1
|
Kokol V, Lakshmanan S, Vivod V. Electrochemical Capacitance of CNF-Ti 3C 2T x MXene-Based Composite Cryogels in Different Electrolyte Solutions for an Eco-Friendly Supercapacitor. Gels 2025; 11:265. [PMID: 40277701 PMCID: PMC12026625 DOI: 10.3390/gels11040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Cellulose nanofibrils (CNFs) are promising materials for flexible and green supercapacitor electrodes, while Ti3C2Tx MXene exhibits high specific capacitance. However, the diffusion limitation of ions and chemical instability in the generally used highly basic (KOH, MXene oxidation) or acidic (H2SO4, CNF degradation) electrolytes limits their performance and durability. Herein, freestanding CNF/MXene cryogel membranes were prepared by deep freeze-casting (at -50 and -80 °C), using different weight percentages of components (10, 50, 90), and evaluated for their structural and physico-chemical stability in other less aggressive aqueous electrolyte solutions (Na2/Mg/Mn/K2-SO4, Na2CO3), to examine the influence of the ions transport on their pseudocapacitive properties. While the membrane prepared with 50 wt% (2.5 mg/cm2) of MXene loading at -80 °C shrank in a basic Na2CO3 electrolyte, the capacitance was performed via the forming of an electroactive layer on its interface, giving it high stability (90% after 3 days of cycling) but lower capacitance (8 F/g at 2 mV/s) than in H2SO4 (25 F/g). On the contrary, slightly acidic electrolytes extended the cations' transport path due to excessive but still size-limited diffusion of the hydrated ions (SO42- > Na+ > Mn2+ > Mg2+) during membrane swelling, which blocked it, reducing the electroactive surface area and lowering conductivities (<3 F/g).
Collapse
Affiliation(s)
- Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (S.L.)
| | | | | |
Collapse
|
2
|
Tao S, Wang J, Zhang J. Conductive Metal-Organic Frameworks and Their Electrocatalysis Applications. ACS NANO 2025; 19:9484-9512. [PMID: 40057943 DOI: 10.1021/acsnano.4c14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Recently, electrically conductive metal-organic frameworks (EC-MOFs) have emerged as a wealthy library of porous frameworks with unique properties, allowing their use in diverse applications of energy conversion, including electrocatalysis. In this review, the electron conduction mechanisms in EC-MOFs are examined, while their electrical conductivities are considered. There have been various strategies to enhance the conductivities of MOFs including ligand modification, the incorporation of conducting materials, and the construction of multidimensional architectures. With sufficient conductivities being established for EC-MOFs, there have been extensive pursuits in their electrocatalysis applications, such as in the hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, N2 reduction reaction, and CO2 reduction reaction. In addition, computational modeling of EC-MOFs also exerts an important impact on revealing the synthesis-structure-performance relationships. Finally, the prospects and current challenges are discussed to provide guidelines for designing promising framework materials.
Collapse
Affiliation(s)
- Shuhui Tao
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
| | - John Wang
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Zeng Y, Zhang Y, Peng M, Yin J, Liu W, Zhao J, Tan S, Liu J, Chen M, Chen Z, Wu F, Chen C, Gao L, Dai J. Excellent Mechanical Performance of Cellulose Composite Papers for Flexible Self-Powered Photodetectors Using the ZnO/PbS Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5486-5495. [PMID: 39772420 DOI: 10.1021/acsami.4c18862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates. However, poor bonding with conductive materials results in poor conductivity stability, and limited thermal stability makes cellulose unsuitable for many preparation processes. This study designed polyvinylpyrrolidone (PVP)-coated silver nanowires (AgNWs) as conductive materials, integrating them with cellulose nanofibers (CNFs). The resulting AgNW/CNF composite paper demonstrated high tensile strength (183.9 MPa), low sheet resistance (2.38 Ohm sq-1), and excellent bending durability. Spin-coated PbS colloidal quantum dots (CQDs) films and low-temperature magnetron-sputtered ZnO films were used as functional layers to create a flexible self-powered photodetector. This device features low dark current density (2.35 × 10-9 mA cm-2 @0 V), fast photoresponse (40/24 ms), and stability under bending (up to 180°, 1 mm radius). It shows potential for applications in infrared optical communication and real-time heart rate monitoring, demonstrating the promise of cellulose substrate photodetectors for flexible electronics.
Collapse
Affiliation(s)
- Yuhui Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanbo Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Peng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junyang Yin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weijie Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianqiao Zhao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shizhou Tan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maohua Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyu Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Changqing Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Zhao C, Wu H, Gao X, Cheng C, Cai S, Yang X, Sun R. Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries. J Colloid Interface Sci 2025; 677:1084-1094. [PMID: 39180843 DOI: 10.1016/j.jcis.2024.08.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li+ flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm-2 and 10 mAh cm-2, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g-1 is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.
Collapse
Affiliation(s)
- Changyong Zhao
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hanyan Wu
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuejie Gao
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Chen Cheng
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuiping Cai
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaofei Yang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Runcang Sun
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Zhao A, Zhao T, Ye Y, Yu T, Chen G, Wang K, Tang W, Wu F, Chen R. Dendrite-Free Lithium Batteries Enabled by an Artificial High-Dielectric Biopolymer Interface Layer. NANO LETTERS 2024; 24:13972-13980. [PMID: 39440864 DOI: 10.1021/acs.nanolett.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Lithium (Li) metal batteries face challenges, such as dendrite growth and electrolyte interface instability. Artificial interface layers alleviate these issues. Here, cellulose nanocrystal (CNC) nanomembranes, with excellent mechanical properties and high specific surface areas, combine with polyvinylidene-hexafluoropropylene (PVDF-HFP) porous membranes to form an artificial solid electrolyte interphase (SEI) layer. The porous structure of PVDF-HFP equalizes the electric field near metallic lithium surfaces. The high mechanical modulus of CNC (6.2 GPa) effectively inhibits dendrite growth, ensures the uniform flow of lithium ions to the lithium metal electrode, and inhibits the growth of lithium dendrites during cycling. The synergy of high polarity β-phase poly(vinylidene fluoride) (PVDF) and CNC provides over 1000 h of stability for Li//Li batteries. Moreover, Li//LiFePO4 (LFP) full cells with this artificial protective layer perform well at 5 C, showcasing the potential of this film in lithium metal batteries.
