1
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
2
|
Feng Y, Gu J, Zhu T, Li Z, Gu Z, Xu S, Ban X, Li C. Enzymatic cyclodextrin synthesis-tributyrin inclusion complex: Properties, structural characterization and release behaviors in vitro. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Use of Hydrolyzed Chinese Gallnut Tannic Acid in Weaned Piglets as an Alternative to Zinc Oxide: Overview on the Gut Microbiota. Animals (Basel) 2021; 11:ani11072000. [PMID: 34359128 PMCID: PMC8300422 DOI: 10.3390/ani11072000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The effects of dietary hydrolyzed Chinese gallnut tannic acid (GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 piglets (31 ± 1 day) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. The diarrhea rate of piglets in the treated group declined on days 14–21 than in the control group. Additionally, we found GCT can reduce the crypt depth of the ileum and improve antioxidant capacity. High throughput sequencing showed that the GCT increased the richness of bacteria (Lachnospiraceae, Prevotella, and Lactobacillus amylovorus) associated with the degradation of cellulose and hemicellulose. These data indicate that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets. Abstract The effects of dietary hydrolyzed Chinese gallnut tannic acid(GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 weaned piglets at 31 ± 1 day (six replicate pens per treatment with six piglets per pen) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. Data analysis showed that the significance of average daily gain and average daily feed intake between the two groups was p = 0.731 and p = 0.799, respectively. Compared with the control group, the diarrhea rate of piglets in the treated group underwent no noticeable change on days 0–7 (p = 0.383) and 7–14 (p = 0.263), but decreased significantly on days 14–21 (p < 0.05). Additionally, we found GCT can reduce the crypt depth of the ileum and improve its antioxidant capacity (p < 0.05). High throughput sequencing showed that GCT increased the richness of the bacteria Lachnospiraceae (p = 0.005), Prevotella_2 (p = 0.046) and Lactobacillus amylovorus (p = 0.081), which are associated with the degradation of cellulose and hemicellulose. The study indicated that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets.
Collapse
|
4
|
Mezhibovsky E, Knowles KA, He Q, Sui K, Tveter KM, Duran RM, Roopchand DE. Grape Polyphenols Attenuate Diet-Induced Obesity and Hepatic Steatosis in Mice in Association With Reduced Butyrate and Increased Markers of Intestinal Carbohydrate Oxidation. Front Nutr 2021; 8:675267. [PMID: 34195217 PMCID: PMC8238044 DOI: 10.3389/fnut.2021.675267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A Western Diet (WD) low in fiber but high in fats and sugars contributes to obesity and non-alcoholic fatty liver disease (NAFLD). Supplementation with grape polyphenols (GPs) rich in B-type proanthocyanidins (PACs) can attenuate symptoms of cardiometabolic disease and alter the gut microbiota and its metabolites. We hypothesized that GP-mediated metabolic improvements would correlate with altered microbial metabolites such as short chain fatty acids (SCFAs). To more closely mimic a WD, C57BL/6J male mice were fed a low-fiber diet high in sucrose and butterfat along with 20% sucrose water to represent sugary beverages. This WD was supplemented with 1% GPs (WD-GP) to investigate the impact of GPs on energy balance, SCFA profile, and intestinal metabolism. Compared to WD-fed mice, the WD-GP group had higher lean mass along with lower fat mass, body weight, and hepatic steatosis despite consuming more calories from sucrose water. Indirect and direct calorimetry revealed that reduced adiposity in GP-supplemented mice was likely due to their greater energy expenditure, which resulted in lower energy efficiency compared to WD-fed mice. GP-supplemented mice had higher abundance of Akkermansia muciniphila, a gut microbe reported to increase energy expenditure. Short chain fatty acid measurements in colon content revealed that GP-supplemented mice had lower concentrations of butyrate, a major energy substrate of the distal intestine, and reduced valerate, a putrefactive SCFA. GP-supplementation also resulted in a lower acetate:propionate ratio suggesting reduced hepatic lipogenesis. Considering the higher sucrose consumption and reduced butyrate levels in GP-supplemented mice, we hypothesized that enterocytes would metabolize glucose and fructose as a replacement energy source. Ileal mRNA levels of glucose transporter-2 (GLUT2, SLC2A2) were increased indicating higher glucose and fructose uptake. Expression of ketohexokinase (KHK) was increased in ileum tissue suggesting increased fructolysis. A GP-induced increase in intestinal carbohydrate oxidation was supported by: (1) increased gene expression of duodenal pyruvate dehydrogenase (PDH), (2) a decreased ratio of lactate dehydrogenase a (LDHa): LDHb in jejunum and colon tissues, and (3) decreased duodenal and colonic lactate concentrations. These data indicate that GPs protect against WD-induced obesity and hepatic steatosis by diminishing portal delivery of lipogenic butyrate and sugars due to their increased intestinal utilization.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
