1
|
Yao C, Liu S, Liu Z, Huang S, Sun T, He M, Xiao G, Ouyang H, Tao Y, Qiao Y, Li M, Li Z, Shi P, Chen HJ, Xie X. Deep learning-enhanced anti-noise triboelectric acoustic sensor for human-machine collaboration in noisy environments. Nat Commun 2025; 16:4276. [PMID: 40341503 DOI: 10.1038/s41467-025-59523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Human-machine voice interaction based on speech recognition offers an intuitive, efficient, and user-friendly interface, attracting wide attention in applications such as health monitoring, post-disaster rescue, and intelligent control. However, conventional microphone-based systems remain challenging for complex human-machine collaboration in noisy environments. Herein, an anti-noise triboelectric acoustic sensor (Anti-noise TEAS) based on flexible nanopillar structures is developed and integrated with a convolutional neural network-based deep learning model (Anti-noise TEAS-DLM). This highly synergistic system enables robust acoustic signal recognition for human-machine collaboration in complex, noisy scenarios. The Anti-noise TEAS directly captures acoustic fundamental frequency signals from laryngeal mixed-mode vibrations through contact sensing, while effectively suppressing environmental noise by optimizing device-structure buffering. The acoustic signals are subsequently processed and semantically decoded by the DLM, ensuring high-fidelity interpretation. Evaluated in both simulated virtual and real-life noisy environments, the Anti-noise TEAS-DLM demonstrates near-perfect noise immunity and reliably transmits various voice commands to guide robotic systems in executing complex post-disaster rescue tasks with high precision. The combined anti-noise robustness and execution accuracy endow this DLM-enhanced Anti-noise TEAS as a highly promising platform for next-generation human-machine collaborative systems operating in challenging noisy environments.
Collapse
Affiliation(s)
- Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Suhang Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, China
| | - Tiancheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Gemin Xiao
- The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Han Ouyang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Tao
- The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Yancong Qiao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, China
| | - Mingqiang Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Peng Shi
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China.
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
2
|
Cheng G, Sun T, Gao H, Wu Y, Li J, Xiong W, Li X, Wang H, Tian Y, Wei D, Yuan J, Wei D. Superlow-Noise Quasi-2D Vertical Tunneling Tactile Sensor for Fine Liquid Dynamic Recognition. ACS NANO 2025. [PMID: 40332011 DOI: 10.1021/acsnano.4c18377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
To achieve high-precision intelligent tactile recognition and hyperfine operation tasks, tactile sensors need to possess the ability to discriminate minute pressures within the range of human perception. However, due to the lack of methodologies for noise suppression, existing tactile sensing mechanisms are inferior in pressure resolution. In this work, we emulate the structure of biological fingertip Merkel cells to develop a quasi-2D vertical tunneling tactile sensor based on conformal graphene nanowalls-hexagonal boron nitride-graphene (CGNWs-hBN-Gr) van der Waals (vdWs) heterojunctions. Tunneling channel modulation of this heterojunction simulates the ion gating mechanism of piezo (PZ) proteins and greatly reduces the noise power spectral density (PSD) to 2.22 × 10-24 A2/Hz at 10 Hz, which is 3 orders of magnitude lower than that of the sensor without an hBN layer. The noise equivalent pressure (NEPr) was as low as 7.96 × 10-3 Pa. Multiscale conformal micro- and nanostructured CGNWs further promote an ultrahigh sensitivity of 1.99 × 106 kPa-1, and the sensor demonstrates a high signal-to-noise ratio (SNR) of 68.76 dB and a resolution of 1/10,000. The minimum identifiable loading of 2 Pa at a pressure of 20 kPa is less than the sensing threshold value of human skin. An ultraresolution sensor could be used to evaluate different liquid properties by detecting complex hydrodynamic changes during artificial touching of liquids via a fingertip. Combined with the TacAtNet model, this sensor distinguishes between different liquids with a resolution accuracy of 98.1% across five distinct alcohol concentrations.
Collapse
Affiliation(s)
- Guanyin Cheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Tianhui Sun
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hailin Gao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Jingyang Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wen Xiong
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huabin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Jiahu Yuan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dapeng Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
3
|
Kim K, Kim DR, Kim D, Song HH, Lee S, Choi Y, Lee K, Lee GH, Lee J, Kim HH, Ahn E, Jang JH, Kim Y, Lee HC, Kim Y, Park SI, Yoo J, Lee Y, Park J, Kim DH, Choi MK, Yang J. Intrinsically-Stretchable and Patternable Quantum Dot Color Conversion Layers for Stretchable Displays in Robotic Skin and Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420633. [PMID: 40326949 DOI: 10.1002/adma.202420633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Indexed: 05/07/2025]
Abstract
Stretchable displays are essential components as signal outputs in next-generation stretchable electronics, particularly for robotic skin and wearable device technologies. Intrinsically-stretchable and patternable color conversion layers (CCLs) offer practical solutions for developing full-color stretchable micro-light-emitting diode (LED) displays. However, significant challenges remain in creating stretchable and patternable CCLs without backlight leakage under mechanical deformation. Here, a novel material strategy for stretchable and patternable heavy-metal-free quantum dot (QD) CCLs, potentially useful for robotic skin and wearable electronics is presented. Through a versatile crosslinking technique, uniform and high-concentration QD loading in the elastomeric polydimethylsiloxane matrix without loss of optical properties is achieved. These CCLs demonstrate excellent color conversion capabilities with minimal backlight leakage, even under 50% tensile strain. Additionally, fine-pixel patterning process with resolutions up to 300 pixels per inch is compatible with the QD CCLs, suitable for high-resolution stretchable display applications. The integration of these CCLs with micro-LED displays is also demonstrated, showcasing their use in haptic-responsive robotic skin and wearable healthcare monitoring sensors. This study offers a promising material preparation methodology for stretchable QDs/polymer composites and highlights their potential for advancing flexible and wearable light-emitting devices.
Collapse
Affiliation(s)
- Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Dong Ryong Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dohyeon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Hyeon Hwa Song
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seungmin Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yonghoon Choi
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyunghoon Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinhee Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hye Hyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eonhyoung Ahn
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yaewon Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyo Cheol Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Kowloon, SAR, 999077, Hong Kong
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soo Ik Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Youngsik Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jongnam Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dae-Hyeong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
4
|
Xiao R, McGonagle ER, Hadlock TA, Heaton JT. Transcutaneous Facial Nerve Frontal Branch Stimulation to Restore Dynamic Elevation of the Paralyzed Eyebrow in Synkinetic Patients. Facial Plast Surg Aesthet Med 2025. [PMID: 40293354 DOI: 10.1089/fpsam.2025.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Background: While patients commonly recover motion following facial nerve injury, aberrant neural regeneration can lead to synkinesis and chronic nonflaccid facial palsy (NFFP); many patients fail to recover volitional eyebrow elevation. Objective: To assess if transcutaneous electrical stimulation of injured frontal branches can achieve eyebrow elevation. Methods: We studied healthy volunteers (N = 10) and patients with unilateral NFFP (N = 36). We performed monopolar transcutaneous stimulation of healthy and paralyzed frontal branches with 4-10 mA pulse trains. We measured eyebrow elevation using Emotrics. Differences between stimulated and volitional elevation were assessed using Wilcoxon signed-rank tests. Results: Stimulable patients (N = 32) were capable of a median of 7.2 mm (interquartile range [IQR]: 5.9-10.5 mm) healthy eyebrow and 1.5 mm (IQR: 0.5-3.1 mm) paralyzed eyebrow volitional elevation. Transcutaneous stimulation of the healthy hemiface achieved a median of 8.5 mm (IQR: 6.3-10.5 mm) eyebrow elevation and 7.2 mm (IQR: 5.3-8.2 mm) on the paralyzed side. Maximum stimulated eyebrow elevation required a median current of 9 mA (IQR: 8-10 mA), which patients felt would be tolerable for daily use in a facial pacing prosthesis. Conclusions: Transcutaneous electrical stimulation can consistently elevate healthy and paralyzed eyebrows in most individuals with NFFP, suggesting they may benefit from dynamic reanimation of eyebrow elevation and possibly other facial regions in future facial pacing systems.
