1
|
Qiao Y, Gu M, Wang X, Chen R, Kong L, Li S, Li J, Liu Q, Hou S, Wang Z. Revealing Dynamics of Protein Phosphorylation: A Study on the Cashmere Fineness Disparities in Liaoning Cashmere Goats. Mol Biotechnol 2025; 67:2832-2845. [PMID: 39117978 DOI: 10.1007/s12033-024-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Exploring the landscape of protein phosphorylation, this investigation focuses on skin samples from LCG (Liaoning Cashmere Goats), characterized by different levels of cashmere fineness. Employing LC-MS/MS technology, we meticulously scrutinized FT-LCG (fine-type Liaoning Cashmere Goats) and CT-LCG (coarse-type Liaoning Cashmere Goats). Identifying 512 modified proteins, encompassing 1368 phosphorylated peptide segments and 1376 quantifiable phosphorylation sites, our exploration further revealed consistent phosphorylation sites in both groups. Analysis of phosphorylated peptides unveiled kinase substrates, prominently featuring Protein Kinase C, Protein Kinase B and MAPK3-MAPK1-MAPK7-NLK-group. Differential analysis spotlighted 28 disparate proteins, comprising six upregulated and twenty-two downregulated. Cluster analysis showcased the robust clustering efficacy of the two sample groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses underscored the significance of the purine metabolism pathway, suggesting its pivotal role in modulating cashmere fineness in LCG. Notably, through differential protein analysis, two crucial proteins were identified: HSL-X (hormone-sensitive lipase isoform X1) and KPRP (keratinocyte proline-rich protein). Further evidence supports LIPE and KPRP as key genes regulating cashmere fineness, paving the way for promising avenues in further research. These findings not only contribute to a nuanced understanding of protein-level dynamics in cashmere but also provide a theoretical foundation for the selective breeding of superior Liaoning Cashmere Goat strands.
Collapse
Affiliation(s)
- Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lingchao Kong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuaitong Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaqi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingkun Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sibing Hou
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Zhu C, Hong T, Li H, Chen Y, Zheng M, Li Z, Jiang Z, Ni H, Zhu Y. κ-Carrageenan tetrasaccharide ameliorates particulate matter-induced defects in skin hydration of human keratinocytes cells and skin barrier disorders. Int J Biol Macromol 2025; 301:140395. [PMID: 39880261 DOI: 10.1016/j.ijbiomac.2025.140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Urban air pollutants, mainly represented by PM containing organic and inorganic substances, can penetrate the human skin and trigger oxidative stress, potentially causing skin barrier damage and aging. κ-Carrageenan oligosaccharides as degradation products of natural sulfated polysaccharide have a great potential for skin moisturization as well as improving oxidative stress and inflammation. In this study, κ-carrageenan tetrasaccharide was obtained by enzymatic digestion of κ-carrageenan, and its role in alleviating particulate matter-induced inflammatory response in HaCaT keratinocyte cell line and skin barrier dysfunction was evaluated. The results showed that particulate matter significantly increased the cellular levels of the pollutant metal ions, stimulated ROS production and cellular inflammatory response, and inhibited enzyme precursors for ceramide synthesis and interfered with lipid synthesis. In contrast, κ-carrageenan tetrasaccharide treatment can downregulate pro-inflammatory factors by chelating metal ions to reduce ROS levels and revert the action of PM on STAT3 and PI3K/AKT pathways and PPAR-γ expression. The beneficial roles of κ-carrageenan tetrasaccharide in protection of dehydration and inflammation suggest that it can be used as a cosmetic ingredient for skincare.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, China
| | - Yanhong Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China.
| |
Collapse
|
3
|
Tehrani L, Tashjian M, Mayrovitz HN. Physiological Mechanisms and Therapeutic Applications of Microneedling: A Narrative Review. Cureus 2025; 17:e80510. [PMID: 40225445 PMCID: PMC11993440 DOI: 10.7759/cureus.80510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Microneedling (MN), also known as percutaneous collagen induction therapy, is a minimally invasive dermatologic procedure that stimulates the skin's intrinsic wound repair cascade by creating controlled micro-injuries to the epidermis and dermis using multiple small-sized needles. This review aims to document and discuss the skin's physiological mechanisms activated through the MN process and its therapeutic applications and, where possible, to describe the impacts on changes in the skin's biophysical properties. Three databases, namely, PubMed, Web of Science, and Embase, were searched for relevant peer-reviewed articles published in English between 1990 and 2024. After eliminating duplicate and irrelevant articles, 70 studies were included in this review. The main physiological mechanisms associated with the MN process were collagen and elastin production, angiogenesis, transient increases in skin permeability, and improved epidermal barrier function post-treatment. Therapeutic applications targeted cosmetic improvements, scar healing, and drug delivery. As the wound repair process is initiated, fibroblasts migrate to the wounded area to initiate collagen and elastin production, contributing to the improved firmness and elasticity of the healed epidermis. The micropores created by MN increase skin permeability, allowing hydrophilic water-soluble molecules to transfer across the skin to enhance transdermal drug delivery and absorption. Multiple growth factors are secreted by monocytes upon injury and contribute to collagen production, epithelization, and angiogenesis, which increase epidermal thickness and epidermal barrier enhancement found post-procedure. Additionally, TGFM-1, a cross-linker of the protein filaggrin, and ki67, a marker of cell proliferation, are upregulated following the controlled tissue injury. These upregulated biomarkers contribute to the increase in filaggrin and the improvement of skin barrier function. Ceramides, which help retain moisture and prevent transepidermal water loss, are also increased when MN is combined with a solution containing human adipose tissue stem cell-derived exosomes. The cosmetic applications included improvements in skin texture, wrinkles, and scarring. As a minimally invasive procedure, MN is reported to have a low risk of post-procedural hyperpigmentation, scarring, or other adverse effects.
Collapse
Affiliation(s)
- Lily Tehrani
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Michelle Tashjian
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Harvey N Mayrovitz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| |
Collapse
|
4
|
Cattier B, Guignard R, Martel I, Martel C, Simard-Bisson C, Larouche D, Guiraud B, Bessou-Touya S, Germain L. Bulge-Derived Epithelial Cells Isolated from Human Hair Follicles Using Enzymatic Digestion or Explants Result in Comparable Tissue-Engineered Skin. Int J Mol Sci 2025; 26:1852. [PMID: 40076477 PMCID: PMC11899990 DOI: 10.3390/ijms26051852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Hair follicle stem cells, located in the bulge region of the outer root sheath, are multipotent epithelial stem cells capable of differentiating into epidermal, sebaceous gland, and hair shaft cells. Efficient culturing of these cells is crucial for advancements in dermatology, regenerative medicine, and skin model development. This investigation aimed to develop a protocol for isolating enriched bulge-derived epithelial cells from scalp specimens to produce tissue-engineered substitutes. The epithelium, including hair follicles, was separated from the dermis using thermolysin, followed by microdissection of the bulge region. Epithelial stem cells were isolated using enzymatic dissociation to create a single-cell suspension and compared with the direct explant culture and a benchmark method which isolates cells from the epidermis and pilosebaceous units. After 8 days of culture, the enzymatic digestion of microdissected bulges yielded 5.3 times more epithelial cells compared to explant cultures and proliferated faster than the benchmark method. Cells cultured from all methods exhibited comparable morphology and growth rates. The fully stratified epidermis of tissue-engineered skin was similar, indicating comparable differentiation potential. This enzymatic digestion method improved early-stage cell recovery and expansion while maintaining keratinocyte functionality, offering an efficient hair bulge cell-extraction technique for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Bettina Cattier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Rina Guignard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Israël Martel
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Christian Martel
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Carolyne Simard-Bisson
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Danielle Larouche
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Béatrice Guiraud
- R&D Center, Pierre Fabre Dermo-Cosmétique, 31100 Toulouse, France; (B.G.); (S.B.-T.)
| | - Sandrine Bessou-Touya
- R&D Center, Pierre Fabre Dermo-Cosmétique, 31100 Toulouse, France; (B.G.); (S.B.-T.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| |
Collapse
|
5
|
Liu M, Charek JG, Vicetti Miguel RD, Cherpes TL. Ephrin-Eph signaling: an important regulator of epithelial integrity and barrier function. Tissue Barriers 2025:2462855. [PMID: 39921660 DOI: 10.1080/21688370.2025.2462855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Eph receptor-interacting proteins (ephrin) ligands and their erythropoietin-producing human hepatocellular (Eph) receptors elicit bidirectional signals that regulate cell migration, angiogenesis, neuronal plasticity, and other developmental processes in the embryo. In adulthood, ephrin-Eph signaling regulates numerous homeostatic events, including epithelial cell proliferation and differentiation. Epithelial surfaces, including those of skin and vagina, are lined by layers of stratified squamous epithelium (SSE) that protect against mechanical stress and microbial pathogen invasion. Ephrin-Eph signaling is known to promote cutaneous epithelial barrier function by regulating the expression of specialized cell-cell adhesion junctions termed desmosomes, but the role of this signaling system in maintaining epithelial integrity and barrier function in the vagina is less explored. This review summarizes current understanding of ephrin-Eph signaling that regulates desmosome expression and barrier function in the skin and considers evidence that suggests ephrin-Eph signaling similarly regulates these processes in vaginal SSE.
