1
|
Nukovic A, Hamrangsekachaee M, Rajkumar M, Wong G, Tressler ER, Hashmi SM, Hatfield SM, Bencherif SA. Polymer oxidation: A strategy for the controlled degradation of injectable cryogels. Mater Today Bio 2025; 32:101743. [PMID: 40343169 PMCID: PMC12059720 DOI: 10.1016/j.mtbio.2025.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 05/11/2025] Open
Abstract
Cryogels, an advanced subclass of hydrogels, are widely used in biomedical applications such as tissue engineering, drug delivery, and immunotherapy. Biopolymers, like hyaluronic acid (HA), are key building blocks for cryogel fabrication due to their intrinsic biological properties, biocompatibility, and biodegradability. HA undergoes biodegradation through hydrolysis, enzymatic degradation, and oxidation, but becomes less susceptible to degradation once chemically modified. This modification is necessary for producing HA-based cryogels with unique properties, including an open macroporous network, mechanical resilience, shape memory, and syringe injectability. Endowing cryogels with resorbable features is essential for meeting regulatory requirements and improving treatment outcomes. To this end, HA was oxidized with sodium periodate (HAox) and chemically modified with glycidyl methacrylate (HAoxGM) to create HAoxGM cryogels with controlled degradation. Oxidation of HA increased the susceptibility of the polymer backbone to breakdown through various mechanisms, including oxidative cleavage and alkaline hydrolysis. Compared to their poorly degradable counterparts, HAoxGM cryogels retained their advantageous properties despite reduced compressive strength. HAoxGM cryogels were highly cytocompatible, biocompatible, and tunable in degradation. When injected subcutaneously into mice, the HAoxGM cryogels were biocompatible and resorbed within two weeks. To validate the beneficial effect of controlled biodegradation in a relevant in vivo setting, we demonstrated that the degradation of HAoxGM cryogels accelerates ovalbumin release and enhances its uptake and response by immune cells in mice. This versatile oxidation strategy can be applied to a wide range of polymers, allowing better control over cryogel degradation, and advancing their potential for biomedical applications and clinical translation.
Collapse
Affiliation(s)
- Alexandra Nukovic
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Gwyneth Wong
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Emily R. Tressler
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Sara M. Hashmi
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Stephen M. Hatfield
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Polymers, Biopolymers, Surfaces Laboratory (PBS, UMR CNRS 6270), University of Rouen Normandy, 76130 Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Chen CH, Chang CJ, Kuo CY, Luo GJ, Dash BS, Govindaraju DT, Chen JP. Chondroitin sulfate/hyaluronic acid/carboxymethylcellulose macroporous cryogels for controlled delivery of TGF-β1 and IGF-1 to induce chondrogenic differentiation of adipose-derived stem cells in cartilage tissue engineering. Int J Biol Macromol 2025:144756. [PMID: 40449777 DOI: 10.1016/j.ijbiomac.2025.144756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/15/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
To repair articular cartilage defects using adipose-derived stem cells (ASCs), we aim to fabricate macroporous cryogel scaffolds from chondroitin sulfate (CS) and hyaluronic acid (HA), two of the most abundant glycosaminoglycans in cartilage extracellular matrix. Carboxymethylcellulose was blended with HA and CS and crosslinked with 1,4-butanediol diglycidyl ether to prepare a supramacroporous chondroitin sulfate/hyaluronic acid/carboxymethylcellulose (CHC) cryogel. The cryogel is biodegradable and has unique mechanical properties for use as a scaffold for cartilage tissue engineering. The transforming growth factor-β1 (TGF-β1) and insulin-like growth factor-1 (IGF-1) were bound to CS for prolonged presentation of these growth factors in the scaffolds, with controlled release extended to >21 days. The TGF-β1 and IGF-1 can act in combination to regulate chondrogenic differentiation of seeded ASCs. The CHC/TGF-β1/IGF-1 cryogel scaffold promotes the chondrogenesis over CHC/TGF-β1 from cell morphology, matrix and type II collagen production. From qRT-PCR analysis, it also upregulated the gene expression of SRY-box transcription factor 9 (SOX9), type II collagen (COL2A1), aggrecan (ACAN), and proteoglycan 4 (PRG4) while downregulated the gene expression of type X collagen (COL10A1) After in vitro culture ASCs in CHC/TGF-β1/IGF-1 cryogel for 14 days, the cell/scaffold constructs were implanted in rabbit knees to repair full-thickness articular cartilage defects. The regenerated neocartilage tissue on the surface of defect in the cellular group demonstrates similar morphological and histological features and comparable mechanical properties as the native cartilage. The CHC/TGF-β1/IGF-1 cryogel is an excellent scaffold for preparing tissue-engineered cartilage from ASCs in treating articular cartilage defects.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University, College of Medicine, Kwei-San, Taoyuan 333, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 333, Taiwan
| | - Chia-Jui Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan
| | - Guan-Jie Luo
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 333, Taiwan
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan
| | | | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
3
|
van Wissen G, Lowdon JW, Cleij TJ, Eersels K, van Grinsven B. Porogenic Solvents in Molecularly Imprinted Polymer Synthesis: A Comprehensive Review of Current Practices and Emerging Trends. Polymers (Basel) 2025; 17:1057. [PMID: 40284322 PMCID: PMC12030623 DOI: 10.3390/polym17081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The versatility of molecularly imprinted polymers (MIPs) has led to their integration into applications like biosensing, separation, environmental monitoring, and drug delivery technologies. This diversity of applications has resulted in a plethora of synthesis approaches to precisely tailor the materials' properties to the specific demands. A critical, yet often overlooked, factor in MIP synthesis is the choice of porogen. Porogens play a pivotal role in defining the morphology, surface properties, swelling behavior, and binding efficiencies of the resulting MIPs. While aprotic solvents have traditionally been the standard in molecular imprinting, recent developments have expanded the variety of employed porogens accompanied by notable improvements in MIP performance. Therefore, this review aims to highlight both traditional and emerging types of porogens used in molecular imprinting, their influence on polymer properties and sorption performance, and their application across various sensing and extraction applications.
Collapse
Affiliation(s)
- Gil van Wissen
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
Otake H, Ogata F, Nakazawa Y, Misra M, Tsubaki M, Kawasaki N, Nagai N. Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin. Gels 2025; 11:251. [PMID: 40277687 PMCID: PMC12027185 DOI: 10.3390/gels11040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND We previously reported that carbopol hydrogels incorporating indomethacin nanoparticles (IMC NPs) improved the low permeability and bioavailability of skin formulations in transdermal drug delivery systems. However, the combination of NPs with other types of hydrogels has not been sufficiently explored to date. Therefore, this study investigated propylene glycol (PG)/polyvinyl alcohol (PVA) hydrogel as an alternative base to carbopol hydrogel for incorporating IMC NPs. METHODS IMC NPs were prepared using bead milling treatment, and these NPs were incorporated into PG/PVA hydrogel (IMC-NP@PG/PVA hydrogel). The IMC concentration was measured using the HPLC method, and seven-week-old Wistar rats were used to evaluate skin absorption. RESULTS Bead milling reduced the IMC particle size in the PG/PVA hydrogels to the nanoscale (30-200 nm) without altering its crystalline form. The IMC-NP@PG/PVA hydrogel exhibited enhanced uniformity, solubility, and drug release compared to the IMC microparticle-loaded PG/PVA hydrogel (IMC-MP@PG/PVA hydrogel), with a 1.44-fold greater area under the concentration-time curve. Transdermal permeability studies revealed that IMC-NP@PG/PVA had 2.36-fold higher absorption than the IMC-MP@PG/PVA hydrogel, with dissolved IMC permeating the skin. Pharmacokinetics in the rats showed significantly increased plasma levels, absorption rates, and bioavailability for IMC-NP@PG/PVA, demonstrating its superior delivery efficiency. Moreover, the skin absorption of IMC-NP@PG/PVA was higher than that of carbopol hydrogel. CONCLUSIONS These findings highlight the potential of PG/PVA hydrogels as an effective base for transdermal drug delivery systems based on NPs.
Collapse
Affiliation(s)
- Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1, kowakae, Higahi-Osaka 577-8502, Osaka, Japan; (H.O.); (F.O.); (N.K.)
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, 3-4-1, kowakae, Higahi-Osaka 577-8502, Osaka, Japan; (H.O.); (F.O.); (N.K.)