Collapse
Affiliation(s)
- Roy Xiao
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Hadlock Center for Facial Plastic Surgery, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth R McGonagle
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Hadlock Center for Facial Plastic Surgery, Boston, Massachusetts, USA
| | - Tessa A Hadlock
- Hadlock Center for Facial Plastic Surgery, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James T Heaton
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Hao Y, Ren W, Zhou Q, Wang B, Liu H, Zhang P, Wang R, Qin X, Wang L, Cheng Y. Skin-Mimicking Soft Strain Sensor with Elastic Resilience, Crack Tolerance, and Amphibious Self-Adhesion. ACS Sens 2025; 10:3180-3188. [PMID: 40178879 DOI: 10.1021/acssensors.5c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The intrinsic elastic resilience, fatigue resistance, and self-adhesion of human skin are highly desired merits. However, they are challenging to combine into a single mechanoreceptive electronic skin for healthcare monitoring and humanoid soft robots. We introduce an elastically resilient, crack-tolerant, amphibiously adhesive, and strain-sensitive electronic skin (ERCAS-skin) featuring a hierarchical and gradient design. ERCAS-skin has a skin-like binary structure of a carbon nanotube-coated thermoplastic polyurethane nanofibrous scaffold embedded in a gradient cross-linking polydimethylsiloxane (PDMS) matrix. The binary structure endows ERCAS-skin with mechanical compliance (Young's modulus of 2.4 MPa) and crack tolerance (fatigue threshold of 1285 J m-2) through a matrix-to-scaffold stress transfer. The gradient cross-linking PDMS ensures not only high elastic resilience (recovery of 95%) but also strong wet adhesion (0.76 N cm-1) through a synergistic hydrophobic chain mobility effect. The crack generation mechanism of the embedded carbon nanotube polyurethane enables high sensitivity and a wide strain-sensing range. Owing to its excellent strain-sensing capability, ERCAS-skin was utilized as a self-adhesive strain sensor for hand gesture recognition both in the air and under water and as a fatigue-free motion sensor for robotic fish monitoring.
Collapse
Affiliation(s)
- Yunna Hao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wei Ren
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qun Zhou
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Hongfang Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Peihua Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaohong Qin
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liming Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yin Cheng
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
6
|
Park G, Lee W, Shin H, Yun JH. Proof of principle demonstration of electro driven silver nanowire for stretchable circuit junctions. Sci Rep 2025; 15:12762. [PMID: 40229345 PMCID: PMC11997022 DOI: 10.1038/s41598-025-97533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
The interlayer connection of circuits within stretchable electronic devices is crucial for enhancing their performance. Conventional methods for interlayer circuit connections are fragile and prone to mechanical deformation, prompting the need for new approaches. Although various methods have been proposed for creating interconnections in stretchable circuits, a universally efficient method for junctions remains to be fully developed. In this study, we propose a method to connect the interlayers of stretchable circuits using electro-driven silver nanowires. By comparing the conventional junction method with our proposed method, we verify the efficiency of the new approach. The results reveal that applying a high electric field during the solidification of the circuit interlayer aligns the isotropic state of the silver nanowires parallel to the field, thereby increasing the conductivity of the interlayer junction. Additionally, the study demonstrates that using silver nanowires for the junction provides better mechanical stability to the junction compared to that of the bulk material, as verified through mechanical stretch experiments. An in-depth analysis with mathematical modeling is presented at the end of the study. The proposed method is a promising approach for creating junctions in stretchable devices and is expected to pave the way for increasing their efficiency.
Collapse
Affiliation(s)
- Gijung Park
- Department of Future Convergence Engineering, Kongju National University, Cheonan, 31080, South Korea
| | - Wonjoo Lee
- Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea
| | - Hyunseong Shin
- Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea.
| | - Jung-Hoon Yun
- Department of Future Convergence Engineering, Kongju National University, Cheonan, 31080, South Korea.
- Global Institute of Manufacturing Technology (GITECH), Kongju National University, Cheonan, 31080, South Korea.
| |
Collapse
|
7
|
Yuan Y, Xu H, Gao L, Cheng H. Stretchable, Rechargeable, Multimodal Hybrid Electronics for Decoupled Sensing toward Emotion Detection. NANO LETTERS 2025; 25:5220-5230. [PMID: 40127294 DOI: 10.1021/acs.nanolett.4c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Despite the rapid development of stretchable electronic devices for various applications in biomedicine and healthcare, the coupling between multiple input signals remains an obstacle in multimodal sensing before use in practical environments. This work introduces a fully integrated stretchable, rechargeable, multimodal hybrid device that combines decoupled sensors with a flexible wireless powering and transmitting module for emotion recognition. Through optimized structural design and material selection, the sensors can provide continuous real-time decoupled monitoring of biaxial strain, temperature, humidity, heart rate, and SpO2 levels. With a stacked bilayer for both the sensors and the flexible circuit, the rechargeable system showcases a reduced device footprint and improved comfort. A neural network model is also demonstrated to allow for high-precision facial expression recognition. By transmitting the real-time measured data to mobile devices and the cloud, the system can allow healthcare professionals to evaluate psychological health and provide emotional support through telemedicine when needed.
Collapse
Affiliation(s)
- Yangbo Yuan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongcheng Xu
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Dai J, Xie G, Huo X, Li J, Deng S, Su Y. Implantable and Biodegradable Smart Textiles for Continuous Limb and Gastrointestinal Motility Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407773. [PMID: 40091351 DOI: 10.1002/smll.202407773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/31/2025] [Indexed: 03/19/2025]
Abstract
The thriving of internet of things and mobile healthcare requires a myriad of sensing devices for continuous implantable and wearable monitoring over extended periods. However, lack of biocompatibility and degradability has become a bottleneck for rehabilitation and close-loop diagnosis and therapy as well as in-vivo biomonitoring platforms. Herein, an implantable and biodegradable smart textile (IBST) composed of natural loofah sponge is reported, carbon ink, and silver nanoparticles. Combining finite element analysis and experimental characterization, optimal sensing performance is achieved, featuring high sensitivity (4.023 [kPa]-1) and good linearity (R2 = 0.995) across a wide sensing range (0-50 kPa), with a response time of 88 ms for pressure detection. Through the construction and training of the neural network model, the prepared IBSTs enable effective identification and evaluation of the force exertion patterns of simulated Parkinson's patients at different stages and the wearer's motion states. Moreover, continuous and accurate monitoring of gastric motility is realized by implanting the IBPS into rats' stomach, validating the excellent biocompatibility and biodegradability. This work opens up a new paradigm for next-generation implantable medical devices and advanced wearable electronics.
Collapse
Affiliation(s)
- Jing Dai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xianghu Huo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shaoping Deng
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
9
|
Patil CS, Ghode SB, Kim J, Kamble GU, Kundale SS, Mannan A, Ko Y, Noman M, Saqib QM, Patil SR, Bae SY, Kim JH, Park JH, Bae J. Neuromorphic devices for electronic skin applications. MATERIALS HORIZONS 2025; 12:2045-2088. [PMID: 40009068 DOI: 10.1039/d4mh01848f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Neuromorphic devices represent an important advancement in technology, drawing inspiration from the intricate and efficient mechanisms of the human brain. This review paper elucidates the diverse landscape of neuromorphic electronic skin (e-skin) technologies while highlighting their numerous applications. Here, neuromorphic devices for e-skin are classified as two types of direct neuromorphic e-skins combining both neuromorphic devices and sensors, and indirect e-skins separating neuromorphic devices and sensors. In direct neuromorphic e-skins, there are developing devices like memristor-based neuromorphic devices with sensors and transistor-based neuromorphic devices with sensors. On the other hand, indirect types are demonstrated as separated neuromorphic and sensor parts systems through the various interfacing structures. It also describes recent neuromorphic developments in artificial neural networks (ANNs), deep neural networks (DNNs), and convolutional neural networks (CNNs), for the real-time interpretation of sensory data. Moreover, it introduces multimodal sensory feedback, soft and flexible e-skins, and more intuitive human-machine interfaces. This review examines various applications, including smart textiles for the development of next-generation wearable bioelectronics, brain-sensing interfaces that enhance tactile perception, and the integration of human-machine interfaces aimed at replicating the biological sensorimotor loop, which can improve health monitoring and biomedical applications. Additionally, the review also highlights the potential of neuromorphic e-skin in human-robot interaction, particularly in the context of continuous prosthetic control and robotics. Through this analysis, the paper provides insights into current advancements, identifies key challenges, and suggests future research directions for optimizing neuromorphic e-skin devices and expanding their practical implementation.