Collapse
Affiliation(s)
- Anqi Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
| | - Yusheng Ye
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyang Yu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guoshuai Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wangming Tang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
6
|
Zheng ZJ, Ye H, Guo ZP. Bacterial Cellulose Applications in Electrochemical Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412908. [PMID: 39491807 DOI: 10.1002/adma.202412908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Bacterial cellulose (BC) is produced via the fermentation of various microorganisms. It has an interconnected 3D porous network structure, strong water-locking ability, high mechanical strength, chemical stability, anti-shrinkage properties, renewability, biodegradability, and a low cost. BC-based materials and their derivatives have been utilized to fabricate advanced functional materials for electrochemical energy storage devices and flexible electronics. This review summarizes recent progress in the development of BC-related functional materials for electrochemical energy storage devices. The origin, components, and microstructure of BC are discussed, followed by the advantages of using BC in energy storage applications. Then, BC-related material design strategies in terms of solid electrolytes, binders, and separators, as well as BC-derived carbon nanofibers for electroactive materials are discussed. Finally, a short conclusion and outlook regarding current challenges and future research opportunities related to BC-based advanced functional materials for next-generation energy storage devices suggestions are proposed.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Huan Ye
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zai-Ping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
7
|
Zhang L, Ma T, Zhou PH, Yang YW, Lu LL, Hu BC, Yu SH. A Flexible Multifunctional Cyanoethyl-Modified Bacterial Cellulose Nanofiber Framework for High-Energy and High-Power Density Aqueous Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404452. [PMID: 39248686 DOI: 10.1002/smll.202404452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/04/2024] [Indexed: 09/10/2024]
Abstract
Aqueous rechargeable lithium-ion batteries (ARLIBs) are extensively researched due to their inherent safety, typical affordability, and potential high energy density. However, fabricating ARLIBs with both high energy density and power performance remains challenging. Herein, based on cyanoethyl-modified bacterial cellulose nanofibers (CBCNs), a multifunctional fast ion transport framework is developed to construct the flexible free-standing ARLIBs with high areal loading and excellent rate performance. Benefiting from the unique merits of CBCNs, such as ultra-high aspect ratio, excellent toughness, superior adhesion, good lithiophilicity and ideal stability, the flexible free-standing and highly robust electrodes are fabricated and exhibit a long-term stable cycling of 1200 cycles with a high specific capacity of 117 mAh∙g-1 at 15 C. Remarkably, the corresponding full cell with the free-standing high mass loading (45.5 mg∙cm-2) electrodes under the condition of ultra-low addition of battery binder demonstrates a cycle lifespan of over 1000 cycles with a specific capacity of 120 mAh∙g-1 and a capacity decay as low as 0.03% per cycle, which is far superior to those of almost all previous reports. This work provides a strategy for constructing ARLIBs with high energy density and power performance by introducing a unique fast ion transport nanofiber framework.
Collapse
Affiliation(s)
- Long Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Ma
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Peng-Hu Zhou
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Wen Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lei-L Lu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Bi-Cheng Hu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Rahmanudin A, Mohammadi M, Isacsson P, Li Y, Seufert L, Kim N, Mardi S, Engquist I, Crispin R, Tybrandt K. Stretchable and biodegradable plant-based redox-diffusion batteries. MATERIALS HORIZONS 2024; 11:4400-4412. [PMID: 38946626 DOI: 10.1039/d4mh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties. The concept decouples the active material loading from the mechanical structure of the electrode, enabling high mass loadings, while retaining a skin-like young's modulus and stretchability. A stretchable ion-selective membrane facilitates the RD process, allowing two separate redox couples, while preventing crossovers. This results in a high-capacity battery cell that is both electrochemically and mechanically stable, engineered from sustainable plant-based materials. Notably, the battery components are biodegradable at the end of their life, addressing concerns of e-waste and resource depletion.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Patrik Isacsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Ahlstrom Group Innovation, 38140 Apprieu, France
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Saeed Mardi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Ångström Laboratory, Department of Chemistry, Uppsala University, 751 21 Uppsala, Sweden
| | - Isak Engquist
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
9
|
Cheng Y, Cai Z, Xu J, Sun Z, Wu X, Han J, Wang YH, Wang MS. Zwitterionic Cellulose-Based Polymer Electrolyte Enabled by Aqueous Solution Casting for High-Performance Solid-State Batteries. Angew Chem Int Ed Engl 2024; 63:e202400477. [PMID: 38712648 DOI: 10.1002/anie.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/13/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Polyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li+ transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method. Multiple characterizations and theoretical calculations demonstrate that the unique zwitterionic structure imparts ZCNF with various functions, such as disrupting PEO crystallization, dissociating lithium salts, anchoring anions through cationic groups, accelerating Li+ migration by anionic groups, as well as its inherent reinforcement effect. As a result, the prepared PL-ZCNF electrolyte exhibits remarkable ionic conductivity (5.37×10-4 S cm-1) and Li+ transference number (0.62) at 60 °C without sacrificing mechanical strength (9.2 MPa), together with high critical current density of 1.1 mA cm-2. Attributed to these merits of PL-ZCNF, the LiFePO4|PL-ZCNF|Li solid-state full-cell delivers exceptional rate capability and cycling performance (900 cycles at 5 C). Notably, the assembled pouch-cell can maintain steady operation over 1000 cycles with an impressive 93.7 % capacity retention at 0.5 C and 60 °C, highlighting the great potential of PL-ZCNF for practical applications.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhichao Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinglei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaoyu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jiajia Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Zhang H, Li J, Ren H, Wang J, Gong Y, Wang B, Wang D, Liu H, Dou S. A bio-based functional separator enables dendrite-free anodes in aqueous zinc-ion batteries. iScience 2024; 27:110237. [PMID: 38993664 PMCID: PMC11237906 DOI: 10.1016/j.isci.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Aqueous zinc-ion batteries (AZIBs) have garnered considerable interest as potential solutions for large-scale energy storage systems, owing to their cost-effectiveness and high safety. Nonetheless, the development of AZIBs is hindered by significant challenges associated with dendrite growth and side reactions on Zn anodes. Here, a bio-based separator derived from cellulose was developed for the dendrite-free anode in AZIBs. In addition, the separator is notable for its ultra-low cost and biodegradability in contrast to the commonly used commercial glass fiber (GF) separators. The mechanical strength of the separator is enhanced by the cross-linking of hydrogen bonds, effectively inhibiting dendrite growth. The zinc-philic groups facilitate better binding to Zn2+, resulting in uniform nucleation and deposition. The hydrophilic groups aid in trapping water molecules, thereby preventing side reactions of the electrolyte. The Zn||Zn symmetric cell with this separator can sustain a long cycle life for over 800 h, indicating stable Zn2 + plating and stripping with suppressed dendrite growth. Concurrently, the assembled Zn||VO2 full batteries exhibited a capacity retention rate of 61.87% after 1,000 cycles at 1 A g-1 with an initial capacity of 140 mAh g-1. This work highlights a stable, economical, and eco-friendly approach to the design of bio-based separators in AZIBs for sustainable energy storage systems.
