1
|
Vajpayee K, Paida V, Shukla RK. Nanoparticle-assisted PCR: fundamentals, mechanisms, and forensic implications. Int J Legal Med 2025; 139:945-964. [PMID: 39841191 DOI: 10.1007/s00414-024-03402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency. Examples of these materials are semiconductor quantum dots and metal nanoparticles. They enhance DNA binding to primers, stabilize enzymes, and function as effective heat conductors, making accurate amplification possible even with tainted samples. The developments in nanoPCR have potential uses in forensics, as they allow for the more sensitive analysis of smaller, polluted, or deteriorated samples. Nevertheless, there are methodological and ethical issues. To provide credible and legitimate forensic evidence, rigorous validation and standardization of NanoPCR techniques are vital. The article addresses the relevant ethical and methodological aspects in forensic casework while examining the integration of nanotechnology into PCR.
Collapse
Affiliation(s)
- Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Vidhi Paida
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
2
|
Samak MA, Elfakharany YM, Huessiny N, Alsemeh AE. Gold nanoparticles "AuNPs" -mediated amelioration of experimentally toxic-induced cerebellar syndrome: Insights into cytomolecular and immuno-histochemical modifications, with a focus on CREB/ Tau modulation. Tissue Cell 2025; 93:102725. [PMID: 39818067 DOI: 10.1016/j.tice.2025.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS. Thirty male albino rats were assigned randomly to three equal groups; control, phenytoin (PHT) and PHT+ AuNPs groups. Cerebellar sections were examined histopathologically, ultra-structurally and immunohistochemically for GFAP and p-Tau. Cerebellar tissues were evaluated for TNF-α, IL-1β, MDA, CAT, SOD and CREB mRNA. Our data confirmed observable amelioration of histopathological and ultrastructural cerebellar alterations of Purkinje and granule cells after AuNPs cotreatment. Histomorphometric measures revealed AuNPs-induced significant downregulation of p-Tau and GFAP immune-expression. Concurrently, TNF-α, IL-1β, MDA were significantly quenched in cerebellar tissues after AuNPs cotreatment, on contrary to notable restoration of CAT, SOD and CREB mRNA levels. These outcomes confirm that AuNPs hold promise as a therapeutic strategy for TOICS, warranting further exploration of their mechanisms and clinical applications in cerebellar disorders.
Collapse
Affiliation(s)
- Mai A Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Egypt; College of Medicine, University of Ha'il, Ha'il 2240, Saudi Arabia.
| | | | - Nancy Huessiny
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
3
|
Ibrahim JS, Hanafi N, Sliem MA, El-Tayeb TA. Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study. JOURNAL OF BIOPHOTONICS 2025; 18:e202400488. [PMID: 39915096 DOI: 10.1002/jbio.202400488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 04/08/2025]
Abstract
Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.
Collapse
Affiliation(s)
- Jilan S Ibrahim
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Neamat Hanafi
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Tarek A El-Tayeb
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Hu F, Yang G, Long ZC, Shi WQ, Liang GJ, Wang JQ, Wang QM. The Influence of Flexibility of Alkynyl Ligands on the Formation of an Fcc Au 110 Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502106. [PMID: 40165779 DOI: 10.1002/smll.202502106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Isomerization of nanoclusters is helpful for understanding the relationships between structures and properties. Surface-protecting ligands play a crucial role in controlling the atomic packing mode of the inner core. The synthesis and total structural determination of the all alkynyl-protected gold nanocluster (NEt3CH2Cl)2[Au110(C≡CC3H6Ph)48] (Au110-1) are reported. Au110-1 and the previously reported [Au110(C≡CC6H4-4-CF3)]2- (Au110-2) constitute the largest alkynyl-protected nanocluster quasi-isomers (> 100 metal atoms). Both Au110 consist of an fcc Au86 kernel and a shell of 24 RC≡C─Au─C≡CR staples, but the specific arrangements are different. The application of the flexible alkynyl ligands creates a significant difference in the face-centered cubic (fcc) kernel structure in Au110-1, showing a different electronic structure, thermal- and photo-stability. Transient absorption spectra reveal that Au110-1 still does not show any metallic characteristics, even though it has a smaller energy gap (Eg) than Au110-2.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, P. R. China
| | - Zhen-Chao Long
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Gui-Jie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, P. R. China
| | - Jia-Qi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Wang Q, Zhao ZA, Yao KY, Cheng YL, Wong DSH, Wong DWC, Cheung JCW. The Versatility of Biological Field-Effect Transistor-Based Biosensors (BioFETs) in Point-of-Care Diagnostics: Applications and Future Directions for Peritoneal Dialysis Monitoring. BIOSENSORS 2025; 15:193. [PMID: 40136991 PMCID: PMC11940136 DOI: 10.3390/bios15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and biomarkers associated with these complications, potentially enabling early intervention. However, BioFETs are yet to be adopted for PD monitoring. This review presents a forward-looking analysis of the capacity and potential integration of BioFETs into PD management systems, highlighting their capacity to monitor both routine indicators of dialysis efficiency and metabolic status, as well as specific biomarkers for complications such as inflammation and fibrosis. We examine the challenges in adapting BioFETs for PD applications, focusing on key areas for improvement, including sensitivity, specificity, stability, reusability, and clinical integration. Furthermore, we discuss various approaches to address these challenges, which are crucial for developing point-of-care (PoC) and multiplexed wearable devices. These advancements could facilitate continuous, precise, and user-friendly monitoring, potentially revolutionizing PD complication management and enhancing patient care.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Zi-An Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ke-Yu Yao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yuk-Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Dexter Siu-Hong Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
6
|
Lazarova HI, Rusew RI, Tsvetanova LV, Barbov BZ, Tacheva ES, Shivachev BL. Elaboration and Characterization of Different Zirconium Modified ETS Photocatalysts for the Degradation of Crystal Violet and Methylene Blue. ChemistryOpen 2025; 14:e202400348. [PMID: 39538980 DOI: 10.1002/open.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, Zirconium-modified Engelhard Titanium Silicate 4 (Na-K-ETS-4/xZr) catalysts were synthesized and evaluated for their photocatalytic efficiency in degrading crystal violet (CV) and methylene blue (MB) in aqueous solutions. The catalysts were characterized using XRD, FTIR, SEM, WDXRF, and nitrogen adsorption/desorption isotherms. The results confirmed the successful incorporation of Zr into the ETS-4 framework, with the highest Zr content reaching 9.2 wt %. The photocatalytic performance under visible light irradiation was studied at varying pH levels. The Na-K-ETS-4/6.3Zr catalyst exhibited the highest photodegradation efficiency for CV (76.6 %), while Na-K-ETS-4/8.9Zr achieved 86.6 % efficiency for MB. A combination of Engelhard Titanium Silicate 10, Na-K-ETS-10/6.3Zr and Na-K-ETS-4/8.9Zr significantly enhanced dye degradation, achieving up to 96.5 % efficiency for MB. Kinetic studies indicated that the degradation process follows a non-linear pseudo-first-order model. The catalysts also demonstrated excellent reusability, with minimal efficiency loss after five cycles, and full recovery after an ethanol wash. These findings suggest that Na-K-ETS-4/xZr is a promising candidate for environmental water treatment applications due to its efficient photodegradation performance and stability.