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo 105-8512, Japan;
| | - Manju Misra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj Basan Road, Village Palaj, Gandhinagar 382355, Gujarat, India;
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar Campus Nr. Government Polytechnic K-6 Circle, E-4 Electronic Estate G.I.D.C, Sector-26, Gandhinagar 382028, Gujarat, India
| | - Masanobu Tsubaki
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Kagawa, Japan;
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, 3-4-1, kowakae, Higahi-Osaka 577-8502, Osaka, Japan; (H.O.); (F.O.); (N.K.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1, kowakae, Higahi-Osaka 577-8502, Osaka, Japan; (H.O.); (F.O.); (N.K.)
| |
Collapse
|
5
|
Cheng D, Chen Y, Feng Y, Zeng Y, Zhao Z. Preparation of Temperature-Sensitive Molecularly Imprinted Cryogel for Specific Recognition of Proteins. ACS OMEGA 2025; 10:11312-11324. [PMID: 40160783 PMCID: PMC11947846 DOI: 10.1021/acsomega.4c11143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
In order to maintain the stability of the structure of protein molecules and improve the recognition during the separation process, molecular imprinting technology is combined with freeze polymerization to synthesize molecular imprinting cryogels (MICs). This study uses bovine serum albumin (BSA) as a template protein, low critical cosolubility temperature (LCST)-type ionic liquids as temperature-sensitive functional monomers, imidazole ionic liquids, and acrylamides as auxiliary functional monomers to prepare MICs with specific recognition, temperature sensitivity, interpenetrating macroporous structure, and large specific surface area. The MICs prepared at freezing temperature have uniform macroporous structures and good mechanical properties, which is conducive to the improvement of the mass transfer and adsorption capacities. Due to the advantages, the MIC reaches the adsorption equilibrium within 125 min with a saturated adsorption capacity of 741.5 mg g-1 and an imprinting factor of 1.65. Their static and dynamic adsorption behaviors are more in line with the Langmuir model and the quasi-secondary kinetic model, respectively. In addition, the MIC has obvious temperature sensitivity, and the maximum adsorption amount is reached at 37 °C. The separation factor (relative to cytochrome c, bovine blood hemoglobin, and lysozyme) of the MICs for BSA is up to 1.39. Repeatability experiments reveal that the adsorption capacity of molecularly imprinted cryogels is retained at 87% after five adsorption-desorption cycles, indicating excellent recyclability and potential for practical application.
Collapse
Affiliation(s)
- Dandan Cheng
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Yahong Chen
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Yalan Feng
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Yijun Zeng
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Zhao Zhao
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| |
Collapse
|
6
|
Serpe F, Nalin F, Tirelli MC, Posabella P, Celikkin N, Jaroszewicz J, Święszkowski W, Barbetta A, Şentürk E, Casciola CM, Ruocco G, Cidonio G, Scognamiglio C, Costantini M. Microfluidic 3D Bioprinting of Foamed Fibers with Controlled Micromorphology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13632-13645. [PMID: 39964244 PMCID: PMC11891826 DOI: 10.1021/acsami.4c22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/12/2025]
Abstract
The synergistic integration of microfluidic technologies with additive manufacturing systems is advancing the development of innovative platforms to 3D bioprint scaffolds for tissue engineering with unparalleled biological relevance. Significant interest is growing in realizing porous functionally graded materials (pFGMs) that can resemble the hierarchical organization of porosity found in bone tissue. This study introduces a method for fabricating porous scaffolds based on the real-time generation of a liquid foam, which is gelled, forming porous fibers that are organized into structured matrixes using a 3D bioprinting system. The primary advantage of this approach is the possibility to adjust bubble size during printing dynamically, modifying the characteristics of the deposited foamed filaments online and in one step. As a result, locally-defined and tailor-made pores can be distributed in 3D structures with high spatial accuracy. Besides the mechanical and morphological characterization of diverse microarchitectures, we also explored the biocompatibility of the proposed approach by directly embedding osteosarcoma cells within the biomaterial. Results demonstrated the biocompatibility of the proposed methodology and revealed the influence of the interior microporosity on cell proliferation, highlighting the potential for creating tailored tissue microenvironments. The findings underscore the versatility of the presented 3D bioprinting system and its potential in fabricating biomimetic scaffolds with tailored morphological gradients, representing a substantial advancement in pFGM synthesis, with direct implications in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Federico Serpe
- Department
of Chemistry, University of Rome “La
Sapienza”, 00185 Rome, Italy
- Center
for
Life Nano- & Neuro-Science − CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy
| | - Francesco Nalin
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 01224 Warsaw, Poland
| | | | - Pasquale Posabella
- Warsaw
University
of Technology, Faculty of Materials Science
and Engineering, 02507 Warsaw, Poland
| | - Nehar Celikkin
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 01224 Warsaw, Poland
| | - Jakub Jaroszewicz
- Warsaw
University
of Technology, Faculty of Materials Science
and Engineering, 02507 Warsaw, Poland
| | - Wojciech Święszkowski
- Warsaw
University
of Technology, Faculty of Materials Science
and Engineering, 02507 Warsaw, Poland
| | - Andrea Barbetta
- Department
of Chemistry, University of Rome “La
Sapienza”, 00185 Rome, Italy
| | - Efsun Şentürk
- Center
for
Life Nano- & Neuro-Science − CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy
- Department
of Mechanical and Aerospace Engineering (DIMA), University of Rome “La Sapienza”, 00184 Rome, Italy
| | - Carlo Massimo Casciola
- Department
of Mechanical and Aerospace Engineering (DIMA), University of Rome “La Sapienza”, 00184 Rome, Italy
| | - Giancarlo Ruocco
- Center
for
Life Nano- & Neuro-Science − CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy
| | - Gianluca Cidonio
- Center
for
Life Nano- & Neuro-Science − CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy
- Department
of Mechanical and Aerospace Engineering (DIMA), University of Rome “La Sapienza”, 00184 Rome, Italy
| | - Chiara Scognamiglio
- Center
for
Life Nano- & Neuro-Science − CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy
| | - Marco Costantini
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 01224 Warsaw, Poland
| |
Collapse
|
7
|
Liu Y, Yuan K, Lin Y, Yang Y, Kong W, Shan J, Niu H, Kong W, Li F, Yue X, Du Y, Liang Y, Chang H, Yu Z, Wang J, Yang G, Cao L, Huang K, Yang S, Tang T. Directional Freeze-Casting Cryogel Loaded with Quaternized Chitosan Modified Gallium Metal-Organic Frameworks to Capture and Eradicate the Resistant Bacteria for Guided Regeneration in Infected Bone Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414437. [PMID: 39846310 DOI: 10.1002/adma.202414437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance and impaired bone regeneration are the great challenges in treating infected bone defects. Its recurrent and resistant nature, high incidence rate, long-term hospitalization, and high medical costs have driven the efforts of the scientific community to develop new therapies to improve the situation. Considering the complex microenvironment and persistent mechanisms mediated by resistant bacteria, it is crucial to develop an implant with enhanced osseointegration and sustained and effective infection clearance effects. Here, a positively charged quaternized chitosan (QCS) coated gallium-based metal-organic framework (GaMOF) is designed, to capture the antibiotic-resistant bacteria (Methicillin-resistant Staphylococcus aureus, MRSA) as a "captor", and rejuvenate Methicillin (Me) via disturbing the tricarboxylic acid (TCA) cycle. Then, a radially oriented porous cryogel loaded with the Me and QCSGaMOF is fabricated by the directional freeze-casting method. The oriented porous structure has an enhanced osseointegration effect by guiding the ingrowth of osteogenic cells. In vitro and in vivo experiments prove the advantages of as-prepared Me/QCSGa-MOF@Cryogel in combating resistant bacteria and guiding bone regeneration in infected bone defects.
Collapse
Affiliation(s)
- Yihao Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yiqi Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, P. R. China
| | - Weiqing Kong
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199Jiefang South Road, Xuzhou, 221009, P. R. China
| | - Jing Shan
- School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Weize Kong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Fupeng Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yun Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yakun Liang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, P. R. China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
8
|
Chen Y, Zhang X, Wang M, Liang Y, Zheng Z, Liu M, Lu Q. Bioactive Silk Cryogel Dressing with Multiple Physical Cues to Control Cell Migration and Wound Regeneration. Adv Healthc Mater 2025; 14:e2404304. [PMID: 39831837 DOI: 10.1002/adhm.202404304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure. Through optimizing crosslinking time and exposing the reactive group inside the nanofibers, the crosslinking reaction is improved to induce stable cryogel formation. Besides the hydrated state and macroporous structure, the nanopore structure formed on the macroporous walls, providing hierarchical microstructures to improve cell migration. Both in vitro and in vivo results reveal quicker cell migration inside the cryogels, which then accelerates angiogenesis and wound healing. The mechanical properties can further regulate to match with skin regeneration. The wound healing study in vivo reveals lower inflammatory factor secretion in the wounds treated with softer cryogels with nanopores, which then resulted in the best angiogenesis and wound healing with less scar. Therefore, the porous cryogels with multiple physical cues can be fabricated with silk nanofibers to control cell behaviors and tissue regeneration, providing a promising approach for designing bioactive wound dressings.