Collapse
Affiliation(s)
- Han Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jinbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Huaizheng Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jianxin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuxin Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dianlong Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Huakun Liu
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Shixue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| |
Collapse
|
11
|
Dou H, Xu M, Zhang Z, Luo D, Yu A, Chen Z. Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401858. [PMID: 38569594 DOI: 10.1002/adma.202401858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Flexible zinc-air batteries are the leading candidates as the next-generation power source for flexible/wearable electronics. However, constructing safe and high-performance solid-state electrolytes (SSEs) with intrinsic hydroxide ion (OH-) conduction remains a fundamental challenge. Herein, by adopting the natural and robust cellulose nanofibers (CNFs) as building blocks, the biomass SSEs with penetrating ion and water channels are constructed by knitting the OH--conductive CNFs and water-retentive CNFs together via an energy-efficient tape casting. Benefiting from the abundant ion and water channels with interconnected hydrated OH- wires for fast OH- conduction under a nanoconfined environment, the biomass SSEs reveal the high water-uptake, impressive OH- conductivity of 175 mS cm-1 and mechanical robustness simultaneously, which overcomes the commonly existed dilemma between ion conductivity and mechanical property. Remarkably, the flexible zinc-air batteries assemble with biomass SSEs deliver an exceptional cycle lifespan of 310 h and power density of 126 mW cm-2. The design methodology for water and ion channels opens a new avenue to design high-performance SSEs for batteries.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mi Xu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
12
|
Du K, Shi P, Zhang D, Xiao Y, Zhang S. Polydopamine-Anchored Cellulose Nanofiber Flexible Aerogel with High Charge Transfer as a Substrate for Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30314-30323. [PMID: 38809660 DOI: 10.1021/acsami.4c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In order to obtain a flexible aerogel substrate for conductive materials used in the electrode, polydopamine-anchored cellulose nanofiber (PDA@CNF) was introduced into a polyethylene imine-poly(vinyl alcohol) (PEI-PVA) cross-linking network which used 4-formylphenylboronic acid (4FPBA) as bridge. The incorporation of rigid CNF as a structural scaffold effectively improved the pore architecture of the aerogel, potentially providing substantial advantages for the infiltration and deposition of conductive materials. Additionally, the outstanding stability and flexibility exhibited by the aerogel in aqueous solutions suggest its significant potential for applications in flexible electrodes. Furthermore, electrochemical experiments showed that the rapid pathway formed between PDA and PEI could enhance the charge-transfer rate within the aerogel substrate. It is anticipated that such an enhancement would significantly benefit the electrochemical attributes of the electrode. Inspired by mussels, our introduced PDA-anchored rigid CNF into flexible polymer networks to fabricate aerogel substrates for electrode materials. This study would contribute to the development and utilization of flexible electrodes while reducing carbon footprint in energy production and conversion processes.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiyan Xiao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Zhou S, Liu T, Strømme M, Xu C. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202318387. [PMID: 38349735 DOI: 10.1002/anie.202318387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 02/29/2024]
Abstract
In this study, we introduce an electrochemical doping strategy aimed at manipulating the structure and composition of electrically conductive metal-organic frameworks (c-MOFs). Our methodology is exemplified through a representative c-MOF, Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene), synthesized into porous thin films supported by nanocellulose. While the c-MOF exhibits characteristic capacitive behavior in neutral electrolyte; it manifests redox behaviors in both acidic and alkaline electrolytes. Evidence indicates that the organic ligands within c-MOF undergo oxidation (p-doping) and reduction (n-doping) when exposed to specific electrochemical potentials in acidic and alkaline electrolyte, respectively. Interestingly, the p-doping process proves reversible, with the c-MOF structure remaining stable across cyclic p-doping/de-doping. In contrast, the n-doping is irreversible, leading to the gradual decomposition of the framework into inorganic species over a few cycles. Drawing on these findings, we showcase the versatile electrochemical applications of c-MOFs and their derived composites, encompassing electrochemical energy storage, electrocatalysis, and ultrafast actuation. This study provides profound insights into the doping of c-MOFs, offering a new avenue for modulating their chemical and electronic structure, thereby broadening their potential for diverse electrochemical applications.
Collapse
Affiliation(s)
- Shengyang Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
- Division of Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden
| | - Tianqi Liu
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden
| | - Chao Xu
- Division of Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden
| |
Collapse
|
14
|
Bi J, Liu Y, Du Z, Wang K, Guan W, Wu H, Ai W, Huang W. Bottom-Up Magnesium Deposition Induced by Paper-Based Triple-Gradient Scaffolds toward Flexible Magnesium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309339. [PMID: 37918968 DOI: 10.1002/adma.202309339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
The development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper-based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi-walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple-gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom-up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple-gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm-2 /3 mAh cm-2 in symmetrical cells, markedly outperforming the non-gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L-1 . The simplicity and scalability of the triple-gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high-energy-density metal batteries.
Collapse
Affiliation(s)
- Jingxuan Bi
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wanqing Guan
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
15
|
Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers-A Review. Polymers (Basel) 2024; 16:610. [PMID: 38475294 DOI: 10.3390/polym16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Algae-based biopolymers can be used in diverse energy-related applications, such as separators and polymer electrolytes in batteries and fuel cells and also as microalgal biofuel, which is regarded as a highly renewable energy source. For these purposes, different physical, thermochemical, and biochemical properties are necessary, which are discussed within this review, such as porosity, high temperature resistance, or good mechanical properties for batteries and high energy density and abundance of the base materials in case of biofuel, along with the environmental aspects of using algae-based biopolymers in these applications. On the other hand, bacterial biopolymers are also often used in batteries as bacterial cellulose separators or as biopolymer network binders, besides their potential use as polymer electrolytes. In addition, they are also regarded as potential sustainable biofuel producers and converters. This review aims at comparing biopolymers from both aforementioned sources for energy conversion and storage. Challenges regarding the production of algal biopolymers include low scalability and low cost-effectiveness, and for bacterial polymers, slow growth rates and non-optimal fermentation processes often cause challenges. On the other hand, environmental benefits in comparison with conventional polymers and the better biodegradability are large advantages of these biopolymers, which suggest further research to make their production more economical.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Sarah Vanessa Langwald
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Department of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences-HTW Berlin, 12459 Berlin, Germany
- Department of Textile and Paper Engineering, Higher Polytechnic School of Alcoy, Polytechnic University of Valencia (UPV), 03801 Alcoy, Spain
| |
Collapse
|
16
|
Lux C, Kerz S, Ribeiro CC, Bareuther J, Lützenkirchen J, Stock S, Tsintsaris M, Rehahn M, Stark RW, von Klitzing R. Conceptualizing flexible papers using cellulose model surfaces and polymer particles. SOFT MATTER 2024; 20:1333-1346. [PMID: 38251414 DOI: 10.1039/d3sm01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cellulose, as a naturally abundant and biocompatible material, is still gaining interest due to its high potential for functionalization. This makes cellulose a promising candidate for replacing plastics. Understanding how cellulose interacts with various additives is crucial for creating composite materials with diverse properties, as it is the case for plastics. In addition, the mechanical properties of the composite materials are assumed to be related to the mobility of the additives against the cellulose. Using a well-defined cellulose model surface (CMS), we aim to understand the adsorption and desorption of two polymeric particles (core-shell particles and microgels) to/from the cellulose surface. The nanomechanics of particles and CMS are quantified by indentation measurements with an atomic force microscope (AFM). AFM topography measurements quantified particle adsorption and desorption on the CMS, while peak force AFM measurements determined the force needed to move individual particles. Both particles and the CMS exhibited pH-dependent charge behavior, allowing a tunable interaction between them. Particle adsorption was irreversible and driven by electrostatic forces. In contrast, desorption and particle mobility forces are dominated by structural morphology. In addition, we found that an annealing procedure consisting of swelling/drying cycles significantly increased the adhesion strength of both particles. Using the data, we achieve a deeper understanding of the interaction of cellulose with polymeric particles, with the potential to advance the development of functional materials and contribute to various fields, including smart packaging, sensors, and biomedical applications.
