1
|
Wang T, Zeng G, Yang YM, Yang Z, Wang T, Li H, Han L, Yu X, Xu X, Ouyang X. Advances in Metal Halide Perovskite Scintillators for X-Ray Detection. NANO-MICRO LETTERS 2025; 17:275. [PMID: 40407959 PMCID: PMC12102060 DOI: 10.1007/s40820-025-01772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/16/2025] [Indexed: 05/26/2025]
Abstract
The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites (MHPs) and their derivatives, which possess remarkable light yield and X-ray sensitivity. This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent (RL) light strategies, underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities. We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators, including light yield and response times. Additionally, we explore innovative engineering strategies involving stacked structures, waveguide effects, chiral circularly polarized luminescence, increased transparency, and the fabrication of flexile MHP scintillators, all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging. Finally, we provide a roadmap for advancing next-generation MHP scintillators, highlighting their transformative potential in high-performance X-ray detection systems.
Collapse
Affiliation(s)
- Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Guoqiang Zeng
- Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, 450051, People's Republic of China
| | - Tianchi Wang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Hao Li
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Lulu Han
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
| | - Xiaoping Ouyang
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, 710024, People's Republic of China.
| |
Collapse
|
2
|
Ma C, Zhang M, Xing J, Yuan B, Sun H, Ji D, Zhang J. Transparent and flexible cellulose based luminescent film for multifunctional applications. Int J Biol Macromol 2025; 310:142883. [PMID: 40194576 DOI: 10.1016/j.ijbiomac.2025.142883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Metal halide perovskite quantum dots (QDs) film shows significant potential in flexible optoelectronics, including applications in lighting, displays, wearable devices and non-planar X-ray imaging. However, developing highly luminescent, durable, and mechanical flexible film for practical use remains a challenge. In this study, we introduce a low-cost, environmentally friendly, biomass material - mixed cellulose esters (MCE) - as a novel encapsulation matrix. The CsPbBr3@MCE composite luminescent film was fabricated using a simple in-situ growth strategy, ensuring uniform distribution of QDs within the matrix. The chemical bond anchoring between MCE and CsPbBr3 QDs, combined with the effective isolation provided by in-situ encapsulation, resulted in exceptional luminescence properties, including a high photoluminescence quantum yield (PLQY = 67.73 %) and excellent color purity. Additionally, the film demonstrated enhanced stability against environmental, thermal, ultraviolet, and high-humidity stresses, thanks to the protective encapsulation of MCE. It also exhibited remarkable mechanical flexibility, transparency, the capability for large-area production. These findings suggest that the CsPbBr3@MCE composite holds great promise for various applications, including light-emitting diodes, flexible pattern display, hazardous chemical identification, information encryption, and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Cong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jialong Xing
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Baolong Yuan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dexian Ji
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingru Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Meejitpaisan P, Doddoji R, Kothan S, Kim H, Minnam Reddy VR, Alhammadi S, Kaewkhao J. UV light and X-ray induced luminescence properties of Eu3+ and Tb3+ single-doped and double-doped phosphosilicate glasses for LED and scintillator applications. MATERIALS RESEARCH BULLETIN 2025; 185:113295. [DOI: 10.1016/j.materresbull.2025.113295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
4
|
Gu L, Yang Z, Cui J, Feng Z, Yao J, Song J. Achieving High Loading Capacity of Perovskite Nanocrystals in Pore-Reamed Metal-Organic Frameworks for Bright Scintillators. ACS NANO 2025; 19:15803-15812. [PMID: 40227286 DOI: 10.1021/acsnano.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Lead halide perovskite nanocrystal (PNC) scintillators featuring a fast decay and a high radiation hardness have garnered significant attention. A high PNC loading is essential to ensure a strong X-ray absorption for scintillator applications, but concentrated PNCs tend to aggregate in the solid state, resulting in significant emission quenching. Employing a dispersion medium offers a promising strategy to produce high-loading PNC solids without agglomeration. Herein, we synthesize CsPbBr3 PNC/metal-organic framework (MOF) nanostructures to achieve high-loading PNCs within MOF hosts. The macroporous cavities of hierarchically porous (HP) MOFs can host more PNCs than the confined nanometer-scale spaces of microporous MOFs. Additionally, the surface-rich structure of MOFs aids in dispersing PNCs, effectively reducing aggregation-induced emission quenching. We find that HP-MOFs can achieve a high PNC loading ratio of 75%, as well as the less-aggregated PNCs. As a result, the PNC/HP-MOF scintillator exhibits a 2.3 times higher light yield than that of the PNC scintillator, primarily resulting from the enhanced luminance efficiency of well-dispersed PNCs. The bright and fast features of nanostructure scintillators enable static and dynamic X-ray imaging for industrial inspection applications. These findings highlight that constructing a high-loading nanostructure is crucial for advancing the X-ray imaging applications of PNC scintillators.
Collapse
Affiliation(s)
- Linyuan Gu
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Jiangtao Cui
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Zhihao Feng
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| |
Collapse
|
5
|
Zhang Y, Du T, Duan H, Chen B, Zhang J, Xiao Q, Chen G, Guo D, Liao H, Zhou S, Zheng K. Efficient and Robust Europium(III)-Based Hybrid Lanthanide Scintillators for Advanced X-Ray Imaging. Angew Chem Int Ed Engl 2025; 64:e202423155. [PMID: 39746850 DOI: 10.1002/anie.202423155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging. Benefiting from the synergistic interaction between dual organic ligands and lanthanide ions, the Eu(TTA)3Phen complex demonstrates exceptional radioluminescence and light yield under X-ray excitation, with a detection limit of 19.97 nGy s-1, well below typical radiation doses used in medical diagnostics. Moreover, lanthanide complex Eu(TTA)3Phen exhibited excellent thermal and photostability, showing minimal degradation even after extended X-ray exposure. By integrating with flexible polymer matrices, a high-transmission Eu(TTA)3Phen-PMMA composite film was fabricated for X-ray radiography, demonstrating high spatial resolution (<10 um) and superior image quality across various target samples. These findings hold substantial promise for next-generation X-ray imaging applications, offering high sensitivity, stability, flexibility, and versatility, making them ideally suited for advanced radiographic systems.
Collapse
Affiliation(s)
- Yimei Zhang
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Tingli Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China
| | - Han Duan
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Binqi Chen
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Jiahui Zhang
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Qin Xiao
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Geng Chen
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Dongxin Guo
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Hong Liao
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Si Zhou
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| | - Kezhi Zheng
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Zhou J, Wang Z, Shi Z, Zhang X, Yang L, Jiang Y, Kuai Y, Hu Z, Li S. One stone, two birds: robust and self-absorption free flexible perovskite scintillators by metal-organic framework encapsulation. NANOSCALE 2025; 17:7045-7054. [PMID: 40017341 DOI: 10.1039/d4nr05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
In recent years, metal halide perovskite scintillators have demonstrated significant potential for X-ray detection applications. However, these scintillators frequently encounter challenges such as poor stability, insufficient radiation hardness, and substantial self-absorption, which detrimentally affect their scintillation efficiency and practicality. This study explores the encapsulation of perovskite (CsPbBr3) nanocrystals and dyes simultaneously within mesoporous zinc-based metal-organic frameworks (MOF-5) to boost perovskite scintillation performance. Our findings indicate that the energy transfer from the perovskite to the dye can effectively minimize the self-absorption of the perovskite, significantly increasing the light yield-3.4 times that of pristine CsPbBr3 nanocrystals, and improve the detection sensitivity by 40%. Furthermore, such encapsulation markedly improves perovskite stability and enhances thermal resistance by 78.9% and radiation hardness by 26.5%. These advances in stability, thermal resilience, and radiation durability, combined with a lower detection limit, allow perovskites to be used in more scintillation scenarios and endure more rigorous operational conditions.
Collapse
Affiliation(s)
- Jie Zhou
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Zhouyuanhang Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Zhongren Shi
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Xilin Zhang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Lan Yang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Yuxuan Jiang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Yan Kuai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Zhijia Hu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Siqi Li
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, 230601, Anhui, P. R. China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, P. R. China
| |
Collapse
|
7
|
Sun J, Fu H, Jing H, Hu X, Chen D, Li F, Liu Y, Qin X, Huang W. Synergistic Integration of Halide Perovskite and Rare-Earth Ions toward Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417397. [PMID: 39945051 DOI: 10.1002/adma.202417397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Indexed: 03/27/2025]
Abstract
Halide perovskites (HPs), emerging as a noteworthy class of semiconductors, hold great promise for an array of optoelectronic applications, including anti-counterfeiting, light-emitting diodes (LEDs), solar cells (SCs), and photodetectors, primarily due to their large absorption cross section, high fluorescence efficiency, tunable emission spectrum within the visible region, and high tolerance for lattice defects, as well as their adaptability for solution-based fabrication processes. Unlike luminescent HPs with band-edge emission, trivalent rare-earth (RE) ions typically emit low-energy light through intra-4f optical transitions, characterized by narrow emission spectra and long emission lifetimes. When fused, the cooperative interactions between HPs and REs endow the resulting binary composites not only with optoelectronic properties inherited from their parent materials but also introduce new attributes unattainable by either component alone. This review begins with the fundamental optoelectronic characteristics of HPs and REs, followed by a particular focus on the impact of REs on the electronic structures of HPs and the associated energy transfer processes. The advanced synthesis methods utilized to prepare HPs, RE-doped compounds, and their binary composites are overviewed. Furthermore, potential applications are summarized across diverse domains, including high-fidelity anticounterfeiting, bioimaging, LEDs, photovoltaics, photodetection, and photocatalysis, and conclude with remaining challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayu Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Hongyang Fu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Haitong Jing
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Xin Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University Fuzhou, Fujian, 350117, P. R. China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Xian Qin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
8
|
Peng QP, Wei JH, He ZL, Luo JB, Chen JH, Zhang ZZ, Guo XX, Kuang DB. In Situ Crystallization of CsPbBr 3 Nanocrystals within a Melt-Quenched Glassy Coordination Polymer. ACS NANO 2025; 19:5295-5304. [PMID: 39871484 DOI: 10.1021/acsnano.4c12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Lead halide perovskite nanocrystal materials such as CsPbX3 (X = Cl, Br, and I) have triggered an intense research upsurge due to their excellent scintillation performance. Herein, an in situ crystallization strategy is developed to grow CsPbBr3 nanocrystals (NCs) within a low-melting-point (280 °C) coordination polymer (CP) glass. The viscosity of coordination glass is reduced through a low-temperature (e.g., 50 °C) thermal treatment, enabling the short-distance migration of uniformly dispersed ions (Cs+, Pb2+, and Br-) to achieve in situ crystallization of CsPbBr3 NCs. Benefiting from the high transmittance (80% within the 500-800 nm range) and outstanding scintillation performance, the prepared CsPbBr3@ZnBr2(bIm+DMSO)2 (bIm = benzimidazole, DMSO = dimethyl sulfoxide) transparent luminescence glass exhibits an excellent X-ray imaging resolution of up to 25 lp/mm, outperforming many perovskite glass and crystalline scintillators. This work would provide an idea for the development of high-resolution scintillation screens that can be prepared at low temperatures.