Collapse
Affiliation(s)
- Yaqian Chen
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, 999077, P. R. China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Yu Liang
- Sanitation & Environment Technology Institute of Soochow University Ltd., No.88, Zhenbei Road, Gaoxin District, Suzhou, Jiangsu Province, 215153, P. R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| |
Collapse
|
9
|
Liu Y, Zhong W, Ai Y, Xing M. Double Cross-linked Methacrylated Carboxymethyl Pea Starch Cryogels with Highly Compressive Elasticity and Hemostatic Function. Biomacromolecules 2025; 26:883-899. [PMID: 39865611 DOI: 10.1021/acs.biomac.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network. The second ionic cross-linking network enhanced the compressive strength and toughness dramatically but reduced the swelling ratios. Cryogels and sponges exhibited excellent compressive elasticity at low Ca2+ concentrations (0.01 M). Cryogels became more plastic and dry sponges became rigid and brittle at high Ca2+ concentrations. The cryogels have outstanding wet-thermal stability but are still degradable via enzymatic hydrolysis. All CM-ST-MA sponges showed excellent biocompatibility, hemocompatibility, and outstanding hemostasis in in vitro assays. In the in vivo mouse tail amputation model, both CM-ST-MA cryogels without or with Ca2+ (0.01 M) reduced the blood loss and bleeding time significantly.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Chen G, Xin Y, Hammour MM, Braun B, Ehnert S, Springer F, Vosough M, Menger MM, Kumar A, Nüssler AK, Aspera-Werz RH. Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening. Arch Toxicol 2025; 99:333-356. [PMID: 39503877 PMCID: PMC11742461 DOI: 10.1007/s00204-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.
Collapse
Affiliation(s)
- Guanqiao Chen
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Yuxuan Xin
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian M Menger
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Turar Z, Sembay M, Mubarak A, Belgibayeva A, Kong L, Kalimuldina G. Advances in Porous Structure Design for Enhanced Piezoelectric and Triboelectric Nanogenerators: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400224. [PMID: 39802044 PMCID: PMC11717670 DOI: 10.1002/gch2.202400224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Indexed: 01/16/2025]
Abstract
Porous structures offer several key advantages in energy harvesting, making them highly effective for enhancing the performance of piezoelectric and triboelectric nanogenerators (PENG and TENG). Their high surface area-to-volume ratio improves charge accumulation and electrostatic induction, which are critical for efficient energy conversion. Additionally, their lightweight and flexible nature allows for easy integration into wearable and flexible electronics. These combined properties make porous materials a powerful solution for addressing the efficiency limitations that have traditionally restricted nanogenerators. Recognizing these benefits, this review focuses on the essential role that porous materials play in advancing PENG and TENG technologies. It examines a wide range of porous materials, including aerogels, nano-porous films, sponges, and 2D materials, explaining how their unique structures contribute to higher energy harvesting efficiency. The review also explores recent breakthroughs in the development of these materials, demonstrating how they overcome performance challenges and open up new possibilities for practical applications. These advancements position porous nanogenerators as strong candidates for use in wearable electronics, smart textiles, and Internet of Things (IoT) devices. By exploring these innovations, the review underscores the importance of porous structures in driving the future of energy harvesting technologies.
Collapse
Affiliation(s)
- Zhassulan Turar
- Department of Mechanical and Aerospace EngineeringNazarbayev UniversityKabanbay Batyr Ave. 53Astana010000Kazakhstan
| | - Merey Sembay
- Department of Mechanical and Aerospace EngineeringNazarbayev UniversityKabanbay Batyr Ave. 53Astana010000Kazakhstan
| | - Assem Mubarak
- Department of Mechanical and Aerospace EngineeringNazarbayev UniversityKabanbay Batyr Ave. 53Astana010000Kazakhstan
| | - Ayaulym Belgibayeva
- National Laboratory AstanaNazarbayev UniversityKabanbay Batyr Ave. 53Astana010000Kazakhstan
| | - Long Kong
- Xi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710129China
| | - Gulnur Kalimuldina
- Department of Mechanical and Aerospace EngineeringNazarbayev UniversityKabanbay Batyr Ave. 53Astana010000Kazakhstan
| |
Collapse
|
12
|
Sun C, Wei Z, Xue C. Construction of foam-templated Antarctic krill oil oleogel based on pea protein fibril and ι-carrageenan. Carbohydr Polym 2025; 347:122729. [PMID: 39486959 DOI: 10.1016/j.carbpol.2024.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Edible plant-based oleogels with zero trans-fat are promising solid fat substitutes. In this study, Antarctic krill oil (AKO) oleogels prepared from pea protein fibril (PPF) and ι-carrageenan (CG) by foam-templated method were developed for the first time. The modulation of the ratio of PPF and CG concentration on the structure and properties of foam, cryogel and oleogel was investigated and the potential formation mechanism of the foam-templated oleogel was explained. The results demonstrated that the addition of CG significantly decreased the foam size and enhanced the foam stability. The oil absorption and oil holding ability of the dense and reticular porous structure of the cryogel was demonstrated. Fourier infrared spectroscopy confirmed the interaction between PPF and CG involved in the formation of cryogels. With the addition of CG, the network structure and mechanical strength of the cryogel were reinforced, leading to more compact pores and higher capillary suction, which was appropriate for the establishment of good viscoelastic semi-solid oleogels. In addition, the oleogel was effective in masking the fishy odor of AKO. The significance of this study lies in its provision of a novel approach to the preparation of the foam-templated oleogel with PPF and CG as the oleogelators.
Collapse
Affiliation(s)
- Chang Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
13
|
Chen TY, Dai NT, Wen TK, Hsu SH. An Acellular, Self-Healed Trilayer Cryogel for Osteochondral Regeneration in Rabbits. Adv Healthc Mater 2024; 13:e2400462. [PMID: 38948966 DOI: 10.1002/adhm.202400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Osteochondral regeneration remains formidable challenges despite significant advances in microsurgery. Herein, an acellular trilayer cryogel (TC) with injectability, tunable pore sizes (80-200 µm), and appropriate compressive modulus (10.8 kPa) is manufactured from self-healable hydrogel under different gelling times through Schiff reaction between chitosan and difunctionalized polyurethane (DFPU). Bioactive molecules (Y27632 and dexamethasone) are respectively loaded in the top and bottom layers to form the Y27632/dexamethasone-loaded trilayer cryogel (Y/DEX-TC). Mesenchymal stem cells (MSCs) seeded in Y/DEX-TC proliferated ≈350% in vitro and underwent chondrogenesis or osteogenesis in response to the respective release of Y or DEX in 14 days. Acupuncture is administered to animals in an attempt to modulate the innate regulatory system and mobilize endogenous MSCs for osteochondral defect regeneration. In vivo rabbit experiments using Y/DEX-TC combined with acupuncture successfully regulate SDF-1 and TGF-β1 levels, which possibly cause MSC migration toward Y/DEX-TC. The synergistic effect of cryogel and acupuncture on immunomodulation is verified with a ≈7.3-fold enhancement of the M2-/M1-macrophage population ratio by treatment of Y/DEX-TC combining acupuncture, significantly greater than ≈1.5-fold increase by acupuncture or ≈2.2-fold increase by Y/DEX-TC alone. This novel strategy using acellular drug-loaded cryogel and accessible acupuncture shows promise in treating osteochondral defects of joint damage.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, 106319, R.O.C
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 114202, R.O.C
| | - Tsung-Kai Wen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, 970374, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, 106319, R.O.C
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, 350401, R.O.C
| |
Collapse
|
14
|
Hu X, Hu Q, Liu S, Zhang H. Synergy of engineered gelatin methacrylate-based porous microspheres and multicellular assembly to promote osteogenesis and angiogenesis in bone tissue reconstruction. Int J Biol Macromol 2024; 283:137228. [PMID: 39500438 DOI: 10.1016/j.ijbiomac.2024.137228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
One of the key challenges in bone defects treatment is providing adequate and stable blood supply during new tissue regeneration. Mesenchymal stem cells (MSCs) and endothelial cells (ECs) have great potential to promote osteogenesis and angiogenesis during bone defect repair through paracrine effects, but their therapeutic efficacy depends on effective cellular assembly and delivery. In this work, we developed various microspheres with different pore sizes for multi-cellular delivery to enhance the angiogenic and osteogenic capability via combining microfluidic and gradient freeze-drying techniques. The particle and pore size of fabricated porous gelatin methacrylate (GelMA)-based hydrogel microspheres (PGMS) could be controllable through adjusting the freezing time of hydrogel microspheres, the range of particles and pores size are 150-250 μm and 10-100 μm with different freezing time from 0 min to 30 min. The optimized particle size (200.8 ± 14.2 μm) and pore size (11.2 ± 1.9 μm) were explored to promote cell assemble, adhesion, growth, and proliferation in the PGMS. Furthermore, the co-assembly and delivery of bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) on the PGMS was achieved and an optimal cellular ratio of BMSCs to HUVECs (20:2) was established for co-culturing of them to achieve optimal paracrine effects, further promoting osteogenic differentiation and angiogenesis. Finally, results from both in vitro and in vivo experiments showed that the developed PGMS with co-assembly of BMSCs to HUVECs contributed to accelerate bone regeneration and vascularization process daringly, exhibited great potential in vascularized bone tissue reconstruction.