Collapse
Affiliation(s)
- Cassia Lux
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | - Sabrina Kerz
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | - Catarina C Ribeiro
- Physics of Surfaces, Department of Material Science, 64287 Darmstadt, Germany
| | - Jennifer Bareuther
- Macromolecular Chemistry: Chemistry of Polymers, Department of Chemistry, 64287 Darmstadt, Germany
| | - Johannes Lützenkirchen
- Institute for Nuclear Disposal, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sebastian Stock
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | | | - Matthias Rehahn
- Macromolecular Chemistry: Chemistry of Polymers, Department of Chemistry, 64287 Darmstadt, Germany
| | - Robert W Stark
- Physics of Surfaces, Department of Material Science, 64287 Darmstadt, Germany
| | | |
Collapse
|
17
|
Du K, Zhang D, Zhang S, Tam KC. Advanced Functionalized Materials Based on Layer-by-Layer Assembled Natural Cellulose Nanofiber for Electrodes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304739. [PMID: 37726489 DOI: 10.1002/smll.202304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Indexed: 09/21/2023]
Abstract
The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
18
|
Chen X, Zhang D, Guan Y, Chen D, Ge H, Wang Z, Bao M, Li Y. Joule Heating-Assisted Crude Oil Purification by a Poly(pyrrole)-Modified Microfibril Cellulose Membrane. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2624-2636. [PMID: 38166459 DOI: 10.1021/acsami.3c15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Using membrane materials to purify viscous watery oil from industrial production processes and accidental oil spills is of great importance but still challenging. Based on the excellent electrical conductivity and electric-thermal conversion of poly(pyrrole) (PPy), a hydrophobic PPy-modified micro-fibrillated cellulose membrane (P-CP) was successfully prepared. The size of the P-CP membrane can be customized to meet specific requirements. In this research, the membrane diameter is capable of reaching 24 cm. By applying a voltage ranging from 0 to 12 V, the surface temperature of the P-CP membrane can be elevated to roughly 120 °C. After 10 cycles of heating and cooling under 12 V voltage, the electric-thermal curves, surface hydrophobicity, and pore structure of P-CP membrane can remain stable, which suggests remarkable electric-thermal stability and reliability despite prolonged operation. The P-CP membrane shows good linearity between voltage and current (R2 = 0.997) and easy temperature control from room temperature to ∼120 °C at low supply voltage (0-12 V). Under the condition of 12 V power supply and self-gravity, the separation flux of the P-CP membrane for water-in-oil (W/O) emulsions (kerosene, diesel) is 2-3 times higher than that at room temperature, and the separation efficiency is also improved. Importantly, the P-CP membrane shows excellent separation performance for high viscosity water-in-crude oil emulsions, with a separation flux of 40 L m-2 h-1 by gravity. Compared to the situation without electricity, the separation flux of water-in-crude oil emulsion has increased four-fold. The joule heating of the P-CP membrane expands its service time and application scenarios, demonstrating its great application prospects in actual viscous oil-water emulsion separation.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Dan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Dafan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Hongwei Ge
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 266237 Qingdao, P. R. China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| |
Collapse
|
19
|
Zhao H, Zhan J, Yun H, Mu H, Zhang D, An L, Yao H, Zhang G. Deciphering the intricate dielectric relaxation processes of cellulose paper: Extraction of distribution of relaxation time and analysis of degradation characteristics. Carbohydr Polym 2024; 324:121497. [PMID: 37985048 DOI: 10.1016/j.carbpol.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cellulose material is a dielectric with intricate microscopic relaxation processes due to its complex structure. However, conventional models and curve fitting methods used for tracing and analyzing these processes often fail to capture crucial dielectric information. This paper aimed to extract the Distribution of Relaxation Time (DRT), the most fundamental and effective dielectric information providing the time scale and relative contribution of all microscopic relaxation processes. First, a distributed extended Debye model with infinite branches was constructed based on the microscopic nature of dielectric relaxation. Then, an implicit equation of the DRT function was established, inspired by the mathematical principles of infinite subdivision and summation. To obtain the numeral solution of the DRT function, a regularization method was proposed and validated. Finally, the approach was applied to cellulose insulating paper with varying degradation degrees. The relaxation process with a long time constant played a significant role, and variations during the degradation process were attributed to reduced activation energy. With clear physical interpretation and robust mathematical foundation, our method sheds light on the intricate dielectric relaxation processes in cellulose. This not only enhances the theoretical understanding and practical application of cellulose materials but also provides valuable insights for the analysis and application of other materials.
Collapse
Affiliation(s)
- Haoxiang Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China; Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jiangyang Zhan
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Hao Yun
- China Nuclear Power Operation Technology Corporation., Ltd, Wuhan, China.
| | - Haibao Mu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Daning Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Lixuan An
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium.
| | - Huanmin Yao
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Guanjun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
20
|
Wang B, Zhang W, Lai C, Liu Y, Guo H, Zhang D, Guo Z. Facile Design of Flexible, Strong, and Highly Conductive MXene-Based Composite Films for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302335. [PMID: 37661587 DOI: 10.1002/smll.202302335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/28/2023] [Indexed: 09/05/2023]
Abstract
Strong, conductive, and flexible materials with improving ion accessibility have attracted significant attention in electromagnetic interference (EMI) and foldable wearable electronics. However, it still remains a great challenge to realize high performance at the same time for both properties. Herein, a microscale structural design combined with nanostructures strategy to fabricate TOCNF(F)/Ti3 C2 Tx (M)@AgNW(A) composite films via a facile vacuum filtration process followed by hot pressing (TOCNF = TEMPO-oxidized cellulose nanofibrils, NW = nanowires) is described. The comparison reveals that different microscale structures can significantly influence the properties of thin films, especially their electrochemical properties. Impressively, the ultrathin MA/F/MA film with enhanced layer in the middle exhibits an excellent tensile strength of 107.9 MPa, an outstanding electrical conductivity of 8.4 × 106 S m-1 , and a high SSE/t of 26 014.52 dB cm2 g-1 . The assembled asymmetric MA/F/MA//TOCNF@CNT (carbon nanotubes) supercapacitor leads to a significantly high areal energy density of 49.08 µWh cm-2 at a power density of 777.26 µW cm-2 . This study proposes an effective strategy to circumvent the trade-off between EMI performance and electrochemical properties, providing an inspiration for the fabrication of multifunctional films for a wide variety of applications in aerospace, national defense, precision instruments, and next-generation electronics.
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Weiye Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Chenhuan Lai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yi Liu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Hongwu Guo
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Daihui Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
21
|
Zhou Y, Zhang R, She X, Li J, Zhao H, Wang Y, Chen Y, Xie L, Zou C, Li X. Alkalized Cellulose Nanofiber-Interweaved PEDOT:PSS Thin-Film Sensors via Layer-by-Layer Spraying Assembly for Ultrafast Molecular Ammonia Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53802-53814. [PMID: 37934236 DOI: 10.1021/acsami.3c10736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
As a typical representative of conductive polymers (CPs), poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) is intensively employed for chemiresistive ammonia (NH3) sensing on account of its favorable aqueous solubility, benign environmental stability, and outstanding room-temperature conductivity; however, it is severely plagued by low sensitivity and sluggish reaction kinetics. To circumvent these limitations, the guest-alkalized cellulose nanofibers (AC) were introduced into the host PEDOT:PSS matrix by the layer-by-layer spraying assembly method (LBLSA) in this work. The componential proportion-optimized PEDOT:PSS/AC/PEDOT:PSS (P/AC/P) sensor delivered a large sensitivity of 20.2%/ppm within 0.1-3 ppm of NH3 at 21 °C@26% RH, an experimental limit of detection (LoD) as low as 30 ppb, a high response of 18.1%, and a short response/recovery times (4.8/4.0 s) toward 1 ppm of NH3, which ranked among the best cases thus far. Also, excellent repeatability and long-term stability and selectivity were demonstrated. Meanwhile, the flexible P/AC/P sensors worked well under various bending angles and bending times. This work combines a green material system and a facile film deposition method to overcome the liquid dispersion incompatibility when preparing a multicomponent mixture for swift trace NH3 detection. The universality and extensibility of this methodology endow a broad prospect in the field of future wearable optoelectronic systems.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ruijie Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaopeng She
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hongchao Zhao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Chen
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lei Xie
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
22
|
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023; 15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.