- Department of Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, NJ, United States
| | - Kim A. Knowles
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Qiyue He
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Ke Sui
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Kevin M. Tveter
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Rocio M. Duran
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Diana E. Roopchand
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| |
Collapse
|
5
|
Lin F, Li X, Wen J, Wang C, Peng Y, Feng J, Hu C. Effects of coated sodium butyrate on performance, diarrhea, intestinal microflora and barrier function of pigs during the first 2-week post-weaning. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Zheng C, Song B, Duan Y, Zhong Y, Yan Z, Zhang S, Li F. Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition 2020; 78:110839. [PMID: 32540677 DOI: 10.1016/j.nut.2020.110839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/15/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aim of this study was to explore the effects of β-hydroxy-β-methylbutyrate (HMB) on intestinal function of lipopolysaccharide (LPS)-challenged piglets. METHODS Forty weaned piglets were used in a 2 × 2 factorial design. The major factors were challenge (saline or LPS) and diet (basal diet or 0.6% HMB-Ca diet). After 15 d of treatment with LPS or HMB, blood and intestine samples were obtained. RESULTS The results showed that in LPS-injected pigs, HMB supplementation significantly increased jejunal villus height and ileal villus height-to-crypt depth ratio and decreased ileal crypt depth (P < 0.05). HMB also improved intestinal function indicated by elevated activities of intestinal mucosal disaccharidase and tricarboxylic acid cycle key enzymes. Furthermore, HMB significantly downregulated mRNA expression of Sirt1 in jejunum and mRNA expression of AMPKα1 and Sirt1 in ileum (P < 0.05), with a concurrent decrease of AMPKα phosphorylation in jejunum and ileum. Microbiota analysis indicated that HMB supplementation significantly increased α-diversity and affected relative abundances of Romboutsia and Sarcina at the genus level, accompanied by increased concentrations of all short-chain fatty acids except propionate in the terminate ileum of LPS-injected piglets. CONCLUSION Dietary HMB supplementation could improve intestinal integrity, function, microbiota communities, and short-chain fatty acid concentrations in LPS-challenged piglets, suggesting its potential usage as a feed additive in weaned piglets to alleviate intestinal dysfunction triggered by immune stress.
Collapse
Affiliation(s)
- Changbing Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo Song
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.
| | - Yinzhao Zhong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaoming Yan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Shiyu Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, China
| |
Collapse
|
7
|
Fabà L, Litjens R, Allaart J, van den Hil PR. Feed additive blends fed to nursery pigs challenged with Salmonella. J Anim Sci 2020; 98:5682637. [PMID: 31863091 PMCID: PMC6978908 DOI: 10.1093/jas/skz382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Salmonella in pigs is a concern for human foodborne salmonellosis. Dietary fungal fermented products, coated butyrate, and organic acids (OAs) may be promising control strategies. The objectives of this study were (i) to evaluate in vitro binding affinity of Salmonella enterica serovar Typhimurium (S. Typh) and Enteritidis (S. Ent), and enterotoxigenic Escherichia coli (ETEC) F4 or F18 to mannan-rich hydrolyzed copra meal (MCM) and fermented rye (FR) with Agaricus subrufescens; and (ii) to assess MCM and FR efficacy to control in vivo S. Typh shedding when combined with OAs and compared with coated butyrate strategy. A 31-d study included 32 pigs [6.29 ± 0.76 kg BW] individually housed and distributed into four dietary treatments: control diet; OA.BU, 4 kg/t OA plus 6 kg/t coated butyrate; OA.MCM, 4 kg/t OA plus 1 kg/t MCM; and OA.FR, 4 kg/t OA plus 2 kg/t FR. All pigs were challenged for 7 d with 1 mL S. Typh (109 colony forming units daily) at 10 d postweaning. Temperature and fecal samples were collected before and after challenge, and fecal Salmonella shedding quantified. Diarrhea scores were monitored daily and growth performance was evaluated weekly. In vitro, culture with MCM and FR showed significant (P < 0.01) binding affinity for both S. Typh and S. Ent, but not for ETEC F4 and F18. In vivo, pigs fed OA.MCM and OA.FR had lower (P < 0.05) shedding and day 3 peak shedding of S. Typh after infections than pigs fed control and OA.BU diets. Pigs fed OA.FR diet tended to have an 18% increase (P = 0.068) in BW on day 14 post first inoculation compared with control and OA.BU, and 19% increased (P = 0.093) final BW at day 21 compared with control. Diarrhea frequency post infection was overall lower (P = 0.006) for OA.FR (18.9%) than OA.BU (44.8%) and OA.MCM (41.7%) while control (28.7%) was not different. In conclusion, FR and MCM show in vitro-binding affinity to Salmonella enterica serovars Typh and Ent. Feeding FR or MCM combined with OA to nursery pigs reduces the peak and averages S. Typh shedding compared with control. Fermented rye with OA tends to improve pig performance after S. Typh challenge.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Amersfoort MH, The Netherlands