Collapse
Affiliation(s)
- Hristina I Lazarova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Rusi I Rusew
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Liliya V Tsvetanova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Borislav Z Barbov
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Elena S Tacheva
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Boris L Shivachev
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| |
Collapse
|
7
|
Koyappayil A, Chavan SG, Lee MH. MXenes in photothermal cancer therapy: applications and advances. NANOPHOTOTHERAPY 2025:283-298. [DOI: 10.1016/b978-0-443-13937-6.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Alam N, Mondal S, Ojha N, Sahoo S, Zeyad MT, Kumar S, Sarma D. Self-template impregnated silver nanoparticles in coordination polymer gel: photocatalytic CO 2 reduction, CO 2 fixation, and antibacterial activity. NANOSCALE 2024; 17:428-439. [PMID: 39565063 DOI: 10.1039/d4nr03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
CO2 fixation and light-assisted conversion of CO2 in the presence of water into fuels and feedstocks are clean and sustainable techniques to alleviate the energy crisis and global climate change. In this regard, herein, a waterborne multifunctional metal-organic coordination polymer gel (Ag@GMP) was prepared from silver nitrate and guanosine 5'-monophosphate. Electron microscopy exhibits that Ag@GMP has a flower-like structure, which is composed of vertically grown sheets, and corresponding high magnification images display the presence of silver nanoparticles on the vertically grown sheets. Ag@GMP demonstrates remarkable photocatalytic performance, achieving a CO2 conversion rate of 18.6 μmol g-1 with approximately 85% selectivity towards CO at ambient temperature without using sacrificial agents. In situ diffuse reflectance infrared Fourier transform spectroscopy was employed to elucidate the proposed mechanism for photocatalytic CO2 reduction. Additionally, Ag@GMP exhibits significant catalytic activity in the fixation of CO2 with epoxides, leading to the formation of valuable chemicals under atmospheric pressure. Ag@GMP demonstrated efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest zone of inhibition was observed against S. aureus MTCC 3160 (15.83 ± 1.1 mm), and for E. coli, P. aeruginosa PAO1, and B. subtilis, it was found to be 12.66 ± 0.9, 14.33 ± 0.8 and 12.8 ± 0.8 mm, respectively.
Collapse
Affiliation(s)
- Noohul Alam
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Niwesh Ojha
- Gas-solid Interaction Laboratory, Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Subham Sahoo
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| | - Sushant Kumar
- Gas-solid Interaction Laboratory, Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Debajit Sarma
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
9
|
Deng X, Hu L, Xing H, Liu Y, Yin H. Recent progress in gold-derived nanomaterials for tumor theranostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8058-8067. [PMID: 39601081 DOI: 10.1039/d4ay01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is widely acknowledged that gold-based materials are of significant interest in the field of biomedicine. Consequently, considerable efforts have been devoted to identifying gold nanoparticles that exhibit effective performance in tumor diagnosis and treatment. However, the underlying reasons for the enhanced efficacy of these gold-based nanomaterials in cancer therapy and diagnosis remain unclear, primarily due to the lack of an in-depth understanding of the mechanisms involved. Therefore, it is essential to summarize the progress in the field to facilitate the rational design of more efficient nanodevices. In this review, we present recent achievements drawn from the latest research to demonstrate the broad applications of gold-based materials. We begin by illustrating the mechanisms of gold-derived nanoparticles during therapeutic and diagnostic processes, including photothermal therapy, photodynamic therapy, sonodynamic therapy, photoacoustic tomography, fluorescence imaging, and X-ray computed tomography. We then summarize the advancements of gold-based nanomaterials in cancer diagnosis and treatment while also analyzing the factors contributing to their enhanced performance. Finally, we highlight key descriptors for evaluating the efficacy and strategies for designing high-performance nanomaterials. This review aims to pave the way for addressing future challenges and outlines directions for the advancement of gold-based biomedicine.
Collapse
Affiliation(s)
- Xi Deng
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Hu
- Department of Oncology, Jiulongpo District People's Hospital, Chongqing, 400050, China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
10
|
Han Y, Hao H, Zeng H, Li H, Niu X, Qi W, Zhang D, Wang K. Harnessing the Potential of Graphene Quantum Dots for Multifunctional Biomedical Applications. CHEM REC 2024; 24:e202400185. [PMID: 39529421 DOI: 10.1002/tcr.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The existing and emerging demand for materials for life and health has contributed to the cultivation and development of respective markets. Nevertheless, the current generation of biomedical materials has yet to fully satisfy the clinical requirements of the market, which is still in its relative infancy. Research and development in this area must be prioritized in light of the pivotal role of new life and health materials in the biological field. Among many life and health materials, GQDs, an emerging nanomaterial, exhibit considerable promise in the biomedical field, primarily due to their exceptional properties. Furthermore, the direct preparation and functionalization of GQDs have facilitated the development of specific functional composites based on GQDs. The biological applications of GQDs are undergoing rapid growth, which makes it necessary to publish a review article presenting the latest advances in this field. This review provides an overview of the significant advances in synthesizing GQDs, the techniques employed for structural characterizations, and the properties that have been elucidated. Furthermore, it presents recent findings on applying GQDs in antimicrobial, anticancer, biosensing, drug delivery, and bioimaging applications. Finally, it explores the potential of GQDs in biomedicine and biotechnology, highlighting the current challenges that remain to be addressed.
Collapse
Affiliation(s)
- Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongyan Hao
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Haixiang Zeng
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Wei Qi
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
11
|
Chekkaramkodi D, Turk SE, Ali M, Butt H. In-situ synthesis and integration of gold nanoparticles into 3D printed optical fiber probes. Sci Rep 2024; 14:29736. [PMID: 39613870 DOI: 10.1038/s41598-024-81139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
This work uses the polymeric reduction method to explore the in-situ synthesis of gold nanoparticles (AuNPs) within 3D-printed optical fiber probes (OFPs). Digital light processing (DLP) 3D printing is employed to fabricate the OFPs using a resin consisting of hydroxyethyl methacrylate (HEMA) and polyethylene glycol diacrylate (PEGDA). After printing, OFPs were immersed in a boiling gold precursor solution to facilitate the synthesis of AuNPs inside the polymer matrix. We produced single material (HEMA/PEGDA) and multimaterial (HEMA/PEGDA + Dentaclear) OFPs loaded with AuNPs at different concentrations. Scanning electron microscopy analysis confirmed the effective distribution and dispersion of AuNPs within the polymer matrix. The optical properties, including reflection and transmission spectra, are comprehensively measured using customized setups. The localized surface plasmon resonance of the embedded AuNPs created a distinct dip in the 500-600 nm wavelength range. Higher AuNP concentrations and longer dipping times enhanced light absorption, reducing reflection and transmission intensities. Multimaterial OFPs also exhibited tunable wavelength filtering capabilities based on the AuNP concentration. The AuNP-loaded OFPs demonstrated stable optical performance across varying temperatures and pH environments, highlighting their potential for diverse applications.
Collapse
Affiliation(s)
- Dileep Chekkaramkodi
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Said El Turk
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Murad Ali
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Haider Butt
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
12
|
Georgiopoulou Z, Verykios A, Soultati A, Chroneos A, Hiskia A, Aidinis K, Skandamis PN, Gounadaki AS, Karatasios I, Triantis TM, Argitis P, Palilis LC, Vasilopoulou M. Plasmonic enhanced OLED efficiency upon silver-polyoxometalate core-shell nanoparticle integration into the hole injection/transport layer. Sci Rep 2024; 14:28888. [PMID: 39572734 PMCID: PMC11582635 DOI: 10.1038/s41598-024-79977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Although organic light-emitting diodes (OLEDs) are considered a mature technology, further enhancements in their efficiency are of paramount importance for advancing their incorporation in high-quality displays and flexible, wearable, electronic devices. In this regard, we propose an innovative approach, focusing on strategic modifications to the hole transport layer (HTL) through the integration of core-shell nanoparticles. Silver nanoparticles (Ag-NPs) encapsulated in a tungsten polyoxometalate compound (POM) are embedded within the prototype poly(3,4-ethylenedioxythiophene)-poly(styrenesulphonate) (PEDOT:PSS) to form the modified HTL. Our work reveals the pivotal plasmonic role of Ag-NPs in enhancing OLED device performance based on commercially available conjugated polymers. Comprehensive analyses, including UV-Vis absorption spectroscopy, atomic force microscopy, photoluminescence spectroscopy, and electrical measurements, confirm the influence of the POM encapsulated Ag-NPs on improving the device efficiency. This is attributed to the synergistic influence of enhanced hole injection and conductivity and beneficial optical effects (i.e. the Localized Surface Plasmon Resonance (LSPR) and, likely, light scattering of the POM-Ag NPs in the core-shell configuration, depending on their diameter), contributing to enhanced carrier balance and exciton recombination rate. Comparison with POM gold NPs (POM-Au NPs) highlights the distinct advantages of POM-Ag NPs. Our work reveals the potential of this innovative approach to contribute to the evolution of high-performance OLEDs, ensuring a visually compelling and efficient future.