Collapse
Affiliation(s)
- Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shenjie Zhong
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
23
|
Andrew LJ, Gillman ER, Walters CM, Lizundia E, MacLachlan MJ. Multi-Responsive Supercapacitors from Chiral Nematic Cellulose Nanocrystal-Based Activated Carbon Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301947. [PMID: 37093171 DOI: 10.1002/smll.202301947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The development of long-lived electrochemical energy storage systems based on renewable materials is integral for the transition toward a more sustainable society. Supercapacitors have garnered considerable interest given their impressive cycling performance, low cost, and safety. Here, the first example of a chiral nematic activated carbon aerogel is shown. Specifically, supercapacitor materials are developed based on cellulose, a non-toxic and biodegradable material. The chiral nematic structure of cellulose nanocrystals (CNCs) is harnessed to obtain free-standing hierarchically ordered activated carbon aerogels. To impart multifunctionality, iron- and cobalt-oxide nanoparticles are incorporated within the CNC matrix. The hierarchical structure remains intact even at nanoparticle concentrations of ≈70 wt%. The aerogels are highly porous, with specific surface areas up to 820 m2 g-1 . A maximum magnetization of 17.8 ± 0.1 emu g-1 with superparamagnetic behavior is obtained, providing a base for actuator applications. These materials are employed as symmetric supercapacitors; owing to the concomitant effect of the hierarchically arranged carbon skeleton and KOH activation, a maximum Cp of 294 F g-1 with a capacitance retention of 93% after 2500 cycles at 50 mV s-1 is achieved. The multifunctionality of the composite aerogels opens new possibilities for the use of biomass-derived materials in energy storage and sensing applications.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Emma R Gillman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Christopher M Walters
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- UBC BioProducts Institute, 2385 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
24
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
25
|
Li L, Jia S, Cheng Z, Zhang C. Improved Strategies for Separators in Zinc-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202330. [PMID: 36866862 DOI: 10.1002/cssc.202202330] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Indexed: 06/19/2023]
Abstract
The demand for energy storage is growing, and the disadvantages of lithium-ion batteries are being explored to overcome them. Accordingly, aqueous zinc-ion batteries (ZIBs) are developing very rapidly, owing to their high safety, environmental friendliness, high abundance of resources, and high cost performance. Over the last decade, ZIBs have made remarkable progress through extensive efforts in the field of electrode materials and through fundamental understanding of non-electrode components, such as solid-electrolyte interphase, electrolytes, separators, binders, and current collectors. In particular, the breakthrough in using separators on non-electrode elements should not be overlooked as such separators have proven key to conferring ZIBs with high energy and power density. In this Review, recent progress in the development of separators in ZIBs is comprehensively summarized based on their functions and roles in ZIBs, including the modification of conventional separators and the development of novel separators. Finally, the prospects and future challenges of separators are also discussed to facilitate ZIBs development.
Collapse
Affiliation(s)
- Le Li
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts, Shaanxi University Engineering Research Center School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Shaofeng Jia
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts, Shaanxi University Engineering Research Center School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Zhiyi Cheng
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts, Shaanxi University Engineering Research Center School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Changming Zhang
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts, Shaanxi University Engineering Research Center School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| |
Collapse
|
26
|
Kang S, Li Z, Li J, Wei H, Guo Y, Li H, Yan P, Wu H. Self-Supporting Flexible Paper-Based Electrode Reinforced by Gradient Network Structure. Polymers (Basel) 2023; 15:polym15061334. [PMID: 36987114 PMCID: PMC10059033 DOI: 10.3390/polym15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
At present, the self-supporting paper-based electrode has some problems, such as low mechanical strength and insufficient flexibility, which restrict its application in flexible electronics. In this paper, FWF is used as the skeleton fiber, and the contact area and the number of hydrogen bonds of the fiber are increased by grinding the fiber and adding nanofibers to bridge it, and a level three gradient enhanced skeleton support network structure is constructed, which effectively improves the mechanical strength and foldability of the paper-based electrodes. The tensile strength of FWF15-BNF5 paper-based electrode is 7.4 MPa, the elongation at break is increased to 3.7%, the electrode thickness is as low as 66 μm, the electrical conductivities is 5.6 S cm-1, and the contact angle to electrolyte as low as 45°, which has excellent electrolyte wettability, flexibility, and foldability. After three-layer superimposed rolling, the discharge areal capacity reached 3.3 mAh cm-2 and 2.9 mAh cm-2 at the rate of 0.1 C and 1.5 C, respectively, which was superior to the commercial LFP electrode, it had good cycle stability, and the areal capacity was 3.0 mAh cm-2 and 2.8 mAh cm-2 after 100 cycles at the rate of 0.3 C and 1.5 C.
Collapse
Affiliation(s)
- Shaoran Kang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
- Ningxia Shenyao Technology Co., Yinchuan 750004, China
| | - Zhijian Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Jinbao Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Hairu Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Yanbo Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Haiwen Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Peng Yan
- Ningxia Shenyao Technology Co., Yinchuan 750004, China
| | - Haiwei Wu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| |
Collapse
|
27
|
Akhlaq M, Mushtaq U, Naz S, Uroos M. Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. RSC Adv 2023; 13:5723-5743. [PMID: 36816074 PMCID: PMC9929619 DOI: 10.1039/d2ra08244f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
In electrochemistry, bio-based materials are preferred over the traditional costly and synthetic polymers due to their abundance, versatility, sustainability and low cost. One of the bio-based polymers is carboxymethyl cellulose (CMC) which has become an overarching material in electrochemical devices pertaining to its amphiphilic nature with multi-carbon functional groups. Owing to its flexible framework with fascinating groups on its surface like hydroxide (-OH) and carboxylate (-COO-), CMC is able to be modified into conducting materials by blending it with other biopolymers, synthetic polymers, salts, acids and others. This blending has improved the profile of CMC by exploiting the ability of hydrogen bonding, swelling, adhesiveness and dispersion of charges and ions. These properties of CMC have made it possible to utilize this bio-sourced polymer in several applications as a conducting electrolyte, binder in electrodes, detector, sensor and active material in fuel cells, actuators and triboelectric nanogenerators (TENG). Thus, CMC based materials are cheap, environment friendly, hydrophilic, biodegradable, non-toxic and biocompatible which render it a desirable material in energy storage devices.
Collapse
Affiliation(s)
- Maida Akhlaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Umair Mushtaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Sadia Naz
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Maliha Uroos
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| |
Collapse
|
28
|
Yang JL, Zhao XX, Zhang W, Ren K, Luo XX, Cao JM, Zheng SH, Li WL, Wu XL. "Pore-Hopping" Ion Transport in Cellulose-Based Separator Towards High-Performance Sodium-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202300258. [PMID: 36721269 DOI: 10.1002/anie.202300258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Sodium-ion batteries (SIBs) have great potential for large-scale energy storage. Cellulose is an attractive material for sustainable separators, but some key issues still exist affecting its application. Herein, a cellulose-based composite separator (CP@PPC) was prepared by immersion curing of cellulose-based separators (CP) with poly(propylene carbonate) (PPC). With the assistance of PPC, the CP@PPC separator is able to operate the cell stably at high voltages (up to 4.95 V). The "pore-hopping" ion transport mechanism in CP@PPC opens up extra Na+ migration paths, resulting in a high Na+ transference number (0.613). The separator can also tolerate folding, bending and extreme temperature under certain circumstances. Full cells with CP@PPC reveal one-up capacity retention (96.97 %) at 2C after 500 cycles compared to cells with CP. The mechanism highlights the merits of electrolyte analogs in separator modification, making a rational design for durable devices in advanced energy storage systems.
