong R, Huang H, Zhang C, Xia Y. Binder-Free MOF-Based and MOF-Derived Nanoarrays for Flexible Electrochemical Energy Storage: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305778. [PMID: 37948356 DOI: 10.1002/smll.202305778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Indexed: 11/12/2023]
Abstract
The fast development of Internet of Things and the rapid advent of next-generation versatile wearable electronics require cost-effective and highly-efficient electroactive materials for flexible electrochemical energy storage devices. Among various electroactive materials, binder-free nanostructured arrays have attracted widespread attention. Featured with growing on a conductive and flexible substrate without using inactive and insulating binders, binder-free 3D nanoarray electrodes facilitate fast electron/ion transportation and rapid reaction kinetics with more exposed active sites, maintain structure integrity of electrodes even under bending or twisted conditions, readily release generated joule heat during charge/discharge cycles and achieve enhanced gravimetric capacity of the whole device. Binder-free metal-organic framework (MOF) nanoarrays and/or MOF-derived nanoarrays with high surface area and unique porous structure have emerged with great potential in energy storage field and been extensively exploited in recent years. In this review, common substrates used for binder-free nanoarrays are compared and discussed. Various MOF-based and MOF-derived nanoarrays, including metal oxides, sulfides, selenides, nitrides, phosphides and nitrogen-doped carbons, are surveyed and their electrochemical performance along with their applications in flexible energy storage are analyzed and overviewed. In addition, key technical issues and outlooks on future development of MOF-based and MOF-derived nanoarrays toward flexible energy storage are also offered.
Collapse
Affiliation(s)
- Dongming Cai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Zhuxian Yang
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| | - Rui Tong
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Haiming Huang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Chuankun Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Yongde Xia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
11
|
Lian Z, Gao F, Xiao H, Luo D, Li M, Fang D, Yang Y, Zi J, Li H. Photo-self-Fenton Reaction Mediated by Atomically Dispersed Ag-Co Photocatalysts toward Efficient Degradation of Organic Pollutants. Angew Chem Int Ed Engl 2024; 63:e202318927. [PMID: 38189599 DOI: 10.1002/anie.202318927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Achieving the complete mineralization of persistent pollutants in wastewater is still a big challenge. Here, we propose an efficient photo-self-Fenton reaction for the degradation of different pollutants using the high-density (Ag: 22 wt %) of atomically dispersed AgCo dual sites embedded in graphic carbon nitride (AgCo-CN). Comprehensive experimental measurements and density functional theory (DFT) calculations demonstrate that the Ag and Co dual sites in AgCo-CN play a critical role in accelerating the photoinduced charge separation and forming the self-Fenton redox centers, respectively. The bimetallic AgCo-CN exhibited excellent photocatalytic performance toward the phenol even under extreme conditions due to an efficient degradation pathway and in situ generation of the hydrogen peroxide producing the main active oxygen species (⋅OH and 1 O2 ) and showed long-term activity in a self-design photo-Filter reactor for the purification of the phenol. Our discoveries pave the way for the design of efficient single-atoms photocatalysts-based photo-self-Fenton reaction for recalcitrant pollutant treatment.
Collapse
Affiliation(s)
- Zichao Lian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fangfang Gao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Han Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Di Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Mengyuan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Duoduo Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yupeng Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jiangzhi Zi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Hexing Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
12
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Zhang J, Zhao Y, Zhao W, Wang J, Hu Y, Huang C, Zou X, Liu Y, Zhang D, Lu X, Fan H, Hou Y. Improving Electrocatalytic Oxygen Evolution through Local Field Distortion in Mg/Fe Dual-site Catalysts. Angew Chem Int Ed Engl 2023; 62:e202314303. [PMID: 37942727 DOI: 10.1002/anie.202314303] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Transition metal single atom electrocatalysts (SACs) with metal-nitrogen-carbon (M-N-C) configuration show great potential in oxygen evolution reaction (OER), whereby the spin-dependent electrons must be allowed to transfer along reactants (OH- /H2 O, singlet spin state) and products (O2 , triplet spin state). Therefore, it is imperative to modulate the spin configuration in M-N-C to enhance the spin-sensitive OER energetics, which however remains a significant challenge. Herein, we report a local field distortion induced intermediate to low spin transition by introducing a main-group element (Mg) into the Fe-N-C architecture, and decode the underlying origin of the enhanced OER activity. We unveil that, the large ionic radii mismatch between Mg2+ and Fe2+ can cause a FeN4 in-plane square local field deformation, which triggers a favorable spin transition of Fe2+ from intermediate (dxy 2 dxz 2 dyz 1 dz2 1 , 2.96 μB ) to low spin (dxy 2 dxz 2 dyz 2 , 0.95 μB ), and consequently regulate the thermodyna-mics of the elementary step with desired Gibbs free energies. The as-obtained Mg/Fe dual-site catalyst demonstrates a superior OER activity with an overpotential of 224 mV at 10 mA cm-2 and an electrolysis voltage of only 1.542 V at 10 mA cm-2 in the overall water splitting, which outperforms those of the state-of-the-art transition metal SACs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Sciences&Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Yufeng Zhao
- College of Sciences&Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Wanting Zhao
- School of Materials Science and Engineering, Peking University, Beijing Key Laboratory for Magneto Electric Materials and Devices (BKLMMD), Beijing, 100871, China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chengyu Huang
- College of Sciences&Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yang Liu