Collapse
Affiliation(s)
- Zoi Georgiopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
- Solid State Physics Section, Department of Physics, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15784, Zografos, Greece
| | - Apostolis Verykios
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
| | - Alexander Chroneos
- Department of Electrical and Computer Engineering, University of Thessaly, Volos, 38221, Greece.
- Department of Materials, Imperial College, London, SW7 2AZ, UK.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
| | - Konstantinos Aidinis
- Department of Electrical and Computer Engineering, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman, United Arab Emirates
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Agricultural University of Athens, IeraOdos 75, Athens, 11855, Greece
| | - Antonia S Gounadaki
- Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Agricultural University of Athens, IeraOdos 75, Athens, 11855, Greece
| | - Ioannis Karatasios
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece
| | | | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', AgiaParaskevi 15341, Athens, Greece.
| |
Collapse
|
13
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
14
|
Proença M, Lednický T, Meira DI, Rodrigues MS, Vaz F, Borges J, Bonyár A. New Parameter for Benchmarking Plasmonic Gas Sensors Demonstrated with Densely Packed Au Nanoparticle Layers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57832-57842. [PMID: 39399975 PMCID: PMC11503611 DOI: 10.1021/acsami.4c11102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Localized surface plasmon resonance (LSPR) gas sensitivity is introduced as a new parameter to evaluate the performance of plasmonic gas sensors. A model is proposed to consider the plasmonic sensors' surface sensitivity and plasmon decay length and correlate the LSPR response, measured upon gas exchange, with an equivalent refractive index change consistent with adsorbed gas layers. To demonstrate the applicability of this new parameter, ellipsoidal gold nanoparticles (NPs) arranged in densely packed hexagonal lattices were fabricated. The main advantages of these sensors are the small and tunable interparticle gaps (18-29 nm) between nanoparticles (diameters: 72-88 nm), with their robust and scalable fabrication technology that allows the well-ordered arrangement to be maintained on a large (cm2 range) area. The LSPR response of the sensors was tested using an LSPR sensing system by switching the gas atmosphere between inorganic gases, namely He/Ar and Ar/CO2, at constant pressure and room temperature. It was shown that this newly proposed parameter can be generally used for benchmarking plasmonic gas sensors and is independent of the type and pressure of the tested gases for a sensor structure. Furthermore, it resolves the apparent disagreement when comparing the response of plasmonic sensors tested in liquids and gases.
Collapse
Affiliation(s)
- Manuela Proença
- Physics
Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Tomáš Lednický
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Diana I. Meira
- Physics
Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Marco S. Rodrigues
- Physics
Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Filipe Vaz
- Physics
Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LaPMET
- Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joel Borges
- Physics
Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LaPMET
- Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Attila Bonyár
- Department
of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Egry József street 18, H-1111 Budapest, Hungary
- Wigner
Research Centre for Physics, Konkoly-Thege Miklós way 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
15
|
Hassan N, Riad M, Ibrahim SH, Mahmoud K, Abulnoor BA, Hassan R. Antibacterial and Cytotoxicity characteristics of experimental epoxy -based endodontic sealer loaded with silver gold nanoparticles: in vitro study. BDJ Open 2024; 10:81. [PMID: 39433754 PMCID: PMC11494090 DOI: 10.1038/s41405-024-00266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Enhancing the antibacterial capabilities of dental materials by adding nanoparticles has been the subject of some research. However, the potential toxic effect of this material on the vital tissues should be investigated to avoid additional damage to the tissue. OBJECTIVE This study aimed to validate the long-term cytotoxic and antibacterial properties of an epoxy resin-based endodontic sealer (AH Plus) with and without loading with silver gold nanoparticles (Nano Care Plus Silver Gold®). MATERIAL AND METHODS The tested groups were Nano Care Gold (group I), modified resin sealer (m AH Plus; group II) and AH Plus served as a control group (group III). Agar diffusion was used to measure the antibacterial activity against Enterococcus faecalis. Using the MTT test, cytotoxicity assessment was carried out in accordance with ISO-10993-5 guidelines to assess the cells' viability as soon as possible and after two and four weeks. The t-test was used to statistically examine the data. The chosen significance threshold was P <0.05. RESULTS Antibacterial results revealed that there was no difference in the diameter of the inhibition zones measured in all groups at 24 h. While in 48 and 72 h, the difference was statistically significant (p <0.05). In 48-h Nanogold was significantly higher than AH Plus when tested alone (p <0.05), however their mixture showed insignificant difference. After 72 h, the Nano gold was significantly higher than that of AH Plus & Nano gold mixture (p <0.05). Cytotoxicity result revealed there was a significant difference between tested groups at different intervals (p <0.001). For immediate measurements, values measured with the AH group were significantly higher than those of other groups (p <0.001). For the AH& nanogold group, there was no significant difference between values measured at different intervals (p = 0.578). CONCLUSIONS Silver gold nanoparticles have acceptable antibacterial properties and low cytotoxicity to be used as canal pretreatment prior to the application of the sealer or even incorporated with AH Plus sealer.
Collapse
Affiliation(s)
- Nermine Hassan
- Lecturer of Endodontics, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Mona Riad
- Professor of Conservative Dentistry, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Shereen Hafez Ibrahim
- Professor of Conservative Dentistry, Faculty of Dentistry, Cairo University, Giza, Egypt.
| | - Khaled Mahmoud
- Assistant professor of Pharmacognosy, Drug Bioassay Cell Culture Laboratory Cancer. National Research Center, Cairo, Egypt
| | | | - Reham Hassan
- Professor of Endodontics, Faculty of Dentistry, Egyptian Russian University, Badr City, Egypt
- Professor of Endodontics, Faculty of Dentistry, Minia University, Minya, Egypt
| |
Collapse
|
16
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
17
|
Barshutina M, Arsenin A, Volkov V. SERS analysis of single cells and subcellular components: A review. Heliyon 2024; 10:e37396. [PMID: 39315187 PMCID: PMC11417266 DOI: 10.1016/j.heliyon.2024.e37396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
SERS is a rapidly advancing and non-destructive technique that has been proven to be more reliable and convenient than other traditional analytical methods. Due to its sensitivity and specificity, this technique is earning its place as a routine and powerful tool in biological and medical studies, especially for the analysis of living cells and subcellular components. This paper reviewed the research progress of single-cell SERS that has been made in the last few years and discussed challenges and future perspectives of this technique. The reviewed SERS platforms have been categorized according to their nature into the following types: (1) colloid-based, substrate-based, or hybrid; (2) ligand-based or ligand-free, and (3) label-based or label-free. The advantages and disadvantages of each type and their potential applications in various fields are thoroughly discussed.
Collapse
Affiliation(s)
- M. Barshutina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - V. Volkov
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
- Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| |
Collapse
|
18
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
19
|
Li Z, Song Y, Luo Q, Liu Z, Man Y, Liu J, Lu Y, Zheng L. Carrier cascade target delivery of 5-aminolevulinic acid nanoplatform to enhance antitumor efficiency of photodynamic therapy against lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112999. [PMID: 39126752 DOI: 10.1016/j.jphotobiol.2024.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.
Collapse
Affiliation(s)
- Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuxuan Song
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Qiang Luo
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuze Lu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
20
|
Nimrawi S, Gannett P, Kwon YM. Inorganic nanoparticles incorporated with transdermal drug delivery systems. Expert Opin Drug Deliv 2024; 21:1349-1362. [PMID: 39215444 DOI: 10.1080/17425247.2024.2399710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Transdermal drug delivery (TDD) is becoming more recognized as a noninvasive method particularly suitable for vulnerable populations. TDD offers an alternative to oral drug delivery, bypassing issues related to poor absorption and metabolism. However, the application of TDD is limited to a few drugs due to the skin's barrier. Various techniques, including passive methods like nanoparticles (NPs), are being explored to enhance drug permeability through the skin. AREAS COVERED This review shows the benefit of incorporating inorganic NPs with TDD in improving drug delivery through the skin. Despite the potential of these techniques, there are currently only a few research studies that utilize them. This review addresses the scarcity of research incorporating inorganic NPs with TDD. It also aims to summarize both inorganic NPs and TDD in the pharmaceutical industry, highlighting the advantages of incorporating these novel drug delivery systems with each other. EXPERT OPINION Given the potential benefits of incorporating inorganic NPs into TDD systems, there is a need for increased research and attention in this area. The review encourages scientists to address the existing research gap and explore the advantages of combining these innovative drug delivery systems to advance the field.