Collapse
Affiliation(s)
- Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xin-Xin Zhao
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Wei Zhang
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Kai Ren
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xiao-Xi Luo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Shuo-Hang Zheng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Wen-Liang Li
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.,Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
29
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203193. [PMID: 35737931 DOI: 10.1002/adma.202203193] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the electronics industry and proliferation of electronic materials and telecommunications technologies has led to the release of a massive amount of untreated electronic waste (e-waste) into the environment. Consequently, catastrophic environmental damage at the microbiome level and serious human health diseases threaten the natural fate of the planet. Currently, the demand for wearable electronics for applications in personalized medicine, electronic skins (e-skins), and health monitoring is substantial and growing. Therefore, "green" characteristics such as biodegradability, self-healing, and biocompatibility ensure the future application of wearable electronics and e-skins in biomedical engineering and bioanalytical sciences. Leveraging the biodegradability, sustainability, and biocompatibility of natural materials will dramatically influence the fabrication of environmentally friendly e-skins and wearable electronics. Here, the molecular and structural characteristics of biological skins and artificial e-skins are discussed. The focus then turns to the biodegradable materials, including natural and synthetic-polymer-based materials, and their recent applications in the development of biodegradable e-skin in wearable sensors, robotics, and human-machine interfaces (HMIs). Finally, the main challenges and outlook regarding the preparation and application of biodegradable e-skins are critically discussed in a near-future scenario, which is expected to lead to the next generation of biodegradable e-skins.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
31
|
Say M, Brett CJ, Edberg J, Roth SV, Söderberg LD, Engquist I, Berggren M. Scalable Paper Supercapacitors for Printed Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55850-55863. [PMID: 36508553 PMCID: PMC9782359 DOI: 10.1021/acsami.2c15514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm2, which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Ω, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm2) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.
Collapse
Affiliation(s)
- Mehmet
Girayhan Say
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden
| | - Calvin J. Brett
- Wallenberg
Wood Science Center, KTH Royal Institute
of Technology, Teknikringen 56-58, 100 44Stockholm, Sweden
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Osquars
Backe 18, 100 44Stockholm, Sweden
- Deutsches
Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607Hamburg, Germany
| | - Jesper Edberg
- RISE
Research Institutes of Sweden, Bio- and Organic Electronics, Bredgatan 35, SE-602 21Norrköping, Sweden
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607Hamburg, Germany
- Fibre
and
Polymer Technology, KTH Royal Institute
of Technology, Teknikringen
56-58, 100 44Stockholm, Sweden
| | - L. Daniel Söderberg
- Wallenberg
Wood Science Center, KTH Royal Institute
of Technology, Teknikringen 56-58, 100 44Stockholm, Sweden
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Osquars
Backe 18, 100 44Stockholm, Sweden
| | - Isak Engquist
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden
- Wallenberg
Wood Science Center, ITN, Linköping
University, SE-601 74Norrköping, Sweden
| | - Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden
- Wallenberg
Wood Science Center, ITN, Linköping
University, SE-601 74Norrköping, Sweden
| |
Collapse
|
32
|
Meder F, Baytekin B, Del Dottore E, Meroz Y, Tauber F, Walker I, Mazzolai B. A perspective on plant robotics: from bioinspiration to hybrid systems. BIOINSPIRATION & BIOMIMETICS 2022; 18:015006. [PMID: 36351300 DOI: 10.1088/1748-3190/aca198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
As miscellaneous as the Plant Kingdom is, correspondingly diverse are the opportunities for taking inspiration from plants for innovations in science and engineering. Especially in robotics, properties like growth, adaptation to environments, ingenious materials, sustainability, and energy-effectiveness of plants provide an extremely rich source of inspiration to develop new technologies-and many of them are still in the beginning of being discovered. In the last decade, researchers have begun to reproduce complex plant functions leading to functionality that goes far beyond conventional robotics and this includes sustainability, resource saving, and eco-friendliness. This perspective drawn by specialists in different related disciplines provides a snapshot from the last decade of research in the field and draws conclusions on the current challenges, unanswered questions on plant functions, plant-inspired robots, bioinspired materials, and plant-hybrid systems looking ahead to the future of these research fields.
Collapse
Affiliation(s)
- Fabian Meder
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Bilge Baytekin
- Department of Chemistry and UNAM National Nanotechnology Research Center, Bilkent University, Ankara, Turkey
| | | | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Falk Tauber
- Plant Biomechanics Group (PBG) Freiburg, Botanic Garden of the University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Ian Walker
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, United States of America
| | - Barbara Mazzolai
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
33
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
34
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
35
|
Facile and green synthesis of nanocellulose with the assistance of ultraviolet light irradiation for high-performance quasi-solid-state zinc-ion batteries. J Colloid Interface Sci 2022; 628:1-9. [PMID: 35908426 DOI: 10.1016/j.jcis.2022.07.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Benefiting from excellent mechanical properties, large surface area, rich hydroxyl groups, good sustainability, etc., nanocellulose is highly promising for various applications. However, intense chemical treatment and long-term processing are usually required to fabricate nanocellulose. Herein, a new synthesis method of nanocellulose is developed by using ultraviolet light irradiation-assisted delignification and subsequent sonification. This method is more cost-effective, time-saving, and environmentally benign compared to most of previously reported synthesis methods of nanocellulose. The obtained nanocellulose contains a small amount of lignin, which is unfavorable for high-temperature stability and optimal transparency. However, a small amount of lignin is beneficial to mechanical properties and in-water stability. With this nanocellulose, flexible MnO2 cathode film and hydrogel electrolyte are constructed and a quasi-solid-state zinc-ion battery is assembled. The battery exhibits 233.3 mAh g-1 after 1000 cycles at 1 A g-1 and 20 ℃. And more than half of that capacity can be maintained at -20 ℃. The battery also possesses great rate capability and good endurance to external forces. This work provides new insights into the synthesis and application of nanocellulose.
Collapse
|
36
|
Ho VC, Lim H, Kim MJ, Mun J. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chem Asian J 2022; 17:e202200289. [PMID: 35546083 DOI: 10.1002/asia.202200289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Indexed: 11/07/2022]
Abstract
Aqueous zinc-ion batteries (ZIBs) are promising candidates for the next-generation high-energy storage devices, owing to their resource availability, low cost, eco-friendliness, and high safety. The zinc (Zn) metal anode in a suitable battery system, including an electrolyte and a high-performance cathode electrode, can deliver an excellent electrochemical performance. However, several obstacles must be overcome to utilize aqueous ZIBs. Among these, Zn dendrite growth, corrosion, and side reactions severely impair the performance of rechargeable ZIBs. To deal with these issues, a profound understanding of the mechanism of the matter occurring in electrochemical cycles is essential to thoroughly solve the challenges. Instead of focusing solely on techniques for improving the performance of Zn metal anodes, this review delves into and summarizes the causes of side reactions and dendrite formation, thereby establishing a logical system of methodologies for improving the electrochemical performance of mild aqueous ZIBs. The correlation between the Zn metal anode, aqueous electrolyte, separators and the performance of ZIBs is also discussed in detail. There is also a brief perspective on the future development of Zn metal anodes in aqueous solutions. This study sheds a light on the challenges associated with the construction of high-performance ZIBs, which will significantly aid in their practical implementation.