- College of Sciences&Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Dengsong Zhang
- College of Sciences&Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongjin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, Beijing Key Laboratory for Magneto Electric Materials and Devices (BKLMMD), Beijing, 100871, China
| |
Collapse
|
14
|
Sumbowo JF, Ihsan FA, Fathurrahman F, Amalia N, Akbar FT, Yudistira HT, Mobarak NN, Dipojono HK, Wella SA, Saputro AG. Graphene-edge-supported iron dual-atom for oxygen reduction electrocatalysts. Phys Chem Chem Phys 2023; 25:32637-32647. [PMID: 38009535 DOI: 10.1039/d3cp03642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pyrolyzed Fe-N-C-based catalysts, particularly FeN4, are reported to show enhanced catalytic activity for some chemical reactions, particularly for the oxygen reduction reaction (ORR). Here, we present a computational study to investigate another pyrolyzed Fe-N-C-based catalyst, i.e. Fe2N6, adsorbed on graphene with special emphasis on the edges of graphene nanoribbons (both zig-zag and armchair configurations) as a candidate for Fe dual-atom catalysts (Fe-DACs). Utilizing density functional theory calculations along with microkinetic simulations, we investigate the influence of graphitic edges on the stability and ORR activity of Fe-DAC active sites. Our findings indicate that the presence of graphitic edges, particularly the zig-zag configuration, significantly lowers the formation energy of Fe-DAC active sites, making them more likely to form at the edges. Furthermore, several Fe-DAC active sites at graphitic edges exhibit exceptional ORR performance, surpassing the commonly employed FeN4 active site in SAC systems and even exceeding the benchmark Pt(111) surface. Notably, the (Fe2N6)o@z1 active site demonstrates outstanding performance in both associative and dissociative mechanisms. These results highlight the role of graphitic nanopores in enhancing the catalytic behavior of Fe-DAC active sites, providing valuable insights for designing efficient non-precious metal catalysts for ORR applications.
Collapse
Affiliation(s)
- Joel F Sumbowo
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia.
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Farhan A Ihsan
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia.
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Fadjar Fathurrahman
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Nadya Amalia
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia.
| | - Fiki T Akbar
- Theoretical High Energy Physics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Hadi T Yudistira
- Mechanical Engineering Study Program, Institut Teknologi Sumatera (ITERA), South Lampung 35365, Indonesia
| | - Nadhratun N Mobarak
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hermawan K Dipojono
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Sasfan A Wella
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia.
- Collaboration Research Center for Advanced Energy Materials, Bandung 40132, Indonesia
| | - Adhitya G Saputro
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
15
|
Tu H, Zhang H, Song Y, Liu P, Hou Y, Xu B, Liao T, Guo J, Sun Z. Electronic Asymmetry Engineering of Fe-N-C Electrocatalyst via Adjacent Carbon Vacancy for Boosting Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305194. [PMID: 37752831 PMCID: PMC10646226 DOI: 10.1002/advs.202305194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 09/28/2023]
Abstract
Single-atomic transition metal-nitrogen-carbon (M-N-C) structures are promising alternatives toward noble-metal-based catalysts for oxygen reduction reaction (ORR) catalysis involved in sustainable energy devices. The symmetrical electronic density distribution of the M─N4 moieties, however, leads to unfavorable intermediate adsorption and sluggish kinetics. Herein, a Fe-N-C catalyst with electronic asymmetry induced by one nearest carbon vacancy adjacent to Fe─N4 is conceptually produced, which induces an optimized d-band center, lowered free energy barrier, and thus superior ORR activity with a half-wave potential (E1/2 ) of 0.934 V in a challenging acidic solution and 0.901 V in an alkaline solution. When assembled as the cathode of a Zinc-air battery (ZAB), a peak power density of 218 mW cm-2 and long-term durability up to 200 h are recorded, 1.5 times higher than the noble metal-based Pt/C+RuO2 catalyst. This work provides a new strategy on developing efficient M-N-C catalysts and offers an opportunity for the real-world application of fuel cells and metal-air batteries.
Collapse
Affiliation(s)
- Huanlu Tu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Ting Liao
- School of Mechanical, Medical and Process EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| |
Collapse
|
16
|
Xue Y, Jia Y, Liu S, Yuan S, Ma R, Ma Q, Fan J, Zhang WX. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132106. [PMID: 37506648 DOI: 10.1016/j.jhazmat.2023.132106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
Xiang T, Liang Y, Zeng Y, Deng J, Yuan J, Xiong W, Song B, Zhou C, Yang Y. Transition Metal Single-Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303732. [PMID: 37300329 DOI: 10.1002/smll.202303732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Excessive accumulation of nitrate in the environment will affect human health. To combat nitrate pollution, chemical, biological, and physical technologies have been developed recently. The researcher favors electrocatalytic reduction nitrate reaction (NO3 RR) because of the low post-treatment cost and simple treatment conditions. Single-atom catalysts (SACs) offer great activity, exceptional selectivity, and enhanced stability in the field of NO3 RR because of their high atomic usage and distinctive structural characteristics. Recently, efficient transition metal-based SACs (TM-SACs) have emerged as promising candidates for NO3 RR. However, the real active sites of TM-SACs applied to NO3 RR and the key factors controlling catalytic performance in the reaction process remain ambiguous. Further understanding of the catalytic mechanism of TM-SACs applied to NO3 RR is of practical significance for exploring the design of stable and efficient SACs. In this review, from experimental and theoretical studies, the reaction mechanism, rate-determining steps, and essential variables affecting activity and selectivity are examined. The performance of SACs in terms of NO3 RR, characterization, and synthesis is then discussed. In order to promote and comprehend NO3 RR on TM-SACs, the design of TM-SACs is finally highlighted, together with the current problems, their remedies, and the way forward.