Collapse
Affiliation(s)
- Qing-Peng Peng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Hua Wei
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zi-Lin He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Bin Luo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing-Hua Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Zhong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiu-Xian Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dai-Bin Kuang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Huang X, Le Y, Zhang H, Yin B, Guo Q, Xiao X, Liu X, Xia Z, Qiu J, Yang Z, Dong G. Scintillating Glass Fiber Arrays Enable Remote Radiation Detection and Pixelated Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2405499. [PMID: 39713970 DOI: 10.1002/adma.202405499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/28/2024] [Indexed: 12/24/2024]
Abstract
The emerging metal halide perovskites are challenging the traditional scintillators in the field of radiation detection and radiography. However, they lack the capability for remote and real-time radiation monitoring and imaging in confined and hostile conditions. To address this issue, details on an inorganic scintillating glass fiber incorporating perovskite quantum dots (QDs) as highly efficient pixelated radiation emitters are reported, while the glass fibers themselves serve at the same time as low-loss waveguides, enabling long-distance and underwater X-ray detection. The multi-color emissions and controllable radiation sensitivities endow CsPbX3 (X = Cl, Br, I) QD scintillating glass fibers with the potential as wearable and visualized radiation indicators. Furthermore, these scintillating glass fibers can be regularly arranged into a fiber array plate with a thickness of 7.5 mm to enhance X-ray absorption for X-ray imaging. Leveraging the light-guiding character of glass fibers, a 5 × 5 fiber array with fiber lengths up to 11 cm has demonstrated the potential of remote pixelated X-ray imaging. This study offers a novel platform for the development of remote detectors and imagers for X-ray radiation.
Collapse
Affiliation(s)
- Xiongjian Huang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Yakun Le
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hao Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Bozhao Yin
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qianyi Guo
- Future Institute of Technology, South China Normal University, Guangzhou, 510640, China
| | - Xiudi Xiao
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Xia
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Guoping Dong
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
10
|
Li B, Wang Y, Xu Y, Xia Z. Emerging 0D Hybrid Metal Halide Luminescent Glasses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415483. [PMID: 39744778 DOI: 10.1002/adma.202415483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Indexed: 02/20/2025]
Abstract
0D hybrid metal halide (HMH) luminescent glasses have garnered significant attentions for its chemical diversity in optoelectronic applications and it also retains the skeleton connectivity and coordination mode of the crystalline counterparts while exhibiting various physics/chemistry characteristics distinct from the crystalline states. However, understanding of the glass-forming ability and the specific structural origins underpinning the luminescent properties of 0D HMH glasses remains elusive. In this review, it is started from the solid-liquid phase transition and thermodynamic analysis of 0D HMHs formed through melt-quenching, and summarize the current compounds capable of stably forming glassy phases via chemical structural design. The structural characterization methods are further discussed and highlight the exceptional transparency, specific luminescent properties, and glass crystallization behaviors. Moreover, the application prospects demonstrated by these 0D HMH glasses have been presented accordingly in X-ray detection and imaging, anti-counterfeiting, and information encryption. Finally, perspective is offered into the future development of this emerging family of 0D HMH glasses and their applications.
Collapse
Affiliation(s)
- Bohan Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Yuzhen Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong, 528311, China
| | - Zhiguo Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
11
|
Hui J, Ran P, Su Y, Yang L, Xu X, Liu T, Gu Y, She X, Yang YM. Stacked Scintillators Based Multispectral X-Ray Imaging Featuring Quantum-Cutting Perovskite Scintillators With 570 nm Absorption-Emission Shift. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416360. [PMID: 39871685 DOI: 10.1002/adma.202416360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Traditional energy-integration X-ray imaging systems rely on total X-ray intensity for image contrast, ignoring energy-specific information. Recently developed multilayer stacked scintillators have enabled multispectral, large-area flat-panel X-ray imaging (FPXI), enhancing material discrimination capabilities. However, increased layering can lead to mutual excitation, which may affect the accurate discrimination of X-ray energy. This issue is tackled by proposing a novel design strategy utilizing rare earth ions doped quantum-cutting scintillators as the top layer. These scintillators create new luminescence centers via energy transfer, resulting in a significantly larger absorption-emission shift, as well as the potential to double the photoluminescence quantum yield (PLQY) and enhance light output. To verify this concept, a three-layer stacked scintillator detector is developed using ytterbium ions (Yb3+)-doped CsPbCl3 perovskite nanocrystals (PeNCs) as the top layer, which offers a high PLQY of over 100% and a significant absorption-emission shift of 570 nm. This configuration, CsAgCl2 and Cs3Cu2I5 as the middle and bottom layers, respectively, ensures non-overlapping optical absorption and radioluminescence (RL) emission spectra. By calculating the optimal thickness for each layer to absorb specific X-ray energies, the detector demonstrates distinct absorption differences across various energy bands, enhancing the identification of materials with similar densities.
Collapse
Affiliation(s)
- Juan Hui
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing, Zhejiang, 314041, China
| | - Peng Ran
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yirong Su
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lurong Yang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xuehui Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tianyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yuzhang Gu
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing, Zhejiang, 314041, China
| | - Xiaojian She
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yang Michael Yang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing, Zhejiang, 314041, China
| |
Collapse
|
12
|
Mejdrová I, Węgrzyn E, Carell T. Step-by-Step Towards Biological Homochirality - from Prebiotic Randomness To Perfect Asymmetry. Chem Asian J 2025; 20:e202401074. [PMID: 39400505 DOI: 10.1002/asia.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The history of life's formation and the origin of its stereochemistry are nearly as multifaceted as the life itself. In this review, we focus on analyzing the step-by-step path leading to what we can define as "life" in parallel to what we know about the emergence of enantiomeric imbalance and subsequent transition to full homochirality. We start at the level of assembly of the building blocks of life from inorganic molecules and build up to the polymerization and formation of nucleic acids and peptides. We report and analyze different theories at various stages of this development and try to elucidate the most plausible theory.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
13
|
Wang D, Li H, Chen J, Hou D, Liu X, Yu Z, Lv S, Qiu J, Zhou S. Congruent Glass Composite Scintillator for Efficient High-Energy Ray Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412661. [PMID: 39501993 DOI: 10.1002/adma.202412661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Indexed: 01/11/2025]
Abstract
The scintillator is the most crucial component in the high-energy ray detection system. The available scintillators suffer from the insurmountable drawbacks including poor shaping ability for single crystal and ceramic and low efficiency for glass. Here, a glass composite scintillator is proposed from a congruent crystallization system which possesses both excellent processability and high scintillating yield. It can be fabricated into diverse shapes and sizes including the bulk and tiny fiber. Benefitting from the unique compositing combination with a high crystallization ratio, the glass composite exhibits a giant scintillating light yield of ≈26,000 photons per MeV. The practical application for X-ray imaging is demonstrated and a high spatial resolution of 12 l p mm-1 is achieved. Furthermore, the fiber derived detector is built and the remote and micro-area detection is realized. These findings not only represent a novel design concept for the development of glass composite but also suggest a great step for expanding the scope of scintillators.
Collapse
Affiliation(s)
- Dazhao Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Hongwei Li
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Jingfei Chen
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Dianhao Hou
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Xunpiao Liu
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Zhuoming Yu
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Shichao Lv
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Shifeng Zhou
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| |
Collapse
|
14
|
Zhu X, He T, Song X, Shekhah O, Thomas S, Jiang H, Wu W, He T, Guillerm V, Shkurenko A, Wang JX, Alshareef HN, Bakr OM, Eddaoudi M, Mohammed OF. Large-Area Metal-Organic Framework Glasses for Efficient X-Ray Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412432. [PMID: 39552007 DOI: 10.1002/adma.202412432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Cutting-edge techniques utilizing continuous films made from pure, novel semiconductive materials offer promising pathways to achieve high performance and cost-effectiveness for X-ray detection. Semiconductive metal-organic framework (MOF) glass films are known for their remarkably smooth surface morphology, straightforward synthesis, and capability for large-area fabrication, presenting a new direction for high-performance X-ray detectors. Here, a novel material centered on MOF glasses for highly uniform glass film fabrication customized for X-ray detection is introduced. MOF glasses, composed of zinc and imidazole derivatives, enable the transition from solid to liquid at low temperatures, facilitating the straightforward preparation of large-area and continuous MOF films with high mobility for X-ray device fabrication. Remarkably, MOF glass detectors demonstrate an exceptional sensitivity of 112.8 µC Gyair -1 cm-2 and a detection limit of 0.41 µGyair s-1, making them one of the most sensitive and with the best detection limits reported to date for MOF X-ray detectors. Clear X-ray images are successfully conducted using these developed MOF glass detectors for the first time. This breakthrough in X-ray sensitivity, and detection limit along with the spatial imaging resolution establishes a new standard for developing large-area and efficient MOF-based X-ray detectors with practical applications in medical and security screening.