Collapse
Affiliation(s)
- Van-Chuong Ho
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419 (Republic of, Korea
| | - Hana Lim
- Department of Applied Chemistry, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Korea
| | - Myung Jun Kim
- Department of Applied Chemistry, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Korea
| | - Junyoung Mun
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419 (Republic of, Korea
- SKKU Institute of Energy Science and Technology (SIEST), SungkyunKwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419 (Republic of, Korea
| |
Collapse
|
37
|
Zhao Z, Li Q, Dong Y, Gong J, Li Z, Zhang J. Washable Patches with Gold Nanowires/Textiles in Wearable Sensors for Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18884-18900. [PMID: 35427121 DOI: 10.1021/acsami.2c01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Textile-based flexible electronic devices have attracted tremendous attention in wearable sensors due to their excellent skin affinity and conformability. However, the washing process of such devices may damage the electronic components. Here, a textile-based piezoresistive sensor with ultrahigh sensitivity was fabricated through the layered integration of gold nanowire (AuNW)-impregnated cotton fabric and silver ink screen-printed nylon fabric electrodes, sealing with Parafilm. The prepared piezoresistive sensing patch exhibits outstanding performance, including high sensitivity (914.970 kPa-1, <100 Pa), a fast response time (load: 38 ms, recovery: 34 ms), and a low detection limit (0.49 Pa). More importantly, it can maintain a stable signal output even after 30 000 s of loading-unloading cycles. Furthermore, this sensing patch can efficiently detect breathing, pulse, heart rate, and joint movements during the activities. After five cycles of mechanical washing, the piezoresistive performance keeps 90.3%, demonstrating the high feasibility of this sensor in practical applications. This sensor has a simple fabrication, with good fatigue resistance and durability due to its all-fabric core element. It provides a strategy to address the machine-washing issues in textile electronics. This washable textile sensor is expected to show significant potential in future applications of health monitoring, human-machine interfaces, and artificial skin.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Yu Dong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| |
Collapse
|
38
|
Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework. J Colloid Interface Sci 2022; 612:679-688. [PMID: 35032925 DOI: 10.1016/j.jcis.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Si, featuring ultra-large theoretical specific capacity, is a very promising alternative to graphite for Li-ion batteries (LIBs). However, Si suffers from intrinsic low electrical conductivity and structural instability upon lithiation, thereby severely deteriorating its electrochemical performance. To address these issues, B-doping into Si, N-doped carbon coating layer, and carbon nanotube conductive network are combined in this work. The obtained Si/C hybrid anode material can be "grown" onto the Cu foil without using any binder and delivers large specific capacity (2328 mAh g-1 at 0.2 A g-1), great rate capability (1296.8 mAh g-1 at 4 A g-1), and good cyclability (76.7% capacity retention over 500 cycles). Besides, a cellulose separator derived from cotton is found to be superior to traditional polypropylene separator. By using cellulose as both the separator host and the mechanical skeleton of two electrodes, a flexible all-in-one paper-like LIB is assembled via a facile layer-by-layer filtration method. In this all-in-one LIB, all the components are integrated together with robust interfaces. This LIB is able to offer commercial-level areal capacity of 3.47 mAh cm-2 (corresponding to 12.73 mWh cm-2 and 318.3 mWh cm-3) and good cycling stability even under bending. This study offers a new route for optimizing Si-based anode materials and constructing flexible energy storage devices with a large areal capacity.
Collapse
|
39
|
TEMPO-mediated oxidized cellulose nanofibers-Cd2+ derived hierarchically porous carbon aerogel for oxygen reduction electrocatalysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Yang Y, Li N, Lv T, Chen Z, Liu Y, Dong K, Cao S, Chen T. Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. NANOSCALE ADVANCES 2022; 4:1718-1726. [PMID: 36132163 PMCID: PMC9417349 DOI: 10.1039/d2na00097k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
A sustainable and low-cost separator is highly required for electrochemical energy storage systems. Herein, a type of modified natural wood film with excellent mechanical properties, ion conductivity and thermal stability is fabricated for high-performance lithium ion batteries. Using the modified natural wood film as a separator, the fabricated symmetric cell exhibits a more stable and lower plating/stripping voltage for Li than that of the cell with a commercialized polypropylene (PP) separator. The LiFePO4/Li half-cell with the modified wood film separator shows a small polarization voltage and high discharge capacity because of the multi-level nanostructure and abundant functional groups of the modified wood films. The results suggest that the modified wood films are a promising candidate for use as separators in lithium ion batteries. As desired, the LiFePO4/Li half-cells with the modified wood film separator deliver much higher discharge capacities and more stable Coulomb efficiency over two hundred charge/discharge cycles than the cell based on the PP separator. The present work systematically investigate the feasibility of abundant and cheap natural wood-derived materials for use as efficient separators instead of synthetic polymers for high-performance lithium ion batteries with long cycle life.
Collapse
Affiliation(s)
- Yunlong Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Ning Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
41
|
Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydr Polym 2022; 279:119010. [PMID: 34980354 DOI: 10.1016/j.carbpol.2021.119010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
Cellulose might be a promising material for surface-enhanced Raman scattering (SERS) substrates due to its wide availability, low cost, ease of fabrication, high flexibility and low optical activity. This work shows, for the first time development of the cellulose-based substrate, that owes its SERS activity to the presence of gold nanorods in its internal structure, and not only on the surface, as it is shown elsewhere, thus ensuring superior stability of the obtained material. This flexible cellulose-based substrate exhibiting plasmonic activity, provide easy and reproducible detection of different analytes via SERS technique. The substrate was prepared by introduction of gold nanorods into the cellulose fibers matrix using an eco-friendly process based on N-Methylmorpholine-N-Oxide. Au-modified cellulose fibers were used for the detection of p-Mercaptobenzoic acid and Bovine Serum Albumin by the SERS method. The obtained results show that this substrate offers large signal enhancement of 6-orders of magnitude, and high signal reproducibility with a relative standard deviation of 8.3%. Additionally, washing tests (90 °C, 20 h) showed superior stability of the as prepared plasmonic fibers, thus proving the good reusability of the substrates and the long shelf life.
Collapse
|
42
|
Zhang Z, Yang Y, Guo W, Chang G, Li J. Synergistic Capture and Conversion of Soluble Polysulfides in Li-S Batteries with Composite Freestanding Carbonaceous Interlayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9231-9241. [PMID: 35138791 DOI: 10.1021/acsami.1c24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered promising next-generation energy storage systems due to their high energy density and low cost. However, their practical application still faces challenges such as the "shuttle effect" caused by polysulfides (LiPS). In this work, we use environmentally friendly bacterial cellulose (BC) as the substrate and prepare a flexible Ni-containing coordination polymer-modified carbonized BC interlayer (Ni-CBC). The combined electrochemical theoretical analysis shows that Ni-CBC not only captures LiPS effectively but also facilitates the electrochemical conversion of the adsorbed LiPS. As a result of these favorable features, the battery with the Ni-CBC interlayer delivers a stable discharge performance at 0.2C during long charge-discharge cycles and a high rate capacity of 852 mAh g-1 at 2C. This work suggests that cellulose-based materials with tailored functionality can improve the performance of Li-S batteries.
Collapse
Affiliation(s)
- Zhijia Zhang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, P.R.China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yuanyuan Yang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, P.R.China
| | - Wei Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Junsheng Li
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, P.R.China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
43
|
Luo K, Wu K, Hou Q, Zhang W, Jiang T, Wang X, Liu X, Liu W. Spider-web-inspired cellulose nanofibrils networking polyaniline-encapsulated silica nanoparticles as anode material of lithium-ion batteries. Carbohydr Polym 2022; 277:118833. [PMID: 34893250 DOI: 10.1016/j.carbpol.2021.118833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
As the promising anode material of lithium-ion batteries (LIBs), SiO2 has high theoretical capacity, but the volume expansion severely hinders its application. To address the challenge, inspired by the highly flexible spider-web architecture, the SiO2@carbonized polyaniline/carbonized 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (SiO2@cPANI/cTOCNFs) composite was designed, and fabricated via carbonizing the freeze-dried SiO2@PANI/TOCNFs. The resultant SiO2@cPANI/cTOCNFs composite exhibited unique spider-web-like nanostructures, providing a double-layer carbon network to protect SiO2 anode material. The results showed that, the SiO2@cPANI/cTOCNFs composite as anode material of LIBs offered a reversible capacity of 1103 mAh g-1 at a current density of 0.1 A g-1 after 200 cycles, and gave a capacity of 302 mAh g-1 after 1000 cycles at a current density of 1 A g-1, exhibiting excellent cycling stability. This study provides a strategy of spider-web-inspired cellulose nanofibrils networking polyaniline-encapsulated silica nanoparticles as anode material of LIBs.