Collapse
Affiliation(s)
- Sukaina Nimrawi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Peter Gannett
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Young M Kwon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
21
|
Tahir H, Rashid F, Ali S, Summer M, Abaidullah R. Spectrophotometrically, Spectroscopically, Microscopically and Thermogravimetrically Optimized TiO 2 and ZnO Nanoparticles and their Bactericidal, Antioxidant and Cytotoxic Potential: A Novel Comparative Approach. J Fluoresc 2024; 34:2019-2033. [PMID: 37672182 DOI: 10.1007/s10895-023-03367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
Current study was aimed to determine the antibacterial, antioxidant and cytotoxic potential of Titanium dioxide nanoparticles (TiO2NPs) and Zinc oxide nanoparticles (ZnONPs). Nanoparticles were characterized by UV-Vis spectrophotometry, particle size analyzer (PSA), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The Minimum inhibitory concentration (MIC) was determined by standard agar dilution method. Antibacterial potential of nanoparticles was analyzed by standard disc diffusion method against bacterial strains including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Different concentrations of NPs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 mg/mL) were incorporated to evaluate the antimicrobial activity. Antioxidant activity and cytotoxicity of these NPs was analyzed by DPPH method and brine shrimp cytotoxicity assay, respectively. The MIC of TiO2NPs against E. coli, P. aeruginosa and K. pneumoniae was 0.04, 0.08 and 0.07 mg/mL respectively while the MIC of ZnONPs against the above strains was 0.01, 0.015 and 0.01 mg/mL. The maximum zone of inhibition was observed for K. pneumoniae i.e., 20mm and 25mm against TiO2 and ZnO NPs respectively, at 1.4 mg/mL concentration of NPs. The susceptibility of NPs against bacterial strains was evaluated in the following order: K. pneumoniae > P. aeruginosa > E. coli. The antioxidant activity of nanoparticles increased by increasing the concentration of NPs while cytotoxic analysis exhibited non-toxic effect of ZnO NPs while TiO2 had toxic effects on 1.2 and 1.4 mg/mL concentrations. Results revealed that ZnO NPs have more antibacterial and negligible cytotoxic potential in contrast to TiO2 NPs.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
22
|
Budhathoki S, Chaudhary N, Guragain B, Baral D, Adhikari J, Chaudhary NK. Green synthesis of silver nanoparticles from Brassaiopsis hainla extract for the evaluation of antibacterial and anticorrosion properties. Heliyon 2024; 10:e35642. [PMID: 39170326 PMCID: PMC11336820 DOI: 10.1016/j.heliyon.2024.e35642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Plant-mediated synthesis of silver nanoparticles (AgNPs) is an eco-friendly and convenient alternative to conventional methods. Brassaiopsis hainla (B. hainla) leaf extract (BHE) was used in this study to reduce metal salts and cap and stabilize nanoparticles (NPs), which were characterized and tested for antibacterial and anti-corrosion properties. Stirring the B. hainla extract with AgNO3 led to a color change, indicating nanoparticle formation. The absorption peak at 428 nm in the UV-visible spectrum further validated its formation. The AgNPs were characterized using various techniques such as FTIR, UV-visible, PXRD, HRTEM, SEM, and EDX. Powder X-ray diffraction analysis confirmed its nanocrystalline nature, with an average crystallite size of 17.92 nm. The FTIR spectrum showed hydroxyl, amine, amide, and carbonyl groups as capping and reducing agents for the AgNPs. SEM analysis revealed poly-dispersed NPs of various sizes, while EDX showed an intense peak for Ag, and TEM images revealed mostly hexagonal and triangular NPs. Antibacterial activity was tested against three human pathogens: Staphylococcus aureus (S. aureus), Pseudomonas, and Klebsiella oxytoca (K. oxytoca). Significant antibacterial activity was observed specifically against K. oxytoca, with an 11 mm inhibition zone. Both plant extracts and AgNPs inhibited acid-induced corrosion, with the highest inhibition efficiencies of 81.69 % and 69.54 % at 1000 ppm, respectively. With rising concerns over bacterial resistance and metal corrosion, this study addresses global challenges related to new antimicrobial agents, which are crucial for combating antibiotic resistance and protecting metals in various industries.
Collapse
Affiliation(s)
- Sujan Budhathoki
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Nabina Chaudhary
- Department of Intensive Care Unit, Birat Medical College and Teaching Hospital, Biratnagar, Nepal
| | - Biswash Guragain
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Janak Adhikari
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| |
Collapse
|
23
|
Parkhe VS, Tiwari AP. Gold nanoparticles-based biosensors: pioneering solutions for bacterial and viral pathogen detection-a comprehensive review. World J Microbiol Biotechnol 2024; 40:269. [PMID: 39009934 DOI: 10.1007/s11274-024-04072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gold Nanoparticles (AuNPs) have gained significant attention in biosensor development due to their unique physical, chemical, and optical properties. When incorporated into biosensors, AuNPs offer several advantages, including a high surface area-to-volume ratio, excellent biocompatibility, ease of functionalization, and tunable optical properties. These properties make them ideal for the detection of various biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Traditional methods for detecting bacteria and viruses, such as RT-PCR and ELISA, often suffer from complexities, time consumption, and labor intensiveness. Consequently, researchers are continuously exploring novel devices to address these limitations and effectively detect a diverse array of infectious pathogenic microorganisms. In light of these challenges, nanotechnology has been instrumental in refining the architecture and performance of biosensors. By leveraging advancements in nanomaterials and strategies of biosensor fabrication the sensitivity and specificity of biosensors can be enhanced, enabling more precise detection of pathogenic bacteria and viruses. This review explores the versatility of AuNPs in detecting a variety of biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Furthermore, it evaluates recent advancements in AuNPs-based biosensors for the detection of pathogens, utilizing techniques such as optical biosensors, lateral flow immunoassays, colorimetric immunosensors, electrochemical biosensors, and fluorescence nanobiosensors. Additionally, the study discusses the existing challenges in the field and proposes future directions to improve AuNPs-based biosensors, with a focus on enhancing sensitivity, selectivity, and their utility in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Vishakha Suryakant Parkhe
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India
| | - Arpita Pandey Tiwari
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India.
| |
Collapse
|
24
|
Phengdaam A, Phetsang S, Jonai S, Shinbo K, Kato K, Baba A. Gold nanostructures/quantum dots for the enhanced efficiency of organic solar cells. NANOSCALE ADVANCES 2024; 6:3494-3512. [PMID: 38989520 PMCID: PMC11232555 DOI: 10.1039/d4na00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/18/2024] [Indexed: 07/12/2024]
Abstract
Incorporating gold nanoparticles (AuNPs) into organic solar cell (OSC) structures provides an effective means to manipulate light-matter interactions. AuNPs have been used as plasmonic-enhancement and light-trapping materials in OSCs and exhibit diverse single and mixed morphologies. Substantial near-field enhancement from metal periodic structures has consistently demonstrated high enhancement in solar cell efficiency. Additionally, coupling with atomic gold clusters in the form of gold quantum dots holds promise for light harvesting through fluorescence phenomena. The configured devices optimize light utilization in OSCs by considering factors such as the morphology, position, and hybridization of localized surface plasmon resonance, propagating surface plasmon resonance, and fluorescence phenomena. This optimization enhances light absorption, scattering, and efficient trapping facilitated by gold nanostructures/quantum dots. The configured setup exhibits multiple effects, concurrently improving plasmonic and fluorescence responses under solar irradiation, thereby enhancing energy conversion performance. Integrating plasmonic nanostructures with OSCs can address fundamental issues, providing opportunities to enhance the light-absorption intensity and charge transfer efficiency at intra and intermolecular levels. This comprehensive review demonstrates that the greatest improvement in solar cell efficiency exceeded 30% compared with the reference cells.