Collapse
Affiliation(s)
- Xin Zhu
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tengjiao He
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xin Song
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hao Jiang
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wentao Wu
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tengyue He
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Han L, Zhang S, Yuan J, Wang T, Yao S, Song H, Mu D, Sun J, Yang X, Xu X. Lead-Free Perovskite With Efficient Tellurium Ion Activation for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403295. [PMID: 39268807 DOI: 10.1002/smll.202403295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Lead-free perovskite materials have received extensive attention due to their non-toxicity, super environmental stability and adjustable photoelectric properties. However, the inherent problems of low luminous efficiency and low photoluminescence quantum yields (PLQYs) limit its development in multifunctional applications. Here, Te4+ doped Cs2ZrCl6 with high luminous efficiency and stability for multifunctional applications are developed. Te4+ ions are used as emission centers to improve the optical properties of Cs2ZrCl6 to make efficient and stable single-component white light-emitting diodes (WLEDs), and can be used as scintillator materials to improve scintillation performance to achieve high-resolution and low-dose X-ray imaging detection. In addition, it is found for the first time that Te4+ ions can be introduced into the trap center, so that the Cs2ZrCl6:Te4+ perovskite material exhibits excellent persistent luminescence (PersL) and mechanoluminescence (ML) after X-ray radiation, which has potential applications in the fields of delayed imaging and stress sensing. This work provides a method for designing lead-free perovskites with high optical performance and scintillating properties, as well as developing multifunctional applications.
Collapse
Affiliation(s)
- Lulu Han
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Shiwen Zhang
- Department of the Head and Neck, Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, P. R. China
| | - Junheng Yuan
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Tianchi Wang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Shuyi Yao
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Hao Song
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Dedan Mu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Jiabo Sun
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Xiuxia Yang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, P. R. China
| |
Collapse
|
16
|
Rachniyom W, Intachai N, Kothan S, Wantana N, Sarumaha C, Pakawanit P, Phoovasawat C, Phongsa A, Yasaka P, Thanyaphirak W, Kanjanaboos P, Kim H, Chanlek N, Kaewkhao J. Fabrication of Eu2O3 doped in high density and transparent silicoborate scintillating glass for synchrotron X-ray radiographic imaging application. CERAMICS INTERNATIONAL 2024. [DOI: 10.1016/j.ceramint.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
17
|
Wu XG, Jing Y, Zhong H. In Situ Fabricated Perovskite Quantum Dots: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412276. [PMID: 39552009 DOI: 10.1002/adma.202412276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Due to the low formation enthalpy and high defect tolerance, in situ fabricated perovskite quantum dots offer advantages such as easy fabrication and superior optical properties. This paper reviews the methodologies, functional materials of in situ fabricated perovskite quantum dots, including polymer nanocomposites, quantum dots doped glasses, mesoporous nanocomposites, quantum dots-embedded single crystals, and electroluminescent films. This study further highlights the industrial breakthroughs of in situ fabricated perovskite quantum dots, especially the scale-up fabrication and stability enhancement. Finally, the fundamental challenges in developing perovskite quantum dots for industrial applications are discussed, with a focus on photoinduced degradation under high-intensity light irradiation, ion migration under electrical bias and thermal quenching at high temperature.
Collapse
Affiliation(s)
- Xian-Gang Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuyu Jing
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Li Y, Yang X, Ren K, Liu Y, Xu Z, Feng H, Deng K, Deng B, Shang W, Dong J, Wang F, Li Q, Yang X. Flexible X-ray Imaging and Stable Information Storage of SrF 2:Eu Based on Radio-Photoluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58827-58837. [PMID: 39405077 DOI: 10.1021/acsami.4c11478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
X-ray imaging has garnered widespread interest in biomedical diagnosis and nondestructive detection. The exploration of radio-photoluminescence has hastened the advancement of X-ray information storage. However, significant challenges persist in achieving the prolonged imaging of curved objects without attenuation. Here, europium-doped strontium fluoride (SrF2:Eu) is meticulously created to exhibit a linear response to an extensive range of X-ray doses (maximum dose > 5000 Gy), showcasing excellent X-ray information reading/erasing reusability properties (10 cycles). This is accompanied by a red-to-blue emission transition under UV excitation, sustaining for 150 days without attenuation. To elucidate the phenomena of irradiated photoluminescent discoloration and the reversible X-ray storage of SrF2:Eu, we propose an electron-vacancy trap (valence conversion) mechanism, information stably retained by the SrF2:Eu-based device under ambient conditions due to high energy barriers. The time-lapse readout capability is further demonstrated for three-dimensional imaging of curved objects (10 lp mm-1) based on SrF2:Eu embedded within a polydimethylsiloxane (SrF2:Eu@PDMS). The SrF2:Eu demonstrates time-lapse imaging, reversible radio-photoluminescence, and recoverable X-ray storage, offering a promising avenue for optical information encryption and anticounterfeiting applications.
Collapse
Affiliation(s)
- Yucheng Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xuechun Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kuan Ren
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Yulin Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411100, PR China
| | - Zhan Xu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - He Feng
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Keli Deng
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Bo Deng
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Wanli Shang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Jianjun Dong
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Feng Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621050, P.R. China
| | - Qianli Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
19
|
Liang H, Wu F, Xia R, Wu W, Li S, Di P, Yang M. In-situ synthesized perovskite/polyhedral oligomeric silsesquioxane nanocomposites for robust X-ray imaging. iScience 2024; 27:110951. [PMID: 39398247 PMCID: PMC11467670 DOI: 10.1016/j.isci.2024.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Perovskites are extensively studied in scintillation detection due to their low cost, simple synthesis, high scintillation light yield, and rapid decay times. However, their instability to light and radiation leads to scintillation performance degradation. To address these stability concerns, this paper proposes a new perovskite nanocrystal (NC) synthesis method that employs aminopropyllsobutyl polyhedral oligomeric silsesquioxane (POSS) as a ligand and a coating layer to passivate the perovskite NCs, significantly enhancing their stability and photoluminescence efficiency. Furthermore, the resultant perovskite/aminopropyllsobutyl POSS nanocomposites exhibit remarkable capabilities in X-ray detection limits, imaging quality, and radiation hardness. These findings underscore the potential of enhanced perovskite in revolutionizing the field of scintillator materials, offering promising pathways for their future applications and development.
Collapse
Affiliation(s)
- Hai Liang
- Department of Pharmacy, The People’s Hospital of Bozhou, Bozhou, Anhui Province, P.R. China
| | - Fan Wu
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, Anhui, P.R. China
| | - Runan Xia
- Department of Pharmacy, The People’s Hospital of Bozhou, Bozhou, Anhui Province, P.R. China
| | - Wei Wu
- Department of Pharmacy, The People’s Hospital of Bozhou, Bozhou, Anhui Province, P.R. China
| | - Siqi Li
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, Anhui, P.R. China
| | - Panpan Di
- Department of Pharmacy, The People’s Hospital of Bozhou, Bozhou, Anhui Province, P.R. China
| | - Miao Yang
- Department of Pharmacy, The People’s Hospital of Bozhou, Bozhou, Anhui Province, P.R. China
| |
Collapse
|
20
|
Yang Z, Yao J, Xu L, Fan W, Song J. Designer bright and fast CsPbBr 3 perovskite nanocrystal scintillators for high-speed X-ray imaging. Nat Commun 2024; 15:8870. [PMID: 39402070 PMCID: PMC11473900 DOI: 10.1038/s41467-024-53263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/08/2024] [Indexed: 10/17/2024] Open
Abstract
Bright and fast scintillators are highly crucial for high-speed X-ray imaging in the medical diagnostic radiology including angiography and cardiac computed tomography. The CsPbBr3 nanocrystal scintillator featuring a nanosecond radioluminescence decay time is a promising candidate. However, it suffers from a substantial photon self-absorption limiting the light output, and being bright and fast simultaneously is difficult. Here we design and in-situ synthesize multi-site ZnS(Ag)-CsPbBr3 heterostructures to modulate the bright and fast features of scintillators. We find external energy from ZnS(Ag) can effectively transfer to CsPbBr3 based on the non-radiative Förster resonance energy transfer, resulting in a light yield of 40,000 photons MeV-1. By combing a radioluminescence decay time of 36 ns and a spatial resolution of 30 lp mm-1, the scintillator enables high-speed X-ray imaging at 200 frames per second. This study showcases the structure design is significant for obtaining bright and fast perovskite scintillators for the real-time X-ray imaging.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, 450051, China.
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, 450051, China
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, 450051, China
| | - Wenxuan Fan
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, 450051, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, 450051, China.
| |
Collapse
|
21
|
Tan GH, Lin HC, Liang HC, Pao CW, Chen PY, Chuang WT, Hsieh CA, Dorrah DM, Li MC, Chen LY, Chou HH, Lin HW. Highly Efficient Manganese Bromides with Reversible Luminescence Switching through Amorphous-Crystalline Transition. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39361882 PMCID: PMC11492243 DOI: 10.1021/acsami.4c09396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
While luminescent stimuli-responsive materials (LSRMs) have become one of the most sought-after materials owing to their potential in optoelectronic applications, the use of earth-scarce lanthanides remains a crucial problem to be solved for further development. In this work, two manganese-based LSRMs, (R)-(+)-1-phenylethylammonium manganese bromide, (R-PEA)2MnBr4, and (S)-(-)-1-phenylethylammonium manganese bromide, (S-PEA)2MnBr4, are successfully demonstrated. Both (R-PEA)2MnBr4 and (S-PEA)2MnBr4 show a kinetically stable red-emissive amorphous state and a thermodynamically stable green-emissive crystalline state at room temperature, where the fully reversible transition can be done through melt-quenching and annealing processes. Based on this property, a reusable manganese-halide-based time-temperature indicator is demonstrated for the first time. Furthermore, an X-ray scintillator with a low limit of detection (18.1 nGy/s) and a high spatial resolution limit (30.0 lp/mm) are achieved by exploiting the high transparency of amorphous states. These results uncover the multifunctionality of manganese halides and pave the way for upcoming research.