Collapse
Affiliation(s)
- Xinli Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China
| | - Suihong Liu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Behrendt F, Gottschaldt M, Schubert US. Surface functionalized cryogels - characterization methods, recent progress in preparation and application. MATERIALS HORIZONS 2024; 11:4600-4637. [PMID: 39021096 DOI: 10.1039/d4mh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity. They can also exhibit adsorptive properties or can be used for catalytical purposes. Although a very brief overview about several functional (macro-)monomers and functionalizing ligands has been provided by previous reviewers for certain cryogel applications, so far there has been no particular focus on the evaluation of the functionalization success and the characterization methods used. This review will provide a comprehensive overview of different characterization methods most recently used for the evaluation of cryogel functionalization. Furthermore, new functional (macro-)monomers and subsequent cryogel functionalization strategies are discussed, based on synthetic polymers, biopolymers and a combination of both. This review highlights the importance of the functionalization aspect in cryogel research in order to produce materials with tailored properties for certain applications.
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, 07743 Jena, Germany
| |
Collapse
|
16
|
Lauriola C, Di Muzio L, Paolicelli P, Casadei MA, Sergi C, Tirillò J, Carriero VC, Adrover A. Experimental and Modelling Study of Controlled Release from Dextran-Based Cryogels. Pharmaceutics 2024; 16:1256. [PMID: 39458587 PMCID: PMC11510673 DOI: 10.3390/pharmaceutics16101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this work, five different dextran-based cryogels for controlled drug release are investigated. Vitamin B12 was used as a model drug for in vitro release tests. Two different drug-loading procedures were adopted, leading to very different drug release curves. Indeed, a fast Fickian release was observed when freeze-dried samples of DEX40PEG360MA and DEX40PEG500MA were infused with the drug after cryogel formation. On the contrary, a slowed highly non-Fickian behavior arises when the drug is loaded before the low-temperature crosslinking step, leading to the cryogel formation. The non-Fickian drug release, observed for all the five different dextran-based cryogels investigated, is actually due to the cryoconcentration phenomenon, modeled with a two-step release process. The proposed transport model accurately predicts experimental release curves characterized by a long lag time, confirming that dextran-based cryogels are suitable for controlled release.
Collapse
Affiliation(s)
- Carolina Lauriola
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Laura Di Muzio
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Claudia Sergi
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Jacopo Tirillò
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Vito Cosimo Carriero
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Alessandra Adrover
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| |
Collapse
|
17
|
Zhang K, Yang Z, Seitz MP, Jain E. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5925-5938. [PMID: 39135543 PMCID: PMC11409214 DOI: 10.1021/acsabm.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/17/2024]
Abstract
Trauma or repeated damage to joints can result in focal cartilage defects, significantly elevating the risk of osteoarthritis. Damaged cartilage has an inherently limited self-healing capacity and remains an urgent unmet clinical need. Consequently, there is growing interest in biodegradable hydrogels as potential scaffolds for the repair or reconstruction of cartilage defects. Here, we developed a biodegradable and macroporous hybrid double-network (DN) cryogel by combining two independently cross-linked networks of multiarm polyethylene glycol (PEG) acrylate and alginate.Hybrid DN cryogels are formed using highly biocompatible click reactions for the PEG network and ionic bonding for the alginate network. By judicious selection of various structurally similar cross-linkers to form the PEG network, we can generate hybrid DN cryogels with customizable degradation kinetics. The resulting PEG-alginate hybrid DN cryogels have an interconnected macroporous structure, high mechanical strength, and rapid swelling kinetics. The interconnected macropores in the cryogels support efficient mesenchymal stem cell infiltration at a high density. Finally, we demonstrate that PEG-alginate hybrid DN cryogels allow sustained release of chondrogenic growth factors and support chondrogenic differentiation of mouse mesenchymal stem cells. This study provides a novel method to generate macroporous hybrid DN cryogels with customizable degradation rates and a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Zining Yang
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Michael Patrick Seitz
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
18
|
Liu Y, Zhong W, Xing M. Low density methacrylated pea, corn, and tapioca starch covalent cryogels with excellent elasticity and water/oil absorption capacity. Carbohydr Polym 2024; 340:122234. [PMID: 38858015 DOI: 10.1016/j.carbpol.2024.122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024]
Abstract
Porous starch materials are promising in several applications as renewable natural biomaterials. This study reports an approach combining methacrylation of starch and chemical crosslinked cryogelation to fabricate highly elastic macroporous starch (ST-MA) cryogels with impressed water/oil absorption capacity and wet thermal stability among starch based porous materials. Five different types of starch, including pea, normal corn, high amylose corn, tapioca, and waxy maize starch with different amylose content, have been studied. The methacrylation degree is not related with amylose content. All cryogels exhibited excellent compressive elasticity enduring 90 % deformation without failure and good robustness in cyclic tests. The ST-MA cryogels from pea starch exhibited the highest Young's modulus and compressive strength among five types of starch. These covalent cryogels exhibit high wet-thermal stability and enzymatic hydrolysis stability, while still are biodegradable. The dry ST-MA sponges (2 wt%) showed outstanding liquid absorption capacity, absorbing ~40 folds (g/g) of water or ~ 36 folds (g/g) of oil respectively. All types of starch have similar liquid absorption performance. This study provides a universal approach to fabricate highly elastic covalent starch macroporous materials with impressed liquid absorption capacity and outstanding stability, especially wet-thermal stability, and may expand their applications.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
19
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
20
|
Deng J, Zhao Z, Yeo XY, Yang C, Yang J, Ferhan AR, Jin B, Oh C, Jung S, Suresh S, Cho NJ. Plant-Based Shape Memory Cryogel for Hemorrhage Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311684. [PMID: 39011812 DOI: 10.1002/adma.202311684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The escalating global demand for sustainable manufacturing, motivated by concerns over energy conservation and carbon footprints, encounters challenges due to insufficient renewable materials and arduous fabrication procedures to fulfill specific requirements in medical and healthcare systems. Here, biosafe pollen cryogel is engineered as effective hemostats without additional harmful crosslinkers to treat deep noncompressible wounds. A straightforward and low-energy approach is involved in forming stable macroporous cryogel, benefiting from the unique micro-hierarchical structures and chemical components of non-allergenic plant pollen. It is demonstrated that the pollen cryogel exhibits rapid water/blood-triggered shape-memory properties within 2 s. Owing to their inherent nano/micro hierarchical structure and abundant chemical functional groups on the pollen surface, the pollen cryogel shows effective hemostatic performance in a mouse liver penetration model, which is easily removed after usage. Overall, the self-crosslinking pollen cryogel in this work pioneers a framework of potential clinical applications for the first-hand treatment on deep noncompressible wounds.