Collapse
Affiliation(s)
- Mohan Liu
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Joseph G Charek
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Rodolfo D Vicetti Miguel
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Thomas L Cherpes
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures. Animals (Basel) 2025; 15:457. [PMID: 39943227 PMCID: PMC11816140 DOI: 10.3390/ani15030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research.
Collapse
Affiliation(s)
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.H.)
| |
Collapse
|
7
|
Zhang J, Xia B, Wakefield JS, Elias PM, Wang X. The Role and Implications of Epidermal Dysfunction in the Pathogenesis of Inflammaging. J Invest Dermatol 2025:S0022-202X(24)03034-3. [PMID: 39808093 DOI: 10.1016/j.jid.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 01/16/2025]
Abstract
Inflammaging has long been linked to the pathogenesis of various aging-associated disorders, including cardiovascular disease, obesity, type 2 diabetes, and dementia. Yet, the origins of inflammaging remain unclear. Although inflammatory dermatoses such as psoriasis and atopic dermatitis predispose to the development of certain aging-associated disorders, suggesting a pathogenic role of cutaneous inflammation in these disorders, the great majority of aged humans do not have inflammatory dermatoses. Nonetheless, recent studies point to epidermal dysfunction as contributing to inflammaging, even in otherwise normal aged humans. Chronologically aged skin exhibits reduced stratum corneum hydration levels, delayed permeability barrier recovery, and an elevated stratum corneum pH, all of which can provoke and exacerbate cutaneous inflammation. Owing to the prolonged release of proinflammatory cytokines (including TNFα, IL-1β, and IL-6) from the epidermis into the circulation in response to these functional abnormalities, cutaneous inflammation can lead to extracutaneous inflammation, resulting in the downstream development of inflammaging and its accompanying disorders. In support of this concept, topical therapies that improve epidermal function can mitigate some aging-associated disorders, such as mild cognitive impairment. In this perspective, we discuss the link between epidermal dysfunction and inflammaging and highlight the potential management of inflammaging-associated sequelae by enhancing epidermal functions.
Collapse
Affiliation(s)
- Jiechen Zhang
- Department of Dermatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Bijun Xia
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Joan S Wakefield
- Dermatology Service (190), Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service (190), Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Xiaohua Wang
- Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Dhummakupt ES, Jenkins CC, Rizzo GM, Clay AE, Horsmon JR, Goralski TDP, Renner JA, Angelini DJ. Multiomic analysis of Lewisite exposed human dermal equivalent tissues. Chem Biol Interact 2025; 405:111295. [PMID: 39486569 DOI: 10.1016/j.cbi.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Lewisite (Military Code: L) is an arsenical vesicant chemical warfare agent (CWA) that was developed in the United States during World War I. Even though its use has not been documented in warfare, large stockpiles were created and still exist in various locations around the world. Given that large quantities exist as well as the relative straightforward process for its creation, Lewisite still presents itself as a serious threat agent. In this study, we examined the effects of Lewisite on human dermal equivalent tissues (EpiDerm™/EpiDerm™-FT) through the evaluation of cellular viability, histology, and multiomic analysis.
Collapse
Affiliation(s)
- Elizabeth S Dhummakupt
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| | - Conor C Jenkins
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Gabrielle M Rizzo
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Allison E Clay
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Jennifer R Horsmon
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Tyler D P Goralski
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Julie A Renner
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Daniel J Angelini
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
9
|
Alibardi L. Ultrastructure and immunohistochemistry of apteric skin in ratites and its epidermal soft cornification. Acta Histochem 2024; 126:152213. [PMID: 39476480 DOI: 10.1016/j.acthis.2024.152213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
An electron microscopy and immunohistochemistry study has been conducted to acquire comparative information on the structure of apteric skin in ratites, ostrich and emu. The epidermis is thin in the neck of both species and thicker in the dorsal region where acidic and neutral keratins are present in the viable epidermis and stratum corneum. The dermis in both species is mostly occupied by collagen fibrils that form large bundles, often organized in alternated layers in the deeper part of the dermis. Numerous collagen fibrils contact the basement membrane of the epidermis. Sparse tactile Meissner or Krause sensilli are present among the thick collagen bundles. The ostrich epidermis in the dorsal skin is thicker than in the neck, with a columnar basal layer, 3-5 intermediate suprabasal layers and a thick corneous layer. The epidermis of the neck in emu is very thin, featuring two-three narrow cell layers above a flat basal layer and a relatively thick corneous layer. Basal and suprabasal keratinocytes contain lipid droplets and small keratin bundles but no keratohyalin accumulates in pre-corneous cells. The thin corneocytes form a multilayered corneous layer. Loricrine is present in pre-corneous and corneous layers while CBPs, formerly indicated as beta-keratins, are absent in apteric epidermis.
Collapse
|
10
|
Eckhart L, Holthaus KB, Sachslehner AP. Cell differentiation in the embryonic periderm and in scaffolding epithelia of skin appendages. Dev Biol 2024; 515:60-66. [PMID: 38964706 DOI: 10.1016/j.ydbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in the embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
11
|
Pancarte M, Leignadier J, Courrech S, Serre G, Attia J, Jonca N. Strengthening the Skin Barrier by Using a Late Cornified Envelope 6A-Derived Biomimetic Peptide. Exp Dermatol 2024; 33:e15191. [PMID: 39397370 DOI: 10.1111/exd.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Changes in the expression of cornified envelope (CE) components are a hallmark of numerous pathological skin conditions and aging, underlying the importance of this stratum corneum structure in the homeostasis of the epidermal barrier. We performed a detailed characterisation of LCE6A, a member of the Late Cornified Envelope protein family. Immunohistochemical and immunoblot experiments confirmed that LCE6A is expressed late during epidermal differentiation. Crosslinking assays of recombinant LCE6A performed either in situ on human skin sections or in vitro demonstrated that LCE6A is indeed a substrate of transglutaminases and crosslinked to CEs. LCE6A-derived peptides containing a glutamine-lysine sequence retained these properties of the full-length protein and reinforced the mechanical resistance of CE submitted to sonication. We designed P26, a LCE6A-derived biomimetic peptide that similarly reinforced CE in vitro, and evaluated its protective properties ex vivo, on human skin explants, and in two double blind and vehicle-controlled clinical trials. P26 was able to protect the skin from barrier disruption, to limit the damage resulting from a defective barrier, and could improve the signs of aging such as loss of skin firmness and increased skin roughness. Hence, our detailed characterisation of LCE6A as a component of the CE enabled us to develop a LCE6A-derived peptide, biologically active with a new and original mode of action that could be of great interest as a cosmetic ingredient and a pharmacologic agent.
Collapse
Affiliation(s)
- Mikaël Pancarte
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, University Paul Sabatier, University of Toulouse, Toulouse, France
| | | | - Séverine Courrech
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, University Paul Sabatier, University of Toulouse, Toulouse, France
| | - Guy Serre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, University Paul Sabatier, University of Toulouse, Toulouse, France
| | - Joan Attia
- IFF-Lucas Meyer Cosmetics, Toulouse, France
| | - Nathalie Jonca
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, University Paul Sabatier, University of Toulouse, Toulouse, France
- Department of Cell Biology and Cytology, Federative Institute of Biology, Purpan Hospital, University Hospital, Toulouse, France
| |
Collapse
|
12
|
Ebrahimi Samani S, Tatsukawa H, Hitomi K, Kaartinen MT. Transglutaminase 1: Emerging Functions beyond Skin. Int J Mol Sci 2024; 25:10306. [PMID: 39408635 PMCID: PMC11476513 DOI: 10.3390/ijms251910306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Transglutaminase enzymes catalyze Ca2+- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies. This review summarizes our current understanding of the structure, activation, expression and activity patterns of TG1 and discusses its putative novel role in other tissues, such as in vascular integrity, and in diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Mari T. Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Tu Y, An R, Gu H, Li N, Yan H, Liu HY, He L. The water extracts from the oil cakes of Prinsepia utilis repair the epidermal barrier via up-regulating Corneocyte Envelope-proteins, lipid synthases, and tight junction proteins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118194. [PMID: 38641077 DOI: 10.1016/j.jep.2024.118194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ran An
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hua Gu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Na Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
14
|
Dubljanin E, Zunic J, Vujcic I, Colovic Calovski I, Sipetic Grujicic S, Mijatovic S, Dzamic A. Host-Pathogen Interaction and Resistance Mechanisms in Dermatophytes. Pathogens 2024; 13:657. [PMID: 39204257 PMCID: PMC11357293 DOI: 10.3390/pathogens13080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/14/2024] Open
Abstract
Dermatophytes are widely distributed in the environment, with an estimated prevalence of 20-25% of the the global population yearly. These fungi are keratinophilic and keratinolytic and cause the infection of keratin-rich structures such as skin, hair, and nails. The pattern of this infectious disease covers a wide spectrum from exposed individuals without symptoms to those with acutely inflammatory or non-inflammatory, chronic to invasive, and even life-threatening symptoms. This review summarizes current information on the pathogenicity, virulence factors, and drug resistance mechanisms associated with dermatophytes. A greater number of virulence factors of these fungi are important for the occurrence of infection and the changes that occur, including those regarding adhesins, the sulfite efflux pump, and proteolytic enzymes. Other virulence factors include mechanisms of evading the host defense, while the development of resistance to antifungal drugs is increasing, resulting in treatment failure. The investigation of host-pathogen interactions is essential for developing a more complete understanding of the mechanisms underlying dermatophyte pathogenesis and host response to inform the use of diagnostics methods and antifungal therapeutics to minimize the high fungal burden caused by dermatophytes and to control the spread of resistance.
