1
|
Feng Y, Liu Y, Liu L, Yang Q, An M, Yang H. Magnetite Micro/Nanorobots for Efficient Targeted Alleviation of Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503307. [PMID: 40277443 DOI: 10.1002/advs.202503307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Millions of people worldwide have inflammatory bowel disease (IBD). Self-driven micro/nanorobots (MNRs) are efficient in the treatment of IBD. However, their lack of controllability regarding direction of motion in the organism and their inability to achieve continuous navigation limits their further application. In this study, polydopamine is wrapped around the magnetite surface, loaded with an anti-inflammatory drug resveratrol, and wrapped with pH-responsive sodium alginate to obtain magnetic MNRs. MNRs can be driven by magnetic fields to achieve directional movement and targeted transportation. In addition, MNRs can effectively remove reactive oxygen species from the inflammation site, repair intestinal damage, inhibit the cellular pathway of pro-inflammatory factors, such as MAPK and NF-κB pathways, and restore intestinal flora, thereby relieving IBDs. MNRs are safe and effective for in vivo treatment of IBD and have proven to be a promising therapeutic platform. This MNRs therapeutic strategy provides new insights into comprehensive IBD therapy.
Collapse
Affiliation(s)
- Ying Feng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Yang Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Linlin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Qian Yang
- Centre for Immune-oncology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK
| | - Miao An
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang XJ, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413376. [PMID: 40223359 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Liu W, Liu D, Cui T, Wang Y, Zhou S, Tian F, Yang K, Wang W, Bi L, Fan K, Li L, Wang H, Zhang XD. Atomic Artificial Enzyme for Acute and Chronic Pneumonia. Adv Healthc Mater 2025; 14:e2402364. [PMID: 39248150 DOI: 10.1002/adhm.202402364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Pneumonia involves complex immunological and pathological processes leading to pulmonary dysfunction, which can be life-threatening yet lacks effective specialized medications. Natural enzymes can be used as biological agents for the treatment of oxidative stress-related diseases, but limiting to catalytic and environmental stability as well as high cost. Herein, an artificial enzyme, gold nanoclusters (Au NCs) with excellent stability, bioactivity, and renal clearance can be used as the next-generation biological agents for acute lung injury (ALI) and allergic lung disease (ALD). The Au25 clusters can mimic catalase (CAT) and glutathione peroxidase (GPx), and the Km of Au24Er1 with H2O2 reaches 1.28 mM, about 22 times higher than natural CAT (≈28.8 mM). The clusters inhibit the oxidative stress in the mitochondria and promote the synthesis of adenosine triphosphate (ATP). The molecular mechanism shows that the TLR4/MyD88/NF-κB pathway and M1 macrophage-mediated inflammatory response are suppressed in ALI and the Th1/Th2 imbalance in ovalbumin (OVA)-induced ALD is rescued. Further, the clusters can notably improve lung function in both ALI and ALD models which paves the way for immunomodulation and intervention for lung injury and can be used as a substitute for natural enzymes and potential biopharmaceuticals in the treatment of various types of pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ke Yang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Wei Wang
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Lewei Bi
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301616, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Liang Y, Meng J, Yu Z, Guo Y, Zhang X, Yan Y, Du S, Jin S, Li J, Yang H, Zhang X, Liu Z, Li L, Xie J. Ru single-atom nanozymes targeting ROS-ferroptosis pathways for enhanced endometrial regeneration in intrauterine adhesion therapy. Biomaterials 2025; 315:122923. [PMID: 39489016 DOI: 10.1016/j.biomaterials.2024.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Intrauterine adhesion (IUA) presents a significant challenge in gynecology, characterized by excessive fibrosis and compromised reproductive function, leading to severe infertility. Although biocompatible hydrogels integrated with stem cells offer a promising approach for IUA therapy, clinical applications remain limited. Recent studies have highlighted the role of ferroptosis and reactive oxygen species (ROS) in IUA pathogenesis, yet strategies targeting ferroptosis through antioxidant stress are underexplored. This study investigates the therapeutic effects and mechanisms of a Ru-Single-Atom Nanozyme (Ru-SAN) incorporated into chitosan hydrogel for treating IUA. Ru-SAN, which mimics the enzyme activities of catalase, superoxide dismutase, and glutathione peroxidase, effectively clears excess ROS and shows promise in treating oxidative stress-induced diseases. The results demonstrate the superior antioxidative capabilities of Ru-SAN, significantly suppressing the ROS-ferroptosis cycle at the injury site. This creates a favorable microenvironment for post-injury repair by inhibiting inflammation, enhancing mesenchymal-to-epithelial transformation, promoting angiogenesis, and polarizing M2 macrophages. Importantly, it mitigates adverse repair outcomes from inflammation and excessive collagen fiber deposition, ultimately restoring uterine glandular structures and thickness, thereby achieving the ultimate goal of restoring fertility and live birth rates. In conclusion, our study delineates a pioneering therapeutic approach leveraging the antioxidant properties of Ru-SAN to target ferroptosis, thereby offering an efficacious treatment for IUA.
Collapse
Affiliation(s)
- Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jian Meng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhaowei Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuqian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Shaobo Du
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hailan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Liping Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Xiao YP, Wu J, Chen PH, Lei S, Lin J, Zhou X, Huang P. Biocatalytic cascade reactions for management of diseases. Chem Soc Rev 2025; 54:3247-3271. [PMID: 39936523 DOI: 10.1039/d3cs00410d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Biocatalytic cascade reactions, which evolve from the confinement of multiple enzymes within living cells, represent a promising strategy for disease management. Using tailor-made nanoplatforms, reactions induced by multiple enzymes and/or nanozymes can be precisely triggered at pathogenic sites. These promote further cascade reactions that generate therapeutic species prompting effective therapeutic outcomes with minimal side effects. Over the past few years, this approach has seen widespread applications in disease management. This review attempts to critically assess and summarize the recent advances in the use of biocatalytic cascade reactions for the management of diseases. Emphasis is placed on the design of cascade catalytic systems of high efficiency and selectivity and the implementation of specific cascade processes that respond to the endogenous substances produced in the pathological processes. The various types of biocatalytic cascade reactions are outlined according to the timeline of the catalytic steps through a series of reported examples. The challenges and outlook in the field are also discussed to encourage the further development of personalized treatments based on biocatalytic cascade reactions.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Peng-Hang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Wang X, He Q, Wang L, Li C, Zhang W, Rong Z, Yin Q, Zhao Y. Acid responsive molybdenum (Mo)-based nanoparticles inhibit the cGAS-STING signaling pathway for sepsis therapy. Biomater Sci 2025. [PMID: 40130269 DOI: 10.1039/d5bm00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sepsis, an inflammatory disease caused by bacterial infection, has become a global public health crisis. Excessive reactive oxygen species (ROS) in sepsis patients act as the primary trigger for activating intracellular immune pathways, ultimately leading to multiple organ dysfunction syndrome. The overexpression of acidic metabolites and ROS, characteristic of the infected microenvironment, significantly impedes sepsis treatment. Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, plays a key role in inflammatory diseases. The detrimental effects of STING in sepsis have been well documented. Here, we developed a pH-responsive nanotherapy platform (DMSNM@C-178/PAA) that combines ROS scavenging with cGAS-STING pathway inhibition for anti-inflammatory therapy. This nanoparticle is selectively released in the infected microenvironment, where reduced molybdenum-based polyoxometalates (Mo-POM) efficiently neutralize toxic ROS in vivo, while C-178 selectively inhibits the cGAS-STING pathway, thereby attenuating the inflammatory response and preventing organ deterioration. In vitro and in vivo studies demonstrate that DMSNM@C-178/PAA treats sepsis by eliminating excess ROS and modulating autoimmune dysfunction via the cGAS-STING pathway, providing a novel therapeutic strategy for sepsis management.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qingbin He