Collapse
Affiliation(s)
- J Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Z Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - X Y Yeo
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - J Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - A R Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - B Jin
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Oh
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Jung
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - N-J Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Lazar MM, Damaschin RP, Volf I, Dinu MV. Deep Cleaning of Crystal Violet and Methylene Blue Dyes from Aqueous Solution by Dextran-Based Cryogel Adsorbents. Gels 2024; 10:546. [PMID: 39330148 PMCID: PMC11431740 DOI: 10.3390/gels10090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Polysaccharides have recently attracted growing attention as adsorbents for various pollutants, since they can be extracted from a variety of renewable sources at low cost. An interesting hydrophilic and biodegradable polysaccharide is dextran (Dx), which is well-known for its applications in the food industry and in medicine. To extend the application range of this biopolymer, in this study, we investigated the removal of crystal violet (CV) and methylene blue (MB) dyes from an aqueous solution by Dx-based cryogels using the batch technique. The cryogel adsorbents, consisting of cross-linked Dx embedding a polyphenolic (PF) extract of spruce bark, were prepared by the freeze-thawing approach. It was shown that the incorporation of PF into the Dx-based matrix induced a decrease in porosity, pore sizes and swelling ratio values. Moreover, the average pore sizes of the DxPF cryogels loaded with dyes further decreased from 42.30 ± 7.96 μm to 23.68 ± 2.69 μm, indicating a strong interaction between the functional groups of the cryogel matrix and those of the dye molecules. The sorption performances of the DxPF adsorbents were evaluated in comparison to those of the Dx cryogels and of the PF extract. The experimental sorption capacities of the DxPF cryogel adsorbents were higher in comparison to those of the Dx cryogels and the PF extract. The DxPF cryogels, particularly those with the highest PF contents (sample DxPF2), demonstrated sorption capacities of 1.2779 ± 0.0703 mmol·g-1, for CV, and 0.3238 ± 0.0121 mmol·g-1, for MB. The sorption mechanisms were analyzed using mathematical models, including Langmuir, Freundlich, Sips and Dubinin-Radushkevich isotherms, and kinetic models, like pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD). The sorption process was best described by the Sips isotherm and PSO kinetic models, indicating chemisorption as the dominant mechanism. This study outlines the importance of developing advanced renewable materials for environmental applications.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Roxana P Damaschin
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iași, 73 Prof. Dr. Docent D. Mangeron Street, 700050 Iași, Romania
| | - Irina Volf
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iași, 73 Prof. Dr. Docent D. Mangeron Street, 700050 Iași, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
22
|
Sousa JPM, Deus IA, Monteiro CF, Custódio CA, Stratakis E, Mano JF, Marques PAAP. Comparative analysis of aligned and random amniotic membrane-derived cryogels for neural tissue repair. Biomater Sci 2024; 12:4393-4406. [PMID: 39034884 DOI: 10.1039/d4bm00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The ordered arrangement of cells and extracellular matrix facilitates the seamless transmission of electrical signals along axons in the spinal cord and peripheral nerves. Therefore, restoring tissue geometry is crucial for neural regeneration. This study presents a novel method using proteins derived from the human amniotic membrane, which is modified with photoresponsive groups, to produce cryogels with aligned porosity. Freeze-casting was used to produce cryogels with longitudinally aligned pores, while cryogels with randomly distributed porosity were used as the control. The cryogels exhibited remarkable injectability and shape-recovery properties, essential for minimally invasive applications. Different tendencies in proliferation and differentiation were evident between aligned and random cryogels, underscoring the significance of the scaffold's microstructure in directing the behaviour of neural stem cells (NSC). Remarkably, aligned cryogels facilitated extensive cellular infiltration and migration, contrasting with NSC cultured on isotropic cryogels, which predominantly remained on the scaffold's surface throughout the proliferation experiment. Significantly, the proliferation assay demonstrated that on day 7, the aligned cryogels contained eight times more cells compared to the random cryogels. Consistent with the proliferation experiments, NSC exhibited the ability to differentiate into neurons within the aligned scaffolds and extend neurites longitudinally. In addition, differentiation assays showed a four-fold increase in the expression of neural markers in the cross-sections of the aligned cryogels. Conversely, the random cryogels exhibited minimal presence of cell bodies and extensions. The presence of synaptic vesicles on the anisotropic cryogels indicates the formation of functional synaptic connections, emphasizing the importance of the scaffold's microstructure in guiding neuronal reconnection.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal.
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro 3810-193, Portugal
| | - Inês A Deus
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro 3810-193, Portugal
| | - Cátia F Monteiro
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro 3810-193, Portugal
| | - Catarina A Custódio
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro 3810-193, Portugal
- Metatissue, PCI Creative Science Park Aveiro Region, Via do Conhecimento, 3830-352 Ílhavo, Portugal
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João F Mano
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal.
- LASI - Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
23
|
Platon IV, Ghiorghita CA, Lazar MM, Aprotosoaie AC, Gradinaru AC, Nacu I, Verestiuc L, Nicolescu A, Ciocarlan N, Dinu MV. Highly Compressible, Superabsorbent, and Biocompatible Hybrid Cryogel Constructs Comprising Functionalized Chitosan and St. John's Wort Extract. Biomacromolecules 2024; 25:5081-5097. [PMID: 38990059 DOI: 10.1021/acs.biomac.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Biobased porous hydrogels enriched with phytocompounds-rich herbal extracts have aroused great interest in recent years, especially in healthcare. In this study, new macroporous hybrid cryogel constructs comprising thiourea-containing chitosan (CSTU) derivative and a Hypericum perforatum L. extract (HYPE), commonly known as St John's wort, were prepared by a facile one-pot ice-templating strategy. Benefiting from the strong interactions between the functional groups of the CSTU matrix and those of polyphenols in HYPE, the hybrid cryogels possess excellent liquid absorption capacity, mechanical resilience, antioxidant performance, and a broad spectrum of antibacterial activity simultaneously. Thus, owing to their design, the hybrid constructs exhibit an interconnected porous architecture with the ability to absorb over 33 and 136 times their dry weight, respectively, when contacted with a phosphate buffer solution (pH 7.4) and an acidic aqueous solution (pH 2). These cryogel constructs have extremely high compressive strengths ranging from 839 to 1045 kPa and withstand elevated strains of over 70% without developing fractures. Moreover, the water-swollen hybrid cryogels with the highest HYPE content revealed a complete and instant shape recovery after uniaxial compression. The incorporation of HYPE into CSTU cryogels enabled substantial improvement in scavenging reactive oxygen species and an expanded antibacterial spectrum toward multiple pathogens, including Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Candida albicans). Cell viability experiments demonstrated the cytocompatibility of the 3D cryogel constructs, which did not induce changes in the fibroblast morphology. This work showcases a simple and effective strategy to immobilize HYPE extracts on CSTU 3D networks, allowing the development of novel multifunctional platforms with promising potential in hemostasis, wound dressing, and dermal regeneration scaffolds.
Collapse
Affiliation(s)
- Ioana-Victoria Platon
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | | | - Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Adina Catinca Gradinaru
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Nina Ciocarlan
- Botanical Garden, Academy of Sciences of Moldova, Padurii Street 18, Chisinau 2002, Republic of Moldova
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| |
Collapse
|
24
|
Tunca N, Maral M, Yildiz E, Sengel SB, Erdem A. Synthesis and characterization of polysaccharide-cryogel and its application to the electrochemical detection of DNA. Mikrochim Acta 2024; 191:499. [PMID: 39088080 PMCID: PMC11294392 DOI: 10.1007/s00604-024-06550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.
Collapse
Affiliation(s)
- Nilay Tunca
- The Institute of Natural and Applied Sciences, Biomedical Technologies Department, Ege University, Bornova, 35100, Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Meltem Maral
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Esma Yildiz
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Sultan Butun Sengel
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey.
| | - Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
25
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
26
|
Privar Y, Skatova A, Maiorova M, Golikov A, Boroda A, Bratskaya S. Tuning Mechanical Properties, Swelling, and Enzymatic Degradation of Chitosan Cryogels Using Diglycidyl Ethers of Glycols with Different Chain Length as Cross-Linkers. Gels 2024; 10:483. [PMID: 39057506 PMCID: PMC11276332 DOI: 10.3390/gels10070483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Cross-linking chitosan at room and subzero temperature using a series of diglycidyl ethers of glycols (DEs)-ethylene glycol (EGDE), 1,4-butanediol (BDDE), and poly(ethylene glycol) (PEGDE) has been investigated to demonstrate that DEs can be a more powerful alternative to glutaraldehyde (GA) for fabrication of biocompatible chitosan cryogels with tunable properties. Gelation of chitosan with DEs was significantly slower than with GA, allowing formation of cryogels with larger pores and higher permeability, more suitable for flow-through applications and cell culturing. Increased hydration of the cross-links with increased DE chain length weakened intermolecular hydrogen bonding in chitosan and improved cryogel elasticity. At high cross-linking ratios (DE:chitosan 1:4), the toughness and compressive strength of the cryogels decreased in the order EGDE > BDDE > PEGDE. By varying the DE chain length and concentration, permeable chitosan cryogels with elasticity moduli from 10.4 ± 0.8 to 41 ± 3 kPa, toughness from 2.68 ± 0.5 to 8.3 ± 0.1 kJ/m3, and compressive strength at 75% strain from 11 ± 2 to 33 ± 4 kPa were fabricated. Susceptibility of cryogels to enzymatic hydrolysis was identified as the parameter most sensitive to cross-linking conditions. Weight loss of cryogels increased with increased DE chain length, and degradation rate of PEGDE-cross-linked chitosan decreased 612-fold, when the cross-linker concentration increased 20-fold.
Collapse
Affiliation(s)
- Yuliya Privar
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Anna Skatova
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Mariya Maiorova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo Street, 690041 Vladivostok, Russia
| | - Alexey Golikov
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Andrey Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo Street, 690041 Vladivostok, Russia
| | - Svetlana Bratskaya
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| |
Collapse
|
27
|
Yan X, Wei F, Gou J, Ji M, Hamouda HI, Xue C, Zheng H. Cryogel with Modular and Clickable Building Blocks: Toward the Ultimate Ideal Macroporous Medium for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15959-15970. [PMID: 38954479 DOI: 10.1021/acs.jafc.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.