Collapse
Affiliation(s)
- Tianyi Xiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuntao Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
18
|
Rojas-Luna R, Amaro-Gahete J, Jiménez-Sanchidrián C, Ruiz JR, Esquivel D, Romero-Salguero FJ. Iridium-Complexed Dipyridyl-Pyridazine Organosilica as a Catalyst for Water Oxidation. Inorg Chem 2023; 62:11954-11965. [PMID: 37459184 PMCID: PMC10394666 DOI: 10.1021/acs.inorgchem.3c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The heterogenization of metal-complex catalysts to be applied in water oxidation reactions is a currently growing field of great scientific impact for the development of energy conversion devices simulating the natural photosynthesis process. The attachment of IrCp*Cl complexes to the dipyridyl-pyridazine N-chelating sites on the surface of SBA-15 promotes the formation of metal bipyridine-like complexes, which can act as catalytic sites in the oxidation of water to dioxygen, the key half-reaction of artificial photosynthetic systems. The efficiency of the heterogeneous catalyst, Ir@NdppzSBA, in cerium(IV)-driven water oxidation was thoroughly evaluated, achieving high catalytic activity even at a long reaction time. The reusability and stability were also examined after three reaction cycles, with a slight loss of activity. A comparison with an analogous homogeneous iridium catalyst revealed the enhanced durability and performance of the heterogeneous system based on the Ir@NdppzSBA catalyst due to the stability of the SBA-15 structure as well as the isolated metal active sites. Thereby, this new versatile synthesis route for the preparation of water oxidation catalysts opens a new avenue for the construction of alternative heterogeneous catalytic systems with high surface area, ease of functionalization, and facile separation to improve the efficiency in the water oxidation reaction.
Collapse
Affiliation(s)
- Raúl Rojas-Luna
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Juan Amaro-Gahete
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - César Jiménez-Sanchidrián
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - José Rafael Ruiz
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Dolores Esquivel
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Francisco José Romero-Salguero
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| |
Collapse
|
19
|
Jawhari AH, Hasan N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3760. [PMID: 37241385 PMCID: PMC10220912 DOI: 10.3390/ma16103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Hydrogen is considered a good clean and renewable energy substitute for fossil fuels. The major obstacle facing hydrogen energy is its efficacy in meeting its commercial-scale demand. One of the most promising pathways for efficient hydrogen production is through water-splitting electrolysis. This requires the development of active, stable, and low-cost catalysts or electrocatalysts to achieve optimized electrocatalytic hydrogen production from water splitting. The objective of this review is to survey the activity, stability, and efficiency of various electrocatalysts involved in water splitting. The status quo of noble-metal- and non-noble-metal-based nano-electrocatalysts has been specifically discussed. Various composites and nanocomposite electrocatalysts that have significantly impacted electrocatalytic HERs have been discussed. New strategies and insights in exploring nanocomposite-based electrocatalysts and utilizing other new age nanomaterial options that will profoundly enhance the electrocatalytic activity and stability of HERs have been highlighted. Recommendations on future directions and deliberations for extrapolating information have been projected.
Collapse
Affiliation(s)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
20
|
Pan S, Li R, Wang J, Zhang Q, Wang M, Shi B, Wang P, Zhao Y, Zhang X. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells. ACS NANO 2023; 17:4539-4550. [PMID: 36808966 DOI: 10.1021/acsnano.2c10477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photovoltaic hydrogen production from seawater is of great significance. Challenges of solar-driven seawater electrolysis, for example, competing among chlorine evolution reactions, chloride corrosion, and catalyst poisoning, seriously restrict the development of this technology. In this paper, we report a two-dimensional nanosheet quaternary metal hydroxide catalyst composed of Ni, Fe, Cr, and Mo elements. By in situ electrochemical activation, a partial Mo element was leached and morphologically transformed in the catalyst. The higher metal valence states and many O vacancies were obtained, providing excellent catalytic activity and corrosion resistance in overall alkaline seawater electrolysis operating at an industrial-required current density of 500 mA cm-2 over 1000 h under 1.82 V low voltages at room temperature. The floating solar seawater splitting device shows a 20.61 ± 0.77% efficiency of solar energy to hydrogen (STH). This work demonstrates the development of efficient solar seawater electrolysis devices and potentially promotes research on clean energy conversion.
Collapse
Affiliation(s)
- Sanjiang Pan
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Renjie Li
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Jin Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Qixing Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Manjing Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Biao Shi
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Pengyang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| |
Collapse
|
21
|
Yao Y, Tang Y, Zhang Y, Ma Z, Tao Z, Qiu Y, Wang S. Engineering electronic and geometric structures of Fe, N-doped carbon polyhedrons toward organic contaminant oxidation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Single-atom site catalysts (SACs) can maximize the utilization of active metal species and provide an attractive way to regulate the activity and selectivity of catalytic reactions. The adjustable coordination configuration and atomic structure of SACs enable them to be an ideal candidate for revealing reaction mechanisms in various catalytic processes. The minimum use of metals and relatively tight anchoring of the metal atoms significantly reduce leaching and environmental risks. Additionally, the unique physicochemical properties of single atom sites endow SACs with superior activity in various catalytic processes for environmental remediation (ER). Generally, SACs are burgeoning and promising materials in the application of ER. However, a systematic and critical review on the mechanism and broad application of SACs-based ER is lacking. Herein, we review emerging studies applying SACs for different ERs, such as eliminating organic pollutants in water, removing volatile organic compounds, purifying automobile exhaust, and others (hydrodefluorination and disinfection). We have summarized the synthesis, characterization, reaction mechanism and structural-function relationship of SACs in ER. In addition, the perspectives and challenges of SACs for ER are also analyzed. We expect that this review can provide constructive inspiration for discoveries and applications of SACs in environmental catalysis in the future.