Collapse
Affiliation(s)
- Guang-Hsun Tan
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Cheng Lin
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Chi Liang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Po-Yu Chen
- Advanced
Packaging Instrumentation and Metrology Laboratory, Industrial Technology Research Institute, Hsinchu 30013, Taiwan
| | - Wei-Tsung Chuang
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chung-An Hsieh
- Department
of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Dalia M. Dorrah
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Ming-Chia Li
- Department
of Biological Science and Technology, College of Biological Science
and Technology, National Yang Ming Chiao
Tung University, Hsinchu 30010, Taiwan
- Center
for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu 30068, Taiwan
| | - Li-Yin Chen
- Department
of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ho-Hsiu Chou
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Hao-Wu Lin
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
22
|
Li J, Hu Q, Xiao J, Yan ZG. High-stability double perovskite scintillator for flexible X-ray imaging. J Colloid Interface Sci 2024; 671:725-731. [PMID: 38823113 DOI: 10.1016/j.jcis.2024.05.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Metal halide perovskites, as a new class of attractive and potential scintillators, are highly promising in X-ray imaging. However, their application is limited by the sensitivity to moisture and irradiation. To address this issue, we reported a 2D layered double perovskite material Cs4Cd1-xMnxBi2Cl12 that exhibits high stability both under ambient condition and under X-ray irradiation. Cs4Cd1-xMnxBi2Cl12 demonstrates superior scintillation performance, including excellent X-ray response linearity and a high light yield (∼34,450 photons/MeV). More importantly, the X-ray excited emission intensity maintains 92% and 94% of its original value after stored at ambient condition for over two years and after X-ray irradiation with a total dose of 11.4 Gy, respectively. By mixing with PDMS (polydimethylsiloxane), we have successfully produced a high-quality flexible film that can be bent freely while maintaining its excellent scintillation properties. The scintillating screen exhibits outstanding imaging ability with a spatial resolution of up to 16.7 line pairs per millimeter (lp/mm), also, the superiority of this scintillation screen in flexible X-ray imaging is demonstrated. These results indicate the huge potential of this high-stability double perovskite scintillator in X-ray imaging.
Collapse
Affiliation(s)
- Jingyu Li
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingsong Hu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
| | - Jiawen Xiao
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zheng-Guang Yan
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
23
|
Khrongchaiyaphum F, Wantana N, Kaewnuam E, Pakawanit P, Phoovasawat C, Vittayakorn N, Chanthima N, Phongsa A, Intachai N, Kothan S, Kim H, Kaewkhao J. Novel Tb3+ doped borophosphate glass scintillator for X-ray imaging. Radiat Phys Chem Oxf Engl 1993 2024; 223:111851. [DOI: 10.1016/j.radphyschem.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2024]
|
24
|
Gong Z, Zhang J, Liu YY, Zhang LX, Zhang Q, Xiao L, Cao B, Hu B, Lei XW. One-dimensional hybrid copper halides with high-efficiency photoluminescence as scintillator. Chem Commun (Camb) 2024; 60:10528-10531. [PMID: 39229669 DOI: 10.1039/d4cc03296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A new one-dimensional hybrid [APCHA]Cu2I4 was designed and applied as an X-ray scintillator. It exhibits broad-band green emission with a high PLQY of 74.80% and excellent stability. It demonstrates radioluminescence property with a light yield of 28 336 photons MeV-1, detection limit of 41 nGyair s-1, and high spatial limit of 13.95 lp mm-1 in X-ray imaging.
Collapse
Affiliation(s)
- Zhongliang Gong
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Jie Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
- School of Material Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Ying-Yue Liu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Lu-Xin Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Qing Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Lingyun Xiao
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Bingqiang Cao
- School of Material Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xiao-Wu Lei
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| |
Collapse
|
25
|
Li H, Li Y, Zhang L, Hu E, Zhao D, Guo H, Qian G. A Thermo-Responsive MOFs for X-Ray Scintillator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405535. [PMID: 38862407 DOI: 10.1002/adma.202405535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Thermo-responsive smart materials have aroused extensive interest due to the particular significance of temperature sensing. Although various photoluminescent materials are explored in thermal detection, it is not applicable enough in X-ray radiation environment where the accuracy and reliability will be influenced. Here, a strategy is proposed by introducing the concept of radio-luminescent functional building units (RBUs) to construct thermo-responsive lanthanide metal-organic frameworks (Ln-MOFs) scintillators for self-calibrating thermometry. The rational designs of RBUs (including organic ligand and Tb3+/Eu3+) with appropriate energy levels lead to high-performance radio-luminescence. Ln-MOFs scintillators exhibit perfect linear response to X-ray, presenting low dose rate detection limit (min ≈156.1 nGyairs-1). Self-calibrating detection based on ratiometric XEL intensities is achieved with good absolute and relative sensitivities of 6.74 and 8.1%K-1, respectively. High relative light yield (max ≈39000 photons MeV-1), imaging spatial resolution (max ≈18 lp mm-1), irradiation stability (intensity ≈100% at 368 K in total dose up to 215 Gyair), and giant color transformation visualization benefit the applications, especially the in situ thermo-responsive X-ray imaging. Such strategy provides a promising way to develop the novel smart photonic materials with excellent scintillator performances.
Collapse
Affiliation(s)
- Hongjun Li
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yi Li
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Lin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Enlai Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Hai Guo
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
26
|
Feng T, Zhou Z, An Y, Chen L, Fu Y, Zhou S, Wang N, Zheng J, Sun C. Large-Area Transparent Antimony-Based Perovskite Glass for High-Resolution X-ray Imaging. ACS NANO 2024; 18:16715-16725. [PMID: 38876985 DOI: 10.1021/acsnano.4c01761] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Nonlead low-dimensional halide perovskites attract considerable attention as X-ray scintillators. However, most scintillation screens exhibit pronounced light scattering, which detrimentally reduces the quality of X-ray imaging. Herein, we employed a simple and straightforward solvent-free melt-quenching method to fabricate a large-area zero-dimension (0D) antimony-based perovskite transparent medium, namely (C20H20P)2SbCl5 (C20H20P+ = ethyltriphenylphosphine). The transparency is due to the large steric hindrance of C20H20P+, which hinders the formation of crystals during the quenching process, thus forming a glass with low refractive index and uniform structure. This medium exhibits a high transmittance exceeding 80% in the range of 450-800 nm and shows a large Stokes shift of 245 nm, thereby minimizing light scattering, mitigating self-absorption, and enhancing the clarity of X-ray imaging. Moreover, it exhibits a high radioluminescence light yield of ∼12,535 photons MeV-1 and displays a high X-ray spatial resolution of 30 lp mm-1 owing to its high transparency. This study presents an alternative candidate for achieving high-quality X-ray detection and extends the applicability of transparent perovskite scintillators.
Collapse
Affiliation(s)
- Tiao Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi'an Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi'ni An
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhua Fu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nü Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Jinxiao Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenghua Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Ye W, Yong Z, Go M, Kowal D, Maddalena F, Tjahjana L, Wang H, Arramel A, Dujardin C, Birowosuto MD, Wong LJ. The Nanoplasmonic Purcell Effect in Ultrafast and High-Light-Yield Perovskite Scintillators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309410. [PMID: 38235521 DOI: 10.1002/adma.202309410] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. The nanoplasmonic Purcell effect is experimentally demonstrated using perovskite scintillators, enhancing the light yield by over 120% to 88 ± 11 ph/keV, and the decay rate by over 60% to 2.0 ± 0.2 ns for the average decay time, and 0.7 ± 0.1 ns for the ultrafast decay component, in good agreement with the predictions of our theoretical framework. Proof-of-concept X-ray imaging experiments are performed using nanoplasmonic scintillators, demonstrating 182% enhancement in the modulation transfer function at four line pairs per millimeter spatial frequency. This work highlights the enormous potential of nanoplasmonics in optimizing ultrafast scintillator devices for applications including time-of-flight X-ray imaging and photon-counting computed tomography.
Collapse
Affiliation(s)
- Wenzheng Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Zhihua Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Michael Go
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Dominik Kowal
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Francesco Maddalena
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Liliana Tjahjana
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Hong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| | - Christophe Dujardin
- Universite Claude Bernard Lyon 1, Institut Lumière Matière, UMR 5306 CNRS, Villeurbanne, F-69622, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, Île-de-France, 75005, Paris, France
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Liang Jie Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| |
Collapse
|
28
|
Shao W, He T, Wang L, Wang JX, Zhou Y, Shao B, Ugur E, Wu W, Zhang Z, Liang H, De Wolf S, Bakr OM, Mohammed OF. Capillary Manganese Halide Needle-Like Array Scintillator with Isolated Light Crosstalk for Micro-X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312053. [PMID: 38340045 DOI: 10.1002/adma.202312053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Indexed: 02/12/2024]
Abstract
The exacerbation of inherent light scattering with increasing scintillator thickness poses a major challenge for balancing the thickness-dependent spatial resolution and scintillation brightness in X-ray imaging scintillators. Herein, a thick pixelated needle-like array scintillator capable of micrometer resolution is fabricated via waveguide structure engineering. Specifically, this involves integrating a straightforward low-temperature melting process of manganese halide with an aluminum-clad capillary template. In this waveguide structure, the oriented scintillation photons propagate along the well-aligned scintillator and are confined within individual pixels by the aluminum reflective cladding, as substantiated from the comprehensive analysis including laser diffraction experiments. Consequently, thanks to isolated light-crosstalk channels and robust light output due to increased thickness, ultrahigh spatial resolutions of 60.8 and 51.7 lp mm-1 at a modulation transfer function (MTF) of 0.2 are achieved on 0.5 mm and even 1 mm thick scintillators, respectively, which both exceed the pore diameter of the capillary arrays' template (Φ = 10 µm). As far as it is known, these micrometer resolutions are among the highest reported metal halide scintillators and are never demonstrated on such thick scintillators. Here an avenue is presented to the demand for thick scintillators in high-resolution X-ray imaging across diverse scientific and practical fields.