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Lining Wang
- Department of Oncology No.1, Rushan People's Hospital, Rushan 264500, Shandong, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wenyu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhonghou Rong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
7
|
Lu X, Chen Y, Mo Y, Zeng Q, Cen S, Zeng L, Hu H, Li A, Gao X, Zhang B. Atomically dispersed copper(I) on tungstosilicic acid for catalytic protection against cisplatin-induced hearing loss. J Mater Chem B 2025; 13:3540-3552. [PMID: 39991827 DOI: 10.1039/d4tb02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The employment of platinum-based drugs for cancer chemotherapy, which might yield oxidative stress, is regarded as one main factor leading to hearing loss. The exact molecular mechanisms for cisplatin-induced hearing loss require further clarification, thus limiting the development of FDA-approved therapies. Herein, we mimicked the molecular structure of natural antioxidative enzymes to fabricate a four-oxygen-coordinating copper single-atom nanozyme (Cu SAN) exhibiting good superoxide dismutase and catalase activity, to alleviate the oxidative stress induced by platinum-based drugs. Notably, Cu SAN exhibited profound protective effects against cisplatin-induced hair cell damage with only 15 ng mL-1 of Cu species, successfully reversing cisplatin-induced hearing loss via oral administration. Due to its oxidation resistance, pretreatment with Cu SAN significantly improved cell viability and reduced ROS accumulation in cisplatin-triggered hair cell damage in HEI-OC1 cells and cochlear explants. Our results first demonstrated that cisplatin treatment induced cuproptosis in hair cells by modulating copper ion homeostasis. Further investigation revealed that Cu SAN nanozyme effectively alleviated hair cell cuproptosis by regulating FDX1 and reducing aggregated lipoacylated protein. This research underscores the promising potential of four-oxygen-coordinating Cu nanomaterials as a therapeutic approach to combat hearing loss, providing a new strategy for auditory protection.
Collapse
Affiliation(s)
- Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Yanmei Mo
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Qingdong Zeng
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Shaoqin Cen
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Li Zeng
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Hongyi Hu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Bin Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| |
Collapse
|
8
|
Dong K, Lin W, Zhu T, Sun S, Zhang C, Xu C, Cao F, Chen X. NIR-Actuated Botanicals/Nanozymes Nanofibrous Membranes for Antibiotic-Free Triple-Synergistic Therapy Against Polymicrobial Wound Infections. Adv Healthc Mater 2025; 14:e2401657. [PMID: 39402765 DOI: 10.1002/adhm.202401657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/28/2024] [Indexed: 03/27/2025]
Abstract
Polymicrobial wound infection represents a significant contributor to infectious disease-related morbidity and mortality globally. Traditionally, the management of such infection relies heavily on high doses of antibiotics, often resulting in systemic side effects and exacerbating antibiotic resistance. Consequently, there is an urgent need to develop a safe and effective platform for antibiotic-free treatment of polymicrobial wound infections. In this study, a near-infrared (NIR) light-actuated nanofibrous membrane incorporating botanicals and nanozymes is presented for antibiotic-free triple-synergistic therapy against polymicrobial wound infections. The membrane integrates berberine hydrochloride (BBH)-loaded hollow zinc-doped carbon nanocubes into polyvinyl alcohol (PVA) nanofibrous membranes. Upon low-intensity 808 nm NIR laser irradiation (0.3 W cm-2), the membrane achieved a controlled release of BBH and enhanced peroxidase-like (POD-like) enzyme activity. This NIR light-actuated botanical/photothermal therapy (PTT)/chemodynamic therapy (CDT) system demonstrated high efficacy in eradicating methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa both in vitro and in vivo. Furthermore, it mitigated inflammation and promoted wound healing in polymicrobial infection wounds, highlighting its potential as a promising alternative to antibiotic-based therapies.
Collapse
Affiliation(s)
- Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wenbo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Tianyu Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Chenhao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
9
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2025; 14:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
10
|
Huang J, Jia X, Wang Y, Qiao Y, Jiang X. Heterojunction-Mediated Co-Adjustment of Band Structure and Valence State for Achieving Selective Regulation of Semiconductor Nanozymes. Adv Healthc Mater 2025; 14:e2400401. [PMID: 38609000 DOI: 10.1002/adhm.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Improving reaction selectivity is the next target for nanozymes to mimic natural enzymes. Currently, the majority of strategies in this field are exclusively applicable to metal-organic-based or organic-based nanozymes, while limited in regulating metal oxide-based semiconductor nanozymes. Herein, taking semiconductor Co3O4 as an example, a heterojunction strategy to precisely regulate nanozyme selectivity by simultaneously regulating three vital factors including band structure, metal valence state, and oxygen vacancy content is proposed. After introducing MnO2 to form Z-scheme heterojunctions with Co3O4 nanoparticles, the catalase (CAT)-like and peroxidase (POD)-like activities of Co3O4 can be precisely regulated since the introduction of MnO2 affects the position of the conduction bands, preserves Co in a higher oxidation state (Co3+), and increases oxygen vacancy content, enabling Co3O4-MnO2 exhibit improved CAT-like activity and reduced POD-like activity. This study proposes a strategy for improving reaction selectivity of Co3O4, which contributes to the development of metal oxide-based semiconductor nanozymes.
Collapse
Affiliation(s)
- Jiahao Huang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Qiao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Xiue Jiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Dai H, Han A, Wang X, Zhu P, Wang D, Wang Y. NIR-triggering cobalt single-atom enzyme switches off-to-on for boosting the interactive dynamic effects of multimodal phototherapy. Nat Commun 2025; 16:2058. [PMID: 40021633 PMCID: PMC11871330 DOI: 10.1038/s41467-025-57188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Noninvasive phototherapy with functional preservation is considered to be a promising cancer therapeutic method. However, the clinical application of tumor phototherapy is severely restrained by the lack of appropriate multimodal phototherapy agents exhibiting an ideal tissue penetration depth to maximize the antitumor efficiency as well as to maintain important tissue functions. Herein, an innovative near-infrared ray (NIR)-triggered photodynamic-photocatalytic-photothermal therapy (PDT-PCT-PTT) agent based on an atomically dispersed cobalt single-atom enzyme (Co-SAE) anchored on hollow N-doped carbon sphere (HNCS) has been strategically developed. Reactive oxygen species (ROS) are highly activated and amplified through both the photogenerated electrons and the photothermal conversion induced by NIR irradiation, as systematically demonstrated by the experimental and density functional theory (DFT) calculation results. Mild hyperthermia is eventually achieved through apoptosis and ferroptosis caused by ROS, significantly boosting the interaction of ROS dynamic effects and thermodynamic effects in the tumor microenvironment (TME). More importantly, Co-SAEs/HNCS not only causes multimodal damage through limited TME products but also preserves important organ functions by the induction of mild local hyperthermia. This work expands the biomedical application field of SAEs and presents an innovative all-in-one, multimodal concept for the noninvasive treatment of head and neck cancer.