Collapse
Affiliation(s)
- Eleonora Dubljanin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Zunic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Isidora Vujcic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivana Colovic Calovski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Sipetic Grujicic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, 11000 Belgrade, Serbia
| | - Stefan Mijatovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Dzamic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Luo Y, Bollag WB. The Role of PGC-1α in Aging Skin Barrier Function. Cells 2024; 13:1135. [PMID: 38994987 PMCID: PMC11240425 DOI: 10.3390/cells13131135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
16
|
Alibardi L. Immunolabeling for filaggrin and acidic keratins in the granular layer of mammalian epidermis indicates that an acidic-basic interaction is involved in cornification. Tissue Cell 2024; 88:102397. [PMID: 38677234 DOI: 10.1016/j.tice.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The soft epidermis of mammals derives from the accumulation of keratohyaline granules in the granular layer, before maturing into corneocytes. Main proteins accumulated in the granular layer are pro-filaggrin and filaggrin that determine keratin clumping and later moisturization of the stratum corneum that remains flexible. This soft epidermis allows the high sensitivity of mammalian skin. Presence and thickness of the stratum granulosum varies among different species of mammals and even between different body regions of the same animal, from discontinuous to multilayered. These variations are evident using antibodies for filaggrin, a large protein that share common epitopes among placentals. Here we have utilized filaggrin antibodies (8959 and 466) and an acidic keratin antibody (AK2) for labeling placental, marsupial and monotreme epidermis. AK2 labeling appears mainly to detect K24 keratin, and less likely other acidic keratins. Immunoreactivity for filaggrin is absent in platypus, discontinuous in Echidna and in the tested marsupials. In placentals, it is inconstantly or hardly detected in the thin epidermis of bat, rodents, and lagomorphs with a narrow, mono-stratified and/or discontinuous granular layer. In contrast, where the granular layer is continuous or even stratified, both filaggrin and AK2 antibodies decorate granular cells. The ultrastructural analysis using the AK2 antibody on human epidermis reveals that a weak labeling is associated with keratohyalin granules and filamentous keratins of transitional keratinocytes and corneocytes. This observation suggests that basophilic filaggrin interacts with acidic keratins like K24 and determines keratin condensation into corneocytes of the stratum corneum.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Italy.
| |
Collapse
|
17
|
Maor-Landaw K, Smirnov M, Lotan T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. Int J Mol Sci 2024; 25:5683. [PMID: 38891869 PMCID: PMC11171596 DOI: 10.3390/ijms25115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Myxozoa, a unique group of obligate endoparasites within the phylum Cnidaria, can cause emerging diseases in wild and cultured fish populations. Recently, the myxozoan Myxobolus bejeranoi has been identified as a prevalent pathogen infecting the gills of cultured hybrid tilapia, leading to systemic immune suppression and considerable mortality. Here, we employed a proteomic approach to examine the impact of M. bejeranoi infection on fish gills, focusing on the structure of the granulomata, or cyst, formed around the proliferating parasite to prevent its spread to surrounding tissue. Enrichment analysis showed increased immune response and oxidative stress in infected gill tissue, most markedly in the cyst's wall. The intense immune reaction included a consortium of endopeptidase inhibitors, potentially combating the myxozoan arsenal of secreted proteases. Analysis of the cyst's proteome and histology staining indicated that keratin intermediate filaments contribute to its structural rigidity. Moreover, we uncovered skin-specific proteins, including a grainyhead-like transcription factor and a teleost-specific S100 calcium-binding protein that may play a role in epithelial morphogenesis and cysts formation. These findings deepen our understanding of the proteomic elements that grant the cyst its distinctive nature at the critical interface between the fish host and myxozoan parasite.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| |
Collapse
|
18
|
Dobrzyn K, Kiezun M, Kopij G, Zarzecka B, Gudelska M, Kisielewska K, Zaobidna E, Makowczenko KG, Dall'Aglio C, Kamiński T, Smolińska N. Apelin-13 modulates the endometrial transcriptome of the domestic pig during implantation. BMC Genomics 2024; 25:501. [PMID: 38773369 PMCID: PMC11106924 DOI: 10.1186/s12864-024-10417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The peri-implantation period is a critical time during pregnancy that mostly defines the overall litter size. Most authors agree that the highest percentage of embryo mortality occurs during this time. Despite the brevity of the peri-implantation period, it is the most dynamic part of pregnancy in which the sequential and uninterrupted course of several processes is essential to the animal's reproductive success. Also then, the maternal uterine tissues undergo an intensive remodelling process, and their energy demand dramatically increases. It is believed that apelin, a member of the adipokine family, is involved in the control of female reproductive functions in response to the current metabolic state. The verified herein hypothesis assumed the modulatory effect of apelin on the endometrial tissue transcriptome on days 15 to 16 of gestation (beginning of implantation). RESULTS The analysis of data obtained during RNA-seq (Illumina HiSeq2500) of endometrial slices treated and untreated with apelin (n = 4 per group) revealed changes in the expression of 68 genes (39 up-regulated and 29 down-regulated in the presence of apelin), assigned to 240 gene ontology terms. We also revealed changes in the frequency of alternative splicing events (397 cases), as well as single nucleotide variants (1,818 cases) in the presence of the adipokine. The identified genes were associated, among others, with the composition of the extracellular matrix, apoptosis, and angiogenesis. CONCLUSIONS The obtained results indicate a potential role of apelin in the regulation of uterine tissue remodelling during the peri-implantation period.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland.
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Marlena Gudelska
- Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Aleja Warszawska 30, Olsztyn, 10-082, Poland
| | - Katarzyna Kisielewska
- Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Aleja Warszawska 30, Olsztyn, 10-082, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Karol G Makowczenko
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Reproductive Immunology and Pathology, Tuwima 10, Olsztyn, 10-748, Poland
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Tadeusz Kamiński
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Nina Smolińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| |
Collapse
|
19
|
Chen R, Fang T, Liu N, Shi X, Wang J, Yu H. Transglutaminase 3 suppresses proliferation and cisplatin resistance of cervical cancer cells by inactivation of the PI3K/AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2269-2280. [PMID: 37812238 DOI: 10.1007/s00210-023-02757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Recent studies have shown that dysregulation of transglutaminase 3 (TGM3) is related to the aggressive progression of several cancer types. Our study aimed to determine the function of TGM3 in cervical cancer (CC) tumorigenesis. Gene expression profiles GSE63514, GSE9750, GSE46857 and GSE67522 were obtained from the Gene Expression Omnibus (GEO) database. Overlapping differential expressed genes (DEGs) in CC were screened using GEO2R online tool and Venn diagram software. The Kaplan-Meier plotter was used to determine overall survival. TGM3 expression was analyzed based on GEO and The Cancer Genome Atlas (TCGA) databases, qRT-PCR and western blot analyses. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. The half-maximal inhibitory concentration (IC50) value of cisplatin and cell apoptosis was assessed by CCK-8 and TUNEL assays, respectively. P-glycoprotein (P-gp) expression and the changes of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway were examined using western blot analysis. We identified 3 overlapping DEGs, including TGM3, glutathione peroxidase 3 (GPX3), and alpha B-crystallin (CRYAB), which were downregulated in CC tissues. TGM3 expression was reduced in CC cells and related to the poor prognosis of CC patients. TGM3 overexpression retarded the proliferation, reduced IC50 value of cisplatin, accelerated cisplatin-induced apoptosis, and inhibited cisplatin-induced P-gp level in CC cells. Furthermore, TGM3 overexpression suppressed the PI3K/Akt pathway in CC cells. Moreover, treatment with 740Y-P, a PI3K activator, abolished the effect of TGM3 overexpression on proliferation and cisplatin resistance in CC cells. In conclusion, overexpression of TGM3 suppressed proliferation and cisplatin resistance in CC cells by blocking the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruipu Chen
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China.