- Corresponding author:
| | | | - Janneke Allaart
- Faculty of Veterinary Medicine, Utrecht University, Utrecht CS, The Netherlands
| | | |
Collapse
|
8
|
Sun W, Sun J, Li M, Xu Q, Zhang X, Tang Z, Chen J, Zhen J, Sun Z. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs. J Appl Microbiol 2020; 128:1613-1623. [PMID: 32048746 DOI: 10.1111/jam.14612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
AIM This study was carried out to investigate the effects of dietary sodium butyrate supplementation on growth performance, carcass traits and intestinal of growing-finishing pigs. METHODS AND RESULTS Thirty pigs (27·4 ± 0·4 kg) were randomly assigned to receive one of three diets: basal diet (negative control group), basal diet + 40 ppm zinc bacitracin (positive control group) and basal diet + 0·2% sodium butyrate (sodium butyrate group), respectively. The experiment lasted for 69 days, including 3 days for diet and housing condition adaptation. On day 70, five piglets from each diet group were slaughtered for collecting blood and tissue samples. When compared to the control group, final body weight, daily body weight gain and daily feed intake of pigs in the sodium butyrate group were increased (P < 0·05) and feed intake/body weight gain ratio was decreased (P < 0·05). Carcass weight of pigs in the sodium butyrate group was higher than that of pigs in the negative and positive groups (P < 0·05); backfat thickness of pigs in the positive group was higher than that of pigs in the negative group and sodium butyrate group (P < 0·001). When compared to the negative and positive groups, pigs fed diet supplemented with sodium butyrate showed a increased relative abundance of bacteroidetes in the caecum and a decreased relative abundance of fiemicutes and proteobacteria in the caecum (P < 0·05). CONCLUSION The results indicated that dietary sodium butyrate supplementation increased growth performance of growing-finishing pigs and improved the carcass traits and intestinal health. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotic-free feed has become an inevitable worldwide trend. This study showed that dietary sodium butyrate supplementation improved the growth performance and intestinal health of growing-finishing pigs. Thus, sodium butyrate can be applied in growing-finishing pig feed as an alternative of antibiotics.
Collapse
Affiliation(s)
- W Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - M Li
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Q Xu
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - X Zhang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Z Tang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Chen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Zhen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Z Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| |
Collapse
|
9
|
Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Schieffer KM, Williams ED, Yochum GS, Koltun WA. Review article: the pathogenesis of pouchitis. Aliment Pharmacol Ther 2016; 44:817-35. [PMID: 27554912 PMCID: PMC5785099 DOI: 10.1111/apt.13780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND A total proctocolectomy followed by ileal pouch-anal anastomosis is a potentially curative surgery for ulcerative colitis or familial adenomatous polyposis. About 5-35% of patients with ulcerative colitis and 0-11% of patients with familial adenomatous polyposis develop subsequent inflammation of the ileal pouch termed pouchitis. AIM To provide a comprehensive analysis of the research studying the possible pathogenesis of pouchitis. The goals were to identify promising areas of investigation, to help focus clinicians, researchers and patients on how to better understand and then potentially manage ileal pouchitis, and to provide avenues for future research investigations. METHODS This review examined manuscripts from 1981 to 2015 that discussed and/or proposed hypotheses with supportive evidence for the potential underlying pathogenic mechanism for pouchitis. RESULTS The pathogenesis of pouchitis is not definitively understood, but various hypotheses have been proposed, including (i) recurrence of ulcerative colitis, (ii) dysbiosis of the ileal pouch microbiota, (iii) deprivation of nutritional short-chain fatty acids, (iv) mucosal ischaemia and oxygen-free radical injury, (v) host genetic susceptibility and (vi) immune dysregulation. However, none of these alone are able to fully explain pouchitis pathogenesis. CONCLUSIONS Pouchitis, similar to inflammatory bowel disease, is a complex disorder that is not caused by any one single factor. More likely, pouchitis occurs through a combination of both dysregulated host inflammatory mechanisms and interaction with luminal microbiota.