Collapse
Affiliation(s)
- Chandrashekhar S Patil
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Sourabh B Ghode
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Jungmin Kim
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Girish U Kamble
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 77-Youngbong-ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Somnath S Kundale
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
- Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Abdul Mannan
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Youngbin Ko
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Muhammad Noman
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Qazi Muhammad Saqib
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| | - Swapnil R Patil
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
- Hybrid Porous Materials Lab, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Seo Yeong Bae
- Neuro Biology and Data Science Major, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 77-Youngbong-ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Jun Hong Park
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea.
| |
Collapse
|
10
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
11
|
Ullah A, Kim DY, Lim SI, Lim HR. Hydrogel-Based Biointerfaces: Recent Advances, Challenges, and Future Directions in Human-Machine Integration. Gels 2025; 11:232. [PMID: 40277668 PMCID: PMC12026655 DOI: 10.3390/gels11040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Human-machine interfacing (HMI) has emerged as a critical technology in healthcare, robotics, and wearable electronics, with hydrogels offering unique advantages as multifunctional materials that seamlessly connect biological systems with electronic devices. This review provides a detailed examination of recent advancements in hydrogel design, focusing on their properties and potential applications in HMI. We explore the key characteristics such as biocompatibility, mechanical flexibility, and responsiveness, which are essential for effective and long-term integration with biological tissues. Additionally, we highlight innovations in conductive hydrogels, hybrid and composite materials, and fabrication techniques such as 3D/4D printing, which allow for the customization of hydrogel properties to meet the demands of specific HMI applications. Further, we discuss the diverse classes of polymers that contribute to hydrogel conductivity, including conducting, natural, synthetic, and hybrid polymers, emphasizing their role in enhancing electrical performance and mechanical adaptability. In addition to material design, we examine the regulatory landscape governing hydrogel-based biointerfaces for HMI applications, addressing the key considerations for clinical translation and commercialization. An analysis of the patent landscape provides insights into emerging trends and innovations shaping the future of hydrogel technologies in human-machine interactions. The review also covers a range of applications, including wearable electronics, neural interfaces, soft robotics, and haptic systems, where hydrogels play a transformative role in enhancing human-machine interactions. Thereafter, the review addresses the challenges hydrogels face in HMI applications, including issues related to stability, biocompatibility, and scalability, while offering future perspectives on the continued evolution of hydrogel-based systems for HMI technologies.
Collapse
Affiliation(s)
- Aziz Ullah
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; (A.U.); (D.Y.K.)
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Do Youn Kim
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; (A.U.); (D.Y.K.)
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyo-Ryoung Lim
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; (A.U.); (D.Y.K.)
| |
Collapse
|
12
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
13
|
Pokprasert A, Rasitanon N, Rahma Lani I, Jeerapan I. Tuning the Surface: Screen-Printed Flexible Porous Nanocomposite Electrodes with Programmable Electrochemical Performances for Wearable Platforms. ACS Sens 2025. [PMID: 40017420 DOI: 10.1021/acssensors.4c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Flexible electrodes fabricated through cost-effective thick-film strategies are important for developing electrochemical devices, such as sensors. Properly engineered nanocomposite electrodes can enhance the electrochemically active surface area, facilitate mass and charge transport, and allow for tailored surface chemistry and structure. Although great efforts have been devoted to developing porous nanocomposite electrodes, a facile method to achieve screen-printed porous nanocomposite electrodes in the form of flexible electrodes with tunable electrochemical performance has been overlooked. This article introduces a strategy for fabricating flexible porous electrodes using screen printing and electrochemical surface treatments, resulting in enhanced surface chemistry and electrochemical properties. By applying selective etching and anodization, the electrode's surface area increases by 214% compared to a nontreated electrode, enabling programmable sensitivity to specific molecules. The engineered electrode improves the hydroquinone-to-salicylic acid detection ratio from less than 1 to over 10, allowing selective detection of neutral and positively charged molecules while rendering the electrode inactive for negatively charged species. This flexible sensor can be integrated into a wearable glove for rapid analysis and has also been successfully implemented in a second-generation glucose biosensor. This approach holds significant potential for advancing surface electrochemistry, offering new possibilities for tailoring electrode surfaces for diverse analytical applications.
Collapse
Affiliation(s)
- Adisak Pokprasert
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| | - Natcha Rasitanon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| | - Irlesta Rahma Lani
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
14
|
Jabri M, Hossein-Babaei F. DC field-biased multibit/analog artificial synapse featuring an additional degree of freedom for performance tuning. NANOSCALE 2025; 17:3389-3401. [PMID: 39704050 DOI: 10.1039/d4nr03464c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Multibit/analog artificial synapses are in demand for neuromorphic computing systems. A problem hindering the utilization of memristive artificial synapses in commercial neuromorphic systems is the rigidity of their functional parameters, plasticity in particular. Here, we report fabricating polycrystalline rutile-based memristive memory segments with Ti/poly-TiO2/Ti structures featuring multibit/analog storage and the first use of a tunable DC-biasing for synaptic plasticity adjustment from short- to long-term. The unbiased device is of short-term plasticity, positive biasing increases the remanence of the recorded events and the device gains long-term plasticity at a specific biasing level determined from the device geometry. The adjustability of the biasing field provides an additional degree of freedom allowing performance tuning; the paired-pulse facilitation index of the device is tuned by the biasing level adjustment providing further functional versatility. An appropriately biased segment provides more than 10 synaptic weight levels linearly depending on the number and duration of the stimulating spikes. The relationship with spike magnitude is exponential. The experimentally determined nonlinearity coefficient of the biased device for 50 potentiating spikes is comparable to the best published data. The spike-timing-dependent plasticity determined experimentally for the biased device in its long-term plasticity mode fits the mathematical relationship developed for biological synapses. Fabricated on a titanium metal foil, the produced memristors are sturdy and flexible making them suitable for wearable and implantable intelligent electronics. Our findings are anticipated to raise the potential of forming artificial synapses out of polycrystalline metal oxide thin films.
Collapse
Affiliation(s)
- Milad Jabri
- Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
| | - Faramarz Hossein-Babaei
- Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
- Hezare Sevom Co. Ltd, 7, Niloofar Square, Tehran 1533874417, Iran
| |
Collapse
|
15
|
Liu T, Mao Y, Dou H, Zhang W, Yang J, Wu P, Li D, Mu X. Emerging Wearable Acoustic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408653. [PMID: 39749384 PMCID: PMC11809411 DOI: 10.1002/advs.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Yuchen Mao
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Hanjie Dou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Wangyang Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| |
Collapse
|
16
|
Sun M, Ma C, Emran MY, Kotb A, Bai J, Zhou M. A fully integrated wireless microfluidic immunosensing system for portable monitoring of Staphylococcus aureus. Talanta 2025; 283:127158. [PMID: 39515059 DOI: 10.1016/j.talanta.2024.127158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The advanced devices that function fully without the need for external accessories are regarded as a pinnacle goal in the design and construction of modern ones. Staphylococcus aureus (S. aureus), a prominent human pathogen, is responsible for causing a wide variety of infections and chronic diseases. Herein, we present the first instance of a fully integrated wireless microfluidic immunosensing system (FIWMIS) capable of conducting point-of-care S. aureus monitoring in real samples of S. aureus-spiked commercial purified drinking water and S. aureus-spiked watermelon juice. The development of the proposed FIWMIS became a reality by conquering significant engineering hurdles in seamlessly integrating a microfluidic unit for liquid sample transport without the need of an external pump, an immunosensing unit for S. aureus monitoring, and an electronic control unit for signal conversion and wireless transmission. Such full integration culminated in a FIWMIS that upholds its pump-free, wireless, and low-cost characteristics for portable monitoring of S. aureus.