Collapse
Affiliation(s)
- Xiaomeng Yan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Fayi Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Jinpeng Gou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Mingbo Ji
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266500, PR China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, China
| |
Collapse
|
28
|
Thirumalai D, Santhamoorthy M, Kim SC, Lim HR. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024; 10:459. [PMID: 39057482 PMCID: PMC11275512 DOI: 10.3390/gels10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are gaining popularity for use in wearable electronics owing to their inherent biomimetic characteristics, flexible physicochemical properties, and excellent biocompatibility. Among various hydrogels, conductive polymer-based hydrogels (CP HGs) have emerged as excellent candidates for future wearable sensor designs. These hydrogels can attain desired properties through various tuning strategies extending from molecular design to microstructural configuration. However, significant challenges remain, such as the limited strain-sensing range, significant hysteresis of sensing signals, dehydration-induced functional failure, and surface/interfacial malfunction during manufacturing/processing. This review summarizes the recent developments in polymer-hydrogel-based wearable electrochemical biosensors over the past five years. Initially serving as carriers for biomolecules, polymer-hydrogel-based sensors have advanced to encompass a wider range of applications, including the development of non-enzymatic sensors facilitated by the integration of nanomaterials such as metals, metal oxides, and carbon-based materials. Beyond the numerous existing reports that primarily focus on biomolecule detection, we extend the scope to include the fabrication of nanocomposite conductive polymer hydrogels and explore their varied conductivity mechanisms in electrochemical sensing applications. This comprehensive evaluation is instrumental in determining the readiness of these polymer hydrogels for point-of-care translation and state-of-the-art applications in wearable electrochemical sensing technology.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Hyo-Ryoung Lim
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
29
|
Xia X, Zhang B, Huang Y, Zhu Y, Qu M, Liu L, Sun B, Zhu X. Soy Protein Isolate Gel Subjected to Freezing Treatment: Influence of Methylcellulose and Sodium Hexametaphosphate on Gel Stability, Texture and Structure. Foods 2024; 13:2117. [PMID: 38998623 PMCID: PMC11241562 DOI: 10.3390/foods13132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Freezing affects texture and induces the loss of gel quality. This study investigated the effects of methylcellulose (MC) (0.2%, 0.4%, 0.6%) and sodium hexametaphosphate (SHMP) (0.15%, 0.3%) on the gel textural and structural properties of SPI gels before and after freezing, and explores the synergistic enhancement of gel texture and the underlying mechanisms resulting from the simultaneous addition of SHMP and MC to SPI gels. It was revealed that MC improved the strength of SPI gels through its thickening properties, but it could not inhibit the reduction of SPI gels after freezing. The 0.4% MC-SPI gel exhibited the best gel strength (193.2 ± 2.4 g). SHMP inhibited gel reduction during freezing through hydrogen bonding and ionic interactions; it enhanced the freezing stability of SPI gels. The addition of 0.15% SHMP made the water-holding capacity in SPI gels reach the highest score after freezing (58.2 ± 0.32%). The synergistic effect of MC and SHMP could improve the strength and the freezing stability of SPI gels. MC facilitated the release of ionizable groups within SPI, causing negatively charged SHMP groups to aggregate on the SPI and inhibit the freezing aggregation of proteins. These results provide a strong basis for the improvement of cryogenic soy protein gel performance by SHMP and MC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (X.X.); (B.Z.); (Y.H.); (Y.Z.); (M.Q.); (L.L.); (B.S.)
| |
Collapse
|
30
|
Ghiorghita CA, Platon IV, Lazar MM, Dinu MV, Aprotosoaie AC. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr Polym 2024; 334:122033. [PMID: 38553232 DOI: 10.1016/j.carbpol.2024.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Over the years, polysaccharides such as chitosan, alginate, hyaluronic acid, k-carrageenan, xanthan gum, carboxymethyl cellulose, pectin, and starch, alone or in combination with proteins and/or synthetic polymers, have been used to engineer an extensive portfolio of hydrogels with remarkable features. The application of polysaccharide-based hydrogels has the potential to alleviate challenges related to bioavailability, solubility, stability, and targeted delivery of phytocompounds, contributing to the development of innovative and efficient drug delivery systems and functional food formulations. This review highlights the current knowledge acquired on the preparation, features and applications of polysaccharide/phytocompounds hydrogel-based hybrid systems in wound management, drug delivery, functional foods, and food industry. The structural, functional, and biological requirements of polysaccharides and phytocompounds on the overall performance of such hybrid systems, and their impact on the application domains are also discussed.
Collapse
Affiliation(s)
- Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Ioana-Victoria Platon
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Marinela Lazar
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| | - Ana Clara Aprotosoaie
- "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| |
Collapse
|
31
|
Gerrits L, Bakker B, Hendriks LD, Engels S, Hammink R, Kouwer PHJ. Tailoring of Physical Properties in Macroporous Poly(isocyanopeptide) Cryogels. Biomacromolecules 2024; 25:3464-3474. [PMID: 38743442 PMCID: PMC11170948 DOI: 10.1021/acs.biomac.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.
Collapse
Affiliation(s)
- Lotte Gerrits
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Bram Bakker
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Lynn D. Hendriks
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Sjoerd Engels
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Roel Hammink
- Department
of Medical BioSciences,Radboudumc, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, 6525 GA Nijmegen ,Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| |
Collapse
|
32
|
Calik F, Degirmenci A, Maouati H, Sanyal R, Sanyal A. Redox-Responsive "Catch and Release" Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells. ACS Biomater Sci Eng 2024; 10:3017-3028. [PMID: 38655791 DOI: 10.1021/acsbiomaterials.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.
Collapse
Affiliation(s)
- Filiz Calik
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Hamida Maouati
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| |
Collapse
|
33
|
Wu C, Zhang H, Guo Y, Sun X, Hu Z, Teng L, Zeng Z. Porous Hydrogels for Immunomodulatory Applications. Int J Mol Sci 2024; 25:5152. [PMID: 38791191 PMCID: PMC11121438 DOI: 10.3390/ijms25105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.
Collapse
Affiliation(s)
- Cuifang Wu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Honghong Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yangyang Guo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiaomin Sun
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Lijing Teng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
34
|
Castanheira EJ, Monteiro LPG, Gaspar VM, Correia TR, Rodrigues JMM, Mano JF. In-Bath 3D Printing of Anisotropic Shape-Memory Cryogels Functionalized with Bone-Bioactive Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18386-18399. [PMID: 38591243 DOI: 10.1021/acsami.3c18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.
Collapse
Affiliation(s)
- Edgar J Castanheira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Luís P G Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Tiago R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - João M M Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| |
Collapse
|
35
|
Kim BS, Kim JU, Lee J, Ryu KM, Kim SH, Hwang NS. Decellularized brain extracellular matrix based NGF-releasing cryogel for brain tissue engineering in traumatic brain injury. J Control Release 2024; 368:140-156. [PMID: 38373473 DOI: 10.1016/j.jconrel.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Traumatic brain injuries(TBI) pose significant challenges to human health, specifically neurological disorders and related motor activities. After TBI, the injured neuronal tissue is known for hardly regenerated and recovered to their normal neuron physiology and tissue compositions. For this reason, tissue engineering strategies that promote neuronal regeneration have gained increasing attention. This study explored the development of a novel neural tissue regeneration cryogel by combining brain-derived decellularized extracellular matrix (ECM) with heparin sulfate crosslinking that can perform nerve growth factor (NGF) release ability. Morphological and mechanical characterizations of the cryogels were performed to assess their suitability as a neural regeneration platform. After that, the heparin concnentration dependent effects of varying NGF concentrations on cryogel were investigated for their controlled release and impact on neuronal cell differentiation. The results revealed a direct correlation between the concentration of released NGF and the heparin sulfate ratio in cryogel, indicating that the cryogel can be tailored to carry higher loads of NGF with heparin concentration in cryogel that induced higher neuronal cell differentiation ratio. Furthermore, the study evaluated the NGF loaded cryogels on neuronal cell proliferation and brain tissue regeneration in vivo. The in vivo results suggested that the NGF loaded brain ECM derived cryogel significantly affects the regeneration of brain tissue. Overall, this research contributes to the development of advanced neural tissue engineering strategies and provides valuable insights into the design of regenerative cryogels that can be customized for specific therapeutic applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Ribeiro J, Luís MÂ, Rodrigues B, Santos FM, Mesquita J, Boto R, Tomaz CT. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024; 10:198. [PMID: 38534616 DOI: 10.3390/gels10030198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
Collapse
Affiliation(s)
- João Ribeiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marco  Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Bruno Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Renato Boto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
37
|
Kolosova OY, Vasil'ev VG, Novikov IA, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 67 Properties and Microstructure of Poly(Vinyl Alcohol) Cryogels Formed in the Presence of Phenol or Bis-Phenols Introduced into the Aqueous Polymeric Solutions Prior to Their Freeze-Thaw Processing. Polymers (Basel) 2024; 16:675. [PMID: 38475358 DOI: 10.3390/polym16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) physical cryogels that contained the additives of o-, m-, and p-bis-phenols or phenol were prepared, and their physico-chemical characteristics and macroporous morphology and the solute release dynamics were evaluated. These phenolic additives caused changes in the viscosity of initial PVA solutions before their freeze-thaw processing and facilitated the growth in the rigidity of the resultant cryogels, while their heat endurance decreased. The magnitude of the effects depended on the interposition of phenolic hydroxyls in the molecules of the used additives and was stipulated by their H-bonding with PVA OH-groups. Subsequent rinsing of such "primary" cryogels with pure water led to the lowering of their rigidity. The average size of macropores inside these heterophase gels also depended on the additive type. It was found also that the release of phenolic substances from the additive-containing cryogels occurred via virtually a free diffusion mechanism; therefore, drug delivery systems such as PVA cryogels loaded with either pyrocatechol, resorcinol, hydroquinone, or phenol, upon the in vitro agar diffusion tests, exhibited antibacterial activity typical of these phenols. The promising biomedical potential of the studied nanocomposite gel materials is supposed.