Collapse
Affiliation(s)
- Apichat Phengdaam
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sopit Phetsang
- Division of General Education, National Institute of Technology (KOSEN), Nagaoka College 888 Nishikatakai-machi, Nagaoka-shi Niigata 940-8532 Japan
| | - Sachiko Jonai
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
25
|
Lai H, Huang R, Weng X, Huang B, Yao J, Pian Y. Classification and applications of nanomaterials in vitro diagnosis. Heliyon 2024; 10:e32314. [PMID: 38868029 PMCID: PMC11168482 DOI: 10.1016/j.heliyon.2024.e32314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
With the rapid development of clinical diagnosis and treatment, many traditional and conventional in vitro diagnosis technologies are unable to meet the demands of clinical medicine development. In this situation, nanomaterials are rapidly developing and widely used in the field of in vitro diagnosis. Nanomaterials have distinct size-dependent physical or chemical properties, and their optical, magnetic, electrical, thermal, and biological properties can be modulated at the nanoscale by changing their size, shape, chemical composition, and surface functional groups, particularly because they have a larger specific surface area than macromaterials. They provide an amount of space to modify different molecules on their surface, allowing them to detect small substances, nucleic acids, proteins, and microorganisms. Combining nanomaterials with in vitro diagnosis is expected to result in lower detection limits, higher sensitivity, and stronger selectivity. In this review, we will discuss the classfication and properties of some common nanomaterials, as well as their applications in protein, nucleic acids, and other aspect detection and analysis for in vitro diagnosis, especially on aging-related nanodiagnostics. Finally, it is summarized with guidelines for in vitro diagnosis.
Collapse
Affiliation(s)
- Huiying Lai
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Rongfu Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Xin Weng
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Baoshan Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Jianfeng Yao
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, PR China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China
| |
Collapse
|
26
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
27
|
Lelouche SNK, Lemir I, Biglione C, Craig T, Bals S, Horcajada P. AuNP/MIL-88B-NH 2 Nanocomposite for the Valorization of Nitroarene by Green Catalytic Hydrogenation. Chemistry 2024; 30:e202400442. [PMID: 38515307 DOI: 10.1002/chem.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
- EID, University Rey Juan Carlos (URJC), Tulipán s/n, Móstoles, 28933, Spain
| | - Ignacio Lemir
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
| | - Tim Craig
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
| |
Collapse
|
28
|
Pongsanon P, Kawamura A, Kawasaki H, Miyata T. Effect of Gold Nanoparticle Size on Regulated Catalytic Activity of Temperature-Responsive Polymer-Gold Nanoparticle Hybrid Microgels. Gels 2024; 10:357. [PMID: 38920904 PMCID: PMC11202582 DOI: 10.3390/gels10060357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Gold nanoparticles (AuNPs) possess attractive electronic, optical, and catalytic properties, enabling many potential applications. Poly(N-isopropyl acrylamide) (PNIPAAm) is a temperature-responsive polymer that changes its hydrophilicity upon a slight temperature change, and combining PNIPAAm with AuNPs allows us to modulate the properties of AuNPs by temperature. In a previous study, we proposed a simpler method for designing PNIPAAm-AuNP hybrid microgels, which used an AuNP monomer with polymerizable groups. The size of AuNPs is the most important factor influencing their catalytic performance, and numerous studies have emphasized the importance of controlling the size of AuNPs by adjusting their stabilizer concentration. This paper focuses on the effect of AuNP size on the catalytic activity of PNIPAAm-AuNP hybrid microgels prepared via the copolymerization of N-isopropyl acrylamide and AuNP monomers with different AuNP sizes. To quantitatively evaluate the catalytic activity of the hybrid microgels, we monitored the reduction of 4-nitrophenol to 4-aminophenol using the hybrid microgels with various AuNP sizes. While the hybrid microgels with an AuNP size of 13.0 nm exhibited the highest reaction rate and the apparent reaction rate constant (kapp) of 24.2 × 10-3 s-1, those of 35.9 nm exhibited a small kapp of 1.3 × 10-3 s-1. Thus, the catalytic activity of the PNIPAAm-AuNP hybrid microgel was strongly influenced by the AuNP size. The hybrid microgels with various AuNP sizes enabled the reversibly temperature-responsive on-off regulation of the reduction reaction.
Collapse
Affiliation(s)
- Palida Pongsanon
- Department of Chemistry and Materials Engineering, Kansai University, Suita, Osaka 564-8680, Japan; (P.P.); (A.K.); (H.K.)
| | - Akifumi Kawamura
- Department of Chemistry and Materials Engineering, Kansai University, Suita, Osaka 564-8680, Japan; (P.P.); (A.K.); (H.K.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Kansai University, Suita, Osaka 564-8680, Japan; (P.P.); (A.K.); (H.K.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan
| | - Takashi Miyata
- Department of Chemistry and Materials Engineering, Kansai University, Suita, Osaka 564-8680, Japan; (P.P.); (A.K.); (H.K.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
29
|
Ye H, Esfahani EB, Chiu I, Mohseni M, Gao G, Yang T. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134194. [PMID: 38583196 DOI: 10.1016/j.jhazmat.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 μg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver V6T1Z2, Canada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada.
| |
Collapse
|
30
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
31
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
32
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
33
|
Aly Khalil AM, Saied E, Mekky AE, Saleh AM, Al Zoubi OM, Hashem AH. Green biosynthesis of bimetallic selenium-gold nanoparticles using Pluchea indica leaves and their biological applications. Front Bioeng Biotechnol 2024; 11:1294170. [PMID: 38274007 PMCID: PMC10809157 DOI: 10.3389/fbioe.2023.1294170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Increasing bacterial resistance and the negative impact of currently used antibacterial agents have produced the need for novel antibacterial agents and anticancer drugs. In this regard, nanotechnology could provide safer and more efficient therapeutic agents. The main methods for nanoparticle production are chemical and physical approaches that are often costly and environmentally unsafe. In the current study, Pluchea indica leaf extract was used for the biosynthesis of bimetallic selenium-gold nanoparticles (Se-Au BNPs) for the first time. Phytochemical examinations revealed that P. indica leaf extract includes 90.25 mg/g dry weight (DW) phenolics, 275.53 mg/g DW flavonoids, and 26.45 mg/g DW tannins. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to characterize Se-Au BNPs. Based on UV-vis spectra, the absorbance of Se-Au BNPs peaked at 238 and 374 nm. In SEM imaging, Se-Au BNPs emerged as bright particles, and both Au and Se were uniformly distributed throughout the P. indica leaf extract. XRD analysis revealed that the average size of Se-Au BNPs was 45.97 nm. The Se-Au BNPs showed antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 31.25, 15.62, 31.25, and 3.9 μg/mL, respectively. Surprisingly, a cytotoxicity assay revealed that the IC50 value toward the Wi 38 normal cell line was 116.8 μg/mL, implying that all of the MICs described above could be used safely. More importantly, Se-Au BNPs have shown higher anticancer efficacy against human breast cancer cells (MCF7), with an IC50 value of 13.77 μg/mL. In conclusion, this paper is the first to provide data on the effective utilization of P. indica leaf extract in the biosynthesis of biologically active Se-Au BNPs.