Collapse
Affiliation(s)
- Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
17
|
Mojumder MRH, Kim S, Yu C. Soft Artificial Synapse Electronics. RESEARCH (WASHINGTON, D.C.) 2025; 8:0582. [PMID: 39877465 PMCID: PMC11772661 DOI: 10.34133/research.0582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention. These synapses seek to replicate the signal transmission properties of biological synapses, offering an innovative solution to this challenge. This review explores the materials and device architectures integral to SAS fabrication, emphasizing flexibility and stability under mechanical deformation. Various architectures, including floating-gate dielectric, ferroelectric-gate dielectric, and electrolyte-gate dielectric, are analyzed for effective weight control in SASs. The utilization of organic and low-dimensional materials is highlighted, showcasing their plasticity and energy-efficient operation. Furthermore, the paper investigates the integration of functionality into SASs, particularly focusing on devices that autonomously sense external stimuli. Functionalized SASs, capable of recognizing optical, mechanical, chemical, olfactory, and auditory cues, demonstrate promising applications in computing and sensing. A detailed examination of photo-functionalized, tactile-functionalized, and chemoreception-functionalized SASs reveals their potential in image recognition, tactile sensing, and chemosensory applications, respectively. This study highlights that SASs and functionalized SAS devices hold transformative potential for bioelectronics and sensing for soft-robotics applications; however, further research is necessary to address scalability, long-time stability, and utilizing functionalized SASs for prosthetics and in vivo applications through clinical adoption. By providing a comprehensive overview, this paper contributes to the understanding of SASs, bridging research gaps and paving the way toward transformative developments in soft electronics, biomimicking and biointegrated synapse devices, and integrated systems.
Collapse
Affiliation(s)
- Md. Rayid Hasan Mojumder
- Department of Electrical Engineering,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Seongchan Kim
- Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cunjiang Yu
- Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Micro and Nanotechnology Laboratory,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Heng W, Yin S, Chen Y, Gao W. Exhaled Breath Analysis: From Laboratory Test to Wearable Sensing. IEEE Rev Biomed Eng 2025; 18:50-73. [PMID: 39412981 PMCID: PMC11875904 DOI: 10.1109/rbme.2024.3481360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
Collapse
|
19
|
Yang C, Wang Q, Chen S, Li J. Ultrathin, Lightweight Materials Enabled Wireless Data and Power Transmission in Chip-Less Flexible Electronics. ACS MATERIALS AU 2025; 5:45-56. [PMID: 39802153 PMCID: PMC11718531 DOI: 10.1021/acsmaterialsau.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios. We summarize wireless signal/data/power transmission strategies, key considerations in materials design and selection, as well as successful demonstrations of sensors and actuators in wearable and implantable forms. The final section provides an outlook to the future direction down the road for performance improvement and optimization. These versatile, inexpensive, and low-power device concepts can serve as alternative strategies to existing digital wireless electronics, which will find broad applications as bidirectional biointerfaces in basic biomedical research and clinical practices.
Collapse
Affiliation(s)
- Chunyu Yang
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Qi Wang
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Shulin Chen
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Li
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
- Chronic
Brain Injury Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L, Zhang D. Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408657. [PMID: 39530645 PMCID: PMC11714238 DOI: 10.1002/advs.202408657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Fibrous hydrogels (FGs), characterized by a 3D network structure made from prefabricated fibers, fibrils and polymeric materials, have emerged as significant materials in numerous fields. However, the challenge of balancing mechanical properties and functions hinders their further development. This article reviews the main advantages of FGs, including enhanced mechanical properties, high conductivity, high antimicrobial and anti-inflammatory properties, stimulus responsiveness, and an extracellular matrix (ECM)-like structure. It also discusses the influence of assembly methods, such as fiber cross-linking, interfacial treatments of fibers with hydrogel matrices, and supramolecular assembly, on the diverse functionalities of FGs. Furthermore, the mechanisms for improving the performance of the above five aspects are discussed, such as creating ion carrier channels for conductivity, in situ gelation of drugs to enhance antibacterial and anti-inflammatory properties, and entanglement and hydrophobic interactions between fibers, resulting in ECM-like structured FGs. In addition, this review addresses the application of FGs in sensors, dressings, and tissue scaffolds based on the synergistic effects of optimizing the performance. Finally, challenges and future applications of FGs are discussed, providing a theoretical foundation and new insights for the design and application of cutting-edge FGs.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Bin Hu
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Research Institute of Xi'an Jiaotong UniversityHangzhou311200P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| |
Collapse
|
21
|
Khan M, Oh S, Song T, Ji W, Mahato M, Yang Y, Saatchi D, Ali SS, Roh J, Yun D, Ryu J, Oh I. Wearable Haptics for Orthotropic Actuation Based on Perpendicularly Nested Auxetic SMA Knotting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411353. [PMID: 39468923 PMCID: PMC11707572 DOI: 10.1002/adma.202411353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/06/2024] [Indexed: 10/30/2024]
Abstract
Smart wearable tactile systems, designed to deliver different types of touch feedback on human skin, can significantly improve engagement through diverse actuation patterns in virtual or augmented reality environments. Here, a perpendicularly nested auxetic wearable haptic interface is reported for orthotropically decoupled multimodal actuation (WHOA), capable of producing diverse tactile feedback modes with 3D sensory perception. WHOA incorporates shape memory alloy wires that are intricately knotted into an auxetic structure oriented along orthotropic dual axes. Its perpendicularly nested auxetic structure enables orthotropic actuation, allowing independent expansion and contraction along both x and y-axes, as confirmed by force-strain and displacement-time performance tests. Additionally, the perylene coating provides orthogonal electrical isolation to WHOA, allowing for stripe-specific localized actuation and enabling multiple tactile feedback modes. As an orthotropic wearable haptic interface, WHOA distinguishes between x-axis and y-axis directions and ultimately delivers multi-dimensional information regarding movements in 3D space through tactile feedback. As a result, when worn on the foot or arm, WHOA naturally delivers spatiotemporal tactile information to the user, facilitating navigation and teleoperation with 3D sensory perception.
Collapse
Affiliation(s)
- Mannan Khan
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Tae‐Eun Song
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Wonhee Ji
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Yang Yang
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Daniel Saatchi
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Syed Sheraz Ali
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Jaewoo Roh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Donghyeok Yun
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| | - Jee‐Hwan Ryu
- Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Il‐Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology291, Daehak‐ro, Yuseong‐guDaejeon34142Republic of Korea
| |
Collapse
|
22
|
Ling W, Shang X, Liu J, Tang T. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring. Biosens Bioelectron 2025; 267:116852. [PMID: 39426278 DOI: 10.1016/j.bios.2024.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Continuous monitoring of sweat nutrients offers valuable insights into metabolic cycling and health levels. However, existing methods often lack adaptability and real-time capabilities. Here, we propose a skin-mountable flexible biosensor integrated with metal-organic framework (MOF)-derived composites for real-time monitoring of sweat ascorbic acid (AA) levels. The biosensor features a miniaturized, highly integrated system capable of an imperceptible, stretchable skin patch with dimensions of 16.9 × 9.9 × 0.1 mm3, ensuring conformal integration with curvilinear skin contours. The introduction of a copper-based MOF anchored with poly(3,4-ethylenedioxythiophene) (Cu-MOF/PEDOT) significantly enhances sensing performance toward AA, achieving a detection limit of 0.76 μM and a sensitivity of 725.7 μA/(mM·cm2). Moreover, a miniaturized flexible circuit enables wireless communication, resulting in a lightweight, wearable platform weighing only 1.3 g. Structural and electrochemical analyses confirm the favorable sensitivity, reversibility, and stability of the biosensor, while in-vivo validation in human subjects further reveals the capability to track sweat AA variations during nutrient intake and sustained exercise, showcasing its potential in metabolic cycle assessment and health management. The biosensor presents a promising avenue for scalable health monitoring using adaptable and user-friendly technologies.
Collapse
Affiliation(s)
- Wei Ling
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China; Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| | - Xue Shang
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Junchen Liu
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tao Tang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
23
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
24
|
Xue J, Liu D, Li D, Hong T, Li C, Zhu Z, Sun Y, Gao X, Guo L, Shen X, Ma P, Zheng Q. New Carbon Materials for Multifunctional Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312596. [PMID: 38490737 DOI: 10.1002/adma.202312596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Soft electronics are garnering significant attention due to their wide-ranging applications in artificial skin, health monitoring, human-machine interaction, artificial intelligence, and the Internet of Things. Various soft physical sensors such as mechanical sensors, temperature sensors, and humidity sensors are the fundamental building blocks for soft electronics. While the fast growth and widespread utilization of electronic devices have elevated life quality, the consequential electromagnetic interference (EMI) and radiation pose potential threats to device precision and human health. Another substantial concern pertains to overheating issues that occur during prolonged operation. Therefore, the design of multifunctional soft electronics exhibiting excellent capabilities in sensing, EMI shielding, and thermal management is of paramount importance. Because of the prominent advantages in chemical stability, electrical and thermal conductivity, and easy functionalization, new carbon materials including carbon nanotubes, graphene and its derivatives, graphdiyne, and sustainable natural-biomass-derived carbon are particularly promising candidates for multifunctional soft electronics. This review summarizes the latest advancements in multifunctional soft electronics based on new carbon materials across a range of performance aspects, mainly focusing on the structure or composite design, and fabrication method on the physical signals monitoring, EMI shielding, and thermal management. Furthermore, the device integration strategies and corresponding intriguing applications are highlighted. Finally, this review presents prospects aimed at overcoming current barriers and advancing the development of state-of-the-art multifunctional soft electronics.