Collapse
Affiliation(s)
- Wenyi Shao
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, China
| | - Tengyue He
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lijie Wang
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yang Zhou
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bingyao Shao
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Esma Ugur
- KAUST Solar Center (KSC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wentao Wu
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhenzhong Zhang
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, China
| | - Hongwei Liang
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, China
| | - Stefaan De Wolf
- KAUST Solar Center (KSC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Han L, Zhao J, Wang L, Peng G, Xu Y, Yuan M, Miao Y, Ci Z, Jin Z. Metal Halide Nanocrystals@Silica Aerogel Composite with Enhanced Dispersion Stability and Light Output for Efficient X-Ray Imaging in Harsh Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307758. [PMID: 38100187 DOI: 10.1002/smll.202307758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/01/2023] [Indexed: 05/25/2024]
Abstract
Metal halide nanocrystals (MHNCs) embedded in a polymer matrix as flexible X-ray detector screens is an effective strategy with the advantages of low cost, facile preparation, and large area flexibility. However, MHNCs easily aggregate during preparation, recombination, under mechanical force, storage, or high operating temperature. Meanwhile, it shows an unmatched refractive index with polymer, resulting in low light yield. The related stability and properties of the device remain a huge unrevealed challenge. Herein, a composite screen (CZBM@AG-PS) by integrating MHNCs (Cs2ZnBr4: Mn2+ as an example) into silica aerogel (AG) and embedded in polystyrene (PS) is successfully developed. Further characterization points to the high porosity AG template that can effectively improve the dispersion of MHNCs in polymer detector screens, essentially decreasing nonradiative transition, Rayleigh scattering, and performance aging induced by aggregation in harsh environments. Furthermore, the higher light output and lower optical crosstalk are also achieved by a novel light propagation path based on the MHNCs/AG and AG/PS interfaces. Finally, the optimized CZBM@AG-PS screen shows much enhanced light yield, spatial resolution, and temperature stability. Significantly, the strategy is proven universal by the performance tests of other MHNCs embedded composite films for ultra-stable and efficient X-ray imaging.
Collapse
Affiliation(s)
- Lili Han
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jihao Zhao
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Lijuan Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Guoqiang Peng
- School of Physical Science and Technology & School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Youkui Xu
- School of Physical Science and Technology & School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Minglang Yuan
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yifan Miao
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zhipeng Ci
- School of Physical Science and Technology & School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
30
|
Chen J, Jiang G, Hamann E, Mescher H, Jin Q, Allegro I, Brenner P, Li Z, Gaponik N, Eychmüller A, Lemmer U. Organosilicon-Based Ligand Design for High-Performance Perovskite Nanocrystal Films for Color Conversion and X-ray Imaging. ACS NANO 2024; 18:10054-10062. [PMID: 38527458 PMCID: PMC11008364 DOI: 10.1021/acsnano.3c11991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
Perovskite nanocrystals (PNCs) bear a huge potential for widespread applications, such as color conversion, X-ray scintillators, and active laser media. However, the poor intrinsic stability and high susceptibility to environmental stimuli including moisture and oxygen have become bottlenecks of PNC materials for commercialization. Appropriate barrier material design can efficiently improve the stability of the PNCs. Particularly, the strategy for packaging PNCs in organosilicon matrixes can integrate the advantages of inorganic-oxide-based and polymer-based encapsulation routes. However, the inert long-carbon-chain ligands (e.g., oleic acid, oleylamine) used in the current ligand systems for silicon-based encapsulation are detrimental to the cross-linking of the organosilicon matrix, resulting in performance deficiencies in the nanocrystal films, such as low transparency and large surface roughness. Herein, we propose a dual-organosilicon ligand system consisting of (3-aminopropyl)triethoxysilane (APTES) and (3-aminopropyl)triethoxysilane with pentanedioic anhydride (APTES-PA), to replace the inert long-carbon-chain ligands for improving the performance of organosilicon-coated PNC films. As a result, strongly fluorescent PNC films prepared by a facile solution-casting method demonstrate high transparency and reduced surface roughness while maintaining high stability in various harsh environments. The optimized PNC films were eventually applied in an X-ray imaging system as scintillators, showing a high spatial resolution above 20 lp/mm. By designing this promising dual organosilicon ligand system for PNC films, our work highlights the crucial influence of the molecular structure of the capping ligands on the optical performance of the PNC film.
Collapse
Affiliation(s)
- Junchi Chen
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Guocan Jiang
- Zhejiang
Institute of Photoelectronics, Department of Physics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, P. R. China
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Elias Hamann
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein Leopoldshafen, Germany
| | - Henning Mescher
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Qihao Jin
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Isabel Allegro
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Philipp Brenner
- ZEISS
Innovation Hub @ KIT, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Zhengquan Li
- Zhejiang
Institute of Photoelectronics, Department of Physics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, P. R. China
| | - Nikolai Gaponik
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Alexander Eychmüller
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Uli Lemmer
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
31
|
Dong C, Song X, Hasanov BE, Yuan Y, Gutiérrez-Arzaluz L, Yuan P, Nematulloev S, Bayindir M, Mohammed OF, Bakr OM. Organic-Inorganic Hybrid Glasses of Atomically Precise Nanoclusters. J Am Chem Soc 2024; 146:7373-7385. [PMID: 38433410 PMCID: PMC10958519 DOI: 10.1021/jacs.3c12296] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Organic-inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure-property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal-liquid-glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses' physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH-π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of "nanocluster glass" opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics.
Collapse
Affiliation(s)
- Chunwei Dong
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Xin Song
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Bashir E. Hasanov
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Youyou Yuan
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced
Membranes and Porous Materials Center (AMPMC), and KAUST Catalysis
Center (KCC), Physical Sciences and Engineering
Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Yuan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Saidkhodzha Nematulloev
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mehmet Bayindir
- Center
for Hybrid Nanostructures, University of
Hamburg, 22761 Hamburg, Germany
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center (AMPMC), and KAUST Catalysis
Center (KCC), Physical Sciences and Engineering
Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
32
|
Wang P, Wang B, Li N, He T, Zhang H, Zhang L, Liu SF. Alkali-Metal-Assisted Green-Solvent Synthesis for In Situ Growth of Perovskite Nanocrystals in Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305880. [PMID: 38239033 DOI: 10.1002/advs.202305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Indexed: 03/28/2024]
Abstract
Inorganic metal halide perovskite CsPbX3 (X = I, Br, and Cl) nanocrystals (NCs) are rapidly developed due to their excellent photophysical properties and potential applications in lighting, lasers, and scintillators. However, the materials for growing perovskite NCs are insoluble or hydrolyzed in most green solvents, limiting their further development. Based on rational chemical analysis, an alkali-metal-assisted green-solvent synthesis method for in situ growth of CsPbBr3 NCs within SAPO-34 zeolite with bright luminescence is developed. Water is the only solvent used in the whole process. Surprisingly, by the synergistic effect of the channel structure of SAPO-34 and alkali-metal ions crystallization regulation, the CsPbBr3 NCs embedded in SAPO-34 assisted by Na+ emit bright blue light under ultraviolet illumination, with a 30 nm blue shift comparing to the CsPbBr3 NCs assisted by K+. Moreover, CsPbBr3 NCs can also be grown in mesoporous SiO2 SBA-15 and zeolites including ZSM-5, AlPO-5, and SOD, indicating that the method is universal for in situ growth of luminescent perovskite NCs in porous materials. This alkali-metal-assisted green-solvent synthesis provides a new strategy for developing high-quantum-yield, tunable-emission, and stable perovskite luminescent materials.
Collapse
Affiliation(s)
- Peijun Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Chen YC, Yuan SQ, Zhang GZ, Di YM, Qiu QW, Yang X, Lin MJ, Zhu YN, Chen HM. Mechanochemical Synthesis of Cuprous Complexes for X-ray Scintillation and Imaging. Inorg Chem 2024; 63:3572-3577. [PMID: 38324777 DOI: 10.1021/acs.inorgchem.3c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cuprous complex scintillators show promise for X-ray detection with abundant raw materials, diverse luminescent mechanisms, and adjustable structures. However, their synthesis typically requires a significant amount of organic solvents, which conflict with green chemistry principles. Herein, we present the synthesis of two high-performance cuprous complex scintillators using a simple mechanochemical method for the first time, namely [CuI(PPh3)2R] (R = 4-phenylpyridine hydroiodide (PH, Cu-1) and 4-(4-bromophenyl)pyridine hydroiodide (PH-Br, Cu-2). Both materials demonstrated remarkable scintillation performances, exhibiting radioluminescence (RL) intensities 1.52 times (Cu-1) and 2.52 times (Cu-2) greater than those of Bi4Ge3O12 (BGO), respectively. Compared to Cu-1, the enhanced RL performance of Cu-2 can be ascribed to its elevated quantum yield of 51.54%, significantly surpassing that of Cu-1 at 37.75%. This excellent luminescent performance is derived from the introduction of PH-Br, providing a more diverse array of intermolecular interactions that effectively constrain molecular vibration and rotation, further suppressing the nonradiative transition process. Furthermore, Cu-2 powder can be prepared into scintillator film with excellent X-ray imaging capabilities. This work establishes a pathway for the rapid, eco-friendly, and cost-effective synthesis of high-performance cuprous complex scintillators.