Collapse
Affiliation(s)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alsayed E. Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Li X, Liu B, Liu L, Yuan H, Li Y, Zhou B, Sun J, Li C, Xue Q. Large-scale assembly of geometrically diverse metal nanoparticles-based 3D plasmonic DNA nanostructures for SERS detection of PNK in cancer cells. Talanta 2024; 266:124958. [PMID: 37499360 DOI: 10.1016/j.talanta.2023.124958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
The organization of geometrically diverse metal nanoparticles into a core/satellite structure at a large scale is a promising strategy for improve SERS performance due to hot spots localized enrichment and signal increase. However, due to the lack of extensional frames and strong electrostatic repulsion between plasma NPs, the fabrication of such 3D architectures with a high-density periodic hotspot in the focus volume has proven exceedingly difficult. Herein, we demonstrate a facile large-scale assembly of geometrically diverse metal nanoparticles strategy for constructing spatially extended 3D plasmonic nanostructures resembling "signal towers" based on RCA-mediated periodic organization of gold nanospheres (GNS) surrounding gold nanorods (GNRs). Using cancer cell T4 PNK as a model, a padlock probe with 5'- hydroxyl (P-circle) was designed as the T4 PNK substrate. The center Au nanorod was coated with P1 and served as a "pedestal" to allow substantial loading of P-circle after target phosphorylation to initiate the rolling ring amplification reaction (RCA). The resultant DNA nanowire serves as an "antenna" to successively lock numerous Raman reporter P2 (Cy3-P2-SH) through base pairing at regular intervals. Finally, the 3D plasma DNA nanostructures that resemble "signal towers" could be obtained by placing a large number of GNS with a strong affinity for Au-S. The proposed 3D SERS sensor exhibited a sensitivity of LOD as low as 0.274 mU/mL, which was attributed to a substantial electromagnetic field enhancement at the inter-nanoparticle gaps between the adjacent pedestal and antenna. Moreover, by exploiting the synergistic effect of the periodically extended DNA scaffold generated by RCA amplification and the co-assembly of thiol ligand, the loaded GNS can be extended to three-dimensional space, forming a high-density periodic hotspot in the focal volume, thereby ensuring high enhancement and high reproducibility of Raman signals. In addition, this method can be used to quantify T4 PNK in HeLa cells, demonstrating its applicability in diagnosing and estimating PNK-related diseases in complex fluids.
Collapse
Affiliation(s)
- Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Liqi Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Hui Yuan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China; Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen. 2001 Longxiang Avenue, Longgang District, Shenzhen, 518172, China
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Bingqian Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jiuming Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen. 2001 Longxiang Avenue, Longgang District, Shenzhen, 518172, China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
35
|
Priya L, Mehta S, Gevariya D, Sharma R, Panjwani D, Patel S, Ahlawat P, Dharamsi A, Patel A. Quantum Dot-based Bio-conjugates as an Emerging Bioimaging Tool for Cancer Theranostic- A Review. Curr Drug Targets 2024; 25:241-260. [PMID: 38288834 DOI: 10.2174/0113894501283669240123105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 06/05/2024]
Abstract
Cancer is the most widely studied disorder in humans, but proper treatment has not yet been developed for it. Conventional therapies, like chemotherapy, radiation therapy, and surgery, have been employed. Such therapies target not only cancerous cells but also harm normal cells. Conventional therapy does not result in specific targeting and hence leads to severe side effects. The main objective of this study is to explore the QDs. QDs are used as nanocarriers for diagnosis and treatment at the same time. They are based on the principle of theranostic approach. QDs can be conjugated with antibodies via various methods that result in targeted therapy. This results in their dual function as a diagnostic and therapeutic tool. Nanotechnology involving such nanocarriers can increase the specificity and reduce the side effects, leaving the normal cells unaffected. This review pays attention to different methods for synthesising QDs. QDs can be obtained using either organic method and synthetic methods. It was found that QDs synthesised naturally are more feasible than the synthetic process. Top or bottom-up approaches have also emerged for the synthesis of QDs. QDs can be conjugated with an antibody via non-covalent and covalent binding. Covalent binding is much more feasible than any other method. Zero-length coupling plays an important role as EDC (1-Ethyl-3-Ethyl dimethylaminopropyl)carbodiimide is a strong crosslinker and is widely used for conjugating molecules. Antibodies work as surface ligands that lead to antigen- antibody interaction, resulting in site-specific targeting and leaving behind the normal cells unaffected. Cellular uptake of the molecule is done by either passive targeting or active targeting. QDs are tiny nanocrystals that are inorganic in nature and vary in size and range. Based on different sizes, they emit light of specific wavelengths. They have their own luminescent and optical properties that lead to the monitoring, imaging, and transport of the therapeutic moiety to a variety of targets in the body. The surface of the QDs is modified to boost their functioning. They act as a tool for diagnosis, imaging, and delivery of therapeutic moieties. For improved therapeutic effects, nanotechnology leads the cellular uptake of nanoparticles via passive targeting or active targeting. It is a crucial platform that not only leads to imaging and diagnosis but also helps to deliver therapeutic moieties to specific sites. Therefore, this review concludes that there are numerous drawbacks to the current cancer treatment options, which ultimately result in treatment failure. Therefore, nanotechnology that involves such a nanocarrier will serve as a tool for overcoming all limitations of the traditional therapeutic approach. This approach helps in reducing the dose of anticancer agents for effective treatment and hence improving the therapeutic index. QDs can not only diagnose a disease but also deliver drugs to the cancerous site.
Collapse
Affiliation(s)
- Lipika Priya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Smit Mehta
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Darshan Gevariya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Raghav Sharma
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Abhay Dharamsi
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| |
Collapse
|
36
|
Díaz-García V, Haensgen A, Inostroza L, Contreras-Trigo B, Oyarzun P. Novel Microsynthesis of High-Yield Gold Nanoparticles to Accelerate Research in Biosensing and Other Bioapplications. BIOSENSORS 2023; 13:992. [PMID: 38131752 PMCID: PMC10742281 DOI: 10.3390/bios13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that make them appealing for applications in biosensing and other emerging fields. Despite the availability of numerous synthesis methods, important questions remain to be addressed regarding the volume effect on the synthesis yield and quality of AuNPs in the light of biosensing research. The present study addresses these issues by developing a novel microvolumetric citrate-reduction method to improve the synthesis of AuNPs, which were characterized by electronic microscopy, energy dispersive spectroscopy, zeta potential and colorimetric analysis. A comparison of the novel microsynthesis method with the standard Turkevich method demonstrated its superior performance in terms of yield, monodispersity, rapidity (in one step), reproducibility, and stability. The analytical behavior of AuNPs-based aptasensors prepared by microsynthesis was investigated using kanamycin detection and showed higher reproducibility and improved detection limits (3.4 times) compared to those of Turkevich AuNPs. Finally, the effect of pH was studied to demonstrate the suitability of the method for the screening of AuNP synthesis parameters that are of direct interest in biosensing research; the results showed an optimal pH range between 5.0 and 5.5. In summary, the approach described herein has the potential to improve research capabilities in biosensing, with the added benefits of lowering costs and minimizing waste generation in line with current trends in green nanotechnology.
Collapse
Affiliation(s)
- Víctor Díaz-García
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| | | | | | | | - Patricio Oyarzun
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| |
Collapse
|
37
|
Nonappa. Precision nanoengineering for functional self-assemblies across length scales. Chem Commun (Camb) 2023; 59:13800-13819. [PMID: 37902292 DOI: 10.1039/d3cc02205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, i.e., from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated via the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.
Collapse
Affiliation(s)
- Nonappa
- Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.