Collapse
Affiliation(s)
- Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Da Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tianzeng Hong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zifu Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaobo Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Pengcheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
25
|
Qi B, Ding S, Liang Y, Fang D, Lei M, Dai W, Peng C, Zhou B. Bioinspired Magnetized String with Tension-Dependent Eigenfrequencies for Wearable Human-Machine Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68465-68477. [PMID: 39586297 DOI: 10.1021/acsami.4c16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Flexible and wearable devices have exhibited potential for applications in the fields of human-machine interactions (HMIs) and Internet of Things. However, challenges remain in the improvement of the communication storage capacity with a simplified architecture. Inspired by tension regulation in natural tendons, a single-channel wearable HMI strategy is proposed using the eigenfrequency of magnetized strings as a sensing solution. Based on electromagnetic induction, mechanical vibration of the magnetized string can electrically induce periodical damping signals in the coil that are associated with the intrinsic eigenfrequency property of the string. Using a theoretical vibration model, nonoverlapping eigenfrequencies are precisely customized by designing the dimension/modulus or tension status of the string to broaden the eigenfrequency library. By integrating strings with different eigenfrequencies, multiple commands can be realized with a single communication channel. Moreover, identifiable commands can be flexibly tuned with only one magnetized string by customizing the tensile length (string tension) for eigenfrequency regulation. Demonstrations such as tactile addressing, authentication systems, and robotic control indicate the potential of the interface for multifunctional HMI applications. We expect that this strategy will provide a valuable reference for the future design of wearable HMI interfaces with high storage capacity and controllability in an accessible architecture.
Collapse
Affiliation(s)
- Biao Qi
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Yuanzhe Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Dan Fang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Wenxue Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Chao Peng
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production and Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P.R. China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| |
Collapse
|
26
|
Liu Y, Park W, Yiu CK, Huang X, Jia S, Chen Y, Zhang H, Chen H, Wu P, Wu M, Liu Z, Gao Y, Zhu K, Zhao Z, Li Y, Yokota T, Someya T, Yu X. Miniaturized, portable gustation interfaces for VR/AR/MR. Proc Natl Acad Sci U S A 2024; 121:e2412116121. [PMID: 39585986 PMCID: PMC11626159 DOI: 10.1073/pnas.2412116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
Gustation is one of the five innate sensations for humans, distinguishing from vision, auditory, tactile, and olfaction, as which is a close and chemically induced sense. Despite the fact that a handful of gustation display technologies have been developed, the new technologies still pose significant challenges in miniaturization of the overall size for portability, enriching taste options within a limited working area, supporting natural human-device interaction, and achieving precisely controlled taste feedback. To address these issues, here, we report a set of intelligent and portable lollipop-shaped taste interfacing systems covering from 2 to 9 different taste options for establishing an adjustable taste platform in virtual reality (VR), augmented reality (AR), and mixed reality (MR) environments. Tasteful and food-grade chemicals embedded agarose hydrogels serve as taste sources based on iontophoresis operation principle, with an adjustable feedback intensity and independent operation time by tuning the voltage input. To achieve portability and user-friendly operation, the devices are miniaturized into a gustation interface with 9-channel taste generators in the dimension of 8 cm × 3 cm × 1 cm. To realize both gustation and olfaction feedbacks in Metaverse, an olfaction interface based on 7-channel odor generators is also introduced into the gustation interface system. As a result, the demonstrations of our gustation interface systems in intelligent medical gustation assessment, remote shopping, and mixed reality have proven their advances and great progress in various potential application areas, ranging from human-machine interfaces, to biomedical science, and to entertainment.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo113-8656, Japan
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories999077, Hong Kong
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Yao Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Hehua Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Hongting Chen
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo113-8656, Japan
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Zhenyu Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Kening Zhu
- Department of Computer Science, City University of Hong Kong, Kowloong Tong, Hong Kong
| | - Zhao Zhao
- China Special Equipment Inspection and Research Institute, Beijing100029, China
- Technology Innovation Center of Health Management of Large-scale Amusement Device, State Administration for Market Regulation, Beijing100029, China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University, Beijing100191, China
- Tianmushan Laboratory, Hangzhou311115, China
- Liaoning Academy of Materials, Shenyang110167, China
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University, Ningbo315100, China
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo113-8656, Japan
- Institution of Engineering Innovation, The University of Tokyo, Tokyo113-8656, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo113-8656, Japan
- Institute of Physical and Chemical Research Center for Emergent Matter Science, Saitama351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, Saitama351-0198, Japan
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories999077, Hong Kong
- Institute of Digital Medicine, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
27
|
Xie Y, Pan J, Yu L, Fang H, Yu S, Zhou N, Tong L, Zhang L. Optical Micro/Nanofiber Enabled Multiaxial Force Sensor for Tactile Visualization and Human-Machine Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404343. [PMID: 39377221 PMCID: PMC11615745 DOI: 10.1002/advs.202404343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Indexed: 10/09/2024]
Abstract
Tactile sensors with capability of multiaxial force perception play a vital role in robotics and human-machine interfaces. Flexible optical waveguide sensors have been an emerging paradigm in tactile sensing due to their high sensitivity, fast response, and antielectromagnetic interference. Herein, a flexible multiaxial force sensor enabled by U-shaped optical micro/nanofibers (MNFs) is reported. The MNF is embedded within an elastomer film topped with a dome-shaped protrusion. When the protrusion is subjected to vector forces, the embedded MNF undergoes anisotropic deformations, yielding time-resolved variations in light transmission. Detection of both normal and shear forces is achieved with sensitivities reaching 50.7 dB N-1 (14% kPa-1) and 82.2 dB N-1 (21% kPa-1), respectively. Notably, the structural asymmetry of the MNF induces asymmetrical optical modes, granting the sensor directional responses to four-directional shear forces. As proof-of-concept applications, tactile visualizations for texture and relief pattern recognition are realized with a spatial resolution of 160 µm. Moreover, a dual U-shaped MNF configuration is demonstrated as a human-machine interface for cursor manipulation. This work represents a step towards advanced multiaxial tactile sensing.