Collapse
Affiliation(s)
- Hao Dai
- Department of General Dentistry II/Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory Peking University School and Hospital, Beijing, China
| | - Ali Han
- Department of Chemistry, Tsinghua University, Beijing, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, China.
| | - Xijun Wang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yuguang Wang
- Department of General Dentistry II/Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory Peking University School and Hospital, Beijing, China.
| |
Collapse
|
12
|
Li H, Li Z, Cai Q, Jie G. Oxygen Activation Biocatalytic Precipitation Strategy Based on a Bimetallic Single-Atom Catalyst for Photoelectrochemical Biosensing. Anal Chem 2025; 97:3136-3144. [PMID: 39883567 DOI: 10.1021/acs.analchem.4c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The traditional biocatalytic precipitation (BCP) strategy often required the participation of H2O2, but H2O2 had the problem of self-decomposition, which prevented its application in quantitative analysis. This work first found that a bimetallic single-atom catalyst (Co/Zn-N-C SAC) could effectively activate dissolved O2 to produce reactive oxygen species (ROS) due to its superior oxidase (OXD)-like activity. Experimental investigations demonstrated that Co/Zn-N-C SAC preferred to produce highly active hydroxyl radicals (•OH), which oxidized 3-amino-9-ethyl carbazole (AEC) to produce reddish-brown insoluble precipitates. Based on this property, a unique oxygen-activated photoelectrochemical (PEC) biosensor was developed for chloramphenicol (CAP) detection. Cesium platinum bromide nanocrystals (Cs2PtBr6 NCs) were a new type of halide perovskite with lead-free, narrow band gaps, and water-oxygen resistance. Cs2PtBr6 NCs showed excellent cathodal PEC performance without an exogenous coreactant and were first used for PEC detection. As a "proof-of-concept application", Co/Zn-N-C SAC was introduced onto the surface of Cs2PtBr6 NCs by using the CAP dual-aptamer sandwich strategy. Co/Zn-N-C SAC activated dissolved O2 to produce ROS, which oxidized AEC to produce precipitates, quenching the cathodal PEC signal of Cs2PtBr6 NCs for CAP detection. In summary, this work first used SAC to overcome the restriction of the traditional enzymatic BCP strategy requiring H2O2, improved the stability and accuracy of quantitative analysis, and also broadened the application range of coreactant-free perovskite-type PEC biosensors.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhikang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
13
|
Li H, Cai Q, Bai M, Jie G. Novel Dual-Potential Color-Resolved Luminophore Ru(bpy) 32+-Doped CdSe QDs for Bipolar Electrode Electrochemiluminescence Biosensing. Anal Chem 2025; 97:953-961. [PMID: 39719055 DOI: 10.1021/acs.analchem.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The classical electrochemiluminescence (ECL) reagent Ru(bpy)32+ was first doped into CdSe QDs to prepare novel dual-potential color-resolved luminophore Ru-CdSe QDs. Ru-CdSe QDs emitted a strong red ECL signal at a positive potential with coreactant TPrA and a strong green ECL signal at a negative potential with coreactant K2S2O8. As a proof-of-concept application, this work introduced Ru-CdSe QDs into a dual-channel closed bipolar electrode (CBPE) system to construct an ECL biosensor for simultaneous detection of chloramphenicol (CAP) and kanamycin (KAN). Ru-CdSe QDs were dropped on BPE holes A and B for ECL emission. Cobalt single-atom catalysts (Co-N-C SACs) had superior electric double layer (EDL) performance and conductivity. It could greatly promote the electron transfer of the CBPE system and realize ECL signal amplification. Based on this characteristic, Co-N-C SACs were introduced into BPE hole C and driving electrode hole D, respectively, using the CAP and KAN split dual-aptamer sandwich strategy. During positive potential scanning, the polarity of BPE hole A was anode, and Ru-CdSe QDs emitted a red ECL signal. With the increase of CAP concentration, abundant Co-N-C SACs were introduced to the electrode surface. The positive potential ECL signal was increased for CAP detection. During negative potential scanning, the polarity of the BPE hole B was cathode, and Ru-CdSe QDs emitted a green ECL signal for KAN detection. Finally, a zero-background spatial-potential color-resolved CBPE-ECL biosensor was developed for dual-mode detection of CAP and KAN. This work explored a novel ECL luminophore to construct a CBPE-ECL sensor, which greatly facilitated the development of the ECL assay.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Minghao Bai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
14
|
Zhu CN, Chen X, Xu YQ, Wang F, Zheng DY, Liu C, Zhang XH, Yi Y, Cheng DB. Advanced Preparation Methods and Biomedical Applications of Single-Atom Nanozymes. ACS Biomater Sci Eng 2024; 10:7352-7371. [PMID: 39535074 DOI: 10.1021/acsbiomaterials.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles with inherent defects can harness biomolecules to catalyze reactions within living organisms, thereby accelerating the advancement of multifunctional diagnostic and therapeutic technologies. In the quest for superior catalytic efficiency and selectivity, atomically dispersed single-atom nanozymes (SANzymes) have garnered significant interest recently. This review concentrates on the development of SANzymes, addressing potential challenges such as fabrication strategies, surface engineering, and structural characteristics. Notably, we elucidate the catalytic mechanisms behind some key reactions to facilitate the biomedical application of SANzymes. The diverse biomedical uses of SANzymes including in cancer therapy, wound disinfection, biosensing, and oxidative stress cytoprotection are comprehensively summarized, revealing the link between material structure and catalytic performance. Lastly, we explore the future prospects of SANzymes in biomedical fields.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xin Chen
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fei Wang
- Department of Biology and the School of Natural Sciences, Wentworth College, University of York, Wentworth Way, Heslington, York YO10 5DD, England
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
15
|
Tagaras N, Song H, Sahar S, Tong W, Mao Z, Buerki‐Thurnherr T. Safety Landscape of Therapeutic Nanozymes and Future Research Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407816. [PMID: 39445544 PMCID: PMC11633477 DOI: 10.1002/advs.202407816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress and inflammation are at the root of a multitude of diseases. Treatment of these conditions is often necessary but current standard therapies to fight excessive reactive oxygen species (ROS) and inflammation are often ineffective or complicated by substantial safety concerns. Nanozymes are emerging nanomaterials with intrinsic enzyme-like properties that hold great promise for effective cancer treatment, bacterial elimination, and anti-inflammatory/anti-oxidant therapy. While there is rapid progress in tailoring their catalytic activities as evidenced by the recent integration of single-atom catalysts (SACs) to create next-generation nanozymes with superior activity, selectivity, and stability, a better understanding and tuning of their safety profile is imperative for successful clinical translation. This review outlines the current applied safety assessment approaches and provides a comprehensive summary of the safety knowledge of therapeutic nanozymes. Overall, nanozymes so far show good in vitro and in vivo biocompatibility despite considerable differences in their composition and enzymatic activities. However, current safety investigations mostly cover a limited set of basic toxicological endpoints, which do not allow for a thorough and deep assessment. Ultimately, remaining research gaps that should be carefully addressed in future studies are highlighted, to optimize the safety profile of therapeutic nanozymes early in their pre-clinical development.