| |
Collapse
|
38
|
Moloudi K, Khani A, Najafi M, Azmoonfar R, Azizi M, Nekounam H, Sobhani M, Laurent S, Samadian H. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1886. [PMID: 36987630 DOI: 10.1002/wnan.1886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/30/2023]
Abstract
Radiotherapy is an inevitable choice for cancer treatment that is applied as combinatorial therapy along with surgery and chemotherapy. Nevertheless, radiotherapy at high doses kills normal and tumor cells at the same time. In addition, some tumor cells are resistant to radiotherapy. Recently, many researchers have focused on high-Z nanomaterials as radiosensitizers for radiotherapy. Among them, gold nanoparticles (GNPs) have shown remarkable potential due to their promising physical, chemical, and biological properties. Although few clinical trial studies have been performed on drug delivery and photosensitization with lasers, GNPs have not yet received Food and Drug Administration approval for use in radiotherapy. The sensitization effects of GNPs are dependent on their concentration in cells and x-ray energy deposition during radiotherapy. Notably, some limitations related to the properties of the GNPs, including their size, shape, surface charge, and ligands, and the radiation source energy should be resolved. At the first, this review focuses on some of the challenges of using GNPs as radiosensitizers and some biases among in vitro/in vivo, Monte Carlo, and clinical studies. Then, we discuss the challenges in the clinical translation of GNPs as radiosensitizers for radiotherapy and proposes feasible solutions. And finally, we suggest that certain areas be considered in future research. This article is categorized under: Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Ali Khani
- Department of Radiation Sciences, Alley School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Azmoonfar
- Department of Radiology, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Houra Nekounam
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Sobhani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
39
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
40
|
Ju J, Hayward RC. Cocontinuous Nanostructures by Microphase Separation of Statistically Cross-Linked Polystyrene/Poly(2-vinylpyridine) Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49633-49641. [PMID: 37843430 DOI: 10.1021/acsami.3c10985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Cocontinuous polymeric nanostructures have drawn considerable attention due to their ability to combine distinct, percolation-dependent properties of two different polymer domains. Randomly end-linked copolymer networks (RECNs) have previously been shown to support the formation of disordered cocontinuous nanostructures across wide composition windows in a robust way. However, achieving highly efficient linking of telechelic polymers with excellent end-group fidelity often requires complex synthetic routes. As an alternative, we study here statistically cross-linked copolymer networks (SCCNs) composed of polystyrene and poly(2-vinylpyridine) (PS and P2VP) with cross-linkable allyl pendent groups that are conveniently synthesized by controlled radical copolymerization. Via selective extraction of P2VP, coupled with gravimetry, small-angle X-ray scattering, and electron microscopy, we find disordered cocontinuous phases across wide composition ranges (up to ≈ 35 wt %), approaching values previously determined for RECNs. Remarkably, even for samples that appear to exhibit full percolation, a substantial fraction of P2VP (≈ 20-30 wt %) cannot be removed, which we ascribe to short strands between nearby cross-linkers that are physically embedded within PS domains. The resulting PS porous monoliths with residual surface P2VP layers enable facile surface modification to resist protein adsorption and templating of porous gold nanostructures.
Collapse
Affiliation(s)
- Jaechul Ju
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ryan C Hayward
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
41
|
Young Park S, Park K, Oh JW, Park G. Gold nanoparticle encoded with marigold (Tagetes erecta L.) suppressed hyperglycemia -induced senescence in retinal pigment epithelium via suppression of lipid peroxidation. ARAB J CHEM 2023; 16:105120. [DOI: 10.1016/j.arabjc.2023.105120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
42
|
Aili M, Zhou K, Zhan J, Zheng H, Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer's disease. J Mater Chem B 2023; 11:8605-8621. [PMID: 37615596 DOI: 10.1039/d3tb01023f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive dysfunction and reduces a person's decision-making and reasoning functions. AD is the leading cause of dementia in the elderly. Patients with AD have increased expression of pro-inflammatory cytokines in the nervous system, and the sustained inflammatory response impairs neuronal function. Meanwhile, long-term use of anti-inflammatory drugs can reduce the incidence of AD to some extent. This confirms that anti-neuroinflammation may be an effective treatment for AD. Gold nanoparticles (AuNPs) are an emerging nanomaterial with promising physicochemical properties, anti-inflammatory and antioxidant. AuNPs reduce neuroinflammation by inducing macrophage polarization toward the M2 phenotype, reducing pro-inflammatory cytokine expression, blocking leukocyte adhesion, and decreasing oxidative stress. Therefore, AuNPs are gradually attracting the interest of scholars and are used for treating inflammatory diseases and drug delivery. Herein, we explored the role and mechanism of AuNPs in treating neuroinflammation in AD. The use of AuNPs for treating AD is a topic worth exploring in the future, not only to help solve a global public health problem but also to provide a reference for treating other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Munire Aili
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Kebing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China
| |
Collapse
|
43
|
Zhu X, Xu Z, Tang H, Nie L, Nie R, Wang R, Liu X, Huang X. Photosynthesis-Mediated Intracellular Biomineralization of Gold Nanoparticles inside Chlorella Cells towards Hydrogen Boosting under Green Light. Angew Chem Int Ed Engl 2023; 62:e202308437. [PMID: 37357971 DOI: 10.1002/anie.202308437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Engineering living microorganisms to enhance green biomanufacturing for the development of sustainable and carbon-neutral energy strategies has attracted the interest of researchers from a wide range of scientific communities. In this study, we develop a method to achieve photosynthesis-mediated biomineralization of gold nanoparticles (AuNPs) inside Chlorella cells, where the photosynthesis-dominated reduction of Au3+ to Au0 allows the formed AuNPs to locate preferentially around the thylakoid membrane domain. In particular, we reveal that the electrons generated by the localized surface plasmon resonance of AuNPs could greatly augment hypoxic photosynthesis, which then promotes the generation and transferring of photoelectrons throughout the photosynthetic chain for augmented hydrogen production under sunlight. We demonstrate that the electrons from AuNPs could be directly transferred to hydrogenase, giving rise to an 8.3-fold enhancement of Chlorella cells hydrogen production independent of the cellular photosynthetic process under monochromatic 560 nm light irradiation. Overall, the photosynthesis-mediated intracellular biomineralization of AuNPs could contribute to a novel paradigm for functionalizing Chlorella cells to augment biomanufacturing.
Collapse
Affiliation(s)
- Xueying Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Haitao Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Lanheng Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Rui Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Ruifang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| |
Collapse
|
44
|
Yang MY, Chiu CD, Ke YC, Yang YC, Chang KB, Chen CM, Lee HT, Tang CL, Liu BS, Hung HS. Differentiation Induction of Mesenchymal Stem Cells by a Au Delivery Platform. Cells 2023; 12:1893. [PMID: 37508556 PMCID: PMC10378595 DOI: 10.3390/cells12141893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Au decorated with type I collagen (Col) was used as a core material to cross-link with stromal cell-derived factor 1α (SDF1α) in order to investigate biological performance. The Au-based nanoparticles were subjected to physicochemical determination using scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR). Mesenchymal stem cells (MSCs) were used to evaluate the biocompatibility of this nanoparticle using the MTT assay and measuring reactive oxygen species (ROS) production. Also, the biological effects of the SDF-1α-conjugated nanoparticles (Au-Col-SDF1α) were assessed and the mechanisms were explored. Furthermore, we investigated the cell differentiation-inducing potential of these conjugated nanoparticles on MSCs toward endothelial cells, neurons, osteoblasts and adipocytes. We then ultimately explored the process of cell entry and transportation of the nanoparticles. Using a mouse animal model and retro-orbital sinus injection, we traced in vivo biodistribution to determine the biosafety of the Au-Col-SDF1α nanoparticles. In summary, our results indicate that Au-Col is a promising drug delivery system; it can be used to carry SDF1α to improve MSC therapeutic efficiency.
Collapse
Affiliation(s)
- Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Spine Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Chun Ke
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chien-Lun Tang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
- Translational Medicine Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
45
|
Wang Y, Qiao J, Dong S, Shao S, Wang D. Nanoprecipitated CoPi enhanced photoelectrochemical water oxidation toward sensitive and selective Co 2+ detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132003. [PMID: 37423138 DOI: 10.1016/j.jhazmat.2023.132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
The detection of heavy metal ions Co2+ is of great significance to the environment and human health. Herein, a simple, highly selective and sensitive photoelectrochemical detection strategy for Co2+ was developed based on the enhanced activity by nanoprecipitated CoPi on the Au nanoparticle decorated BiVO4 electrode. The new photoelectrochemical sensor has a low detection limit of 0.03 μΜ and wide detection range of 0.1-10, and 10-6000 μΜ, with a high selectivity over other metal ions. The Co2+ concentration in tap water and commercial drinking water has also been successfully determined with the proposed method. Scanning electrochemical microscopy technique was employed to characterize the photocatalytic performance and heterogenous electron transfer rate of electrodes in situ, further revealing the photoelectrochemical sensing mechanism. Besides determining Co2+ concentration, this approach of enhanced catalytic activity by nanoprecipitation can be further extended to develop a variety of electrochemical, photoelectrochemical and optical sensing platforms for many other hazardous ions and biological molecules.