Collapse
Affiliation(s)
- Kathleen M. Schieffer
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| | - Emmanuelle D. Williams
- Department of Medicine, Division of Gastroenterology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| | - Gregory S. Yochum
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| |
Collapse
|
11
|
Pinna C, Vecchiato CG, Zaghini G, Grandi M, Nannoni E, Stefanelli C, Biagi G. In vitro influence of dietary protein and fructooligosaccharides on metabolism of canine fecal microbiota. BMC Vet Res 2016; 12:53. [PMID: 26970915 PMCID: PMC4788874 DOI: 10.1186/s12917-016-0672-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 03/03/2016] [Indexed: 11/18/2022] Open
Abstract
Background The present in vitro study investigated whether the utilization of fructooligosaccharides (FOS) may influence canine fecal microbial population in presence of diets differing in their protein content and digestibility. Fresh fecal samples were collected from five adult dogs, pooled, and incubated for 24 h with the undigested residue of three diets: 1, Low protein high digestibility diet (LP HD, crude protein (CP) 229 g/kg); 2, High protein high digestibility diet (HP HD, CP 304 g/kg); 3, High protein low digestibility diet (HP LD, CP 303 g/kg) that had been previously subjected to enzymatic digestion. In the in vitro fermentation study, there were six treatments: 1) LP HD; 2) HP HD 3) HP LD; 4) LP HD + FOS; 5) HP HD + FOS; 6) HP LD + FOS. Fructooligosaccharides were added at the final concentration of 1.5 g/L. Samples of fermentation fluid were collected at 6 and 24 h of incubation. Results Values of pH were reduced by FOS at 6 and 24 h (P < 0.001); conversely, low protein digestibility and high dietary protein level resulted in higher pH at both sampling times (P < 0.001). At 24 h, FOS lowered ammonia (−10 %; P < 0.001) and resulted (P < 0.05) in higher concentrations of total volatile fatty acids (VFA) (+43 %), acetic acid (+14 %), propionic acid (+75 %) and n-butyric acid (+372 %). Conversely, at 24 h, low protein digestibility resulted (P < 0.01) in lower concentrations of acetic acid (−26 %), propionic acid (−37 %) and total VFA (−21 %). Putrescine concentrations were increased at 6 and 24 h of fermentation by low protein digestibility (+21 and 22 %, respectively; P < 0.05) and FOS (+18 and 24 %, respectively; P < 0.01). After 24 h of fermentation, high dietary protein level resulted in lower counts of lactobacilli and enterococci (−0.5 and −0.7 log cells/mL, respectively; P < 0.05) whereas low protein digestibility tended to increase counts of C. perfringens (+0.2 log cells/mL; P = 0.07). Conclusions Results from the present study showed that diets rich in protein may exert negative influences on the canine intestinal ecosystem, slightly increasing the presence of ammonia and reducing counts of lactobacilli and enterococci. Moreover, the presence of poorly digestible protein resulted in lower concentrations of VFA. Conversely, administration of FOS may improve metabolism of canine intestinal microbiota, reducing ammonia concentrations and enhancing VFA production.