Collapse
Affiliation(s)
- Olga Yu Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Viktor G Vasil'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan A Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street 38, 119991 Moscow, Russia
| | - Elena V Sorokina
- Microbilogy Department, Biology Faculty, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
38
|
Zhao Z, Chua HM, Lai HY, Ng KW. A facile method to fabricate versatile keratin cryogels for tissue engineering applications. Biomed Mater 2024; 19:025048. [PMID: 38364277 DOI: 10.1088/1748-605x/ad2a3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Human hair keratin (HHK) has been extensively explored as a biomaterial for soft tissue regeneration due to their excellent bioactivity and biocompatibility. The possibility to fabricate HHK into three-dimensional (3D) hydrogels with physical properties resembling soft tissues has been well demonstrated. However, conventional keratin hydrogels often exhibit a dense architecture that could hinder cell filtration. In the present study, HHK-based cryogels were fabricated using a freeze-thaw (FT) method, where oxidized dopamine (ODA) was employed to covalently crosslink thiol/amine rich-keratin molecules at sub-zero temperatures. The obtained HHK-ODA cryogels have micron-sized pores ranging between 100 and 200 μm and mechanical properties that can be tuned by varying the crosslinking density between ODA and HHK. Through optimization of the weight content of ODA and the number of FT cycles, the compressive strengths and stiffnesses of these cryogels achieved 15-fold increments from ∼1.5 kPa to ∼22 kPa and ∼300 Pa to ∼5000 Pa, respectively. The HHK-ODA cryogels competently supported human dermal fibroblast spreading and proliferation. Overall, this study exhibited a facile method to fabricate mechanically superior keratin-based cryogels with cell compatible microarchitecture, circumventing the need for complicated chemical modifications and the use of cytotoxic crosslinkers.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, Singapore
| |
Collapse
|
39
|
Kang B, Tan J, Kim K, Kang D, Lee H, Ma S, Park YS, Yun J, Lee S, Lee CU, Jang G, Lee J, Moon J, Lee H. Stable water splitting using photoelectrodes with a cryogelated overlayer. Nat Commun 2024; 15:1495. [PMID: 38374159 PMCID: PMC10876939 DOI: 10.1038/s41467-024-45701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Hydrogen production techniques based on solar-water splitting have emerged as carbon-free energy systems. Many researchers have developed highly efficient thin-film photoelectrochemical (PEC) devices made of low-cost and earth-abundant materials. However, solar water splitting systems suffer from short lifetimes due to catalyst instability that is attributed to both chemical dissolution and mechanical stress produced by hydrogen bubbles. A recent study found that the nanoporous hydrogel could prevent the structural degradation of the PEC devices. In this study, we investigate the protection mechanism of the hydrogel-based overlayer by engineering its porous structure using the cryogelation technique. Tests for cryogel overlayers with varied pore structures, such as disconnected micropores, interconnected micropores, and surface macropores, reveal that the hydrogen gas trapped in the cryogel protector reduce shear stress at the catalyst surface by providing bubble nucleation sites. The cryogelated overlayer effectively preserves the uniformly distributed platinum catalyst particles on the device surface for over 200 h. Our finding can help establish semi-permanent photoelectrochemical devices to realize a carbon-free society.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeiwan Tan
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kyungmin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Sun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juwon Yun
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soobin Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chan Uk Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeongyoub Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
Fang Y, Chen J, Li Q, Chen Q. Chitosan based Janus cryogel with anisotropic wettability, antibacterial activity, and rapid shape memory for effective hemostasis. Int J Biol Macromol 2024; 254:127821. [PMID: 37926326 DOI: 10.1016/j.ijbiomac.2023.127821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Excessive bleeding and bacterial infection leading to death is a major concern worldwide, particularly in cases of deep and narrow noncompressible hemorrhage. Herein, a novel Janus cryogel with anisotropic surface wettability, antibacterial activity, and rapid shape recovery was designed by constructing a hydrophilic porous cryogel using chitosan (CS), acacia gum (AG), and quaternized mesoporous bioglass (QMBG), with subsequent surface hydrophobic modification using octadecanol. The asymmetric hydrophobic surface modification of octadecanal endowed OCAQ with outstanding antiblood and antibacterial permeability, effectively preventing blood outflow and the invasion of bacteria to the wound. The hydrophilic parts with interconnected macroporous structure give the cryogel with ultra-high water uptake (5167 ± 182 %) and rapid water-trigged shape recover ability (≈2.1 s). The presence of active CS, AG, and QMBG in cryogel contributes to its exceptional blood clotting ability. Janus cryogel presents outstanding hemostatic performance (0.14 ± 0.03 g) in rat's liver injury model. Moreover, Janus cryogel exhibits excellent antibacterial properties due to the combination of its hydrophobic surface and antimicrobial quaternary amine groups. Meanwhile, the Janus cryogel has favorable hemocompatibility and biocompatibility. A Therefore, the Janus cryogel will become a candidate with great potential for clinical application of noncompressible wound as a multifunctional dressing.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Jiawen Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| | - Qinglin Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
41
|
Takase H, Goya N, Kiyoyama S, Shiomori K, Matsune H. Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ). Gels 2023; 10:9. [PMID: 38275846 PMCID: PMC10815328 DOI: 10.3390/gels10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Hydrophobic cryogels with monolithic supermacropores based on poly-trimethylolpropane trimethacrylate (pTrim) containing 1-(2-Hydroxyl-5-nonyphenyl)ethanone oxime (LIX84-I) were successfully prepared by a cryo-polymerization technique using organic solvents with freezing points between room temperature and around 0 °C as solvents. The prepared cryogels were characterized in terms of macroscopic shape and porous structure. The cryogels had a monolithic supermacroporous structure and high contents of LIX84-I depending on the added amount of the extractant to the monomer solution. The amount of LIX84-I impregnated in the cryogel had a linear relationship with the added amount of LIX84-I in the monomer solution for cryo-polymerization. Cu(II) in the aqueous solution was immediately adsorbed into the cryogel containing LIX84-I.