Collapse
Affiliation(s)
- Yu Xie
- Research Center for Frontier Fundamental StudiesZhejiang LabHangzhou311100China
- Research Center for Humanoid SensingZhejiang LabHangzhou311100China
| | - Jing Pan
- Research Center for Frontier Fundamental StudiesZhejiang LabHangzhou311100China
- Research Center for Humanoid SensingZhejiang LabHangzhou311100China
| | - Longteng Yu
- Research Center for Humanoid SensingZhejiang LabHangzhou311100China
| | - Hubiao Fang
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Shaoliang Yu
- Research Center for Frontier Fundamental StudiesZhejiang LabHangzhou311100China
| | - Ning Zhou
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Limin Tong
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Lei Zhang
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
28
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
29
|
Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J, Nie L, Zhou Y, Lai P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024; 27:111216. [PMID: 39569375 PMCID: PMC11576408 DOI: 10.1016/j.isci.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the most prevalent health threats globally. Traditional diagnostic methods for CVDs, including electrocardiography, ultrasound, and cardiac magnetic resonance imaging, have inherent limitations in real-time monitoring and high-resolution visualization of cardiovascular pathophysiology. In recent years, optical imaging technology has gained considerable attention as a non-invasive, high-resolution, real-time monitoring solution in the study and diagnosis of CVD. This review discusses the latest advancements, and applications of optical techniques in cardiac imaging. We compare the advantages of optical imaging over traditional modalities and especially scrutinize techniques such as optical coherence tomography, photoacoustic imaging, and fluorescence imaging. We summarize their investigations in atherosclerosis, myocardial infarction, and heart valve disease, etc. Additionally, we discuss challenges like deep-tissue imaging and high spatiotemporal resolution adjustment, and review existing solutions such as multimodal integration, artificial intelligence, and enhanced optical probes. This article aims to drive further development in optical imaging technologies to provide more precise and efficient tools for early diagnosis, pathological mechanism exploration, and treatment of CVD.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330096, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingying Zhou
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
30
|
Lin X, Li CY, Liang LX, Guo QY, Zhang Y, Fu SR, Zhang Q, Chen F, Han D, Fu Q. Organic-inorganic covalent-ionic network enabled all-in-one multifunctional coating for flexible displays. Nat Commun 2024; 15:9680. [PMID: 39516461 PMCID: PMC11549396 DOI: 10.1038/s41467-024-54083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Touch displays are ubiquitous in modern technologies. However, current protective methods for emerging flexible displays against static, scratches, bending, and smudge rely on multilayer materials that impede progress towards flexible, lightweight, and multifunctional designs. Developing a single coating layer integrating all these functions remains challenging yet highly anticipated. Herein, we introduce an organic-inorganic covalent-ionic hybrid network that leverages the reorganizing interaction between siloxanes (i.e., trifluoropropyl-funtionalized polyhedral oligomeric silsesquioxane and cyclotrisiloxane) and fluoride ions. This nanoscale organic-inorganic covalent-ionic hybridized crosslinked network, combined with a low surface energy trifluoropropyl group, offers a monolithic layer coating with excellent optical, antistatic, anti-smudge properties, flexibility, scratch resistance, and recyclability. Compared with existing protective materials, this all-in-one coating demonstrates comprehensive multifunctionality and closed-loop recyclability, making it ideal for future flexible displays and contributing to ecological sustainability in consumer electronics.
Collapse
Affiliation(s)
- Xiong Lin
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Chen-Yu Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Lu-Xuan Liang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Qing-Yun Guo
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yongzheng Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Si-Rui Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Qin Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Feng Chen
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Di Han
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
31
|
Na W, Xu C, An L, Ou C, Gao F, Zhu G, Zhang Y. Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition. Gels 2024; 10:720. [PMID: 39590076 PMCID: PMC11593876 DOI: 10.3390/gels10110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Conductive hydrogels are promising active materials for wearable flexible electronics, yet it is still challenging to fabricate conductive hydrogels with good environmental stability and electrical properties. In this work, a conductive MXene/LiCl/poly(sulfobetaine methacrylate) hydrogel system was successfully prepared with an impressive conductivity of 12.2 S/m. Interestingly, the synergistic effect of MXene and a lithium bond can significantly accelerate the polymerization process, forming the conductive hydrogel within 1 min. In addition, adding LiCl to the hydrogel not only significantly increases its water retention ability, but also enhances its conductivity, both of which are important for practical applications. The flexible strain sensors based on the as-prepared hydrogel have demonstrated excellent monitoring ability for human joint motion, pulse, and electromyographic signals. More importantly, based on machine learning image recognition technology, the handwritten letter recognition system displayed a high accuracy rate of 93.5%. This work demonstrates the excellent comprehensive performance of MXene-based hydrogels in health monitoring and image recognition and shows potential applications in human-machine interfaces and artificial intelligence.
Collapse
Affiliation(s)
- Weidan Na
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221111, China;
| | - Chao Xu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Lei An
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| |
Collapse
|
32
|
Jiang C, Xu W, Li Y, Yu Z, Wang L, Hu X, Xie Z, Liu Q, Yang B, Wang X, Du W, Tang T, Zheng D, Yao S, Lu C, Liu J. Capturing forceful interaction with deformable objects using a deep learning-powered stretchable tactile array. Nat Commun 2024; 15:9513. [PMID: 39496596 PMCID: PMC11535439 DOI: 10.1038/s41467-024-53654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
Capturing forceful interaction with deformable objects during manipulation benefits applications like virtual reality, telemedicine, and robotics. Replicating full hand-object states with complete geometry is challenging because of the occluded object deformations. Here, we report a visual-tactile recording and tracking system for manipulation featuring a stretchable tactile glove with 1152 force-sensing channels and a visual-tactile joint learning framework to estimate dynamic hand-object states during manipulation. To overcome the strain interference caused by contact with deformable objects, an active suppression method based on symmetric response detection and adaptive calibration is proposed and achieves 97.6% accuracy in force measurement, contributing to an improvement of 45.3%. The learning framework processes the visual-tactile sequence and reconstructs hand-object states. We experiment on 24 objects from 6 categories including both deformable and rigid ones with an average reconstruction error of 1.8 cm for all sequences, demonstrating a universal ability to replicate human knowledge in manipulating objects with varying degrees of deformability.
Collapse
Grants
- This work was partially supported by the STI 2030-Major Projects (2022ZD0208601, 2022ZD0208600), the National Key R&D Program of China under the grant (2022YFF120301, 2020YFB1313502), the Fundamental Research Funds for the Central Universities, the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25040100, XDA25040200 and XDA25040300), the National Natural Science Foundation of China (No. 42127807-03), Project supported by Shanghai Municipal Science and Technology Major Project (2021SHZDZX), Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University (No. 21TQ1400203), SJTU Trans-med Award (No.2019015, 21X010301627), the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (No.SL2020ZD205, SL2020MS017, SL2103), Scientific Research Fund of Second Institute of Oceanography, MNR (No.SL2020ZD205).
Collapse
Affiliation(s)
- Chunpeng Jiang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqiang Xu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yutong Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenjun Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Longchun Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotong Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- IFSA-DCI Team, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyi Xie
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- IFSA-DCI Team, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingkun Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolin Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Du
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tutian Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dongzhe Zheng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Siqiong Yao
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, MoE, Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai, China
| | - Cewu Lu
- School of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China.
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Xia M, Shi Q. Topic Editorial on Flexible Electronics. MICROMACHINES 2024; 15:1350. [PMID: 39597162 PMCID: PMC11596822 DOI: 10.3390/mi15111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Fields such as the Internet of Things (IoT), smart healthcare, and intelligent manufacturing are at the forefront of technological advancement, involving the extensive deployment of numerous sophisticated electronic systems and devices [...].
Collapse
Affiliation(s)
| | - Qiongfeng Shi
- Interdisciplinary Research Center, School of Electronic Science and Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
34
|
Yue X, Wang X, Shao J, Wang H, Chen Y, Zhang K, Han X, Hong J. One-Dimensional Flexible Capacitive Sensor with Large Strain and High Stability for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59412-59423. [PMID: 39435872 DOI: 10.1021/acsami.4c14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flexible capacitive sensors have attracted the attention of researchers owing to their simple structure, ease of realization, and wearability. Currently, flexible capacitive sensors mainly have three-dimensional and two-dimensional structures, which are subject to several limitations in their applications. A low-cost, high-efficiency, and continuously processable process was used to wrap nylon DTY (PA) filaments on the surface of silver-coated nylon (SCN) core yarns and impregnate them with waterborne polyurethane (WPU) to obtain SCN/PA/WPU composite yarns, which were then utilized in the design of SCN/PA/WPU for the preparation of one-dimensionally structured flexible capacitive sensors. The morphology and mechanical properties of the SCN core yarn, SCN/PA wrapped yarn, and SCN/PA/WPU composite yarn were characterized. The strain-sensing performance of the sensor was analyzed, and the sensor was used to monitor human physiological activities. The sensor exhibited excellent strain capacitance sensing performance with a strain range of up to 140%. With a gauge factor of 0.66 at 10% tensile strain, it can detect strains as low as 1% and has good repeatability, withstanding more than 3200 tensile-unload cycles at 80% strain. The one-dimensional structure sensor can be used to monitor the large-scale movements of joints and muscles in various parts of the human body and the physiological signals of tiny human movements, such as breathing, coughing, and facial expressions, which have potential applications in the fields of sports monitoring and smart wearable.