Collapse
Affiliation(s)
- Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy
| | - Carla Giuditta Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy
| | - Giuliano Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy
| | - Monica Grandi
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy
| | - Eleonora Nannoni
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy.
| |
Collapse
|
12
|
Pinna C, Biagi G. The Utilisation of Prebiotics and Synbiotics in Dogs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Pinna C, Stefanelli C, Biagi G. In vitro effect of dietary protein level and nondigestible oligosaccharides on feline fecal microbiota. J Anim Sci 2014; 92:5593-602. [PMID: 25367521 DOI: 10.2527/jas.2013-7459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to evaluate in vitro the effect of some prebiotic substances and 2 dietary protein levels on the composition and activity of feline fecal microbiota. Two in vitro studies were conducted. First, 6 nondigestible oligosaccharides were studied; treatments were control diet (CTRL), gluconic acid (GA), carrot fiber (CF), fructooligosaccharides (FOS), galactooligosaccharides (GOS), lactitol (LAC), and pectins from citrus fruit (PEC). Substrates were added to feline fecal cultures at 2 g/L for 24 h incubation. Compared with the CTRL, ammonia had been reduced (P<0.05) by GOS (-9%) after 6 h and by GA (-14%), LAC (-12%), and PEC (-10%) after 24 h. After 24 h, all treatments had resulted in a lower pH versus the CTRL. Putrescine concentrations at 24 h were greater (P<0.05) in cultures treated with FOS (+90%), GOS (+96%), and LAC (+87%). Compared with the CTRL, total VFA were higher (P<0.05) in bottles containing CF (+41%), whereas the acetic to propionic acid ratio was reduced by LAC (-51%; P<0.05). After 24 h, Enterobacteriaceae had been reduced (P<0.05) by LAC and PEC. In a second study, LAC and FOS were selected to be tested in the presence of 2 diets differing in their protein content. There were 6 treatments: low-protein (LP) CTRL with no addition of prebiotics (CTRL-LP), high-protein (HP) CTRL with no addition of prebiotics (CTRL-HP), LP diet plus FOS, CTRL-HP plus FOS, LP diet plus LAC, and CTRL-HP plus LAC. Both FOS and LAC were added to feline fecal cultures at 2 g/L for 24 h incubation. Ammonia at 24 h was affected (P<0.05) by the protein level (36.2 vs. 50.2 mmol/L for LP and HP, respectively). The CTRL-HPs resulted in a higher pH and increased concentrations of biogenic amines were found after 6 and 24 h of incubation (P<0.05); putrescine at 24 h showed an increase (P<0.05) in cultures treated with FOS. Total VFA were influenced (P<0.05) by the protein level (40.9 vs. 32.6 mmol/L for LP and HP, respectively). At 24 h, the CTRL-HPs were associated with increased Clostridium perfringens and reduced Lactobacillus spp. and enterococci counts (P<0.05). The results from the present study show that different prebiotics exert different effects on the composition and activity of feline intestinal microbiota and that high dietary protein levels in a cat's diet can have negative effects on the animal intestinal environment.
Collapse
Affiliation(s)
- C Pinna
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - C Stefanelli
- Department for Life Quality Studies, University of Bologna, Rimini campus, 47921 Rimini, Italy
| | - G Biagi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
14
|
Fang CL, Sun H, Wu J, Niu HH, Feng J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J Anim Physiol Anim Nutr (Berl) 2013; 98:680-5. [PMID: 24024579 DOI: 10.1111/jpn.12122] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
The experiment was conducted to study the effects of sodium butyrate (SB) on growth, haematological and immunological characteristics in weanling pigs. A total of 100 male piglets (Duroc×Landrace×Yorkshire) with a body weight of 8.0 ± 0.2 kg weaned at the age of 28 days were randomly assigned to two treatments with five replicates and 10 pigs per replicate. Piglets received a basal diet (control group) or diets supplemented with 1000 mg/kg SB. The feeding trial lasted for 21 days. The results showed that dietary SB significantly decreased (p < 0.05) diarrhoea incidence of weaned piglets, but did not affect (p > 0.05) the average daily feed intake (ADFI), average daily gain (ADG) and feed to gain (F/G). Furthermore, piglets fed dietary SB had higher (p < 0.05) serum concentrations of glucose and triglycerides and lower (p < 0.05) serum concentrations of urea nitrogen, cortisol, D-lactic acid and diamine oxidase when compared with the control group. However, dietary SB did not affect concentrations of serum albumin, total protein, insulin and glucagon (p > 0.05). There were no significant (p > 0.05) treatment effects on serum IgA and IgM, whereas serum IgG concentration and IgA+ cell count in jejunum from pigs fed SB were significantly higher (p < 0.05) than in those given the basal diet. In conclusion, the present study indicated that dietary SB significantly decreased diarrhoea incidence of weaned piglets and increased the efficiency of nitrogen utilization. Also, dietary SB could regulate and enhance the immune function of piglets by increasing the serum IgG concentration and IgA+ cell count in jejunum. Our results suggest that SB may reduce some of the adverse effects of weaning stress and play an important role in maintaining the integrity of intestinal mucosa.