| | - Tingyu Fang
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Na Liu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Xuejiao Shi
- Department of Nursing, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Junsen Wang
- Department of Operating, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Huaping Yu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| |
Collapse
|
20
|
Alibardi L, Surbek M, Eckhart L. Comparative immunohistochemical analysis suggests a conserved role of EPS8L1 in epidermal and hair follicle barriers of mammals. PROTOPLASMA 2024; 261:333-349. [PMID: 37889356 DOI: 10.1007/s00709-023-01898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
The mammalian skin and its appendages depend on tightly coordinated differentiation of epithelial cells. Epidermal growth factor receptor (EGFR) pathway substrate 8 (EPS8) like 1 (EPS8L1) is enriched in the epidermis among human tissues and has also been detected in the epidermis of lizards. Here, we show by the analysis of single-cell RNA-sequencing data that EPS8L1 mRNA is co-expressed with filaggrin and loricrin in terminally differentiated human epidermal keratinocytes. Comparative genomics indicated that EPS8L1 is conserved in all main clades of mammals, whereas the orthologous gene has been lost in birds. Using a polyclonal antibody against EPS8L1, we performed an immunohistochemical screening of skin from diverse mammalian species and immuno-electron microscopy of human skin. EPS8L1 was detected predominantly in the granular layer of the epidermis in monotremes, marsupial, and placental mammals. The labeling was partly associated with cell membranes, and it was evident along the perimeter of keratinocytes at the transition with the cornified layer of the epidermis, similar to involucrin distribution. Basal, spinous, and the fully mature cornified layers lacked immunolabeling of EPS8L1. In addition to the epidermis, the hair follicle inner root sheath (IRS) was immunolabeled. Both epidermal granular layer and IRS contribute to the barrier function of the skin, suggesting that EPS8L1 is involved in the regulation of these barriers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, Via Selmi 3, University of Bologna, 40126, Bologna, Italy.
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Makino T, Mizawa M, Takemoto K, Shimizu T. Expression of hornerin in skin lesions of atopic dermatitis and skin diseases. Clin Exp Dermatol 2024; 49:255-258. [PMID: 38123340 DOI: 10.1093/ced/llad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Indexed: 12/23/2023]
Abstract
We have previously identified the filaggrin (FLG)-like protein, hornerin (HRNR). Recently, there have been several reports regarding the relationship between HRNR and atopic dermatitis (AD). In the present study, we examined HRNR expression in the skin lesions of seven unrelated patients with AD to clarify the role of HRNR in the pathogenesis of AD. HRNR was detected in chronic AD lesions (n = 4), whereas no HRNR signals were observed in acute AD lesions (n = 3). HRNR was detected in the cytokeratin 6-expressing epidermis, and Ki67-positive keratinocytes were more abundant in the HRNR-positive epidermis. These findings suggest that HRNR may be associated with epidermal hyperproliferation in AD lesions. Next, we examined HRNR expression in skin diseases associated with hyperkeratosis. HRNR signals were irregularly observed in different cells from those expressing FLG in epidermolytic ichthyosis and actinic keratosis. Therefore, HRNR may play a unique role in the molecular process of cornification.
Collapse
Affiliation(s)
- Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Keita Takemoto
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
22
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Tebakari M, Daigo Y, Takemoto H, Nemoto K, Takano F. Sphingolipid-Enriched Porcine Placental Extract Promotes the Expression of Structural Genes and Desquamation Enzyme Genes in Cultured Human Keratinocytes. Biol Pharm Bull 2024; 47:1231-1238. [PMID: 38945844 DOI: 10.1248/bpb.b24-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Porcine placental extract (PPE) is commonly used in various health foods and cosmetics. PPE use in cosmetics predominantly consist of the water-soluble fraction derived from the entire placenta. In this report, we examined the effect of the hydrophobic constituents of the PPE, specifically the sphingolipid-enriched fraction designated as the sphingolipid-enriched porcine placental extract (SLPPE), on the expression of genes associated with skin function in cultured normal human epidermal keratinocytes. Using quantitative RT-PCR (qRT-PCR) analysis, we found that SLPPE concentrations ranging from 25 to 100 µg/mL upregulated the gene expression of key components associated with the cornified envelope structure (filaggrin (FLG), involucrin (IVL) and loricrin (LOR)), cornification enzymes (transglutaminase 1 (TGM1) and TGM5) and the desquamation enzymes (kallikrein 5 (KLK5) and KLK7). Additionally, KLK5p and FLG protein (FLGp) were detected in the culture supernatants of keratinocytes treated with SLPPE at these concentrations. These findings suggest that SLPPE is possible to promote the cornification and desquamation in epidermal keratinocytes, and it may offer potential benefits in cosmetics.
Collapse
Affiliation(s)
- Masahiko Tebakari
- Pharmaceutical Research Laboratory, Snowden Co., Ltd
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University
| | - Yuki Daigo
- Pharmaceutical Research Laboratory, Snowden Co., Ltd
| | - Hiroaki Takemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University
| | - Fumihide Takano
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University
| |
Collapse
|
24
|
Catunda RQ, Ho KKY, Patel S, Roy CB, Alexiou M, Levin L, Ulrich BJ, Kaplan MH, Febbraio M. Loricrin and Cytokeratin Disorganisation in Severe Forms of Periodontitis. Int Dent J 2023; 73:862-872. [PMID: 37316411 PMCID: PMC10658443 DOI: 10.1016/j.identj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE The aim of this research was to investigate the role of the cornified epithelium, the outermost layer of the oral mucosa, engineered to prevent water loss and microorganism invasion, in severe forms of periodontitis (stage III or IV, grade C). METHODS Porphyromonas gingivalis, a major periodontal disease pathogen, can affect cornified epithelial protein expression through chronic activation of signal transducer and activator of transcription 6 (Stat6). We used a mouse model, Stat6VT, that mimics this to determine the effects of barrier defect on P gingivalis-induced inflammation, bone loss, and cornified epithelial protein expression, and compared histologic and immunohistologic findings with tissues obtained from human controls and patients with stage III and IV, grade C disease. Alveolar bone loss in mice was assessed using micro-computerised tomography, and soft tissue morphology was qualitatively and semi-quantitatively assessed by histologic examination for several proteins, including loricrin, filaggrin, cytokeratin 1, cytokeratin 14, a proliferation marker, a pan-leukocyte marker, as well as morphologic signs of inflammation. Relative cytokine levels were measured in mouse plasma by cytokine array. RESULTS In the tissues from patients with periodontal disease, there were greater signs of inflammation (rete pegs, clear cells, inflammatory infiltrates) and a decrease and broadening of expression of loricrin and cytokeratin 1. Cytokeratin 14 expression was also broader and decreased in stage IV. P gingivalis-infected Stat6VT mice showed greater alveolar bone loss in 9 out of 16 examined sites, and similar patterns of disruption to human patients in expression of loricrin and cytokeratins 1 and 14. There were also increased numbers of leukocytes, decreased proliferation, and greater signs of inflammation compared with P gingivalis-infected control mice. CONCLUSIONS Our study provides evidence that changes in epithelial organisation can exacerbate the effects of P gingivalis infection, with similarities to the most severe forms of human periodontitis.