Collapse
Affiliation(s)
- Xinyan Yue
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Xiaohu Wang
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
- Zhejiang Jieda New Material Technology Co., LTD., Shaoxing, Zhejiang 312000, China
| | - Jianbo Shao
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Huabing Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Chen
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Kun Zhang
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Xiao Han
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Jianhan Hong
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
35
|
Cheng AJ, Chang W, Qiao Y, Huang F, Sha Z, He S, Wu L, Chu D, Peng S. High-Performance Supercapacitive Pressure Sensors via Height-Grading Micro-Domes of Ionic Conductive Elastomer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59614-59625. [PMID: 39433470 DOI: 10.1021/acsami.4c14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Soft capacitive sensors present numerous appealing characteristics, including simple structure, low power consumption, and fast response. However, they often suffer from low sensitivity and a limited linear sensing range. Herein, a concept is presented to enhance the sensitivity and linearity of supercapacitive pressure sensors by functionally grading the heights of macrodomes constructed from a highly elastic and ionic conductive elastomer made of poly(vinyl alcohol) and phosphoric acid (PVA/H3PO4). The resultant supercapacitive sensors exhibit a high sensitivity (423.42 kPa-1), wide linear sensing range (0-400 kPa), ultralow limit of detection (0.48 Pa), and high durability (stable signal outputs up to 5000 cycles of loading/unloading). Additionally, the sensors can maintain consistent sensing performance within a temperature range of 25-40 °C. The potential of the sensor in health monitoring is demonstrated through ultrahigh-resolution weight measurement, pulse detection, and respiration monitoring.
Collapse
Affiliation(s)
- Allen J Cheng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenkai Chang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuansen Qiao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feng Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhao Sha
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Liao Wu
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
37
|
Rabchinskii MK, Shiyanova KA, Brzhezinskaya M, Gudkov MV, Saveliev SD, Stolyarova DY, Torkunov MK, Chumakov RG, Vdovichenko AY, Cherviakova PD, Novosadov NI, Nguen DZ, Ryvkina NG, Shvidchenko AV, Prasolov ND, Melnikov VP. Chemistry of Reduced Graphene Oxide: Implications for the Electrophysical Properties of Segregated Graphene-Polymer Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1664. [PMID: 39453000 PMCID: PMC11509990 DOI: 10.3390/nano14201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Conductive polymer composites (CPCs) with nanocarbon fillers are at the high end of modern materials science, advancing current electronic applications. Herein, we establish the interplay between the chemistry and electrophysical properties of reduced graphene oxide (rGO), separately and as a filler for CPCs with the segregated structure conferred by the chemical composition of the initial graphene oxide (GO). A set of experimental methods, namely X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy, van der Paw and temperature-dependent sheet resistance measurements, along with dielectric spectroscopy, are employed to thoroughly examine the derived materials. The alterations in the composition of oxygen groups along with their beneficial effect on nitrogen doping upon GO reduction by hydrazine are tracked with the help of XPS. The slight defectiveness of the graphene network is found to boost the conductivity of the material due to facilitating the impact of the nitrogen lone-pair electrons in charge transport. In turn, a sharp drop in material conductivity is indicated upon further disruption of the π-conjugated network, predominantly governing the charge transport. Particularly, the transition from the Mott variable hopping transport mechanism to the Efros-Shklovsky one is signified. Finally, the impact of rGO chemistry and physics on the electrophysical properties of CPCs with the segregated structure is evaluated. Taken together, our results give a hint at how GO chemistry manifests the properties of rGO and the CPC derived from it, offering compelling opportunities for their practical applications.
Collapse
Affiliation(s)
| | - Kseniya A. Shiyanova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | - Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Maksim V. Gudkov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | | | - Dina Yu. Stolyarova
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (D.Y.S.)
| | - Mikhail K. Torkunov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | - Ratibor G. Chumakov
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (D.Y.S.)
| | - Artem Yu. Vdovichenko
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (D.Y.S.)
| | | | - Nikolai I. Novosadov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | - Diana Z. Nguen
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia
| | - Natalia G. Ryvkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | | | - Nikita D. Prasolov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia
| | - Valery P. Melnikov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| |
Collapse
|
38
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
39
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
40
|
Cao L, Wang Z, Hu D, Dong H, Qu C, Zheng Y, Yang C, Zhang R, Xing C, Li Z, Xin Z, Chen D, Song Z, He Z. Pressure-constrained sonication activation of flexible printed metal circuit. Nat Commun 2024; 15:8324. [PMID: 39333109 PMCID: PMC11436825 DOI: 10.1038/s41467-024-52873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Metal micro/nanoparticle ink-based printed circuits have shown promise for promoting the scalable application of flexible electronics due to enabling superhigh metallic conductivity with cost-effective mass production. However, it is challenging to activate printed metal-particle patterns to approach the intrinsic conductivity without damaging the flexible substrate, especially for high melting-point metals. Here, we report a pressure-constrained sonication activation (PCSA) method of the printed flexible circuits for more than dozens of metal (covering melting points from room temperature to 3422 °C) and even nonmetallic inks, which is integrated with the large-scale roll-to-roll process. The PCSA-induced synergistic heat-softening and vibration-bonding effect of particles can enable multilayer circuit interconnection and join electronic components onto printed circuits without solder within 1 s at room temperature. We demonstrate PCSA-based applications of 3D flexible origami electronics, erasable and foldable double-sided electroluminescent displays, and custom-designed and large-area electronic textiles, thus indicating its potential for universality in flexible electronics.
Collapse
Affiliation(s)
- Lingxiao Cao
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhonghao Wang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Daiwei Hu
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoxuan Dong
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunchun Qu
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Zheng
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Yang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Zhang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunxiao Xing
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhen Li
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhe Xin
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Du Chen
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhenghe Song
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhizhu He
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
41
|
Lin L, Zhou J, Zhong Z. Soft Magnetoelastic Tactile Multi-Sensors with Energy-Absorbing Properties for Self-Powered Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51521-51531. [PMID: 39262182 DOI: 10.1021/acsami.4c10703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tactile sensors play a key role in human-machine interfaces (HMIs) for augmented and virtual reality, point-of-care devices, and human-robot collaboration, which show the promise of revolutionizing our ways of life. Here, we present a sensor (EMTS) that utilizes the magnetoelastic effect in a soft metamaterial to convert mechanical pressure into electrical signals. With this unique mechanism, the proposed EMTS simultaneously possesses self-powering, waterproof, and compliant features. The soft metamaterial is essentially a porous magnetoelastomer structure designed based on the Fourier series expansion, which allows for programmable mechanical response and sensing performance of the EMTS. Fabricated by simple 3D-printed molds, the EMTS also holds potential for low-cost production. Particularly, the porous magnetoelastomer structure comes with selectable buckling instabilities that can significantly enhance biomechanical-to-electrical energy conversion. Also, with the embedded magnetic microparticles, the energy-absorbing performance of the sensor is greatly improved, which is highly beneficial to HMIs. To pursue practical applications, the EMTSs are further integrated with two systems as control and perception modules. It is demonstrated that the EMTS is able to identify different hand gestures to control a lighting system even in a high-humidity environment. Also, the EMTS stands out for its superior capability of simultaneous impact perception and energy absorption in drop tests. Overall, with its compelling array of features, the presented EMTS gives impetus to multi-sensing technology and practically enables a variety of HMI applications.
Collapse
Affiliation(s)
- Liqiong Lin
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianyou Zhou
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
42
|
Tsogbayar D, Seo J, Hwang T, Park J, Ko E, Kim Y, Yoon CM, Lee HS. Advanced Flexible Physical Sensors with Independent Detection Mechanisms of Pressure and Strain Stimuli for Overcoming Signal Interference. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49574-49583. [PMID: 39254113 DOI: 10.1021/acsami.4c09337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Flexible and wearable physical sensors have gained significant interest owing to their potential in attachable devices, electronic skin, and multipurpose sensors. The physical stimuli of these sensors typically consist of vertically and horizontally applied pressures and strains, respectively. However, owing to their similar response characteristics, interference occurs between the two types of signals detected, complicating the distinction between pressure and strain stimuli, leading to inaccurate data interpretation and reduced sensor specificity. Therefore, we developed a dual-sensing-mode physical sensor with separate response mechanisms for the two types of physical stimuli based on a unique structural design that can independently induce changes in the piezocapacitance and piezoresistance for pressure and strain stimuli, respectively. The asterisk-shaped piezoresistive pathway (electrode), designed for multifunctionality, effectively detected the intensity and direction of tensile deformation, and an elastomeric sponge structure positioned between the two electrodes detected the pressure signals via changes in capacitance. This dual-sensing-mode sensor offers clearer signal differentiation and enhanced multifunctionality compared to those of traditional single-mode sensors. Additionally, extensive experimentation demonstrated that our sensor has a good sensitivity, high linearity, and stability in detecting signals, proving its applicability for sophisticated monitoring and control tasks that require the differential detection between pressure and deformation signals.