Collapse
Affiliation(s)
- Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xijun Fu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lu Song
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
23
|
Gao J, Tian W, Zhang H, Wang S. Engineered inverse opal structured semiconductors for solar light-driven environmental catalysis. NANOSCALE 2022; 14:14341-14367. [PMID: 36148646 DOI: 10.1039/d2nr03924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inverse opal (IO) macroporous semiconductor materials with unique physicochemical advantages have been widely used in solar-related environmental areas. In this minireview, we first summarize the synthetic methods of IO materials, emphasizing the two-step and three-step approaches, with the typical physicochemical properties being compared where applicable. We subsequently discuss the application of IO semiconductors (e.g., TiO2, ZnO, g-C3N4) in various photo-related environmental techniques, including photo- and photoelectro-catalytic organic pollutant degradation in water, optical sensors for environmental monitoring, and water disinfection. The engineering strategies of these hierarchical structures for optimizing the activities for different catalytic reactions are discussed, ranging from heterojunction construction, cocatalyst loading, and heteroatom doping, to surface defect construction. Structure-activity relationships are established correspondingly. With a systematic understanding of the unique properties and catalytic activities, this review is expected to orient the design and structure optimization of IO semiconductor materials for photo-related performance improvement in various environmental techniques. Finally, the challenges of emerging IO structured semiconductors and future development directions are proposed.
Collapse
Affiliation(s)
- Junxian Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
24
|
Hao L, Guo C, Hu Z, Guo R, Liu X, Liu C, Tian Y. Single-atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. NANOSCALE 2022; 14:13861-13889. [PMID: 35994044 DOI: 10.1039/d2nr02989h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Novel single-atom catalysts (SACs) have become the frontier materials in the field of environmental remediation, especially wastewater purification because of their nearly 100% ultra-high atomic utilization and excellent properties. SACs can be used in Fenton-like catalytic reactions to activate various peroxides (such as hydrogen peroxide (H2O2), ozone (O3), and persulfate (PSs)) to release active radicals and non-radicals, acting on target pollutants, and realize their decomposition and mineralization. Among them, peroxymonosulfate (PMS) in PS systems has gradually become an important oxidant in Fenton-like processes due to its asymmetric molecular structure and characteristics of easy storage and transportation. Focusing on the numerous proposed strategies for the synthesis and performance regulation of Fenton-like SACs, it has been confirmed that the coordination of isolated metal atoms and the support/carrier enhances the structural robustness and chemical stability of these catalysts and optimizes their catalytic activity and kinetics. Moreover, the tunability of the coordination environment and electronic properties of SACs can improve their other catalytic properties, such as cycle stability and selectivity. Thus, to systematically explain the relationship between the active center, catalyst performance and the corresponding potential catalytic mechanism, herein, we focus on the representative scientific work on the preparation strategy, catalytic application and performance regulation of Fenton-like SACs. Specifically, we review the typical Fenton-like SAC reaction processes and catalytic mechanisms for the degradation of refractory organic compounds in advanced oxidation processes (AOPs). Finally, the future development and challenges of Fenton-like SACs are presented.
Collapse
Affiliation(s)
- Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Chunming Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ye Tian
- The First Hospital of Qinhuangdao 066099, China
| |
Collapse
|
25
|
Liu H, Yu F, Wu K, Xu G, Wu C, Liu HK, Dou SX. Recent Progress on Fe-Based Single/Dual-Atom Catalysts for Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106635. [PMID: 35218294 DOI: 10.1002/smll.202106635] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
As one of the most competitive candidates for large-scale energy storage, zinc-air batteries (ZABs) have attracted great attention due to their high theoretical specific energy density, low toxicity, high abundance, and high safety. It is highly desirable but still remains a huge challenge, however, to achieve cheap and efficient electrocatalysts to promote their commercialization. Recently, Fe-based single-atom and dual-atom catalysts (SACs and DACs, respectively) have emerged as powerful candidates for ZABs derived from their maximum utilization of atoms, excellent catalytic performance, and low price. In this review, some fundamental concepts in the field of ZABs are presented and the recent progress on the reported Fe-based SACs and DACs is summarized, mainly focusing on the relationship between structure and performance at the atomic level, with the aim of providing helpful guidelines for future rational designs of efficient electrocatalysts with atomically dispersed active sites. Finally, the great advantages and future challenges in this field of ZABs are also discussed.