Collapse
Affiliation(s)
- Yue-Chen Chen
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Si-Qi Yuan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Guo-Zhen Zhang
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yi-Ming Di
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiang-Wen Qiu
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xi Yang
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Ya-Nan Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
34
|
Wang WF, Xie MJ, Wang PK, Lu J, Li BY, Wang MS, Wang SH, Zheng FK, Guo GC. Thermally Activated Delayed Fluorescence (TADF)-active Coinage-metal Sulfide Clusters for High-resolution X-ray Imaging. Angew Chem Int Ed Engl 2024; 63:e202318026. [PMID: 38157447 DOI: 10.1002/anie.202318026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The study of facile-synthesis and low-cost X-ray scintillators with high light yield, low detection limit and high X-ray imaging resolution plays a vital role in medical and industrial imaging fields. However, the optimal balance between X-ray absorption, decay lifetime and excitonic utilization efficiency of scintillators to achieve high-resolution imaging is extremely difficult due to the inherent contradiction. Here two thermally activated delayed fluorescence (TADF)-actived coinage-metal clusters M6 S6 L6 (M=Ag or Cu) were synthesized by simple solvothermal reaction, where the cooperation of heavy atom-rich character and TADF mechanism supports strong X-ray absorption and rapid luminescent collection of excitons. Excitingly, Ag6 S6 L6 (SC-Ag) displays a high photoluminescence quantum yield of 91.6 % and scintillating light yield of 17420 photons MeV-1 , as well as a low detection limit of 208.65 nGy s-1 that is 26 times lower than the medical standard (5.5 μGy s-1 ). More importantly, a high X-ray imaging resolution of 16 lp/mm based on SC-Ag screen is demonstrated. Besides, rigid core skeleton reinforced by metallophilicity endows clusters M6 S6 L6 strong resistance to humidity and radiation. This work provides a new view for the design of efficient scintillators and opens the research door for silver clusters in scintillation application.
Collapse
Affiliation(s)
- Wen-Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mei-Juan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Peng-Kun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Bao-Yi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
| | - Shuai-Hua Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Fa-Kun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Lei L, Yi M, Wang Y, Hua Y, Zhang J, Prasad PN, Xu S. Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging. Nat Commun 2024; 15:1140. [PMID: 38326310 PMCID: PMC10850100 DOI: 10.1038/s41467-024-45390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Lanthanide-doped fluoride nanoparticles (NPs) showcase adjustable X-ray-excited persistent luminescence (XEPL), holding significant promise for applications in three-dimensional (3D) imaging through the creation of flexible X-ray detectors. However, a dangerous high X-ray irradiation dose rate and complicated heating procedure are required to generate efficient XEPL for high-resolution 3D imaging, which is attributed to a lack of strategies to significantly enhance the XEPL intensity. Here we report that the XEPL intensity of a series of lanthanide activators (Dy, Pr, Er, Tm, Gd, Tb) is greatly improved by constructing dual heterogeneous interfaces in a double-shell nanostructure. Mechanistic studies indicate that the employed core@shell@shell structure could not only passivate the surface quenchers to lower the non-radiative relaxation possibility, but also reduce the interfacial Frenkel defect formation energy leading to increase the trap concentration. By employing a NPs containing flexible film as the scintillation screen, the inside 3D electrical structure of a watch was clearly achieved based on the delayed XEPL imaging and 3D reconstruction procedure. We foresee that these findings will promote the development of advanced X-ray activated persistent fluoride NPs and offer opportunities for safer and more efficient X-ray imaging techniques in a number of scientific and practical areas.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China.
| | - Minghao Yi
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Yubin Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Youjie Hua
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Junjie Zhang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China.
| |
Collapse
|
36
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
37
|
Li DY, Kang HY, Liu YH, Zhang J, Yue CY, Yan D, Lei XW. A 0D hybrid lead-free halide with near-unity photoluminescence quantum yield toward multifunctional optoelectronic applications. Chem Sci 2024; 15:953-963. [PMID: 38239673 PMCID: PMC10793591 DOI: 10.1039/d3sc05245a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Zero-dimensional (0D) hybrid metal halides have emerged as highly efficient luminescent materials, but integrated multifunction in a structural platform remains a significant challenge. Herein, a new hybrid 0D indium halide of (Im-BDMPA)InCl6·H2O was designed as a highly efficient luminescent emitter and X-ray scintillator toward multiple optoelectronic applications. Specifically, it displays strong broadband yellow light emission with near-unity photoluminescence quantum yield (PLQY) through Sb3+ doping, acting as a down-conversion phosphor to fabricate high-performance white light emitting diodes (WLEDs). Benefiting from the high PLQY and negligible self-absorption characteristics, this halide exhibits extraordinary X-ray scintillation performance with a high light yield of 55 320 photons per MeV, which represents a new scintillator in 0D hybrid indium halides. Further combined merits of a low detection limit (0.0853 μGyair s-1), ultra-high spatial resolution of 17.25 lp per mm and negligible afterglow time (0.48 ms) demonstrate its excellent application prospects in X-ray imaging. In addition, this 0D halide also exhibits reversible luminescence off-on switching toward tribromomethane (TBM) but fails in any other organic solvents with an ultra-low detection limit of 0.1 ppm, acting as a perfect real-time fluorescent probe to detect TBM with ultrahigh sensitivity, selectivity and repeatability. Therefore, this work highlights the multiple optoelectronic applications of 0D hybrid lead-free halides in white LEDs, X-ray scintillation, fluorescence sensors, etc.
Collapse
Affiliation(s)
- Dong-Yang Li
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Huai-Yuan Kang
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| | - Yu-Hang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
38
|
Xu X, Xie YM, Shi H, Wang Y, Zhu X, Li BX, Liu S, Chen B, Zhao Q. Light Management of Metal Halide Scintillators for High-Resolution X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303738. [PMID: 38009773 DOI: 10.1002/adma.202303738] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Indexed: 11/29/2023]
Abstract
The ever-growing need to inspect matter with hyperfine structures requires a revolution in current scintillation detectors, and the innovation of scintillators is revived with luminescent metal halides entering the scene. Notably, for any scintillator, two fundamental issues arise: Which kind of material is suitable and in what form should the material exist? The answer to the former question involves the sequence of certain atoms into specific crystal structures that facilitate the conversion of X-ray into light, whereas the answer to the latter involves assembling these crystallites into particular material forms that can guide light propagation toward its corresponding pixel detector. Despite their equal importance, efforts are overwhelmingly devoted to improving the X-ray-to-light conversion, while the material-form-associated light propagation, which determines the optical signal collected for X-ray imaging, is largely overlooked. This perspective critically correlates the reported spatial resolution with the light-propagation behavior in each form of metal halides, combing the designing rules for their future development.
Collapse
Affiliation(s)
- Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Huaiyao Shi
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yongquan Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bing-Xiang Li
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
39
|
Liu Q, Ran P, Chen W, Shi N, Zhang W, Qiao X, Jiang T, Yang Y(M, Ren J, Wang Z, Qian G, Fan X. Bright Transparent Scintillators with High Fraction BaCl 2 : Eu 2+ Nanocrystals Precipitation: An Ionic-Covalent Hybrid Network Strategy toward Superior X-Ray Imaging Glass-Ceramics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304889. [PMID: 37852944 PMCID: PMC10700177 DOI: 10.1002/advs.202304889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Metal halide crystals are bright but hygroscopic scintillator materials that are widely used in X-ray imaging and detectors. Precipitating them in situ in glass to form glass ceramics (GCs) scintillator offers an efficient avenue for large-scale preparation, high spatial resolution, and excellent stability. However, precipitating a high fraction of metal halide nanocrystals in glass to maintain high light yield remains a challenge. Herein, an ionic-covalent hybrid network strategy for constructing GCs scintillator with high crystallinity (up to ≈37%) of BaCl2 : Eu2+ nanocrystals is presented. Experimental data and simulations of glass structure reveal that the Ba2+ -Cl- clustering promotes the high crystallization of BaCl2 nanocrystals. The ultralow phonon energy (≈200 cm-1 ) of BaCl2 nanocrystals and good Eu reduction effect enable high photoluminescence inter quantum efficiency (≈80.41%) in GC. GCs with varied crystallinity of BaCl2 : Eu2+ nanocrystals demonstrate efficient radioluminescence and tunable scintillator performance. They either outperform Bi4 Ge3 O14 single crystal by over 132% steady-state light yield or provide impressive X-ray imaging resolutions of 20 lp mm-1 . These findings provide a new design strategy for developing bright transparent GCs scintillators with a high fraction of metal halide nanocrystals for X-ray high-resolution imaging applications.
Collapse
Affiliation(s)
- Qunhuo Liu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Peng Ran
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Weilin Chen
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Nian Shi
- Key Laboratory of Materials for High Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Wei Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Tingming Jiang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
- School of Energy and Power EngineeringChongqing UniversityChongqing400044China
| | - Yang (Michael) Yang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Jinjun Ren
- Key Laboratory of Materials for High Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Zhiyu Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Guodong Qian
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xianping Fan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
40
|
Li DY, Shang YB, Liu Q, Zhang HW, Zhang XY, Yue CY, Lei XW. 0D hybrid indium halide as a highly efficient X-ray scintillation and ultra-sensitive fluorescent probe. MATERIALS HORIZONS 2023; 10:5004-5015. [PMID: 37642515 DOI: 10.1039/d3mh00536d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Halide perovskite nanocrystal (PNC) of 3D CsPbX3 as a scintillator has aroused intensive attention with advanced applications in radiation detection and X-ray imaging. However, the low light yield and serious toxicity of Pb2+ severely hinder advanced optoelectronic applications. To reduce these fatal shortcomings, a family of new environmentally friendly 0D hybrid lead-free indium halides of [DADPA]InX6·H2O (DADPA = 3,3'-diaminodipropylamine; X = Cl and Br) was prepared. Upon UV excitation, these halides display strong broadband yellow-orange light emissions, and the photoluminescence quantum yield (PLQY) can be optimized up to near unity through the Sb3+-doping strategy. Significantly, high PLQY, negligible self-absorption and low attenuation ability toward X-ray render extraordinary scintillation performance with a high light yield of 51 875 photons MeV-1 and ultralow detection limit of 98.3 nGyair s-1, which is far superior to typical 3D PNC scintillators. Additionally, the ultra-high spatial resolution of 25.15 lp mm-1, negligible afterglow time (2.75 ms) and robust radiant stability demonstrates excellent X-ray imaging performance. To the best of our knowledge, this is the first report on X-ray scintillation based on 0D indium halide materials.