Collapse
Affiliation(s)
- Nikolaos Tagaras
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Haihan Song
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Shafaq Sahar
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Zhengwei Mao
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
16
|
Huo Q, Chen C, Liao J, Zeng Q, Nie G, Zhang B. Application of self-assembly palladium single-atom nanozyme over polyoxometalates in protection against neomycin-induced hearing loss by inhibiting ferroptosis. Biomaterials 2024; 311:122665. [PMID: 38875882 DOI: 10.1016/j.biomaterials.2024.122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Deafness mainly results from irreversible impairment of hair cells (HCs), which may relate to oxidative stress, yet therapeutical solutions is lacked due to limited understanding on the exact molecular mechanism. Herein, mimicking the molecular structure of natural enzymes, a palladium (Pd) single-atom nanozyme (SAN) was fabricated, exhibiting superoxide dismutase and catalase activity, transforming reactive oxygen species (ROS) into O2 and H2O. We examined the involvement of Pd in neomycin-induced HCs loss in vitro and in vivo over zebrafish. Our results revealed that neomycin treatment induced apoptosis in HCs, resulting in substantial of ROS elevation in HEI-OC1 cells, decrease in mitochondrial membrane potential, and increase in lipid peroxidation and iron accumulation, ultimately leading to iron-mediated cell death. Noteworthy, Pd SAN treatment exhibited significant protective effects against HCs damage and impaired HCs function in zebrafish by inhibiting ferroptosis. Furthermore, the application of iron death inducer RSL3 resulted in notable exacerbation of neomycin-induced harm, which was mitigated by Pd administration. Our investigation demonstrates that antioxidants is promising for inhibiting ferroptosis and repairing of mitochondrial function in HCs and the enzyme-mimic SAN provides a good strategy for designing drugs alleviating neomycin-induced ototoxicity.
Collapse
Affiliation(s)
- Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Chen Chen
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Qingdong Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
17
|
Bai M, Wang T, Xing Z, Huang H, Wu X, Adeli M, Wang M, Han X, Ye L, Cheng C. Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects. Nat Commun 2024; 15:9592. [PMID: 39505847 PMCID: PMC11541594 DOI: 10.1038/s41467-024-53824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The clinical treatments of maxillofacial bone defects pose significant challenges due to complex microenvironments, including severe inflammation, high levels of reactive oxygen species (ROS), and potential bacterial infection. Herein, we propose the de novo design of an efficient, versatile, and precise electron-donable heterojunction with synergetic Ru-Cu pair sites (Ru-Cu/EDHJ) for superior biocatalytic regeneration of inflammatory mandible defects and pH-controlled antibacterial therapies. Our studies demonstrate that the unique structure of Ru-Cu/EDHJ enhances the electron density of Ru atoms and optimizes the binding strength of oxygen species, thus improving enzyme-like catalytic performance. Strikingly, this biocompatible Ru-Cu/EDHJ can efficiently switch between ROS scavenging in neutral media and ROS generation in acidic media, thus simultaneously exhibiting superior repair functions and bioadaptive antibacterial properties in treating mandible defects in male mice. We believe synthesizing such biocatalytic heterojunctions with exceptional enzyme-like capabilities will offer a promising pathway for engineering ROS biocatalytic materials to treat trauma, tumors, or infection-caused maxillofacial bone defects.
Collapse
Grants
- 52161145402, 52173133, 52373148 National Natural Science Foundation of China (National Science Foundation of China)
- 82470962, 82001020 National Natural Science Foundation of China (National Science Foundation of China)
- U21A20368 National Natural Science Foundation of China (National Science Foundation of China)
- sklpme2021-4-02 State Key Laboratory of Polymer Materials Engineering
- National Key R&D Program of China (2021YFB3800700),Sichuan Science and Technology Program (2023YFH0008),the 1·3·5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYJC21047).
- Sichuan Science and Technology Program (2024NSFSC0672, 2021YFG0238),China Postdoctoral Science Foundation (2019M663525), Research Funding from West China School/Hospital of Stomatology Sichuan University (RCDWJS2023-16), and Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-02-202206).
- National Key R&D Program of China (2023YFC3605600), Sichuan Science and Technology Program (2023YFS0019), Med-X Innovation Programme of Med-X Center for Materials, Sichuan University (MCMGD202301)
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoju Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chong Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024; 60:12964-12976. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
19
|
Zhang Y, Zhang C, Qian W, Lei F, Chen Z, Wu X, Lin Y, Wang F. Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications. Biosens Bioelectron 2024; 263:116593. [PMID: 39059178 DOI: 10.1016/j.bios.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nanozymes have garnered considerable research interest for their unique capacity to bridge nanotechnology and biology. Current studies predominantly concentrate on exploring nanozymes with diverse catalytic activities and their potential applications across various disciplines. Among them, nanoscale metal-organic frameworks (MOFs) are promising nanomaterials for constructing nanozymes. In this review, we firstly introduce the general construction strategies for MOF-based nanozymes. In addition, we also classify the MOF-based nanozymes in detail based on their catalytic performance. Thirdly, the recent research progress of MOF-based nanozymes in the field of biosensing, cancer therapy, antibacterial infection, and antioxidation are also comprehensively reviewed. Finally, we discuss the current challenges and future perspectives of MOF-based nanozymes, with the aim of assisting in their construction and maximizing their potential in bioapplications. It is hoped that we could provide scientists in materials science and biomedical research with valuable and comprehensive information, fostering advancements in interdisciplinary fields.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Youhui Lin
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
20
|
Xiao J, Song Z, Liu T, Guo Z, Liu X, Jiang H, Wang X. Cell Membrane Engineered Polypeptide Nanonets Mimicking Macrophage Aggregates for Enhanced Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401845. [PMID: 38966869 DOI: 10.1002/smll.202401845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Drug-resistant bacterial infections and their lipopolysaccharide-related inflammatory complications continue to pose significant challenges in traditional treatments. Inspired by the rapid initiation of resident macrophages to form aggregates for efficient antibacterial action, this study proposes a multifunctional and enhanced antibacterial strategy through the construction of novel biomimetic cell membrane polypeptide nanonets (R-DPB-TA-Ce). The design involves the fusion of end-terminal lipidated polypeptides containing side-chain cationic boronic acid groups (DNPLBA) with cell membrane intercalation engineering (R-DPB), followed by coordination with the tannic acid-cerium complex (TA-Ce) to assemble into a biomimetic nanonet through boronic acid-polyphenol-metal ion interactions. In addition to the ability of RAW 264.7 macrophages cell membrane components' (R) ability to neutralize lipopolysaccharide (LPS), R-DPB-TA-Ce demonstrated enhanced capture of bacteria and its LPS, leveraging nanoconfinement-enhanced multiple interactions based on the boronic acid-polyphenol nanonets skeleton combined with polysaccharide. Utilizing these advantages, indocyanine green (ICG) is further employed as a model drug for delivery, showcasing the exceptional treatment effect of R-DPB-TA-Ce as a new biomimetic assembled drug delivery system in antibacterial, anti-inflammatory, and wound healing promotion. Thus, this strategy of mimicking macrophage aggregates is anticipated to be further applicable to various types of cell membrane engineering for enhanced antibacterial treatment.