Collapse
Affiliation(s)
- Raisa Queiroz Catunda
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Ka-Yan Ho
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Srushti Patel
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Bryant Roy
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liran Levin
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria Febbraio
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Makino T, Mizawa M, Takemoto K, Yamamoto S, Shimizu T. Altered expression of S100 fused-type proteins in an atopic dermatitis skin model. Exp Dermatol 2023; 32:2160-2165. [PMID: 36995036 DOI: 10.1111/exd.14797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with elevated interleukin (IL)-4 and IL-13 signatures and extensive barrier dysfunction, which is correlated with the downregulation of filaggrin (FLG). FLG is a member of the S100 fused-type protein family and this family also includes cornulin (CRNN), filaggrin-2 (FLG2), hornerin (HRNR) repetin (RPTN), trichohyalin (TCHH) and trichohyalin-like 1 (TCHHL1). The present study aimed to examine the effects of IL-4 and IL-13 and the downregulation of FLG on the expression of S100 fused-type proteins using a three-dimensional (3D) AD skin model by immunohistochemical study and quantitative polymerase chain reaction. In the 3D AD skin model, which was generated by a stimulation of recombinant IL-4 and IL-13, the expression of FLG, FLG2, HRNR and TCHH was decreased, while that of RPTN was increased in comparison to the 3D control skin. In the FLG knockdown (KD) 3D skin model, which was generated using FLG siRNA, the expression of HRNR was increased. The expression of the other proteins did not differ to a statistically significant extent. The expression of fused-S100 type protein family members may differ in AD skin. This suggests that these proteins play different roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Keita Takemoto
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Seiji Yamamoto
- Department of Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
26
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
27
|
Shan S, He J, Sun Q, Zhu K, Li Y, Reid B, Li Q, Zhao M. Dynamics of cutaneous atmospheric oxygen uptake in response to mechanical stretch revealed by optical fiber microsensor. Exp Dermatol 2023; 32:2112-2120. [PMID: 37859506 PMCID: PMC10843412 DOI: 10.1111/exd.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Skin expands and regenerates in response to mechanical stretch. This important homeostasis process is critical for skin biology and can be exploited to generate extra skin for reconstructive surgery. Atmospheric oxygen uptake is important in skin homeostasis. However, whether and how cutaneous atmospheric oxygen uptake changes during mechanical stretch remains unclear, and relevant research tools to quantify oxygen flux are limited. Herein, we used the scanning micro-optrode technique (SMOT), a non-invasive self-referencing optical fiber microsensor, to achieve real-time measurement of cutaneous oxygen uptake from the atmosphere. An in vivo mechanical stretch-induced skin expansion model was established, and an in vitro Flexcell Tension system was used to stretch epidermal cells. We found that oxygen influx of skin increased dramatically after stretching for 1 to 3 days and decreased to the non-stretched level after 7 days. The enhanced oxygen influx of stretched skin was associated with increased epidermal basal cell proliferation and impaired epidermal barrier. In conclusion, mechanical stretch increases cutaneous oxygen uptake with spatial-temporal characteristics, correlating with cell proliferation and barrier changes, suggesting a fundamental mechanistic role of oxygen uptake in the skin in response to mechanical stretch. Optical fiber microsensor-based oxygen uptake detection provides a non-invasive approach to understand skin homeostasis.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qin Sun
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- School of Life Science, Yunnan Normal University, Yuhua District, Kunming, Yunnan 650500, China
| | - Kan Zhu
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, University of California, Davis, 1 Shields Avenue, CA 95616, USA
| | - Yuanyuan Li
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Brian Reid
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, University of California, Davis, 1 Shields Avenue, CA 95616, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, University of California, Davis, 1 Shields Avenue, CA 95616, USA
| |
Collapse
|
28
|
Tarshish E, Hermoni K, Muizzuddin N. Effect of Lumenato a Tomato derived oral supplement on improving skin barrier strength. Skin Res Technol 2023; 29:e13504. [PMID: 38009018 PMCID: PMC10632383 DOI: 10.1111/srt.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Improvement of skin barrier strength could lead to healthy and youthful appearance. "Beauty inside-out" approach using nutraceuticals such as tomato derived carotenoids to support skin barrier strength could be of benefit to the ageing population. METHOD A panel of 60 female subjects were provided with the Lumenato capsules (containing carotenoids) or placebo capsules as nutritional supplements for 3 months. Skin health and barrier function were observed using evaporimeter which measures trans epidermal water loss (TEWL). Barrier strength was determined by study of the number of strippings required to disrupt skin barrier and barrier repair was observed in terms of TEWL a few hours after barrier disruption. Cutometer was used to observe skin firmness and elasticity. Measurements were obtained before treatment and after 4 and 12 weeks of use. RESULTS Results indicated a statistically significant improvement (p < 0.05) in skin barrier strength; a higher number of strippings were required to disrupt skin barrier after 12 weeks of supplement use. There was also a significant improvement in skin firmness and elasticity as observed with a cutometer. CONCLUSION Based on the confines and conditions of this study, oral supplementation with Lumenato resulted in significant improvement in skin barrier as well as skin firmness and elasticity.
Collapse
|
29
|
Paige JT, Lightell DJ, Douglas HF, Klingenberg N, Pham T, Woods TC. Incubation with porcine urinary bladder matrix yields a late-stage wound transcriptome in endothelial cells and keratinocytes isolated from both diabetic and non-diabetic subjects. Exp Dermatol 2023; 32:1430-1438. [PMID: 37317944 PMCID: PMC10527196 DOI: 10.1111/exd.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Proper wound closure requires the functional coordination of endothelial cells (ECs) and keratinocytes. In the late stages of wound healing, keratinocytes become activated and ECs promote the maturation of nascent blood vessels. In diabetes mellitus, decreased keratinocyte activation and impaired angiogenic action of ECs delay wound healing. Porcine urinary bladder matrix (UBM) improves the rate of wound healing, but the effect of exposure to UBM under diabetic conditions remains unclear. We hypothesized that keratinocytes and ECs isolated from both diabetic and non-diabetic donors would exhibit a similar transcriptome representative of the later stages of wound healing following incubation with UBM. Human keratinocytes and dermal ECs isolated from non-diabetic and diabetic donors were incubated with and without UBM particulate. RNA-Seq analysis was performed to identify changes in the transcriptome of these cells associated with exposure to UBM. While diabetic and non-diabetic cells exhibited different transcriptomes, these differences were minimized following incubation with UBM. ECs exposed to UBM exhibited changes in the expression of transcripts suggesting an increase in the endothelial-mesenchymal transition (EndoMT) associated with vessel maturation. Keratinocytes incubated with UBM demonstrated an increase in markers of activation. Comparison of the whole transcriptomes with public datasets suggested increased EndoMT and keratinocyte activation following UBM exposure. Both cell types exhibited loss of pro-inflammatory cytokines and adhesion molecules. These data suggest that application of UBM may accelerate healing by promoting a transition to the later stages of wound healing. This healing phenotype is achieved in cells isolated from both diabetic and non-diabetic donors.
Collapse
Affiliation(s)
- John T. Paige
- Department of Surgery, LSU Health New Orleans School of Medicine, New Orleans, LA
| | - Daniel J. Lightell
- Departments of Physiology and Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Hunter F. Douglas
- Departments of Physiology and Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Natasha Klingenberg
- Departments of Physiology and Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Thaidan Pham
- Departments of Physiology and Medicine, Tulane University School of Medicine, New Orleans, LA
| | - T. Cooper Woods
- Departments of Physiology and Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
30
|
Benedusi M, Kerob D, Guiotto A, Cervellati F, Ferrara F, Pambianchi E. Topical Application of M89PF Containing Vichy Mineralising Water and Probiotic Fractions Prevents Cutaneous Damage Induced by Exposure to UV and O 3. Clin Cosmet Investig Dermatol 2023; 16:1769-1776. [PMID: 37448587 PMCID: PMC10337690 DOI: 10.2147/ccid.s414011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Purpose Exposure of the skin to ultraviolet radiation (UV) or ozone (O3) results in stressed skin, leading to the alteration of the skin physical barrier and defence functions. In this work, the preventive benefit of a dermocosmetic, M89PF, containing Vichy mineralising water, probiotic fractions, antioxidant vitamins and hyaluronic acid, in the alteration of skin physical barrier and skin defence functions after exposure to O3 and UV, alone or combined, was assessed. Methods Untreated and treated (M89PF) skin explants were exposed to O3, to UV rays or to O3+UV. Immunofluorescence was performed for skin barrier, oxidative stress, and inflammatory markers after one and four days of exposure to the pollutants. Results M89PF significantly (p≤0.05) prevented the decrease of the expression level of different skin barrier markers, and significantly (p≤0.05) prevented the induction of OxInflammatory markers and inflammasome components by UV, O3, or both combined. Conclusion M89PF prevents skin barrier damage, as well as oxidative stress and inflammatory markers induced by exposome factors, such as UV, O3, or both combined.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC, 28081, USA
| |
Collapse
|
31
|
Tugizov SM. Molecular Pathogenesis of Human Immunodeficiency Virus-Associated Disease of Oropharyngeal Mucosal Epithelium. Biomedicines 2023; 11:1444. [PMID: 37239115 PMCID: PMC10216750 DOI: 10.3390/biomedicines11051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The oropharyngeal mucosal epithelia have a polarized organization, which is critical for maintaining a highly efficient barrier as well as innate immune functions. In human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) disease, the barrier and innate immune functions of the oral mucosa are impaired via a number of mechanisms. The goal of this review was to discuss the molecular mechanisms of HIV/AIDS-associated changes in the oropharyngeal mucosa and their role in promoting HIV transmission and disease pathogenesis, notably the development of opportunistic infections, including human cytomegalovirus, herpes simplex virus, and Epstein-Barr virus. In addition, the significance of adult and newborn/infant oral mucosa in HIV resistance and transmission was analyzed. HIV/AIDS-associated changes in the oropharyngeal mucosal epithelium and their role in promoting human papillomavirus-positive and negative neoplastic malignancy are also discussed.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Alibardi L. Immunolocalization of Pglyrp3 and Eps8l1 proteins in the regenerating lizard epidermis indicates they contribute to epidermal barrier formation. ZOOLOGY 2023; 157:126080. [PMID: 36854226 DOI: 10.1016/j.zool.2023.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
During tail regeneration in lizards the new corneous layer formed in the regenerating epidermis includes antimicrobial peptides, cystatin and serpins, likely forming an anti-microbial barrier. The present study aims to reveal other proteins potentially contributing to this protective barrier of the epidermis. Using immunohistochemistry we have detected a peptidoglycan-like recognition protein-3 (pglyrp3), an antimicrobial molecule, and an epidermal growth factor receptor kinase 8 l (eps8l), a receptor of EGF (Epidermal Growth Factor) that stimulates epidermal formation. The study shows that the two proteins are mostly accumulated in the forming wound epidermis and in the shedding layer of the regenerating scales. The shedding layer is the intra-epidermal layer that allows the separation of the initial corneous layer from the regenerating epidermis. While presence of pglyrp3 is likely related to the formation of the anti-microbial barrier, the function of the eps8l protein in epidermal regeneration remains unknown. Whether the latter protein is involved in keratinocyte movement within the regenerating epidermis has to be specifically determined in future studies. Together with the antimicrobial peptides cystatin and serpins, previously detected in the wound epidermis and shedding layer, the present study indicates that pglyp3, and potentially eps8l, contribute to protect the new skin and underlying regenerated tissues from the potential microbe invasion.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Italy.