Collapse
Affiliation(s)
- Haoxuan Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Fangfang Yu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chao Wu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
26
|
Chen Y, Qiao S, Tang Y, Du Y, Zhang D, Wang W, Zhang H, Sun X, Liu C. Double-Faced Atomic-Level Engineering of Hollow Carbon Nanofibers as Free-Standing Bifunctional Oxygen Electrocatalysts for Flexible Zn-Air Battery. ACS NANO 2022; 16:15273-15285. [PMID: 36075101 DOI: 10.1021/acsnano.2c06700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible solid-state zinc-air batteries (ZABs) with low cost, excellent safety, and high energy density has been considered as one of ideal power sources for portable and wearable electronic devices, while their practical applications are still hindered by the kinetically sluggish cathodic oxygen reduction and oxygen evolution reactions (ORR/OER). Herein, a Janus-structured flexible free-standing bifunctional oxygen electrocatalyst, with OER-active O, N co-coordinated Ni single atoms and ORR-active Co3O4@Co1-xS nanosheet arrays being separately integrated at the inner and outer walls of flexible hollow carbon nanofibers (Ni-SAs/HCNFs/Co-NAs), is reported. Benefiting from the sophisticated topological structure and atomic-level-designed chemical compositions, Ni-SAs/HCNFs/Co-NAs exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V, representing the current state-of-the-art flexible free-standing bifunctional ORR/OER electrocatalyst. Impressively, the Ni-SAs/HCNFs/Co-NAs-based liquid ZAB show a high open-circuit potential (1.45 V), high capacity (808 mAh g-1 Zn), and extremely long life (over 200 h at 10 mA cm-2), and the assembled flexible all-solid-state ZABs have excellent cycle stability (over 80 h). This work provides an efficient strategy for developing high-performance bifunctional ORR/OER electrocatalysts for commercial applications.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Shanshan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yi Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
27
|
Wang X, Zhu Y, Li H, Lee JM, Tang Y, Fu G. Rare-Earth Single-Atom Catalysts: A New Frontier in Photo/Electrocatalysis. SMALL METHODS 2022; 6:e2200413. [PMID: 35751459 DOI: 10.1002/smtd.202200413] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) provide well-defined active sites with 100% atom utilization, and can be prepared using a wide range of support materials. Therefore, they are attracting global attention, especially in the fields of energy conversion and storage. To date, research has focused on transition-metal and precious-metal-based SACs. More recently, rare-earth (RE)-based SACs have emerged as a new frontier in photo/electrocatalysis owing to their unique electronic structure arising from the spin-orbit coupling of the 4f and valence orbitals, unsaturated coordination environment, and unique behavior as charge-transport bridges. However, a systematic review on the role of the RE active sites, catalytic mechanisms, and synthetic methods for RE SACs is lacking. Therefore, in this review, the latest developments in RE SACs having applications in photo/electrocatalysis are summarized and discussed. First, the theoretical advantages of RE SACs for photo/electrocatalysis are briefly introduced, focusing on the roles of the 4f orbitals and coupled energy levels. In addition, the most recent research progress on RE SACs is summarized for several important photo/electrocatalytic reactions and the corresponding catalytic mechanisms are discussed. Further, the synthetic strategies for the production of RE SACs are reported. Finally, challenges for the development of RE SACs are highlighted, along with future research directions and perspectives.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yu Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Sun W, Feng L, Zhang J, Lin K, Wang H, Yan B, Feng T, Cao M, Liu T, Yuan Y, Wang N. Amidoxime Group-Anchored Single Cobalt Atoms for Anti-Biofouling during Uranium Extraction from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105008. [PMID: 35064758 PMCID: PMC8981433 DOI: 10.1002/advs.202105008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Indexed: 05/14/2023]
Abstract
Marine biofouling is one of the most significant challenges hindering practical uranium extraction from seawater. Single atoms have been widely used in catalytic applications because of their remarkable redox property, implying that the single atom is highly capable of catalyzing the generation of reactive oxygen species (ROS) and acts as an anti-biofouling substance for controlling biofouling. In this study, the Co single atom loaded polyacrylamidoxime (PAO) material, PAO-Co, is fabricated based on the binding ability of the amidoxime group to uranyl and cobalt ions. Nitrogen and oxygen atoms from the amidoxime group stabilize the Co single atom. The fabricated PAO-Co exhibits a broad range of antimicrobial activity against diverse marine microorganisms by producing ROS, with an inhibition rate up to 93.4%. The present study is the first to apply the single atom for controlling biofouling. The adsorbent achieves an ultrahigh uranium adsorption capacity of 9.7 mg g-1 in biofouling-containing natural seawater, which decreased only by 11% compared with that in biofouling-removed natural seawater. These findings indicate that applying single atoms would be a promising strategy for designing biofouling-resistant adsorbents for uranium extraction from seawater.
Collapse
Affiliation(s)
- Wenyan Sun
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ke Lin
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Bingjie Yan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Tiantian Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| |
Collapse
|
29
|
Han Y, Duan H, Zhou C, Meng H, Jiang Q, Wang B, Yan W, Zhang R. Stabilizing Cobalt Single Atoms via Flexible Carbon Membranes as Bifunctional Electrocatalysts for Binder-Free Zinc-Air Batteries. NANO LETTERS 2022; 22:2497-2505. [PMID: 35266721 DOI: 10.1021/acs.nanolett.2c00278] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts with high activity and efficient atom utilization have great potential in the electrocatalysis field, especially for rechargeable zinc-air batteries (ZABs). However, it is still a serious challenge to rationally construct a single-atom catalyst with satisfactory electrocatalytic activity and long-term stability. Here, we simultaneously realize the atomic-level dispersion of cobalt and the construction of carbon nanotube (CNT)-linked N-doped porous carbon nanofibers (NCFs) via an electrospinning strategy. In this hierarchical structure, the Co-N4 sites provide efficient oxygen reduction/evolution electrocatalytic activity, the porous architectures of NCFs guarantee the active site's accessibility, and the interior CNTs enhance the flexibility and mechanical strength of porous fibers. As a binder-free air cathode, the as-prepared catalysts deliver superdurability of 600 h at 10 mA cm-2 for aqueous ZABs and considerable flexibility and a small voltage gap for all-solid-state ZABs. This work provides an effective single-atom design/nanoengineering for superdurable zinc-air batteries.