Collapse
Affiliation(s)
- Jiang Xiao
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhongquan Song
- Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Tengfei Liu
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Zengchao Guo
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Xiaohui Liu
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hui Jiang
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Xuemei Wang
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
21
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
22
|
Wen D, Feng J, Deng R, Li K, Zhang H. Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer. Nat Commun 2024; 15:9359. [PMID: 39472589 PMCID: PMC11522694 DOI: 10.1038/s41467-024-53488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e-) and hole (h+) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO2-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
23
|
Goel H, Rana I, Jain K, Ranjan KR, Mishra V. Atomically dispersed single-atom catalysts (SACs) and enzymes (SAzymes): synthesis and application in Alzheimer's disease detection. J Mater Chem B 2024; 12:10466-10489. [PMID: 39291791 DOI: 10.1039/d4tb01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Conventional diagnostic methods, such as neuroimaging and cerebrospinal fluid analysis, typically detect AD at advanced stages, limiting the efficacy of therapeutic interventions. Early detection is crucial for improving patient condition by enabling timely administration of treatments that may decelerate disease progression. In this context, single-atom catalysts (SACs) and single-atom nanozymes (SAzymes) have emerged as promising tools offering highly sensitive and selective detection of Alzheimer's biomarkers. SACs, consisting of isolated metal atoms on a support surface, deliver unparalleled atomic efficiency, increased reactivity, and reduced operational costs, although certain challenges in terms of stability, aggregation, and other factors persist. The advent of SAzymes, which integrate SACs with natural metalloprotease catalysts, has further advanced this field by enabling controlled electronic exchange, synergistic productivity, and enhanced biosafety. Particularly, M-N-C SACs with M-Nx active sites mimic the selectivity and sensitivity of natural metalloenzymes, providing a robust platform for early detection of AD. This review encompasses the advancements in SACs and SAzymes, highlighting their pivotal role in bridging the gap between conventional enzymes and nanozyme and offering enhanced catalytic efficiency, controlled electron transfer, and improved biosafety for Alzheimer's detection.
Collapse
Affiliation(s)
- Himanshi Goel
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | - Ishika Rana
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | - Kajal Jain
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | | | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP, India.
| |
Collapse
|
24
|
Long J, Liang X, Ao Z, Tang X, Li C, Yan K, Yu X, Wan Y, Li Y, Li C, Zhou M. Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater 2024; 188:27-47. [PMID: 39265673 DOI: 10.1016/j.actbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel disease (IBD) manifests as inflammation in the colon, rectum, and ileum, presenting a global health concern with increasing prevalence. Therefore, effective anti-inflammatory therapy stands as a promising strategy for the prevention and management of IBD. However, conventional nano drug delivery systems (NDDSs) for IBD face many challenges in targeting the intestine, such as physiological and pathological barriers, genetic variants, disease severity, and nutritional status, which often result in nonspecific tissue distribution and uncontrolled drug release. To address these limitations, stimulus-responsive NDDSs have received considerable attention in recent years due to their advantages in providing controlled release and enhanced targeting. This review provides an overview of the pathophysiological mechanisms underlying IBD and summarizes recent advancements in microenvironmental stimulus-responsive nanocarriers for IBD therapy. These carriers utilize physicochemical stimuli such as pH, reactive oxygen species, enzymes, and redox substances to deliver drugs for IBD treatment. Additionally, pivotal challenges in the future development and clinical translation of stimulus-responsive NDDSs are emphasized. By offering insights into the development and optimization of stimulus-responsive drug delivery nanoplatforms, this review aims to facilitate their application in treating IBD. STATEMENT OF SIGNIFICANCE: This review highlights recent advancements in stimulus-responsive nano drug delivery systems (NDDSs) for the treatment of inflammatory bowel disease (IBD). These innovative nanoplatforms respond to specific environmental triggers, such as pH reactive oxygen species, enzymes, and redox substances, to release drugs directly at the inflammation site. By summarizing the latest research, our work underscores the potential of these technologies to improve drug targeting and efficacy, offering new directions for IBD therapy. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective treatments for IBD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiang Long
- Department of Cardiology, Xuyong County People's Hospital, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao Tang
- College of Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Science and Technology Department, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
25
|
Zeng Q, Zhong H, Liao J, Huo Q, Miao B, Zeng L, Zhang B, Nie G. Antioxidant activities of metal single-atom nanozymes in biomedicine. Biomater Sci 2024; 12:5150-5163. [PMID: 39254215 DOI: 10.1039/d4bm00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activity that can mimic the catalytic properties of natural enzymes. The small size, high catalytic activity, and strong stability of nanozymes compared to those of natural enzymes allow them to not only exist in a wide temperature and pH range but also maintain stability in complex environments. Recently developed single-atom nanozymes have metal active sites composed of a single metal atom fixed to a carrier. These metal atoms can act as independent catalytically active centers. Metal single-atom nanozymes have a homogeneous single-atom structure and a suitable coordination environment for stronger catalytic activity and specificity than traditional nanozymes. The antioxidant metal single-atom nanozymes with the ability of removing reactive oxygen species (ROS) can simulate superoxidase dismutase, catalase, and glutathione peroxidase to show different effects in vivo. Furthermore, due to the similar structure of antioxidant enzymes, a metal single-atom nanozyme often has multiple antioxidant activities, and this synergistic effect can more efficiently remove ROS related to oxidative stress. The versatility of single-atom nanozymes encompasses a broad spectrum of biomedical applications such as anti-oxidation, anti-infection, immunomodulatory, biosensing, bioimaging, and tumor therapy applications. Herein, the nervous, circulatory, digestive, motor, immune, and sensory systems are considered in order to demonstrate the role of metal single-atom nanozymes in biomedical antioxidants.
Collapse
Affiliation(s)
- Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Huihai Zhong
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Beiping Miao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| |
Collapse
|
26
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
27
|
Lin Y, Wang Y, Zhang Q, Gao R, Chang F, Li B, Huang K, Cheng N, He X. Single-Atom Ce-N-C Nanozyme Ameliorates Type 2 Diabetes Mellitus by Improving Glucose Metabolism Disorders and Reducing Oxidative Stress. Biomolecules 2024; 14:1193. [PMID: 39334959 PMCID: PMC11430424 DOI: 10.3390/biom14091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) as a chronic metabolic disease has become a global public health problem. Insulin resistance (IR) is the main pathogenesis of T2DM. Oxidative stress refers to an imbalance between free radical production and the antioxidant system, causing insulin resistance and contributing to the development of T2DM via several molecular mechanisms. Besides, the reduction in hepatic glycogen synthesis also leads to a decrease in peripheral insulin sensitivity. Thus, reducing oxidative stress and promoting glycogen synthesis are both targets for improving insulin resistance and treating T2DM. The current study aims to investigate the pharmacological effects of single-atom Ce-N-C nanozyme (SACe-N-C) on the improvement of insulin resistance and to elucidate its underlying mechanisms using HFD/STZ-induced C57BL/6J mice and insulin-resistant HepG2 cells. The results indicate that SACe-N-C significantly improves hepatic glycogen synthesis and reduces oxidative stress, as well as pancreatic and liver injury. Specifically, compared to the T2DM model group, fasting blood glucose decreased by 29%, hepatic glycogen synthesis increased by 17.13%, and insulin secretion increased by 18.87%. The sod and GPx in the liver increased by 17.80% and 25.28%, respectively. In terms of mechanism, SACe-N-C modulated glycogen synthesis through the PI3K/AKT/GSK3β signaling pathway and activated the Keap1/Nrf2 pathway to alleviate oxidative stress. Collectively, this study suggests that SACe-N-C has the potential to treat T2DM.