| |
Collapse
|
33
|
Samulevich ML, Shamilov R, Aneskievich BJ. Thermostable Proteins from HaCaT Keratinocytes Identify a Wide Breadth of Intrinsically Disordered Proteins and Candidates for Liquid-Liquid Phase Separation. Int J Mol Sci 2022; 23:ijms232214323. [PMID: 36430801 PMCID: PMC9692912 DOI: 10.3390/ijms232214323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) move through an ensemble of conformations which allows multitudinous roles within a cell. Keratinocytes, the predominant cell type in mammalian epidermis, have had only a few individual proteins assessed for intrinsic disorder and its possible contribution to liquid-liquid phase separation (LLPS), especially in regard to what functions or structures these proteins provide. We took a holistic approach to keratinocyte IDPs starting with enrichment via the isolation of thermostable proteins. The keratinocyte protein involucrin, known for its resistance to heat denaturation, served as a marker. It and other thermostable proteins were identified by liquid chromatography tandem mass spectrometry and subjected to extensive bioinformatic analysis covering gene ontology, intrinsic disorder, and potential for LLPS. Numerous proteins unique to keratinocytes and other proteins with shared expression in multiple cell types were identified to have IDP traits (e.g., compositional bias, nucleic acid binding, and repeat motifs). Among keratinocyte-specific proteins, many that co-assemble with involucrin into the cell-specific structure known as the cornified envelope scored highly for intrinsic disorder and potential for LLPS. This suggests intrinsic disorder and LLPS are previously unrecognized traits for assembly of the cornified envelope, echoing the contribution of intrinsic disorder and LLPS to more widely encountered features such as stress granules and PML bodies.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06292-3092, USA
| | - Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06292-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269-3092, USA
- Correspondence: ; Tel.: +1-860-486-3053; Fax: +1-860-486-5792
| |
Collapse
|
34
|
The Fate of Epidermal Tight Junctions in the stratum corneum: Their Involvement in the Regulation of Desquamation and Phenotypic Expression of Certain Skin Conditions. Int J Mol Sci 2022; 23:ijms23137486. [PMID: 35806491 PMCID: PMC9267462 DOI: 10.3390/ijms23137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
We evaluated the presence of tight junction (TJ) remnants in the stratum corneum (SC) of in vitro reconstructed human epidermis and human skin explants subjected or not to an aggressive topical treatment with beta-lipohydroxy salicylic acid (LSA) for 24 h. LSA-treated samples showed an increased presence of TJ remnants in the two lowermost layers of the SC, as quantified with standard electron microscopy. The topical aggression-induced overexpression of TJ-like cell–cell envelope fusions may influence SC functions: (1) directly, through an enhanced cohesion, and (2) indirectly, by impeding accessibility of peripheral corneodesmosomes to extracellular hydrolytic enzymes and, thus, slowing down desquamation. Observations of ichthyotic epidermis in peeling skin disease (PSD; corneodesmosin deficiency; two cases) and ichthyosis hypotrichosis sclerosing cholangitis syndrome (IHSC/NISCH; absence of claudin-1; two cases) also demonstrated increased persistence of TJ-like intercellular fusions in pathological SC and contributed to the interpretation of the diseases’ pathological mechanisms.
Collapse
|
35
|
Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S, Amorim-Vaz S, Rai LS, d’Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 2022; 18:e1010012. [PMID: 35404986 PMCID: PMC9041809 DOI: 10.1371/journal.ppat.1010012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
As part of the human microbiota, the fungus Candida albicans colonizes the oral cavity and other mucosal surfaces of the human body. Commensalism is tightly controlled by complex interactions of the fungus and the host to preclude fungal elimination but also fungal overgrowth and invasion, which can result in disease. As such, defects in antifungal T cell immunity render individuals susceptible to oral thrush due to interrupted immunosurveillance of the oral mucosa. The factors that promote commensalism and ensure persistence of C. albicans in a fully immunocompetent host remain less clear. Using an experimental model of C. albicans oral colonization in mice we explored fungal determinants of commensalism in the oral cavity. Transcript profiling of the oral isolate 101 in the murine tongue tissue revealed a characteristic metabolic profile tailored to the nutrient poor conditions in the stratum corneum of the epithelium where the fungus resides. Metabolic adaptation of isolate 101 was also reflected in enhanced nutrient acquisition when grown on oral mucosa substrates. Persistent colonization of the oral mucosa by C. albicans also correlated inversely with the capacity of the fungus to induce epithelial cell damage and to elicit an inflammatory response. Here we show that these immune evasive properties of isolate 101 are explained by a strong attenuation of a number of virulence genes, including those linked to filamentation. De-repression of the hyphal program by deletion or conditional repression of NRG1 abolished the commensal behaviour of isolate 101, thereby establishing a central role of this factor in the commensal lifestyle of C. albicans in the oral niche of the host. The oral microbiota represents an important part of the human microbiota and includes several hundreds to several thousands of bacterial and fungal species. One of the most prominent fungus colonizing the oral cavity is the yeast Candida albicans. While the presence of C. albicans usually remains unnoticed, the fungus can under certain circumstances cause lesions on the lining of the mouth referred to as oral thrush or contribute to other common oral diseases such as caries. Maintaining C. albicans commensalism in the oral mucosa is therefore of utmost importance for oral health and overall wellbeing. While overt fungal growth and disease is limited by immunosurveillance mechanisms during homeostasis, C. albicans strives to survive and evades elimination from the host. Here, we show that while commensalism in the oral cavity is characterized by a restricted fungal virulence and hyphal program, enforcing filamentation in a commensal isolate is sufficient for driving pathogenicity and fungus-induced inflammation in the oral mucosa thwarting persistent colonization. Our results further support a critical role for specialized nutrient acquisition allowing the fungus to thrive in the nutrient poor environment of the squamous epithelium. Together, this work revealed key determinants of C. albicans commensalism in the oral niche.
Collapse
Affiliation(s)
- Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sarah Mertens
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sara Amorim-Vaz
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Laxmi Shanker Rai
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Rasool R, Shafi T, Bhat IA, Khursheed S, Manzoor S, Qadri Q, Shah ZA. Association of epidermal differentiation complex (EDC) genetic variants with House Dust Mite sensitization in Atopic Dermatitis patients. Immunobiology 2022; 227:152214. [DOI: 10.1016/j.imbio.2022.152214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
|
37
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
38
|
Haller HL, Sander F, Popp D, Rapp M, Hartmann B, Demircan M, Nischwitz SP, Kamolz LP. Oxygen, pH, Lactate, and Metabolism-How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111190. [PMID: 34833408 PMCID: PMC8617754 DOI: 10.3390/medicina57111190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022]
Abstract
Over time, we have come to recognize a very complex network of physiological changes enabling wound healing. An immunological process enables the body to distinguish damaged cells and begin a cleaning mechanism by separating damaged proteins and cells with matrix metalloproteinases, a complement reaction, and free radicals. A wide variety of cell functions help to rebuild new tissue, dependent on energy provision and oxygen supply. Like in an optimized “bio-reactor,” disturbance can lead to prolonged healing. One of the earliest investigated local factors is the pH of wounds, studied in close relation to the local perfusion, oxygen tension, and lactate concentration. Granulation tissue with the wrong pH can hinder fibroblast and keratinocyte division and proliferation, as well as skin graft takes. Methods for influencing the pH have been tested, such as occlusion and acidification by the topical application of acidic media. In most trials, this has not changed the wound’s pH to an acidic one, but it has reduced the strong alkalinity of deeper or chronic wounds. Energy provision is essential for all repair processes. New insights into the metabolism of cells have changed the definition of lactate from a waste product to an indispensable energy provider in normoxic and hypoxic conditions. Neovascularization depends on oxygen provision and lactate, signaling hypoxic conditions even under normoxic conditions. An appropriate pH is necessary for successful skin grafting; hypoxia can change the pH of wounds. This review describes the close interconnections between the local lactate levels, metabolism, healing mechanisms, and pH. Furthermore, it analyzes and evaluates the different possible ways to support metabolism, such as lactate enhancement and pH adjustment. The aim of wound treatment must be the optimization of all these components. Therefore, the role of lactate and its influence on wound healing in acute and chronic wounds will be assessed.