Collapse
Affiliation(s)
- Ying Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Hengli Duan
- China National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Chenhui Zhou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Haibing Meng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Wensheng Yan
- China National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
30
|
Hou Y, Lv J, Quan W, Lin Y, Hong Z, Huang Y. Strategies for Electrochemically Sustainable H 2 Production in Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104916. [PMID: 35018743 PMCID: PMC8895139 DOI: 10.1002/advs.202104916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Acidified water electrolysis with fast kinetics is widely regarded as a promising option for producing H2 . The main challenge of this technique is the difficulty in realizing sustainable H2 production (SHP) because of the poor stability of most electrode catalysts, especially on the anode side, under strongly acidic and highly polarized electrochemical environments, which leads to surface corrosion and performance degradation. Research efforts focused on tuning the atomic/nano structures of catalysts have been made to address this stability issue, with only limited effectiveness because of inevitable catalyst degradation. A systems approach considering reaction types and system configurations/operations may provide innovative viewpoints and strategies for SHP, although these aspects have been overlooked thus far. This review provides an overview of acidified water electrolysis for systematic investigations of these aspects to achieve SHP. First, the fundamental principles of SHP are discussed. Then, recent advances on design of stable electrode materials are examined, and several new strategies for SHP are proposed, including fabrication of symmetrical heterogeneous electrolysis system and fluid homogeneous electrolysis system, as well as decoupling/hybrid-governed sustainability. Finally, remaining challenges and corresponding opportunities are outlined to stimulate endeavors toward the development of advanced acidified water electrolysis techniques for SHP.
Collapse
Affiliation(s)
- Yuxi Hou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Jiangquan Lv
- College of Electronics and Information Science & Organic Optoelectronics Engineering Research Center of Fujian's UniversitiesFujian Jiangxia UniversityFuzhouFujian350108P. R. China
| | - Weiwei Quan
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Yingbin Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Yiyin Huang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| |
Collapse
|
31
|
Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. WATER 2022. [DOI: 10.3390/w14030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Water oxidation is still one of the most important challenges to develop efficient artificial photosynthetic devices. In recent decades, the development and study of molecular complexes for water oxidation have allowed insight into the principles governing catalytic activity and the mechanism as well as establish ligand design guidelines to improve performance. However, their durability and long-term stability compromise the performance of molecular-based artificial photosynthetic devices. In this context, heterogenization of molecular water oxidation catalysts on electrode surfaces has emerged as a promising approach for efficient long-lasting water oxidation for artificial photosynthetic devices. This review covers the state of the art of strategies for the heterogenization of molecular water oxidation catalysts onto electrodes for (photo)electrochemical water oxidation. An overview and description of the main binding strategies are provided explaining the advantages of each strategy and their scope. Moreover, selected examples are discussed together with the the differences in activity and stability between the homogeneous and the heterogenized system when reported. Finally, the common design principles for efficient (photo)electrocatalytic performance summarized.
Collapse
|
32
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II. J Am Chem Soc 2022; 144:695-700. [PMID: 34990144 DOI: 10.1021/jacs.1c11707] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, water is oxidized by plastoquinone to evolve O2 and form plastoquinol in Photosystem II (PSII), whereas NADP+ is reduced by plastoquinol to produce NADPH and regenerate plastoquinone in Photosystem I (PSI), using homogeneous molecular photocatalysts. However, water splitting to evolve H2 and O2 in a 2:1 stoichiometric ratio has yet to be achieved using homogeneous molecular photocatalysts, remaining as one of the biggest challenges in science. Herein, we demonstrate overall water splitting to evolve H2 and O2 in a 2:1 ratio using a two liquid membranes system composed of two toluene phases, which are separated by a solvent mixture of water and trifluoroethanol (H2O/TFE, 3:1 v/v), with a glass membrane to combine PSI and PSII molecular models. A PSII model contains plastoquinone analogs [p-benzoquinone derivatives (X-Q)] in toluene and an iron(II) complex as a molecular oxidation catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of O2 and forms plastoquinol analogs (X-QH2) under photoirradiation. On the other hand, a PSI model contains nothing in toluene but contains X-QH2, 9-mesityl-10-methylacridinium ion (Acr+-Mes) as a photocatalyst, and a cobalt(III) complex as an H2 evolution catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of H2 and forms X-Q under photoirradiation. When a PSII model system is combined with a PSI model system with two glass membranes and two liquid membranes, photocatalytic water splitting with homogeneous molecular photocatalysts is achieved to evolve hydrogen and oxygen with the turnover number (TON) of >100.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
33
|
Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022; 51:9620-9693. [DOI: 10.1039/d2cs00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The key components, working management, and operating techniques of anion-exchange membrane water electrolyzers and fuel cells are reviewed for the first time.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
| | - Peng Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
34
|
Ma X, Zhu Y, Yu J, Yan R, Xie X, Huang L, Wang Q, Chang XP, Xu Q. Water oxidation by Brønsted acid-catalyzed in situ generated thiol cation: dual function of the acid catalyst leading to transition metal-free substitution and addition reactions of S-S bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented water oxidation reaction by a small organic molecule, i.e., the thiol cation generated in situ by Brønsted acid-catalyzed heterolytic cleavage of S-S bond of a disulfide, is observed...