Collapse
Affiliation(s)
- Yitong Lin
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Chang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boran Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of China, Beijing 100083, China
| | - Nan Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of China, Beijing 100083, China
| |
Collapse
|
28
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
29
|
Chen Y, Wang Y, Shi J, Guo C, Qi L, Zhao J, Luo S, Zhou H, Lu X, Fan Q. Highly Effective Pyroelectric Catalysis for Simultaneous Tumor-Targeted Dynamic Therapy and Gentle Photothermal Therapy by Oxygen-Vacancy-Rich CeO 2-BaTiO 3 Nanorods. Adv Healthc Mater 2024; 13:e2400781. [PMID: 38738822 DOI: 10.1002/adhm.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Pyroelectric nanostructures can effectively generate temperature-mediated reactive oxygen species (ROS) through the pyroelectric effect, providing promise for treating hypoxic tumors; and therefore, the synergistic application of photothermal therapy (PTT) and pyroelectric dynamic therapy (PEDT) presents an intriguing approach for cancer therapy. However, this method still faces challenges in improving pyroelectric catalysis and achieving precise tumor localization. In this study, a nano-heterojunction based on CeO2-BaTiO3 nanorods (IR1061@PCBNR) is reported, which exhibits highly effective pyroelectric catalysis for simultaneous tumor-targeted dynamic therapy and gentle photothermal therapy through the utilization of the rich oxygen vacancies. The oxygen vacancies create active sites that facilitate the migration of pyroelectrically-induced charge carriers, improving charge separation and ROS generation. IR1061@PCBNR also demonstrates high tumor penetration; while, minimizing damage to normal cells. This precise nanomedicine strategy holds great potential for advancing dynamic cancer therapies by overcoming the limitations of conventional approaches.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Yushu Wang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Jingyi Shi
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Chunmei Guo
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Lina Qi
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Jianhang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Sihan Luo
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Hui Zhou
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, 450001, China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Post & Telecommunications, Nanjing, 210021, China
| |
Collapse
|
30
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
31
|
Zhu B, Zhao Z, Cao S, Sun Y, Wang L, Huang S, Cheng C, Ma L, Qiu L. Highly spontaneous spin polarization engineering of single-atom artificial antioxidases towards efficient ROS elimination and tissue regeneration. NANOSCALE 2024; 16:15946-15959. [PMID: 39037714 DOI: 10.1039/d4nr02104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The creation of atomic catalytic centers has emerged as a conducive path to design efficient nanobiocatalysts to serve as artificial antioxidases (AAOs) that can mimic the function of natural antioxidases to scavenge noxious reactive oxygen species (ROS) for protecting stem cells and promoting tissue regeneration. However, the fundamental mechanisms of diverse single-atom sites for ROS biocatalysis remain ambiguous. Herein, we show that highly spontaneous spin polarization mediates the hitherto unclear origin of H2O2-elimination activities in engineering ferromagnetic element (Fe, Co, Ni)-based AAOs with atomic centers. The experimental and theoretical results reveal that Fe-AAO exhibits the best catalase-like kinetics and turnover number, while Co-AAO shows the highest glutathione peroxidase-like activity and turnover number. Furthermore, our investigations prove that both Fe-AAO and Co-AAO can effectively secure the functions of stem cells in high ROS microenvironments and promote the repair of injured tendon tissue by scavenging H2O2 and other ROS. We believe that the proposed highly spontaneous spin polarization engineering of ferromagnetic element-based AAOs will provide essential guidance and practical opportunities for developing efficient AAOs for eliminating ROS, protecting stem cells, and accelerating tissue regeneration.
Collapse
Affiliation(s)
- Bihui Zhu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yimin Sun
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liyun Wang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Songya Huang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Mu J, Ren M, Li N, Zhao T, Liu ZY, Ma J, Lei S, Wang J, Yang EC, Wang Y. Bimetal loaded graphitic carbon nitride with synergistic enhanced peroxidase-like activity for colorimetric detection of p-phenylenediamine. Phys Chem Chem Phys 2024; 26:21677-21687. [PMID: 39091182 DOI: 10.1039/d4cp01606h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, great progress has been made on the study of nanozymes with enzyme-like properties. Here, bimetallic Fe and Ni nanoclusters were anchored on the nanosheets of nitrogen-rich layered graphitic carbon nitride by one-step pyrolysis at high temperature (Fe/Ni-CN). The loading content of Fe and Ni on Fe/Ni-CN is as high as 8.0%, and Fe/Ni-CN has a high specific surface area of 121.86 m2 g-1. The Fe/Ni-CN can effectively oxidize 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, and exhibits efficient peroxidase-like activity, leading to a 17.2-fold increase compared to pure graphitic carbon nitride (CN). Similar to the natural horseradish peroxidase (HRP), the Fe/Ni-CN nanozyme follows catalytic kinetics. The Michaelis-Menten constant (Km) value of the Fe/Ni-CN nanozyme for TMB is about 8.3-fold lower than that for HRP, which means that the Fe/Ni-CN nanozyme has better affinity for TMB. In addition, the catalytic mechanism was investigated by combination of free radical quenching experiments and density-functional theory (DFT) calculations. The results show that the high peroxidase-like activity is due to the easy adsorption of H2O2 after bimetal loading, which is conducive to the production of hydroxyl radicals. Based on the extraordinary peroxidase-like activity, the colorimetric detection of p-phenylenediamine (PPD) was constructed with a wide linear range of 0.2-30 μM and a low detection limit of 0.02 μM. The sensor system has been successfully applied to the detection of residual PPD in real dyed hair samples. The results show that the colorimetric method is sensitive, highly selective and accurate. This study provides a new idea for the efficient enhancement of nanozyme activity and effective detection of PPD by a bimetallic synergistic strategy.
Collapse
Affiliation(s)
- Jianshuai Mu
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
- Tianjin Saina Enzyme Technology Co., Ltd, Tianjin 300192, P. R. China
| | - Mengjiao Ren
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Ning Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Tengyi Zhao
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Zhong-Yi Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Jingwen Ma
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Shulai Lei
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Jiajun Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - En-Cui Yang
- Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
33
|
Han Q, Huang D, Li S, Xia B, Wang X. Multifunctional nanozymes for disease diagnosis and therapy. Biomed J 2024; 47:100699. [PMID: 38278414 PMCID: PMC11344012 DOI: 10.1016/j.bj.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The development of nanotechnology has brought about groundbreaking advancements in diseases' diagnostics and therapeutics. Among them, multifunctional nanomaterials with enzyme-like activities (i.e., nanozymes) featured with high stability, large surface area for bioconjugation, and easy storage, offer unprecedented opportunities for disease diagnostics and treatment. Recent years have witnessed the great progress of nanozyme-based theranostics. To highlight these achievements, this review first introduces the recent advancements on nanozymes in biosensing and diagnostics. Then, it summarizes the applications of nanozymes in therapeutics including anti-tumor and antibacterial treatment, anti-inflammatory treatment, and other diseases treatment. In addition, several targeted strategies to improve the therapeutic efficacy of nanozyme are discussed. Finally, the opportunities and challenges in the field of diagnosis and therapy are summarized.