Collapse
Affiliation(s)
| | - Frank Sander
- Burn Center, Plastic Surgery of Trauma Hospital Berlin, Warener Strasse 7, 12683 Berlin, Germany; (F.S.); (B.H.)
| | - Daniel Popp
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (D.P.); (S.P.N.); (L.P.K.)
| | - Matthias Rapp
- Clinic for Orthopedics, Trauma Surgery and Sports Traumatology, Burn Center, Marienhospital Stuttgart, Böheimstraße 37, 70199 Stuttgart, Germany;
| | - Bernd Hartmann
- Burn Center, Plastic Surgery of Trauma Hospital Berlin, Warener Strasse 7, 12683 Berlin, Germany; (F.S.); (B.H.)
| | - Mehmet Demircan
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, İnönü University, 44315 Malatya, Turkey;
| | - Sebastian Philipp Nischwitz
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (D.P.); (S.P.N.); (L.P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgsellschaft mbH, 8036 Graz, Austria
| | - Lars Peter Kamolz
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (D.P.); (S.P.N.); (L.P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgsellschaft mbH, 8036 Graz, Austria
| |
Collapse
|
39
|
Crompton RA, Williams H, Campbell L, Hui Kheng L, Saville C, Ansell DM, Reid A, Wong J, Vardy LA, Hardman MJ, Cruickshank SM. An Epidermal-Specific Role for Arginase1 during Cutaneous Wound Repair. J Invest Dermatol 2021; 142:1206-1216.e8. [PMID: 34710388 DOI: 10.1016/j.jid.2021.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Nonhealing wounds are a major area of unmet clinical need remaining problematic to treat. Improved understanding of prohealing mechanisms is invaluable. The enzyme arginase1 (ARG1) is involved in prohealing responses, with its role in macrophages best characterized. ARG1 is also expressed by keratinocytes; however, ARG1 function in these critical wound repair cells is not understood. We characterized ARG1 expression in keratinocytes during normal cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound edge. Interestingly, epidermal ARG1 expression was decreased in both human and murine delayed healing wounds. We therefore generated a keratinocyte-specific ARG1-null mouse model (K14-cre;Arg1fl/fl) to explore arginase function. Wound repair, linked to changes in keratinocyte proliferation, migration, and differentiation, was significantly delayed in K14-cre;Arg1fl/fl mice. Similarly, using the arginase inhibitor N(omega)-hydroxy-nor-L-arginine, human in vitro and ex vivo models further confirmed this finding, revealing the importance of the downstream polyamine pathway in repair. Indeed, restoring the balance in ARG1 activity through the addition of putrescine proved beneficial in wound closure. In summary, we show that epidermal ARG1 plays, to our knowledge, a previously unreported intrinsic role in cutaneous healing, highlighting epidermal ARG1 and the downstream mediators as potential targets for the therapeutic modulation of wound repair.
Collapse
Affiliation(s)
- Rachel A Crompton
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Helen Williams
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Laura Campbell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Lim Hui Kheng
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Charis Saville
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - David M Ansell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Faculty of Life Sciences, School of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom
| | - Adam Reid
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Leah A Vardy
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
40
|
Kędzierska M, Blilid S, Miłowska K, Kołodziejczyk-Czepas J, Katir N, Lahcini M, El Kadib A, Bryszewska M. Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. Int J Mol Sci 2021; 22:11386. [PMID: 34768816 PMCID: PMC8583768 DOI: 10.3390/ijms222111386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
41
|
Nishida T, Sugioka K, Fukuda K, Murakami J. Pivotal Role of Corneal Fibroblasts in Progression to Corneal Ulcer in Bacterial Keratitis. Int J Mol Sci 2021; 22:ijms22168979. [PMID: 34445684 PMCID: PMC8396668 DOI: 10.3390/ijms22168979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
The shape and transparency of the cornea are essential for clear vision. However, its location at the ocular surface renders the cornea vulnerable to pathogenic microorganisms in the external environment. Pseudomonas aeruginosa and Staphylococcus aureus are two such microorganisms and are responsible for most cases of bacterial keratitis. The development of antimicrobial agents has allowed the successful treatment of bacterial keratitis if the infection is diagnosed promptly. However, no effective medical treatment is available after progression to corneal ulcer, which is characterized by excessive degradation of collagen in the corneal stroma and can lead to corneal perforation and corneal blindness. This collagen degradation is mediated by both infecting bacteria and corneal fibroblasts themselves, with a urokinase-type plasminogen activator (uPA)-plasmin-matrix metalloproteinase (MMP) cascade playing a central role in collagen destruction by the host cells. Bacterial factors stimulate the production by corneal fibroblasts of both uPA and pro-MMPs, released uPA mediates the conversion of plasminogen in the extracellular environment to plasmin, and plasmin mediates the conversion of secreted pro-MMPs to the active form of these enzymes, which then degrade stromal collagen. Bacterial factors also stimulate expression by corneal fibroblasts of the chemokine interleukin-8 and the adhesion molecule ICAM-1, both of which contribute to recruitment and activation of polymorphonuclear neutrophils, and these cells then further stimulate corneal fibroblasts via the secretion of interleukin-1. At this stage of the disease, bacteria are no longer necessary for collagen degradation. In this review, we discuss the pivotal role of corneal fibroblasts in corneal ulcer associated with infection by P. aeruginosa or S. aureus as well as the development of potential new modes of treatment for this condition.
Collapse
Affiliation(s)
- Teruo Nishida
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan;
- Division of Cornea and Ocular Surface, Ohshima Eye Hospital, Fukuoka 812-0036, Japan
| | - Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan;
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
- Correspondence:
| | - Junko Murakami
- Division of Ophthalmology, Sakibana Hospital, Izumi, Osaka 594-1105, Japan;
| |
Collapse
|
42
|
Schulze-Krebs A, Canneva F, Stemick J, Plank AC, Harrer J, Bates GP, Aeschlimann D, Steffan JS, von Hörsten S. Transglutaminase 6 Is Colocalized and Interacts with Mutant Huntingtin in Huntington Disease Rodent Animal Models. Int J Mol Sci 2021; 22:8914. [PMID: 34445621 PMCID: PMC8396294 DOI: 10.3390/ijms22168914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Mammalian transglutaminases (TGs) catalyze calcium-dependent irreversible posttranslational modifications of proteins and their enzymatic activities contribute to the pathogenesis of several human neurodegenerative diseases. Although different transglutaminases are found in many different tissues, the TG6 isoform is mostly expressed in the CNS. The present study was embarked on/undertaken to investigate expression, distribution and activity of transglutaminases in Huntington disease transgenic rodent models, with a focus on analyzing the involvement of TG6 in the age- and genotype-specific pathological features relating to disease progression in HD transgenic mice and a tgHD transgenic rat model using biochemical, histological and functional assays. Our results demonstrate the physical interaction between TG6 and (mutant) huntingtin by co-immunoprecipitation analysis and the contribution of its enzymatic activity for the total aggregate load in SH-SY5Y cells. In addition, we identify that TG6 expression and activity are especially abundant in the olfactory tubercle and piriform cortex, the regions displaying the highest amount of mHTT aggregates in transgenic rodent models of HD. Furthermore, mHTT aggregates were colocalized within TG6-positive cells. These findings point towards a role of TG6 in disease pathogenesis via mHTT aggregate formation.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Judith Stemick
- Department of Molecular Neurology, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Julia Harrer
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Joan S. Steffan
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| |
Collapse
|
43
|
Mahanty S, Setty SRG. Epidermal Lamellar Body Biogenesis: Insight Into the Roles of Golgi and Lysosomes. Front Cell Dev Biol 2021; 9:701950. [PMID: 34458262 PMCID: PMC8387949 DOI: 10.3389/fcell.2021.701950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Epidermal lamellar bodies (eLBs) are secretory organelles that carry a wide variety of secretory cargo required for skin homeostasis. eLBs belong to the class of lysosome-related organelles (LROs), which are cell-type-specific organelles that perform diverse functions. The formation of eLBs is thought to be related to that of other LROs, which are formed either through the gradual maturation of Golgi/endosomal precursors or by the conversion of conventional lysosomes. Current evidence suggests that eLB biogenesis presumably initiate from trans-Golgi network and receive cargo from endosomes, and also acquire lysosome characteristics during maturation. These multistep biogenesis processes are frequently disrupted in human skin disorders. However, many gaps remain in our understanding of eLB biogenesis and their relationship to skin diseases. Here, we describe our current understanding on eLB biogenesis with a focus on cargo transport to this LRO and highlight key areas where future research is needed.