Collapse
|
35
|
Huang Q, Wang B, Ye S, Liu H, Chi H, Liu X, Fan H, Li M, Ding C, Li Z, Li C. Relation between Water Oxidation Activity and Coordination Environment of C,N-Coordinated Mononuclear Co Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qing’e Huang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Binli Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sheng Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Chi
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Younus HA, Yildiz I, Ahmad N, Mohamed HS, Khabiri G, Zhang S, Verpoort F, Liu P, Zhang Y. Half‐sandwich ruthenium complex with a very low overpotential and excellent activity for water oxidation under acidic conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hussein A. Younus
- College of Materials Science and Engineering Hunan University Changsha China
- Chemistry Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Ibrahim Yildiz
- College of Arts and Sciences Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Nazir Ahmad
- Department of Chemistry Government College University Lahore Pakistan
| | - Hemdan S. Mohamed
- Physics Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Gomaa Khabiri
- Physics Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Shiguo Zhang
- College of Materials Science and Engineering Hunan University Changsha China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Piao Liu
- Hunan LEED Electronic Ink Co., Ltd. Zhuzhou China
| | - Yan Zhang
- College of Materials Science and Engineering Hunan University Changsha China
| |
Collapse
|
37
|
Liu C, Geer AM, Webber C, Musgrave CB, Gu S, Johnson G, Dickie DA, Chabbra S, Schnegg A, Zhou H, Sun CJ, Hwang S, Goddard WA, Zhang S, Gunnoe TB. Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ana M. Geer
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Christopher Webber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
38
|
Meng F, Wang J, Tian W, Zhang H, Liu S, Tan X, Wang S. Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants. J Colloid Interface Sci 2021; 608:1334-1347. [PMID: 34739993 DOI: 10.1016/j.jcis.2021.10.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Acid treatment serves as an effective engineering strategy to modify the structure of graphitic carbon nitride (g-C3N4) for enhanced metal-free photocatalysis, while their lacks a comprehensive understanding about the impacts of different acid species and acid treatment approaches on the intrinsic structure and properties of g-C3N4 and structure-activity relationships are ambiguous. Employing inorganic/organic acids including hydrochloric acid (HCl), nitric acid (HNO3), acetic acid (HAc), sulphuric acid (H2SO4), or oxalic acid (H2C2O4) as treatment acids, herein, we compare the impacts of different acid pretreatment approaches on the structure and properties of g-C3N4. Due to different acid-melamine interaction modes and the activation roles of various acids, the obtained g-C3N4 samples exhibit varied structures, physiochemical properties and photocatalytic activities. Compared with bulk graphitic carbon nitride (BCN), g-C3N4 prepared by acid pretreatment show enhanced photocatalytic performance on bisphenol A (BPA) degradation. The photocatalytic degradation rates of BPA by g-C3N4 prepared by HNO3, HAc, H2SO4, H2C2O4, or HCl pretreatment are about 2.2, 2.7, 2.8, 3.2 and 3.8 folds faster than that by BCN. HCl pretreatment proves to be the optimal approach, with the derived g-C3N4 (HTCN) showing more intact heptazine structural units, and increased specific surface area, which promote the exposure of more active sites, accelerate charge transfer, and give rise to a notable improvement in photocatalysis, eventually. Mechanistic investigations through quenching experiments and electron paramagnetic resonance (EPR) characterization unveil that superoxide ion radical (O2-) and photo-induced holes (h+) worked principally in the photodegradation reaction. This work provides new insights for the rational selection of acid types and treatment methods to synthesize metal-free carbon nitrides with improved activity for photocatalytic applications.
Collapse
Affiliation(s)
- Fanpeng Meng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
39
|
Wang Y, Bao Z, Shi M, Liang Z, Cao R, Zheng H. The Role of Surface Curvature in Electrocatalysts. Chemistry 2021; 28:e202102915. [PMID: 34591340 DOI: 10.1002/chem.202102915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/05/2022]
Abstract
Excessive consumption of fossil fuels has caused unavoidable environmental problems. The development of renewable and clean alternatives is essential for the sustainable and green development of human society. Electrocatalysts are most important parts in these energy-related devices. Recently, scientists found that the surface curvature of electrocatalysts could play an important role for the improvement of catalytic performance and the optimization of intrinsic catalytic activity during electrocatalytic process. The role of surface curvature in electrocatalysts is still under investigating. In this minireview, we summarized the latest progress of electrocatalysts with different surface curvatures and their applications in energy-related applications. This review mainly involves the strategies for preparation of electrocatalysts with different surface curvatures, three typical electrocatalysts with different surface curvatures (curled surface, onion-like structure, and spiral structure), and the potential mechanisms that surface curvature in electrocatalysts affects activities.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengke Shi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
40
|
Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat Commun 2021; 12:5589. [PMID: 34552084 PMCID: PMC8458471 DOI: 10.1038/s41467-021-25811-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
Single-atom catalysts with maximum metal utilization efficiency show great potential for sustainable catalytic applications and fundamental mechanistic studies. We here provide a convenient molecular tailoring strategy based on graphitic carbon nitride as support for the rational design of single-site and dual-site single-atom catalysts. Catalysts with single Fe sites exhibit impressive oxygen reduction reaction activity with a half-wave potential of 0.89 V vs. RHE. We find that the single Ni sites are favorable to promote the key structural reconstruction into bridging Ni-O-Fe bonds in dual-site NiFe SAC. Meanwhile, the newly formed Ni-O-Fe bonds create spin channels for electron transfer, resulting in a significant improvement of the oxygen evolution reaction activity with an overpotential of 270 mV at 10 mA cm−2. We further reveal that the water oxidation reaction follows a dual-site pathway through the deprotonation of *OH at both Ni and Fe sites, leading to the formation of bridging O2 atop the Ni-O-Fe sites. The development of high performance dual-site single-atom catalysts is a promising research direction. Here, the authors report structural dynamics of dual-site nickel-iron single-atom oxygen electrocatalysts under reaction conditions, and proposes a dual-site pathway for the water oxidation reaction.