Collapse
Affiliation(s)
- Hayato Takase
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan;
| | - Naoto Goya
- Department of Applied Chemistry, Graduate School of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan
| | - Shiro Kiyoyama
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshi-cho, Miyakonojo-shi, Miyazaki 885-8567, Japan;
| | - Koichiro Shiomori
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan;
| | - Hideki Matsune
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan;
| |
Collapse
|
42
|
Hu X, Jiang Q, Du L, Meng Z. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review. Carbohydr Polym 2023; 322:121328. [PMID: 37839840 DOI: 10.1016/j.carbpol.2023.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
Polysaccharide-based oleogels and emulsion gels have become novel strategies to replace solid fats due to safe and plentiful raw material, healthier fatty acid composition, controllable viscoelasticity, and more varied nutrition/flavor embedding. Recently, various oleogelation techniques and novel emulsion gels have been reported further to enrich the potential of polysaccharides in oil structuring, in which a crucial step is to promote the formation of polysaccharide networks determining gel properties through different media. Meanwhile, polysaccharide-based oleogels and emulsion gels have good oil holding, nutrient/flavor embedding, and 3D food printability, and their applications as fat substitutes have been explored in foods. This paper comprehensively reviews the types, preparation methods, and mechanisms of various polysaccharide-based oleogels and emulsion gels; meanwhile, the food applications and new trends of polysaccharide-based gels are discussed. Moreover, some viewpoints about potential developments and application challenges of polysaccharide-based gels are mentioned. In the future, polysaccharide-based gels may be flexible materials for customized nutritional foods and molecular gastronomy. However, it is still a challenge to select the appropriate oleogels or emulsion gels to meet the requirements of the products. Once this issue is addressed, oleogels and emulsion gels are anticipated to be used widely.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Qinbo Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Liyang Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
43
|
Hussain S, Maktedar SS. Structural, functional and mechanical performance of advanced Graphene-based composite hydrogels. RESULTS IN CHEMISTRY 2023; 6:101029. [DOI: 10.1016/j.rechem.2023.101029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
44
|
Moraru A, Dima ȘO, Tritean N, Oprița EI, Prelipcean AM, Trică B, Oancea A, Moraru I, Constantinescu-Aruxandei D, Oancea F. Bioactive-Loaded Hydrogels Based on Bacterial Nanocellulose, Chitosan, and Poloxamer for Rebalancing Vaginal Microbiota. Pharmaceuticals (Basel) 2023; 16:1671. [PMID: 38139798 PMCID: PMC10748236 DOI: 10.3390/ph16121671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18-22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
- Angela Moraru
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania;
- S.C. Laboratoarele Medica Srl, Strada Frasinului Nr. 11, 075100 Otopeni, Romania;
| | - Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei Nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Elena-Iulia Oprița
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Bogdan Trică
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Anca Oancea
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Ionuț Moraru
- S.C. Laboratoarele Medica Srl, Strada Frasinului Nr. 11, 075100 Otopeni, Romania;
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania;
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| |
Collapse
|
45
|
Behrendt F, Cseresnyés Z, Gerst R, Gottschaldt M, Figge MT, Schubert US. Evaluation of reproducible cryogel preparation based on automated image analysis using deep learning. J Biomed Mater Res A 2023; 111:1734-1749. [PMID: 37345381 DOI: 10.1002/jbm.a.37577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/23/2023]
Abstract
Cryogels represent a class of porous sponge-like materials possessing unique properties including high-fidelity reproduction of tissue structure and maximized permeability. Their architecture is mainly based on an interconnected network of macropores that provides sufficient stability while allowing the movement of substances through the material. In most cryogel applications, the pore size is very important, especially when the material is used as a 3D scaffold for tissue culture, applied as a filter, or utilized as a membrane. In this study, poly(dimethylacrylamide-co-2-hydroxyethyl methacrylate) cryogels have been prepared by two preparation methods to investigate the reproducibility of homogeneous pore structures and pore sizes. Automated image analysis algorithms were developed to rapidly evaluate cryogel pore sizes based on scanning electron microscopy (SEM) images. The quantification approach contained a unique combination of classical and deep learning-based algorithms. To validate the accuracy of the two models, we compared the results obtained from automated SEM image analysis with those from manual pore size determinations and mercury intrusion porosimetry (MIP) measurements. Effect sizes were calculated to compare the results from manual and automated pore size measurements for the cryogel reproducibility series. 81% of the values obtained revealed only trivial differences, which strongly suggests that automated image analysis can reliably substitute the manual evaluation of cryogel pore sizes. The use of an adapted reactor setup yielded cryogels with heterogeneous morphologies in the absence of recognizable pore structures. With the conventional cryogel preparation using plastic syringes, the obtained cryogels represented highly reproducible morphologies and pore sizes in the range between 17 and 22 μm. Calculated effect sizes within the cryogel replicate series revealed only trivial differences between the obtained pore sizes in 83.5% or 99.4% of the data (classical approach and deep learning-based approach, respectively).
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Ruman Gerst
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
46
|
Mancino R, Caccavo D, Barba AA, Lamberti G, Biasin A, Cortesi A, Grassi G, Grassi M, Abrami M. Agarose Cryogels: Production Process Modeling and Structural Characterization. Gels 2023; 9:765. [PMID: 37754447 PMCID: PMC10530842 DOI: 10.3390/gels9090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
A cryogel is a cross-linked polymer network with different properties that are determined by its manufacturing technique. The formation of a cryogel occurs at low temperatures and results in a porous structure whose pore size is affected by thermal conditions. The adjustable pore sizes of cryogels make them attractive for diverse applications. In this study, the influence of the external operational temperature, which affects the cooling and freezing rates, on the production of cryogels with 2% w/w agarose is investigated. Moreover, a mathematical model is developed to simulate the cryogel production process and provide an initial estimate of the pore size within the structure. The predictions of the model, supported by qualitative light microscopy images, demonstrate that cryogels produced at higher process temperatures exhibit larger pore sizes. Moreover, the existence of pore size distribution within the gel structure is confirmed. Finally, stress relaxation tests, coupled with an image analysis, validates that cryogels produced at lower temperatures possess a higher stiffness and slower water release rates.
Collapse
Affiliation(s)
- Raffaele Mancino
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy
- Eng4Life Srl, Via Circumvallazione 39, 83100 Avellino, AV, Italy
| | - Diego Caccavo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy
- Eng4Life Srl, Via Circumvallazione 39, 83100 Avellino, AV, Italy
- EST Srl, Academic Spin-Off, Via Circumvallazione 39, 83100 Avellino, AV, Italy
| | - Anna Angela Barba
- Eng4Life Srl, Via Circumvallazione 39, 83100 Avellino, AV, Italy
- EST Srl, Academic Spin-Off, Via Circumvallazione 39, 83100 Avellino, AV, Italy
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Gaetano Lamberti
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy
- Eng4Life Srl, Via Circumvallazione 39, 83100 Avellino, AV, Italy
- EST Srl, Academic Spin-Off, Via Circumvallazione 39, 83100 Avellino, AV, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, TS, Italy
| | - Angelo Cortesi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, TS, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, TS, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, TS, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, TS, Italy
| |
Collapse
|
47
|
Duan K, Mehwish N, Xu M, Zhu H, Hu J, Lin M, Yu L, Lee BH. Autoclavable Albumin-Based Cryogels with Uncompromising Properties. Gels 2023; 9:712. [PMID: 37754393 PMCID: PMC10530076 DOI: 10.3390/gels9090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The development of autoclavable hydrogels has been driven by the need for materials that can withstand the rigors of sterilization without compromising their properties or functionality. Many conventional hydrogels cannot withstand autoclave treatment owing to the breakdown of their composition or structure under the high-temperature and high-pressure environment of autoclaving. Here, the effect of autoclaving on the physical, mechanical, and biological properties of bovine serum albumin methacryloyl (BSAMA) cryogels at three protein concentrations (3, 5, and 10%) was extensively studied. We found that BSAMA cryogels at three concentrations remained little changed after autoclaving in terms of gross shape, pore structure, and protein secondary structure. Young's modulus of autoclaved BSAMA cryogels (BSAMAA) at low concentrations (3 and 5%) was similar to that of BSAMA cryogels, whereas 10% BSAMAA exhibited a higher Young's modulus value, compared with 10% BSAMA. Interestingly, BSAMAA cryogels prolonged degradation. Importantly, cell viability, drug release, and hemolytic behaviors were found to be similar among the pre- and post-autoclaved cryogels. Above all, autoclaving proved to be more effective in sterilizing BSAMA cryogels from bacteria contamination than UV and ethanol treatments. Thus, autoclavable BSAMA cryogels with uncompromising properties would be useful for biomedical applications.
Collapse
Affiliation(s)
- Kairui Duan
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325011, China;
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Nabila Mehwish
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Hu Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Jiajun Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Lu Yu
- Department of Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| | - Bae Hoon Lee
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325011, China;
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
- Department of Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| |
Collapse
|
48
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
49
|
Raschip IE, Fifere N, Lazar MM, Hitruc GE, Dinu MV. Ice-Templated and Cross-Linked Xanthan-Based Hydrogels: Towards Tailor-Made Properties. Gels 2023; 9:528. [PMID: 37504407 PMCID: PMC10378831 DOI: 10.3390/gels9070528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The use of polysaccharides with good film-forming properties in food packaging systems is a promising area of research. Xanthan gum (XG), an extracellular polysaccharide, has many industrial uses, including as a common food additive (E415). It is an effective thickening agent, emulsifier, and stabilizer that prevents ingredients from separating. Nevertheless, XG-based polymer films have some disadvantages, such as poor mechanical properties and high hydrophilic features, which reduce their stability when exposed to moisture and create difficulties in processing and handling. Thus, the objective of this work was to stabilize a XG matrix by cross-linking it with glycerol diglycidyl ether, 1,4-butanediol diglycidyl ether, or epichlorohydrin below the freezing point of the reaction mixture. Cryogelation is an ecological, friendly, and versatile method of preparing biomaterials with improved physicochemical properties. Using this technique, XG-based cryogels were successfully prepared in the form of microspheres, monoliths, and films. The XG-based cryogels were characterized by FTIR, SEM, AFM, swelling kinetics, and compressive tests. A heterogeneous morphology with interconnected pores, with an average pore size depending on both the nature of the cross-linker and the cross-linking ratio, was found. The use of a larger amount of cross-linker led to both a much more compact structure of the pore walls and to a significant decrease in the average pore size. The uniaxial compression tests indicated that the XG-based cryogels cross-linked with 1,4-butanediol diglycidyl ether exhibited the best elasticity, sustaining maximum deformations of 97.67%, 90.10%, and 81.80%, respectively.
Collapse
Affiliation(s)
- Irina Elena Raschip
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Nicusor Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Gabriela-Elena Hitruc
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
50
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|