Collapse
Affiliation(s)
- Dong-Yang Li
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Yan-Bing Shang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Qi Liu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Hua-Wu Zhang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Xin-Yue Zhang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| |
Collapse
|
41
|
Luo C, Jing Y, Hua Z, Sui Z, Wang C, Hu P, Zheng L, Qian S, Yang L, Sun X, Tang G, Cai H, Zhu Y, Ban H, Han J, Wang Z, Qiao X, Ren J, Zhang J. Band Gap and Defect Engineering Enhanced Scintillation from Ce 3+-Doped Nanoglass Containing Mixed-Type Fluoride Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46226-46235. [PMID: 37738374 DOI: 10.1021/acsami.3c09230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Much can be learned from the research and development of scintillator crystals for improving the scintillation performance of glasses. Relying on the concept of "embedding crystalline order in glass", we have demonstrated that the scintillation properties of Ce3+-doped nanoglass composites (nano-GCs) can be optimized via the synergistic effects of Gd3+-sublattice sensitization and band-gap engineering. The nano-GCs host a large volume fraction of KYxGd1-xF4 mixed-type fluoride nanocrystals (NCs) and still retain reasonably good transparency at Ce3+-emitting wavelengths. The light yield of 3455 ± 20 ph/MeV is found, which is the largest value ever reported in fluoride NC-embedded nano-GCs. A comprehensive study is given on the highly selective doping of Ce3+ in the NCs and its positive effect on the scintillation properties. The favorable influence of the Y3+/Gd3+ mixing on the suppression of defects is accounted for by density functional theory and borne out experimentally. As a proof-of-concept, X-ray imaging with a good spatial resolution (7.9 lp/mm) is demonstrated by employing Ce3+-doped nano-GCs. The superior radiation hardness, repeatability, and thermal stability of the designed scintillators bode well for their long-term practical applications.
Collapse
Affiliation(s)
- Chengxi Luo
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Jing
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Zhehao Hua
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zexuan Sui
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ci Wang
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Peng Hu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Qian
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Luyun Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinyuan Sun
- Department of Physics, Jinggangshan University, Ji'an 343009, China
| | - Gao Tang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Hua Cai
- China Building Materials Academy, Beijing 100024, China
| | - Yao Zhu
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Huiyun Ban
- Beijing Glass Research Institute, Beijing 101111, China
| | - Jifeng Han
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
| | - Zhile Wang
- Department of Electronic Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xvsheng Qiao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 China
| | - Jing Ren
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Jianzhong Zhang
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
42
|
Zhou W, Li C, Wu T, Liu R, Ding Z, Zhang R, Yu Y, Han P, Lu R. Bright Green-Emitting All-Inorganic Terbium Halide Double Perovskite Nanocrystals for Low-Dose X-ray Imaging. J Phys Chem Lett 2023; 14:8577-8583. [PMID: 37725534 DOI: 10.1021/acs.jpclett.3c02070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Inorganic halide double perovskite (DP) nanocrystals (NCs) have attracted great attention because of their nontoxicity, mild reaction conditions, good stability, and excellent optical and optoelectronic properties. Herein, we prepare the inorganic terbium halide DP Cs2BTbCl6 (B = Na or Ag) NCs with bright green photoluminescence (PL) emission. The Na-Tb-based DP NCs exhibit better PL properties compared with the Ag-Tb-based DP NCs, which is due to Cs2NaTbCl6 NCs having a more localized charge carrier distribution on the [TbCl6]3- octahedron. The incorporation of Sb3+ dopant in Cs2NaTbCl6 NCs can construct a more efficient energy transfer process, resulting in a doubling of PL efficiency. Furthermore, Cs2NaTbCl6: Sb3+ NCs possess excellent X-ray scintillating performance with a low-dose detection limit of 140 nGyair/s, which is nearly 5 times more sensitive than the undoped NCs. The optimized NCs show great application prospects in X-ray imaging. This work helps deepen the understanding of the luminescence mechanism, excited state dynamics, and scintillation property in Tb-based DP NCs.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Cheng Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Tong Wu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Zhiling Ding
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Yang Yu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
43
|
Wang Y, Li M, Chai Z, Wang Y, Wang S. Perovskite Scintillators for Improved X-ray Detection and Imaging. Angew Chem Int Ed Engl 2023; 62:e202304638. [PMID: 37258939 DOI: 10.1002/anie.202304638] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Halide perovskites (HPs) recently have emerged as one class of competitive scintillators for X-ray detection and imaging owing to its high quantum efficiency, short decay time, superior X-ray absorption capacity, low cost, and ease of crystal growth. The tunable structure and versatile chemical compositions of halide perovskites provide distinguishable advantages over traditional inorganic scintillators for optimizing scintillation performance. Since the first observation of the scintillation phenomenon in HPs, substantial efforts have been devoted to expanding the inventory of HP scintillators and regulating material properties. Understanding the relationship between the structure and scintillation properties of HP scintillators is essential for developing materials with improved X-ray detection and imaging capacities. This review summarizes strategies for improving the light yield of HP scintillators and provides a roadmap for improving the X-ray imaging performance. Additionally, methods for controlling the light propagation direction in HP scintillators are highlighted for improving X-ray imaging resolution. Finally, we highlight the current challenge in HP scintillators and provide a perspective on the future development of this emerging scintillator.
Collapse
Affiliation(s)
- Yumin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ming Li
- Radiotherapy Center of the Second People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
44
|
Zhou Y, Hu Y, Zhang W, Liu C. Amplified spontaneous emission from inclusions containing cesium lead bromide in glasses. OPTICS EXPRESS 2023; 31:27192-27202. [PMID: 37710799 DOI: 10.1364/oe.495694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023]
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br and I) perovskite nanocrystals embedded glasses exhibit good optical properties and have potential as gain media. However, origins of the amplified spontaneous emission (ASE) from CsPbX3 nanocrystals are controversial. Here, it is found that ASE is from CsPbX3 nanocrystals in inclusions instead of CsPbX3 nanocrystals dispersed in the glass matrix. Inclusions with various sizes are capable of generating ASE, and ASE of the inclusions can sustain at energy densities as high as several tens of mJ/cm2. Thresholds of the fs laser energy densities increase with the increase in fs laser wavelength, and high net optical gain coefficient is obtained.
Collapse
|
45
|
Liška P, Musálek T, Šamořil T, Kratochvíl M, Matula R, Horák M, Nedvěd M, Urban J, Planer J, Rovenská K, Dvořák P, Kolíbal M, Křápek V, Kalousek R, Šikola T. Correlative Imaging of Individual CsPbBr 3 Nanocrystals: Role of Isolated Grains in Photoluminescence of Perovskite Polycrystalline Thin Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:12404-12413. [PMID: 37405362 PMCID: PMC10316395 DOI: 10.1021/acs.jpcc.3c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Indexed: 07/06/2023]
Abstract
We report on the optical properties of a CsPbBr3 polycrystalline thin film on a single grain level. A sample composed of isolated nanocrystals (NCs) mimicking the properties of the polycrystalline thin film grains that can be individually probed by photoluminescence spectroscopy was prepared. These NCs were analyzed using correlative microscopy allowing the examination of structural, chemical, and optical properties from identical sites. Our results show that the stoichiometry of the CsPbBr3 NCs is uniform and independent of the NCs' morphology. The photoluminescence (PL) peak emission wavelength is slightly dependent on the dimensions of NCs, with a blue shift up to 9 nm for the smallest analyzed NCs. The magnitude of the blueshift is smaller than the emission line width, thus detectable only by high-resolution PL mapping. By comparing the emission energies obtained from the experiment and a rigorous effective mass model, we can fully attribute the observed variations to the size-dependent quantum confinement effect.
Collapse
Affiliation(s)
- Petr Liška
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Tomáš Musálek
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Tomáš Šamořil
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
- Tescan
Orsay Holding, a.s, Libušina
tř. 21, Brno 623
00, Czech Republic
| | - Matouš Kratochvíl
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Radovan Matula
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Michal Horák
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Matěj Nedvěd
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jakub Urban
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jakub Planer
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Katarína Rovenská
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Petr Dvořák
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Miroslav Kolíbal
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Vlastimil Křápek
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Radek Kalousek
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Tomáš Šikola
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| |
Collapse
|
46
|
Kuan CH, Balasaravanan R, Hsu SM, Ni JS, Tsai YT, Zhang ZX, Chen MC, Diau EWG. Dopant-Free Pyrrolopyrrole-Based (PPr) Polymeric Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells with Stability Over 6000 h. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300681. [PMID: 37029333 DOI: 10.1002/adma.202300681] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/01/2023] [Indexed: 06/09/2023]
Abstract
A new set of pyrrolopyrrole-based (PPr) polymers incorporated with thioalkylated/alkylated bithiophene (SBT/BT) is synthesized and explored as hole-transporting materials (HTMs) for Sn-based perovskite solar cells (TPSCs). Three bithiophenyl spacers bearing the thioalkylated hexyl (SBT-6), thioalkylated tetradecyl (SBT-14), and tetradecyl (BT-14) chains are utilized to examine the effect of the alkyl chain lengths. Among them, the TPSCs are fabricated using PPr-SBT-14 as HTMs through a two-step approach by attaining a power conversion efficiency (PCE) of 7.6% with a remarkable long-term stability beyond 6000 h, which has not been reported elsewhere for a non-PEDOT:PSS-based TPSC. The PPr-SBT-14 device is stable under light irradiation for 5 h in air (50% relative humidity) at the maximum power point (MPP). The highly planar structure, strong intramolecular S(alkyl)···S(thiophene) interactions, and extended π-conjugation of SBT enable the PPr-SBT-14 device to outperform the standard poly(3-hexylthiophene,-2,5-diyl (P3HT) and other devices. The longer thio-tetradecyl chain in SBT-14 restricts molecular rotation and strongly affects the molecular conformation, solubility, and film wettability over other polymers. Thus, the present study makes a promising dopant-free polymeric HTM model for the future design of highly efficient and stable TPSCs.