Collapse
|
41
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Zhang Q, Ning X, Fan Y, Yin D, Zhao H, Zhang Z, Du P, Lu X. Insight into interface charge regulation through the change of the electrolyte temperature toward enhancing photoelectrochemical water oxidation. J Colloid Interface Sci 2021; 588:31-39. [PMID: 33387823 DOI: 10.1016/j.jcis.2020.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The desired photoelectrochemical performance can be achieved by temperature regulation, but the nature for this improvement remains a controversial topic. Herein, we employed BiVO4/CoOx as a typical model system, and explored the fate of photogenerated holes at the different interfaces among BiVO4/CoOx/electrolyte by means of intensity modulated photocurrent spectroscopy (IMPS), scanning photoelectrochemical microscopy (SPECM) and traditional electrocatalysis characterization methods. Systematic quantitative analysis of the kinetics of photogenerated holes transfer at the BiVO4/CoOx interface under illumination and surface water oxidation at the CoOx/electrolyte interface in the dark indicates that increasing temperature could not only enhance the surface catalytic reaction kinetics but also facilitate the interfacial charge transfer. As expected, the integrated system exhibited a remarkable photocurrent density of 3.6 mA cm-2 (1.23 VRHE, AM 1.5G, 45 °C), which is approximately 2.1 times higher than that of BiVO4/CoOx (15 °C). This work provides a promising strategy for achieving efficient photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Qi Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yiping Fan
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Dan Yin
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Huihuan Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China.
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China.
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
43
|
Zhang W, Yang S, Bai S, Zhang L, Zhang Y, Yu F. Heterogenization of Ionic liquid Boosting Electrochemical Oxygen Reduction Performance of Co
3
O
4
Supported on Graphene Oxide. ChemCatChem 2021. [DOI: 10.1002/cctc.202001912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenlin Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Shuangcheng Yang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Shao‐Tao Bai
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lu‐Hua Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Yongkang Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Fengshou Yu
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- State Key Laboratory of Fine Chemicals Dalian University of Technology (DUT) Dalian 116024 Liaoning P. R. China
| |
Collapse
|
44
|
An L, Cai X, Shen S, Yin J, Jiang K, Zhang J. Dealloyed RuNiO x as a robust electrocatalyst for the oxygen evolution reaction in acidic media. Dalton Trans 2021; 50:5124-5127. [PMID: 33881107 DOI: 10.1039/d1dt00195g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here the dealloying treatment on a RuNiOx catalyst for enhanced acidic oxygen evolution reaction (OER) performance. Specifically, the dealloyed RuNiOx is capable of delivering a current density of 50 mA cm-2 at a low overpotential of 280 mV and demonstrates superior stability after 10 000 potential cycles.
Collapse
Affiliation(s)
- Lu An
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiyang Cai
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiewei Yin
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Jiang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China and Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
46
|
Affiliation(s)
- Honghui Ou
- Department of Chemistry Tsinghua University Beijing China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
47
|
Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Heterogeneous Single-Atom Catalysts for Electrochemical CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001848. [PMID: 32644259 DOI: 10.1002/adma.202001848] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/27/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) is of great importance to tackle the rising CO2 concentration in the atmosphere. The CO2 RR can be driven by renewable energy sources, producing precious chemicals and fuels, with the implementation of this process largely relying on the development of low-cost and efficient electrocatalysts. Recently, a range of heterogeneous and potentially low-cost single-atom catalysts (SACs) containing non-precious metals coordinated to earth-abundant elements have emerged as promising candidates for the CO2 RR. Unfortunately, the real catalytically active centers and the key factors that govern the catalytic performance of these SACs remain ambiguous. Here, this ambiguity is addressed by developing a fundamental understanding of the CO2 RR-to-CO process on SACs, as CO accounts for the major product from CO2 RR on SACs. The reaction mechanism, the rate-determining steps, and the key factors that control the activity and selectivity are analyzed from both experimental and theoretical studies. Then, the synthesis, characterization, and the CO2 RR performance of SACs are discussed. Finally, the challenges and future pathways are highlighted in the hope of guiding the design of the SACs to promote and understand the CO2 RR on SACs.
Collapse
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
48
|
Zhang H, Tian W, Duan X, Sun H, Shen Y, Shao G, Wang S. Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering. NANOSCALE 2020; 12:6937-6952. [PMID: 32196063 DOI: 10.1039/d0nr00652a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric carbon nitrides (PCNs) are promising photocatalysts and electrocatalysts for water oxidation, as they are environmentally benign materials with an adjustable structure and facilely synthesized from inexpensive and abundant starting materials. In this minireview, we examine the state-of-the-art strategies for tailoring PCNs for efficient photocatalytic, electrocatalytic, and photoelectrochemical water oxidation, including heteroatom doping and interface engineering from band structure alignment (e.g., by coupling inorganic or organic semiconductors) to hybridization with nanoscale cocatalysts (e.g., nanosheets, nanoarrays, nanoparticles, and quantum dots) and sub-nanoscale cocatalysts (e.g., metallic molecular clusters and single-atom catalysts). Through establishing the structure-activity correlations, we aim to present a clear roadmap for providing insights into the design strategies, structure modification, and the improved catalytic performances of PCN-based materials in different catalytic water oxidation processes. For future guidance, we also propose some outlooks on the perspective and challenges of PCNs towards a better application in catalytic water oxidation.
Collapse
Affiliation(s)
- Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Cao X, Han T, Peng Q, Chen C, Li Y. Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chem Commun (Camb) 2020; 56:13918-13932. [DOI: 10.1039/d0cc05785a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This feature article summarizes the recent progress in the modification of heterogeneous photocatalysts for photocatalytic hydrocarbons’ C–H bond activation.
Collapse
Affiliation(s)
- Xing Cao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Tong Han
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qing Peng
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chen Chen
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yadong Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|