Collapse
Affiliation(s)
- C L Fang
- The Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
15
|
Diet, microbiome, and the intestinal epithelium: an essential triumvirate? BIOMED RESEARCH INTERNATIONAL 2013; 2013:425146. [PMID: 23586037 PMCID: PMC3613061 DOI: 10.1155/2013/425146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function.
Collapse
|
16
|
O'Sullivan O, Coakley M, Lakshminarayanan B, Conde S, Claesson MJ, Cusack S, Fitzgerald AP, O'Toole PW, Stanton C, Ross RP. Alterations in intestinal microbiota of elderly Irish subjects post-antibiotic therapy. J Antimicrob Chemother 2012; 68:214-21. [PMID: 22949626 DOI: 10.1093/jac/dks348] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The human intestinal microbiota composition alters naturally with age, but is unusually perturbed by antibiotic therapy. The impact of antibiotic therapy on the composition of the intestinal microbiota of a cross-section of elderly Irish subjects (n = 185, ≥ 65 years) was investigated, taking into consideration their residence location. METHODS Forty-two of the 185 elderly subjects were treated with at least one antibiotic within 1 month prior to faecal microbiota profiling. The residence locations of the subjects varied from long-term nursing care and rehabilitation wards to day hospitals and the community. RESULTS Culture-dependent methods indicated that faecal Bifidobacterium spp. numbers were significantly reduced following antibiotic treatment (P = 0.004, 7-fold reduction), while levels of Lactobacillus spp. and Enterobacteriaceae were unaffected. The largest decrease in Bifidobacterium spp. numbers was linked to the administration of nucleic acid synthesis inhibitors (P = 0.004, 23-fold reduction). Microbiota profiling revealed a significant compositional change across nine genera following antibiotic therapy, including a relative increase in Lactobacillus spp. (P = 0.031), as well as a decrease in the number of genera identified in the antibiotic-treated subjects (n = 58), when compared with untreated subjects (n = 79). More alterations in the intestinal microbiota were observed post-nucleic acid synthesis inhibitor therapy, most notably a decrease in relative Faecalibacterium spp. numbers (P < 0.001). CONCLUSIONS The impact of antibiotic therapy on the intestinal microbiota in the elderly should be considered for long-term health effects, and differential susceptibility may require the development of products (e.g. prebiotics and probiotics) for at-risk subjects.
Collapse
Affiliation(s)
- Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
De Preter V, Geboes KP, Bulteel V, Vandermeulen G, Suenaert P, Rutgeerts P, Verbeke K. Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the β-oxidation pathway. Aliment Pharmacol Ther 2011; 34:526-32. [PMID: 21707682 DOI: 10.1111/j.1365-2036.2011.04757.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Butyrate, a colonic metabolite of carbohydrates, is considered as the major energy source for the colonic mucosa. An impaired butyrate metabolism has been reported in ulcerative colitis (UC), however, the cause still remains unknown. AIM In the present study, we investigated whether higher butyrate concentrations could normalise the oxidation rate in UC. Furthermore, it was investigated whether carnitine could enhance the butyrate oxidation. METHODS Mucosal biopsies from a total of 26 UC patients and 25 controls were incubated with (14)C-labelled Na-butyrate and the produced (14)CO(2) was measured. First, the rate of oxidative metabolism was compared at three different concentrations of Na-butyrate (0.05 mm, 1 mm and 10 mm). Then, incubations of biopsies were performed with carnitine alone or combined with ATP. RESULTS Overall, butyrate oxidation in UC was significantly lower than that in controls. The maximum rate of butyrate oxidation was achieved in UC and control subjects from 1 mm onwards. Increasing the butyrate concentration to a level to be present in the colonic lumen, i.e. 10 mm, did not increase the rate of butyrate oxidation in UC to the rate observed in controls. Addition of carnitine alone or combined with ATP caused no effects. CONCLUSIONS Saturation of butyrate kinetics was achieved from 1 mm in UC and control subjects. The rate of butyrate metabolism was significantly impaired in active ulcerative colitis. The addition of compounds interfering with the β-oxidation pathway had no effect on the butyrate metabolism in UC.