Collapse
Affiliation(s)
- Yuhuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyu Qiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuqing Dong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shijun Shao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Dengchao Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Patel KN, Trivedi PG, Thakar MS, Prajapati KV, Prajapati DK, Sindhav GM. Gold nanoparticles synthesis using Gymnosporia montana L. and its biological profile: a pioneer report. J Genet Eng Biotechnol 2023; 21:71. [PMID: 37358697 PMCID: PMC10293534 DOI: 10.1186/s43141-023-00525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The forming, blending, and characterization of materials at a size of one billionth of a meter or less is referred to as nanotechnology. The objective of the current study was to synthesize ecologically friendly gold nanoparticles (AuNPs) from Gymnosporia montana L. (G. montana) leaf extract, characterize them, assess their interaction with different types of deoxyribonucleic acid (DNA), and investigate their antioxidant and toxic capabilities. RESULTS The biosynthesized AuNPs presence was validated by a color change from yellow to reddish pink as well as using UV-visible spectrophotometer. Fourier transform infrared (FTIR) spectroscopy analysis showed the presence of phytoconstituents like, alcohols, phenols, and nitro compounds responsible for the reduction of AuNPs. Zeta sizer and zeta potential of 559.6 d. nm and - 4.5 mV, respectively, demonstrated potential stability. With an average size between 10 and 50 nm, X-ray diffraction (XRD), and high-resolution transmission electron microscope (HR-TEM), revealed the crystalline formation of AuNPs. Surface topology with 3D characterization, irregular spherical shape, and size with 6.48 nm of AuNPs was determined with the help of an atomic force microscope (AFM). AuNPs with some irregular and spherical shapes, and sizes between 2 and 20 nm, were revealed by field emission scanning electron microscope (FESEM) investigation. Shifts in the spectrum were visible when the bioavailability of AuNPs with calf-thymus DNA (CT-DNA) and Herring sperm DNA (HS-DNA) was tested. Additionally, the DNA nicking assay's interaction with pBR322 DNA confirmed its physiochemical and antioxidant properties. The same was also found by using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which showed a 70-80% inhibition rate. Finally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay revealed that viability decreased with increasing dosage, going from 77.74 to 46.99% on MCF-7 cell line. CONCLUSION Synthesizing AuNPs through biogenic processes and adopting G. montana for the first time revealed potential DNA interaction, antioxidant, and cytotoxicity capabilities. Thus, opening new possibilities in the turf of therapeutics as well as in other areas.
Collapse
Affiliation(s)
- Krishnakumari N. Patel
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Pooja G. Trivedi
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Milan S. Thakar
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Kush V. Prajapati
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Dhruv K. Prajapati
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Gaurang M. Sindhav
- Department of Zoology, BMT, HGC & WBC, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
47
|
Ziarati A, Zhao J, Afshani J, Kazan R, Perez Mellor A, Rosspeintner A, McKeown S, Bürgi T. Advanced Catalyst for CO 2 Photo-Reduction: From Controllable Product Selectivity by Architecture Engineering to Improving Charge Transfer Using Stabilized Au Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207857. [PMID: 36895069 DOI: 10.1002/smll.202207857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Indexed: 06/15/2023]
Abstract
Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.
Collapse
Affiliation(s)
- Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jafar Afshani
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Ariel Perez Mellor
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Siobhan McKeown
- Deparment of Quantum Matter Physics, Laboratory of Advanced Technology, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| |
Collapse
|
48
|
Swathi BN, Krushna BRR, Manjula MV, Manjunatha K, Devaraja S, Ho MK, Chiu HH, Wu SY, Subramanian B, Nagabhushana H. Potential applications of Fe 3+-activated Sr 9Al 6O 18 nanophosphors for fingerprint detection, oxidative stress, and thrombosis treatment. BIOMATERIALS ADVANCES 2023; 151:213482. [PMID: 37267751 DOI: 10.1016/j.bioadv.2023.213482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
This study reports on the synthesis of Fe3+-activated Sr9Al6O18 nanophosphors (SAO:Fe NPs) using a simple solution combustion process, which emits a pale green light and possesses excellent fluorescence properties. An in-situ powder dusting method was utilized to extract unique ridge features of latent fingerprints (LFPs) on various surfaces using ultra-violet 254 nm excitation. The results showed that SAO:Fe NPs possess high contrast, high sensitivity, and no background interference, enabling the observation of LFPs for longer periods. Poroscopy, which is the examination of sweat pores on the skin's papillary ridges, is important in the identification process, and the YOLOv8x program based on deep convolutional neural networks was used to study the features visible in FPs. The potential of SAO:Fe NPs to ameliorate oxidative stress and thrombosis was analyzed. The results showed that SAO:Fe NPs have antioxidant properties by scavenging 2,2-diphenylpicrylhydrazyl (DPPH) and normalized the stress markers in NaNO2-induced oxidative stress in Red Blood Cells (RBC). In addition, SAO:Fe inhibited platelet aggregation induced by adenosine diphosphate (ADP). Therefore, SAO:Fe NPs may have potential applications in advanced cardiology and forensic sciences. Overall, this study highlights the synthesis and potential applications of SAO:Fe NPs, which can enhance the sensitivity and specificity of fingerprint detection and provide insights into developing novel treatments for oxidative stress and thrombosis.
Collapse
Affiliation(s)
- B N Swathi
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103, India
| | - B R Radha Krushna
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103, India
| | - M V Manjula
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| | - K Manjunatha
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | - S Devaraja
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, Karnataka, India.
| | - Ming-Kang Ho
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Hsin-Hao Chiu
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Sheng Yun Wu
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Balanehru Subramanian
- School of Biomedical Sciences, Sri Balaji Vidyapeeth (Deemed to Be University), Puducherry 607402, India.
| | - H Nagabhushana
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103, India.
| |
Collapse
|
49
|
Cheng WY, Yang MY, Yeh CA, Yang YC, Chang KB, Chen KY, Liu SY, Tang CL, Shen CC, Hung HS. Therapeutic Applications of Mesenchymal Stem Cell Loaded with Gold Nanoparticles for Regenerative Medicine. Pharmaceutics 2023; 15:1385. [PMID: 37242627 PMCID: PMC10222259 DOI: 10.3390/pharmaceutics15051385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, the various concentrations of AuNP (1.25, 2.5, 5, 10 ppm) were prepared to investigate the biocompatibility, biological performances and cell uptake efficiency via Wharton's jelly mesenchymal stem cells and rat model. The pure AuNP, AuNP combined with Col (AuNP-Col) and FITC conjugated AuNP-Col (AuNP-Col-FITC) were characterized by Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and Dynamic Light Scattering (DLS) assays. For in vitro examinations, we explored whether the Wharton's jelly MSCs had better viability, higher CXCR4 expression, greater migration distance and lower apoptotic-related proteins expression with AuNP 1.25 and 2.5 ppm treatments. Furthermore, we considered whether the treatments of 1.25 and 2.5 ppm AuNP could induce the CXCR4 knocked down Wharton's jelly MSCs to express CXCR4 and reduce the expression level of apoptotic proteins. We also treated the Wharton's jelly MSCs with AuNP-Col to investigate the intracellular uptake mechanisms. The evidence demonstrated the cells uptake AuNP-Col through clathrin-mediated endocytosis and the vacuolar-type H+-ATPase pathway with good stability inside the cells to avoid lysosomal degradation as well as better uptake efficiency. Additionally, the results from in vivo examinations elucidated the 2.5 ppm of AuNP attenuated foreign body responses and had better retention efficacy with tissue integrity in animal model. In conclusion, the evidence demonstrates that AuNP shows promise as a biosafe nanodrug delivery system for development of regenerative medicine coupled with Wharton's jelly MSCs.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Meng-Yin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Kai-Yuan Chen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Szu-Yuan Liu
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chien-Lun Tang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
50
|
Ali F, Mehmood S, Ashraf A, Saleem A, Younas U, Ahmad A, Bhatti MP, Eldesoky GE, Aljuwayid AM, Habila MA, Bokhari A, Mubashir M, Chuah LF, Chong JWR, Show PL. Ag–Cu Embedded SDS Nanoparticles for Efficient Removal of Toxic Organic Dyes from Water Medium. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Saira Mehmood
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Aimon Saleem
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| | | | - Gaber E. Eldesoky
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Punjab 54000 Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| |
Collapse
|