Collapse
Affiliation(s)
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
44
|
Liu GT, Li YL, Wang J, Dong CZ, Deng M, Tai M, Deng L, Che B, Lin L, Du ZY, Chen HX. Improvement of Skin Barrier Dysfunction by Phenolic-containing Extracts of Lycium barbarum via Nrf2/HO-1 Regulation. Photochem Photobiol 2021; 98:262-271. [PMID: 34342370 DOI: 10.1111/php.13498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023]
Abstract
Lycium barbarum have received an increasing popularity due to its powerful biological activity and medicinal use. However, the effect of Lycium barbarum on skin remains largely uncharacterized. The general purpose of this paper was to characterize the phenolic compounds in Lycium barbarum extract (LBE) using LC-HRMS/QTOF method and to investigate whether topical administration of LBE can repair skin barrier dysfunction in mice. Our data demonstrated that LBE could not only decrease ROS level and matrix metalloproteinase expression, but also strengthen intrinsic antioxidant defense system including SOD, GSH-Px and CAT, thereby resulting in increased skin collagen content and an improvement of UV-induced skin erythema, thickness and wrinkles. Improved skin barrier functions were highly correlated with increased expression of filaggrin, involucrin and loricrin as well as antioxidant proteins such as Nrf2 and HO-1 in UV-irradiated mice, suggesting that LBE may be promising natural products at a lower cost for the topical application in the treatment of skin diseases with defective barrier function.
Collapse
Affiliation(s)
- Guan-Ting Liu
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yong-Liang Li
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jing Wang
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Chang-Zhi Dong
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China.,Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, Université Paris Diderot, Paris, France
| | - Minggao Deng
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Meiling Tai
- Infinitus (China) Co. Ltd., Guangzhou, China
| | - Lili Deng
- Infinitus (China) Co. Ltd., Guangzhou, China
| | - Biao Che
- Infinitus (China) Co. Ltd., Guangzhou, China
| | - Li Lin
- Foshan Conney Allan Biotechnology Co. Ltd, Foshan, China
| | - Zhi-Yun Du
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Hui-Xiong Chen
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China.,Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, Paris Cedex 06, France
| |
Collapse
|
45
|
Alibardi L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Anat Rec (Hoboken) 2021; 305:333-358. [PMID: 34219408 DOI: 10.1002/ar.24705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The epidermis of vertebrates forms an extended organ to protect and exchange gas, water, and organic molecules with aquatic and terrestrial environments. Herein, the processes of keratinization and cornification in aquatic and terrestrial vertebrates were compared using immunohistochemistry. Keratins with low cysteine and glycine contents form the main bulk of proteins in the anamniote epidermis, which undergoes keratinization. In contrast, specialized keratins rich in cysteine-glycine and keratin associated corneous proteins rich in cysteine, glycine, and tyrosine form the bulk of proteins of amniote soft cornification in the epidermis and hard cornification in scales, claws, beak, feathers, hairs, and horns. Transglutaminase (TGase) and sulfhydryl oxidase (SOXase) are the main enzymes involved in cornification. Their evolution was fundamental for the terrestrial adaptation of vertebrates. Immunohistochemistry results revealed that TGase and SOXase were low to absent in fish and amphibian epidermis, while they increased in the epidermis of amniotes with the evolution of the stratum corneum and skin appendages. TGase aids the formation of isopeptide bonds, while SOXase forms disulfide bonds that generate numerous cross-links between keratins and associated corneous proteins, likely increasing the mechanical resistance and durability of the amniote epidermis and its appendages. TGase is low to absent in the beta-corneous layers of sauropsids but is detected in the softer but pliable alpha-layers of sauropsids, mammalian epidermis, medulla, and inner root sheath of hairs. SOXase is present in hard and soft corneous appendages of reptiles, birds, and mammals, and determines cross-linking among corneous proteins of scales, claws, beaks, hairs, and feathers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Braz CU, Rowan TN, Schnabel RD, Decker JE. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep 2021; 11:13335. [PMID: 34172761 PMCID: PMC8233360 DOI: 10.1038/s41598-021-92455-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
47
|
Rivera-Villaseñor A, Higinio-Rodríguez F, Nava-Gómez L, Vázquez-Prieto B, Calero-Vargas I, Olivares-Moreno R, López-Hidalgo M. NMDA Receptor Hypofunction in the Aging-Associated Malfunction of Peripheral Tissue. Front Physiol 2021; 12:687121. [PMID: 34248675 PMCID: PMC8264581 DOI: 10.3389/fphys.2021.687121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Glutamatergic transmission through NMDA receptors (NMDARs) is important for the function of peripheral tissues. In the bone, NMDARs and its co-agonist, D-serine participate in all the phases of the remodeling. In the vasculature, NMDARs exerts a tonic vasodilation decreasing blood perfusion in the corpus cavernosum and the filtration rate in the renal glomerulus. NMDARs are relevant for the skin turnover regulating the proliferation and differentiation of keratinocytes and the formation of the cornified envelope (CE). The interference with NMDAR function in the skin leads to a slow turnover and repair. As occurs with the brain and cognitive functions, the manifestations of a hypofunction of NMDARs resembles those observed during aging. This raises the question if the deterioration of the glomerular vasculature, the bone remodeling and the skin turnover associated with age could be related with a hypofunction of NMDARs. Furthermore, the interference of D-serine and the effects of its supplementation on these tissues, suggest that a decrease of D-serine could account for this hypofunction pointing out D-serine as a potential therapeutic target to reduce or even prevent the detriment of the peripheral tissue associated with aging.
Collapse
Affiliation(s)
- Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Nava-Gómez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Bárbara Vázquez-Prieto
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
48
|
Lachner J, Derdak S, Mlitz V, Wagner T, Holthaus KB, Ehrlich F, Mildner M, Tschachler E, Eckhart L. An In Vitro Model of Avian Skin Reveals Evolutionarily Conserved Transcriptional Regulation of Epidermal Barrier Formation. J Invest Dermatol 2021; 141:2829-2837. [PMID: 34116064 DOI: 10.1016/j.jid.2021.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The function of the skin as a barrier against a dry environment evolved in a common ancestor of terrestrial vertebrates such as mammals and birds. However, it is unknown which elements of the genetic program of skin barrier formation are evolutionarily ancient and conserved. In this study, we determined the transcriptomes of chicken keratinocytes (KCs) grown in monolayer culture and in an organotypic model of avian skin. The differentiation-associated changes in global gene expression were compared with previously published transcriptome changes of human KCs cultured under equivalent conditions. We found that specific keratins and genes of the epidermal differentiation complex were upregulated during the differentiation of both chicken and human KCs. Likewise, the transcriptional upregulation of genes that control the synthesis and transport of lipids, anti-inflammatory cytokines of the IL-1 family, protease inhibitors, and other regulators of tissue homeostasis was conserved in the KCs of both species. However, some avian KC differentiation-associated transcripts lack homologs in mammals and vice versa, indicating a genetic basis for taxon-specific skin features. The results of this study reveal an evolutionarily ancient program in which dynamic gene transcription controls the metabolism and transport of lipids as well as other core processes during terrestrial skin barrier formation.
Collapse
Affiliation(s)
- Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanja Wagner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Brigit Holthaus
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
49
|
Singla S, Jain D, Zoltowski CM, Voleti S, Stark AY, Niewiarowski PH, Dhinojwala A. Direct evidence of acid-base interactions in gecko adhesion. SCIENCE ADVANCES 2021; 7:7/21/eabd9410. [PMID: 34138740 PMCID: PMC8133704 DOI: 10.1126/sciadv.abd9410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
While it is generally accepted that van der Waals (vdW) forces govern gecko adhesion, several studies indicate contributions from non-vdW forces and highlight the importance of understanding the adhesive contact interface. Previous work hypothesized that the surface of gecko setae is hydrophobic, with nonpolar lipid tails exposed on the surface. However, direct experimental evidence supporting this hypothesis and its implications on the adhesion mechanism is lacking. Here, we investigate the sapphire-setae contact interface using interface-sensitive spectroscopy and provide direct evidence of the involvement of acid-base interactions between polar lipid headgroups exposed on the setal surface and sapphire. During detachment, a layer of unbound lipids is left as a footprint due to cohesive failure within the lipid layer, which, in turn, reduces wear to setae during high stress sliding. The absence of this lipid layer enhances adhesion, despite a small setal-substrate contact area. Our results show that gecko adhesion is not exclusively a vdW-based, residue-free system.
Collapse
Affiliation(s)
- Saranshu Singla
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Dharamdeep Jain
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Chelsea M Zoltowski
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Sriharsha Voleti
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Alyssa Y Stark
- Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA.
| |
Collapse
|
50
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|