Collapse
Affiliation(s)
- Kaisheng Luo
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaili Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenwen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tongbao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaodi Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiuzhi Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
44
|
Kafle A, Thakur N, Nagaiah TC. Fabrication of NiFeB flexible electrode via electroless deposition towards selective and sensitive detection of dopamine. J Mater Chem B 2022; 10:3681-3686. [DOI: 10.1039/d2tb00570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The abstract should be a single paragraph that summarises the content of the article A novel cost effective and eco-friendly flexible electrochemical sensor was designed to deal with the problems...
Collapse
|
45
|
Yang P, Li J, Lee SW, Fan HJ. Printed Zinc Paper Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103894. [PMID: 34741445 PMCID: PMC8760176 DOI: 10.1002/advs.202103894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/19/2021] [Indexed: 05/04/2023]
Abstract
Paper electronics offer an environmentally sustainable option for flexible and wearable systems and perfectly fit the available printing technologies for high manufacturing efficiency. As the heart of energy-consuming devices, paper-based batteries are required to be compatible with printing processes with high fidelity. Herein, hydrogel reinforced cellulose paper (HCP) is designed to serve as the separator and solid electrolyte for paper batteries. The HCP can sustain higher strain than pristine papers and are biodegradable in natural environment within four weeks. Zinc-metal (Ni and Mn) batteries printed on the HCP present remarkable volumetric energy density of ≈26 mWh cm-3 , and also demonstrate the feature of cuttability and compatibility with flexible circuits and devices. As a result, self-powered electronic system could be constructed by integrating printed paper batteries with solar cells and light-emitting diodes. The result highlights the feasibility of hydrogel reinforced paper for ubiquitous flexible and eco-friendly electronics.
Collapse
Affiliation(s)
- Peihua Yang
- School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371Singapore
| | - Jia Li
- Rolls‐Royce@NTU Corporate LabNanyang Technological UniversitySingapore639798Singapore
| | - Seok Woo Lee
- Rolls‐Royce@NTU Corporate LabNanyang Technological UniversitySingapore639798Singapore
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371Singapore
- Innovative Centre for Flexible Devices (iFLEX)Nanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
46
|
Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101368. [PMID: 34561914 PMCID: PMC11468700 DOI: 10.1002/adma.202101368] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/05/2021] [Indexed: 05/23/2023]
Abstract
With the increasing demand for wearable electronics (such as smartwatch equipment, wearable health monitoring systems, and human-robot interface units), flexible energy storage systems with eco-friendly, low-cost, multifunctional characteristics, and high electrochemical performances are imperative to be constructed. Nanocellulose with sustainable natural abundance, superb properties, and unique structures has emerged as a promising nanomaterial, which shows significant potential for fabricating functional energy storage systems. This review is intended to provide novel perspectives on the combination of nanocellulose with other electrochemical materials to design and fabricate nanocellulose-based flexible composites for advanced energy storage devices. First, the unique structural characteristics and properties of nanocellulose are briefly introduced. Second, the structure-property-application relationships of these composites are addressed to optimize their performances from the perspective of processing technologies and micro/nano-interface structure. Next, the recent specific applications of nanocellulose-based composites, ranging from flexible lithium-ion batteries and electrochemical supercapacitors to emerging electrochemical energy storage devices, such as lithium-sulfur batteries, sodium-ion batteries, and zinc-ion batteries, are comprehensively discussed. Finally, the current challenges and future developments in nanocellulose-based composites for the next generation of flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peiwen Liu
- Department of Wood Technology and Wood-Based Composites, University of Göttingen, D-37077, Göttingen, Germany
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai Zhang
- Department of Wood Technology and Wood-Based Composites, University of Göttingen, D-37077, Göttingen, Germany
| |
Collapse
|
47
|
A novel method to prepare a highly porous separator based on nanocellulose with multi-scale pore structures and its application for rechargeable lithium ion batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Copper Electroless Metallization of Cellulose Paper via Polydopamine Coating and Silver Catalyst. MATERIALS 2021; 14:ma14226862. [PMID: 34832264 PMCID: PMC8623923 DOI: 10.3390/ma14226862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
The paper presents the results of copper electroless metallization of cellulose paper with the use of a polydopamine coating and silver catalyst. The polydopamine coating was deposited via a simple dip method using a dopamine hydrochloride solution in 10 mM TRIS-HCl buffer with a pH of 8.5. The research showed that as a result of this process, cellulose fibers were covered with a homogeneous layer of polydopamine. The unique properties of the polydopamine coating allowed the reduction of silver ions from silver nitrate solution and the deposition of silver atoms on the paper surface. Deposited silver served as a catalyst in the autocatalytic electroless copper-plating process. The copper layer covered the entire surface of the paper sheet after 5 min of metallization, favorably affecting the electrical properties of this material by lowering the surface resistivity. The deposited copper layer was further characterized by good adhesive strength and high susceptibility to deformation.
Collapse
|
49
|
Zhang W, Yin J, Wang C, Zhao L, Jian W, Lu K, Lin H, Qiu X, Alshareef HN. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. SMALL METHODS 2021; 5:e2100896. [PMID: 34927974 DOI: 10.1002/smtd.202100896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Lignin, one of the renewable constituents in natural plant biomasses, holds great potential as a sustainable source of functional carbon materials. Tremendous research efforts have been made on lignin-derived carbon electrodes for rechargeable batteries. However, lignin is considered as one of the most promising carbon precursors for the development of high-performance, low-cost porous carbon electrode materials for supercapacitor applications. Yet, these efforts have not been reviewed in detail in the current literature. This review, therefore, offers a basis for the utilization of lignin as a pivotal precursor for the synthesis of porous carbons for use in supercapacitor electrode applications. Lignin chemistry, the synthesis process of lignin-derived porous carbons, and future directions for developing better porous carbon electrode materials from lignin are systematically reviewed. Technological hurdles and approaches that should be prioritized in future research are presented.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Caiwei Wang
- School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Tianhe District, Guangzhou, 510640, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Haibo Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
50
|
Han JH, Shin KH, Lee YJ. Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6375-6384. [PMID: 33508939 DOI: 10.1021/acsami.0c22664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a freestanding cellulose acetate-carbon nanotube (CA-CNT) film electrode is presented to achieve highly flexible, high-energy lithium-ion batteries (LIBs). CA serves as a dispersing agent of CNTs and a binder-free network former. A straightforward washing can remove CA in the electrode almost completely, while the fibrous CNT network within the electrode is sustained. Furthermore, the facile fabrication enables the large-scale production of the film electrode because the CA-CNT film is processed by a conventional casting method and not by the area-limited vacuum filtration. The superior electrochemical performance and high flexibility of the full cell assembled with CA-CNT-based electrodes are maintained even at a high active material loading, which has been proven difficult to accomplish in the conventional configuration LIBs. In addition, by simply stacking six sheets of the freestanding film electrode, a capacity as high as 5.4 mA h cm-2 is achieved. The assembled pouch battery operates stably under extreme deformation. We demonstrate that the rational design of the electrode could extend the flexibility to a higher energy than that achieved with the conventional configuration. We believe that the low production cost, high flexibility, and superior electrochemical performance of the proposed freestanding film electrode can expedite the implementation of wearable gears in daily life.
Collapse
Affiliation(s)
- Ji Hyun Han
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyu Hang Shin
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Jung Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|