Collapse
Affiliation(s)
- Qingzhi Han
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Di Huang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Sijie Li
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Bing Xia
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| | - Xiaoyu Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
34
|
Xin Q, Zhang S, Sun S, Song N, Zhe Y, Tian F, Zhang S, Guo M, Zhang XD, Zhang J, Wang H, Zhang R. Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36047-36062. [PMID: 38978477 DOI: 10.1021/acsami.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
35
|
Li L, Xie Y, Wang J, Sun Q, Gao M, Li C. Biofilm microenvironment-activated multimodal therapy nanoplatform for effective anti-bacterial treatment and wound healing. Acta Biomater 2024; 183:221-234. [PMID: 38849021 DOI: 10.1016/j.actbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Antimicrobial drug development faces challenges from bacterial resistance, biofilms, and excessive inflammation. Here, we design an intelligent nanoplatform utilizing mesoporous silica nanoparticles doped with copper ions for loading copper sulfide (DM/Cu2+-CuS). The mesoporous silica doped with tetrasulfide bonds responds to the biofilm microenvironment (BME), releasing Cu2+ions, CuS along with hydrogen sulfide (H2S) gas. The release of hydrogen sulfide within 72 h reached 793.5 µM, significantly higher than that observed with conventional small molecule donors. H2S induces macrophages polarization towards the M2 phenotype, reducing inflammation and synergistically accelerating endothelial cell proliferation and migration with Cu2+ions. In addition, H2S disrupts extracellular DNA within biofilms, synergistically photothermal enhanced peroxidase-like activity of CuS to effectively eradicate biofilms. Remarkably, DM-mediated consumption of endogenous glutathione enhances the anti-biofilm activity of H2S and improves oxygen species (ROS) destruction efficiency. The combination of photothermal therapy (PTT), chemodynamic therapy (CDT), and gas treatment achieves sterilization rates of 99.3 % and 99.6 % against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively, in vitro under 808 nm laser irradiation. Additionally, in vivo experiments demonstrate a significant biosafety and antibacterial potential. In summary, the H2S donor developed in this study exhibits enhanced biocompatibility and controlled release properties. By integrating BME-responsive gas therapy with antibacterial ions, PTT and CDT, a synergistic multimodal strategy is proposed to offer new therapeutic approaches for wound healing. STATEMENT OF SIGNIFICANCE: The advanced DMOS/Cu2+-CuS (DMCC) multimodal therapeutic nanoplatform has been developed for the treatment of drug-resistant bacterial wound infections and has exhibited enhanced therapeutic efficacy through the synergistic effects of photothermal therapy, chemodynamic therapy, Cu2+ions, and H2S. The DMCC exhibited exceptional biocompatibility and could release CuS, Cu2+, and H2S in response to elevated concentrations of glutathione within the biofilm microenvironment. H2S effectively disrupted the biofilm structure. Meanwhile, peroxidase activity of CuS combined with GSH-mediated reduction of Cu2+ to Cu+ generated abundant hydroxyl radicals under acidic conditions, leading to efficient eradication of pathogenic bacteria. Furthermore, both H2S and Cu2+ could modulate M2 macrophages polarization and regulate immune microenvironment dynamics. These strategies collectively provided a novel approach for developing antibacterial nanomedical platforms.
Collapse
Affiliation(s)
- Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
36
|
Lv X, Shu A, Shu L, Liu H, Liu Y, Cui K, Tang Y, Chen X. Electron cycling mechanism in Fe/Mn DSAzyme accelerates BPA degradation and nanoenzyme regeneration. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135228. [PMID: 39024761 DOI: 10.1016/j.jhazmat.2024.135228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Peroxidase-like (POD-like) as a kind of new Fenton-like catalyst can effectively activate H2O2 to degrade organic pollutants in water, but improving the catalytic activity and stability of POD-like remains a challenging task. Here, we synthesized a novel dual single-atom nanoenzyme (DSAzyme) FeMn/N-CNTs with Fe-N4 and Mn-N4 bimetallic single-atom active centers by mimicking the active centers of natural enzymes and taking advantage of the synergistic effect between the dual metals. FeMn/N-CNTs DSAzyme showed significantly enhanced POD-like activity compared to monometallic-loaded Fe/N-CNTs and Mn/N-CNTs. Within the FeMn/N-CNTs/H2O2 system, bisphenol A (BPA) could be removed 100 % within 20 min. DFT calculations show that Mn-N4 in FeMn/N-CNTs can readily adsorb negatively charged BPA molecules and capture electrons. Meanwhile, Fe-N4 sites can easily adsorb H2O2 molecules, leading to their activation and splitting into strongly oxidizing hydroxyl radicals (·OH). Throughout this process, electrons are continuously recycled in BPA → Mn-N4 → Fe-N4 → H2O2, effectively promoting the regeneration of Fe2+. Practical studies on wastewater and cycling experiments have demonstrated the great potential of this method for remediating water environments.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Aolan Shu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Lei Shu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Huilai Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yao Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yuchao Tang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Recycling, Anhui Jianzhu University, Hefei 230009, PR China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China; School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
37
|
Xu Z, Chen L, Luo Y, Wei YM, Wu NY, Luo LF, Wei YB, Huang J. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine. NANOTECHNOLOGY 2024; 35:362006. [PMID: 38865988 DOI: 10.1088/1361-6528/ad572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.
Collapse
Affiliation(s)
- Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liang Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ning-Yuan Wu
- Guangxi Medical University Life Sciences Institute, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lan-Fang Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yong-Biao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
38
|
Hua S, Dong X, Peng Q, Zhang K, Zhang X, Yang J. Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J Nanobiotechnology 2024; 22:286. [PMID: 38796465 PMCID: PMC11127409 DOI: 10.1186/s12951-024-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.
Collapse
Affiliation(s)
- Sijia Hua
- Zhejiang University of Chinese Medicine, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Xiulin Dong
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Qiuxia Peng
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Xiaofeng Zhang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| | - Jianfeng Yang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
39
|
Wang L, Zhang L, Chen F, Li Q, Zhu B, Tang Y, Yang Z, Cheng C, Qiu L, Ma L. Polymerized Network-Based Artificial Peroxisome Reprogramming Macrophages for Photoacoustic Imaging-Guided Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25856-25868. [PMID: 38726921 DOI: 10.1021/acsami.4c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1β, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
41
|
Shi X, Lv J, Deng S, Zhou F, Mei J, Zheng L, Zhang J. Construction of Interlayer Coupling Diatomic Nanozyme with Peroxidase-Like and Photothermal Activities for Efficient Synergistic Antibacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305823. [PMID: 38460176 PMCID: PMC11132033 DOI: 10.1002/advs.202305823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Pathogenic bacteria are the main cause of bacterial infectious diseases, which have posed a grave threat to public health. Single-atom nanozymes have emerged as promising candidates for antibacterial applications, but their activities need to be further improved. Considering diatomic nanozymes exhibit superior metal loading capacities and enhanced catalytic performance, a new interlayer coupling diatomic nanozyme (IC-DAN) is constructed by modulating the coordination environment in an atomic-level engineering. It is well demonstrated that IC-DAN exhibited superior peroxidase-mimetic activity in the presence of H2O2 to yield abundant ∙OH and possessed high photothermal conversion ability, which synergistically achieves efficient antibacterial therapy. Therefore, IC-DAN shows great potential used as antibacterial agent in clinic and this study open a new route to developing high-performance artificial enzymes.