Collapse
Affiliation(s)
- Chun-Hsiao Kuan
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Rajendiran Balasaravanan
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan
| | - Shih-Min Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung, 824005, Taiwan
| | - Yi-Tai Tsai
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan
| | - Zhong-Xiang Zhang
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
47
|
Zhao X, Fu P, Li P, Du H, Zhu J, Ge C, Yang L, Song B, Wu H, Jin T, Guo Q, Wang L, Li J, Xiao Z, Chang J, Niu G, Luo J, Tang J. Solution-Processed Hybrid Europium (II) Iodide Scintillator for Sensitive X-Ray Detection. RESEARCH (WASHINGTON, D.C.) 2023; 6:0125. [PMID: 37223485 PMCID: PMC10202385 DOI: 10.34133/research.0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 01/01/2024]
Abstract
Lead halide perovskite nanocrystals have recently demonstrated great potential as x-ray scintillators, yet they still suffer toxicity issues, inferior light yield (LY) caused by severe self-absorption. Nontoxic bivalent europium ions (Eu2+) with intrinsically efficient and self-absorption-free d-f transition are a prospective replacement for the toxic Pb2+. Here, we demonstrated solution-processed organic-inorganic hybrid halide BA10EuI12 (BA denotes C4H9NH4+) single crystals for the first time. BA10EuI12 was crystallized in a monoclinic space group of P21/c, with photoactive sites of [EuI6]4- octahedra isolated by BA+ cations, which exhibited high photoluminescence quantum yield of 72.5% and large Stokes shift of 97 nm. These properties enable an appreciable LY value of 79.6% of LYSO (equivalent to ~27,000 photons per MeV) for BA10EuI12. Moreover, BA10EuI12 shows a short excited-state lifetime (151 ns) due to the parity-allowed d-f transition, which boosts the potential of BA10EuI12 for use in real-time dynamic imaging and computer tomography applications. In addition, BA10EuI12 demonstrates a decent linear scintillation response ranging from 9.21 μGyair s-1 to 145 μGyair s-1 and a detection limit as low as 5.83 nGyair s-1. The x-ray imaging measurement was performed using BA10EuI12 polystyrene (PS) composite film as a scintillation screen, which exhibited clear images of objects under x-ray irradiation. The spatial resolution was determined to be 8.95 lp mm-1 at modulation transfer function = 0.2 for BA10EuI12/PS composite scintillation screen. We anticipate that this work will stimulate the exploration of d-f transition lanthanide metal halides for sensitive x-ray scintillators.
Collapse
Affiliation(s)
- Xue Zhao
- School of Microelectronics, Xidian University, Xi’an 710071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengfei Fu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pan Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hainan Du
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinsong Zhu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ciyu Ge
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longbo Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haodi Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tong Jin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingxun Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Chang
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- China Optics Valley Laboratory, Wuhan 430074, China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- China Optics Valley Laboratory, Wuhan 430074, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Wang H, Wang JX, Song X, He T, Zhou Y, Shekhah O, Gutiérrez-Arzaluz L, Bayindir M, Eddaoudi M, Bakr OM, Mohammed OF. Copper Organometallic Iodide Arrays for Efficient X-ray Imaging Scintillators. ACS CENTRAL SCIENCE 2023; 9:668-674. [PMID: 37122455 PMCID: PMC10141593 DOI: 10.1021/acscentsci.2c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 05/03/2023]
Abstract
Lead-free organic metal halide scintillators with low-dimensional electronic structures have demonstrated great potential in X-ray detection and imaging due to their excellent optoelectronic properties. Herein, the zero-dimensional organic copper halide (18-crown-6)2Na2(H2O)3Cu4I6 (CNCI) which exhibits negligible self-absorption and near-unity green-light emission was successfully deployed into X-ray imaging scintillators with outstanding X-ray sensitivity and imaging resolution. In particular, we fabricated a CNCI/polymer composite scintillator with an ultrahigh light yield of ∼109,000 photons/MeV, representing one of the highest values reported so far for scintillation materials. In addition, an ultralow detection limit of 59.4 nGy/s was achieved, which is approximately 92 times lower than the dosage for a standard medical examination. Moreover, the spatial imaging resolution of the CNCI scintillator was further improved by using a silicon template due to the wave-guiding of light through CNCI-filled pores. The pixelated CNCI-silicon array scintillation screen displays an impressive spatial resolution of 24.8 line pairs per millimeter (lp/mm) compared to the resolution of 16.3 lp/mm for CNCI-polymer film screens, representing the highest resolutions reported so far for organometallic-based X-ray imaging screens. This design represents a new approach to fabricating high-performance X-ray imaging scintillators based on organic metal halides for applications in medical radiography and security screening.
Collapse
Affiliation(s)
- Hong Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Song
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tengyue He
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yang Zhou
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mehmet Bayindir
- Center
for Hybrid Nanostructures, University of
Hamburg, 22761 Hamburg, Germany
| | - Mohamed Eddaoudi
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Li K, Zhang W, Niu L, Ye Y, Ren J, Liu C. Lead-Free Cesium Manganese Halide Nanocrystals Embedded Glasses for X-Ray Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204843. [PMID: 36461760 PMCID: PMC9896042 DOI: 10.1002/advs.202204843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/20/2022] [Indexed: 06/01/2023]
Abstract
The toxicity of heavy-metal Pb and instability of lead-based halide perovskite nanomaterials are main factors to impede their practical applications in the fields of solar cells, LEDs and scintillators. In this paper, all inorganic lead-free cesium manganese halide nanocrystals are synthesized in glass for the first time. Red photoluminescence with broad PL band, negligible self-absorption and a high photoluminescence quantum yield of 41.8% is obtained. In addition, modulating halide component can change the Mn2+ ions coordination environment to obtain tunable photoluminescence from red to green. More importantly, cesium manganese halide nanocrystals embedded glasses exhibit outstanding long-term stabilities. Theses cesium manganese halide nanocrystals embedded glasses are also highly stable against high energy irradiation and exhibit highly efficient radioluminescence, making them promising for high-resolution X-ray imaging. These results demonstrate that cesium manganese halide nanocrystals embedded glasses are promising eco-friendly candidates for applications in light-emitting diodes and scintillators.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| | - Wenchao Zhang
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| | - Luyue Niu
- Key Laboratory of In‐fiber Integrated OpticsMinistry Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Ying Ye
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| | - Jing Ren
- Key Laboratory of In‐fiber Integrated OpticsMinistry Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| |
Collapse
|
50
|
Zhao W, Wang Y, Guo Y, Suh YD, Liu X. Color-Tunable and Stable Copper Iodide Cluster Scintillators for Efficient X-Ray Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205526. [PMID: 36461749 PMCID: PMC9929111 DOI: 10.1002/advs.202205526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Indexed: 05/16/2023]
Abstract
The search for color-tunable, efficient, and robust scintillators plays a vital role in the development of modern X-ray radiography. The radioluminescence tuning of copper iodide cluster scintillators in the entire visible region by bandgap engineering is herein reported. The bandgap engineering benefits from the fact that the conduction band minimum and valence band maximum of copper iodide cluster crystals are contributed by atomic orbitals from the inorganic core and organic ligand components, respectively. In addition to high scintillation performance, the as-prepared crystalline copper iodide cluster solids exhibit remarkable resistance toward both moisture and X-ray irradiation. These features allow copper iodide cluster scintillators to show particular attractiveness for low-dose X-ray radiography with a detection limit of 55 nGy s-1 , a value ≈100 times lower than a standard dosage for X-ray examinations. The results suggest that optimizing both inorganic core and organic ligand for the building blocks of metal halide cluster crystals may provide new opportunities for a new generation of high-performance scintillation materials.
Collapse
Affiliation(s)
- Wenjing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE)MIIT Key Laboratory of Flexible Electronics (KLOFE)Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Biomedical Materials & EngineeringXi'an Institute of Flexible ElectronicsInstitute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Yanze Wang
- Frontiers Science Center for Flexible Electronics (FSCFE)MIIT Key Laboratory of Flexible Electronics (KLOFE)Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Biomedical Materials & EngineeringXi'an Institute of Flexible ElectronicsInstitute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Yuanyuan Guo
- Frontiers Science Center for Flexible Electronics (FSCFE)MIIT Key Laboratory of Flexible Electronics (KLOFE)Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Biomedical Materials & EngineeringXi'an Institute of Flexible ElectronicsInstitute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical EngineeringUNISTUlsan44919Korea
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE)MIIT Key Laboratory of Flexible Electronics (KLOFE)Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Biomedical Materials & EngineeringXi'an Institute of Flexible ElectronicsInstitute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
- Key laboratory of Flexible Electronics of Zhejiang ProvienceNingbo Institute of Northwestern Polytechnical University218 Qingyi RoadNingbo315103China
| |
Collapse
|