Collapse
Affiliation(s)
- Dashdendev Tsogbayar
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Jungyoon Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Taehoon Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Jisu Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Ko
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Yumin Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Chang-Min Yoon
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Hwa Sung Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
43
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
44
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
45
|
Guo D, Pan T, Li F, Wang W, Jia X, Hu T, Wang Z, Gao M, Yao G, Huang Z, Peng Z, Lin Y. Scalable Fabrication of Large-Scale, 3D, and Stretchable Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402221. [PMID: 39037020 DOI: 10.1002/adma.202402221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Stretchable electronics have demonstrated excellent potential in wearable healthcare and conformal integration. Achieving the scalable fabrication of stretchable devices with high functional density is the cornerstone to enable the practical applications of stretchable electronics. Here, a comprehensive methodology for realizing large-scale, 3D, and stretchable circuits (3D-LSC) is reported. The soft copper-clad laminate (S-CCL) based on the "cast and cure" process facilitates patterning the planar interconnects with the scale beyond 1 m. With the ability to form through, buried and blind VIAs in the multilayer stack of S-CCLs, high functional density can be achieved by further creating vertical interconnects in stacked S-CCLs. The application of temporary bonding substrate effectively minimizes the misalignments caused by residual strain and thermal strain. 3D-LSC enables the batch production of stretchable skin patches based on five-layer stretchable circuits, which can serve as a miniaturized system for physiological signals monitoring with wireless power delivery. The fabrications of conformal antenna and stretchable light-emitting diode display further illustrate the potential of 3D-LSC in realizing large-scale stretchable devices.
Collapse
Affiliation(s)
- Dengji Guo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Fan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wei Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, 314000, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P.R. China
| | - Xiang Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Taiqi Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhijian Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, 314000, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P.R. China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhenlong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Zujun Peng
- Institute of Flexible Electronics Technology of THU, Jiaxing, 314000, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P.R. China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
46
|
Shi W, Li H, Chen J, Ching YC, Chuah CH, Xu C, Liu M, Zhang J, Ching KY, Liang Y, Li G, Tang W. Stretchable, Self-Healing, and Bioactive Hydrogel with High-Functionality N,N'-bis(acryloyl)cystamine Dynamically Bonded Ag@polydopamine Crosslinkers for Wearable Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404451. [PMID: 39031305 PMCID: PMC11425271 DOI: 10.1002/advs.202404451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Hydrogels present attractive opportunities as flexible sensors due to their soft nature and tunable physicochemical properties. Despite significant advances, practical application of hydrogel-based sensor is limited by the lack of general routes to fabricate materials with combination of mechanical, conductive, and biological properties. Here, a multi-functional hydrogel sensor is reported by in situ polymerizing of acrylamide (AM) with N,N'-bis(acryloyl)cystamine (BA) dynamic crosslinked silver-modified polydopamine (PDA) nanoparticles, namely PAM/BA-Ag@PDA. Compared with traditional polyacrylamide (PAM) hydrogel, the BA-Ag@PDA nanoparticles provide both high-functionality crosslinks and multiple interactions within PAM networks, thereby endowing the optimized PAM/BA-Ag@PDA hydrogel with significantly enhanced tensile/compressive strength (349.80 kPa at 383.57% tensile strain, 263.08 kPa at 90% compressive strain), lower hysteresis (5.2%), improved conductivity (2.51 S m-1) and excellent near-infrared (NIR) light-triggered self-healing ability. As a strain sensor, the PAM/BA-Ag@PDA hydrogel shows a good sensitivity (gauge factor of 1.86), rapid response time (138 ms), and high stability. Owing to abundant reactive groups in PDA, the PAM/BA-Ag@PDA hydrogel exhibits inherent tissue adhesiveness and antioxidant, along with a synergistic antibacterial effect by PDA and Ag. Toward practical applications, the PAM/BA-Ag@PDA hydrogel can conformally adhere to skin and monitor subtle activities and large-scale movements with excellent reliability, demonstrating its promising applications as wearable sensors for healthcare.
Collapse
Affiliation(s)
- Wei Shi
- Department of Chemical Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, 3002 Lantian Road, Shenzhen, Guangdong, 518118, China
| | - Jing Chen
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yern Chee Ching
- Department of Chemical Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
| | - Cheng Hock Chuah
- Department of Chemistry, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
| | - Chengsheng Xu
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Moran Liu
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jinyong Zhang
- College of Big Data and Internet, Shenzhen Technology University, 3002 Lantian Road, Shenzhen, Guangdong, 518118, China
| | - Kuan Yong Ching
- Foundation, Study and Language Institute, University of Reading-Malaysia Campus, Persiaran Graduan, Kota Ilmu EduCity, Iskandar Puteri, Johor, 79200, Malaysia
| | - Yongsheng Liang
- College of Big Data and Internet, Shenzhen Technology University, 3002 Lantian Road, Shenzhen, Guangdong, 518118, China
| | - Guanglin Li
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Wei Tang
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
47
|
Guo X, Sun Z, Zhu Y, Lee C. Zero-Biased Bionic Fingertip E-Skin with Multimodal Tactile Perception and Artificial Intelligence for Augmented Touch Awareness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406778. [PMID: 39129356 DOI: 10.1002/adma.202406778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Electronic skins (E-Skins) are crucial for future robotics and wearable devices to interact with and perceive the real world. Prior research faces challenges in achieving comprehensive tactile perception and versatile functionality while keeping system simplicity for lack of multimodal sensing capability in a single sensor. Two kinds of tactile sensors, transient voltage artificial neuron (TVAN) and sustained potential artificial neuron (SPAN), featuring self-generated zero-biased signals are developed to realize synergistic sensing of multimodal information (vibration, material, texture, pressure, and temperature) in a single device instead of complex sensor arrays. Simultaneously, machine learning with feature fusion is applied to fully decode their output information and compensate for the inevitable instability of applied force, speed, etc, in real applications. Integrating TVAN and SPAN, the formed E-Skin achieves holistic touch awareness in only a single unit. It can thoroughly perceive an object through a simple touch without strictly controlled testing conditions, realize the capability to discern surface roughness from 0.8 to 1600 µm, hardness from 6HA to 85HD, and correctly distinguish 16 objects with temperature variance from 0 to 80 °C. The E-skin also features a simple and scalable fabrication process, which can be integrated into various devices for broad applications.
Collapse
Affiliation(s)
- Xinge Guo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology, and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhongda Sun
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou, 215123, China
| | - Yao Zhu
- Institute of Microelectronics (IME), Agency for Science, Technology, and Research (A*STAR), Singapore, 138634, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou, 215123, China
- NUS Graduate School - Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
48
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
49
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
50
|
Ozkan Hukum K, Liman G, Demirel G. Magnetically Controllable Paper-Based Soft Robots for Colorimetric Detection of Heavy Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44105-44113. [PMID: 39105731 DOI: 10.1021/acsami.4c10502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Magnetically controllable soft robots are of great interest because they have unique properties compared with conventional rigid counterparts and can be used in diverse applications such as intelligent electronics, bionics, personalized medicine, and cargo grasping. However, the fabrication of such multifunctional soft robots has been challenging because of the integration of dissimilar materials into the robot body. Herein, we designed and fabricated a soft robotic multifunctional system using conventional papers and elastomeric polymers for the colorimetric detection of heavy metal ions (Hg2+ and Fe3+) in water samples. The magnetic actuation of the platforms was shown to correlate with the type of underlying paper and magnetic particle content in the mixtures. Moreover, it was observed that actuation can also be manipulated by controlling the magnetic field strength. A proof-of-concept robotic paper-based Hg2+, Zn2+, and Fe3+ ion detection was demonstrated by combining colorimetric paper sensors and magneto-papers. Our study highlights the significant potential of paper as a material for the fabrication of effective and multifunctional untethered soft robots.
Collapse
Affiliation(s)
- Kubra Ozkan Hukum
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, Ankara 06500, Türkiye
| | - Gorkem Liman
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, Ankara 06500, Türkiye
| | - Gokhan Demirel
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, Ankara 06500, Türkiye
| |
Collapse
|