Collapse
Affiliation(s)
- Xiudong Shi
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jie Lv
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Shuangling Deng
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fang Zhou
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jiangang Mei
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jing Zhang
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
42
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
43
|
Shao N, Huang S, Huang Y, Pan M, Xie Y, Chen Q, Chen C, Pan J, Zhou Y. Smart Enzyme-Like Polyphenol-Copper Spray for Enhanced Bacteria-Infected Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308295. [PMID: 38100287 DOI: 10.1002/smll.202308295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Developing functional medical materials is urgent to treat diabetic wounds with a high risk of bacterial infections, high glucose levels and oxidative stress. Here, a smart copper-based nanocomposite acidic spray has been specifically designed to address this challenge. This copper-based nanocomposite is pH-responsive and has multienzyme-like properties. It enables the spray to effectively eliminate bacteria and alleviate tissue oxidative pressure, thereby accelerating the healing of infected diabetic wounds. The spray works by generating hydroxyl radicals through catalysing H2O2, which has a high sterilization efficiency of 97.1%. As alkaline micro-vessel leakage neutralizes the acidic spray, this copper-based nanocomposite modifies its enzyme-like activity to eliminate radicals. This reduces the level of reactive oxygen species in diabetic wounds by 45.3%, leading to a similar wound-healing effect between M1 diabetic mice and non-diabetic ones by day 8. This smart nanocomposite spray provides a responsive and regulated microenvironment for treating infected diabetic wounds. It also offers a convenient and novel approach to address the challenges associated with diabetic wound healing.
Collapse
Affiliation(s)
- Nannan Shao
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Siyan Huang
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, Zhejiang, 325000, P. R. China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, P. R. China
| | - Mengmeng Pan
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Yuyu Xie
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Chunxiu Chen
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Jingye Pan
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, Zhejiang, 325000, P. R. China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yunlong Zhou
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| |
Collapse
|
44
|
Liu Y, Zhao H, Zhao Y. Designing Efficient Single Metal Atom Biocatalysts at the Atomic Structure Level. Angew Chem Int Ed Engl 2024; 63:e202315933. [PMID: 38206594 DOI: 10.1002/anie.202315933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Various nanomaterials as biocatalysts could be custom-designed and modified to precisely match the specific microenvironment of diseases, showing a promise in achieving effective therapy outcomes. Compared to conventional biocatalysts, single metal atom catalysts (SMACs) with maximized atom utilization through well-defined structures offer enhanced catalytic activity and selectivity. Currently, there is still a gap in a comprehensive overview of the connection between structures and biocatalytic mechanisms of SMACs. Therefore, it is crucial to deeply investigate the role of SMACs in biocatalysis from the atomic structure level and to elucidate their potential mechanisms in biocatalytic processes. In this minireview, we summarize catalysis regulation methods of SMACs at the atomic structure level, focusing on the optimization of catalytic active sites, coordination environment, and active site-support interactions, and briefly discuss biocatalytic mechanisms for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
45
|
Han J, Chen Y, Xiang X, Wang T, Shen J, Zhang N, Liang C, Liu X, Ma X. A Comparative Analysis of the Antibacterial Spectrum of Ultrasmall Manganese Ferrite Nanozymes with Varied Surface Modifications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489475 DOI: 10.1021/acsami.3c16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Bacterial infectious diseases pose a significant global challenge. However, conventional antibacterial agents exhibit limited therapeutic effectiveness due to the emergence of drug resistance, necessitating the exploration of novel antibacterial strategies. Nanozymes have emerged as a highly promising alternative to antibiotics, owing to their particular catalytic activities against pathogens. Herein, we synthesized ultrasmall-sized MnFe2O4 nanozymes with different charges (MnFe2O4-COOH, MnFe2O4-PEG, MnFe2O4-NH2) and assessed their antibacterial capabilities. It was found that MnFe2O4 nanozymes exhibited both antibacterial and antibiofilm properties attributed to their excellent peroxidase-like activities and small sizes, enabling them to penetrate biofilms and interact with bacteria. Moreover, MnFe2O4 nanozymes effectively expedite wound healing within 12 days and facilitate tissue repair and regeneration while concurrently reducing inflammation. MnFe2O4-COOH displayed favorable antibacterial activity against Gram-positive bacteria, with 80% bacterial removal efficiency against MRSA by interacting with phosphatidylglycerol (PG) and cardiolipin (CL) of the membrane. By interacting with negatively charged bacteria surfaces, MnFe2O4-NH2 demonstrated the most significant and broad-spectrum antibacterial activity, with 95 and 85% removal efficiency against methicillin-resistant Staphylococcus aureus (MRSA) and P. aeruginosa, respectively. MnFe2O4-PEG dissipated membrane potential and reduced ATP levels in MRSA and P. aeruginosa, showing relatively broad-spectrum antibacterial activity. To conclude, MnFe2O4 nanozymes offer a promising therapeutic approach for treating wound infections.
Collapse
Affiliation(s)
- Junhua Han
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yingxian Chen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xin Xiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tingting Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Nan Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Chen Liang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiaoli Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, P. R. China
| |
Collapse
|
46
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
47
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
48
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
49
|
Thirumurugan S, Dash P, Lin YC, Sakthivel R, Sun YS, Lin CP, Wang AN, Liu X, Dhawan U, Tung CW, Chung RJ. Synergistic effect of photothermal and magnetic hyperthermia for in situ activation of Fenton reaction in tumor microenvironment for chemodynamic therapy. BIOMATERIALS ADVANCES 2024; 157:213724. [PMID: 38134729 DOI: 10.1016/j.bioadv.2023.213724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | | | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan.
| |
Collapse
|
50
|
Cao F, Jin L, Zhang C, Gao Y, Qian Z, Wen H, Yang S, Ye Z, Hong L, Yang H, Tong Z, Cheng L, Ding Y, Wang W, Yu G, Mao Z, Chen X. Engineering Clinically Relevant Probiotics with Switchable "Nano-Promoter" and "Nano-Effector" for Precision Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304257. [PMID: 37788635 DOI: 10.1002/adma.202304257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Probiotics have the potential as biotherapeutic agents for cancer management in preclinical models and human trials by secreting antineoplastic or immunoregulatory agents in the tumor microenvironment (TME). However, current probiotics lack the ability to dynamically respond to unique TME characteristics, leading to limited therapeutic accuracy and efficacy. Although progress has been made in customizing controllable probiotics through synthetic biology, the engineering process is complex and the predictability of production is relatively low. To address this, here, for the first time, this work adopts pH-dependent peroxidase-like (POD-like) artificial enzymes as both an inducible "nano-promoter" and "nano-effector" to engineer clinically relevant probiotics to achieve switchable control of probiotic therapy. The nanozyme initially serves as an inducible "nano-promoter," generating trace amounts of nonlethal reactive oxygen species (ROS) stress to upregulate acidic metabolites in probiotics. Once metabolites acidify the TME to a threshold, the nanozyme switches to a "nano-effector," producing a great deal of lethal ROS to fight cancer. This approach shows promise in subcutaneous, orthotopic, and colitis-associated colorectal cancer tumors, offering a new methodology for modulating probiotic metabolism in a pathological environment.
Collapse
Affiliation(s)
- Fangfang Cao
- Departments of Diagnostic Radiology Surgery Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenyin Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310009, China
| | - Hongyang Wen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310009, China
| | - Sisi Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zongrui Tong
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310009, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Surgery Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|