Collapse
Affiliation(s)
- V De Preter
- Translational Research Center for Gastrointestinal Disorders, KULeuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
McMahon L, Tamary H, Askin M, Adams-Graves P, Eberhardt RT, Sutton M, Wright EC, Castaneda SA, Faller DV, Perrine SP. A randomized phase II trial of Arginine Butyrate with standard local therapy in refractory sickle cell leg ulcers. Br J Haematol 2010; 151:516-24. [PMID: 20955402 DOI: 10.1111/j.1365-2141.2010.08395.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sickle cell leg ulcers are often debilitating, refractory to healing, and prone to recurrence. Healing of leg ulcers was incidentally observed during dose-ranging trials of Arginine Butyrate in beta haemoglobinopathies. Here, a controlled Phase II trial was performed in sickle cell patients who had lower extremity ulcers refractory to standard care for at least 6 months. Patients were randomized to receive standard local care alone (Control Arm) or standard care with Arginine Butyrate administered 5 d/week (Treatment Arm), for 12 weeks. Ulcers were photographed weekly, traced, and ulcer areas were calculated by computerized planimetry and compared between the two study arms. Twenty-seven study courses were evaluated. Control Arm subjects had 25 ulcers with a mean area of 25·7 cm(2) initially and 23·2 cm(2) after 12 weeks; 2/25 (8%) healed completely. Treatment Arm subjects had 37 ulcers with a mean area of 50·6 cm(2) initially and 28·3 cm(2) at 12 weeks; 11/37 of these (30%) healed completely. After 3 months, proportions of ulcers which healed were 6/25 (24%) and 29/37 (78%), in the Control and Treatment Arms respectively (P < 0·001). These findings strongly suggest that Arginine Butyrate merits further evaluation for the treatment of refractory sickle cell leg ulcers in larger trials.
Collapse
Affiliation(s)
- Lillian McMahon
- Cancer Center and Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tonel I, Pinho M, Lordelo M, Cunha L, Garres P, Freire J. Effect of butyrate on gut development and intestinal mucosa morphology of piglets. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.06.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Influence of some potential prebiotics and fibre-rich foodstuffs on composition and activity of canine intestinal microbiota. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2010.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Pouillart PR, Dépeint F, Abdelnour A, Deremaux L, Vincent O, Mazière JC, Madec JY, Chatelain D, Younes H, Wils D, Saniez MH, Dupas JL. Nutriose, a prebiotic low-digestible carbohydrate, stimulates gut mucosal immunity and prevents TNBS-induced colitis in piglets. Inflamm Bowel Dis 2010; 16:783-94. [PMID: 19998458 DOI: 10.1002/ibd.21130] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND We investigated a prebiotic low-digestible carbohydrate (LDC) as a possible food ingredient to stimulate bowel functions in the treatment of inflammatory bowel disease. The study aimed to assess a fermentable dextrin fiber (Nutriose) and its relationship to the immune management of the disease and the microbiota profile in colitis-bearing piglets. METHODS In a randomized placebo-controlled parallel blind preclinical study, 32 male piglets were fed LDC (4% Nutriose) or dextrose placebo for 44 days before being challenged with trinitrobenzene sulfonic acid (TNBS) to induce colitis. We followed the microbiota profile using real-time polymerase chain reaction (PCR) targeted to 9 bacterial genera. Secretory IgA was evaluated by enzyme-linked immunosorbent assay (ELISA). Inflammatory protein profiles were monitored in blood and colonic tissues. Both histological scoring of biopsy samples and live endoscopic scoring were used to measure colitis development. RESULTS Prior and continuing LDC supplementation alleviated the symptoms of colitis (body weight loss, bloody stools) induced by a TNBS challenge. This effect was associated with an improvement in endoscopic and histological scores. LDC was shown to selectively downregulate some of the proinflammatory factors and their concomitant pyretic events and to stimulate the Th2-related immune pathway (IL-10 and s-IgA). CONCLUSIONS At the dose tested, LDC is a well-tolerated prebiotic agent able to not only stimulate butyrogenic bacteria strains and reduce intestinal transit disorders and energy intake, but also to prevent chronic inflammatory intestinal injuries.
Collapse
|
22
|
Meimandipour A, Shuhaimi M, Soleimani AF, Azhar K, Hair-Bejo M, Kabeir BM, Javanmard A, Muhammad Anas O, Yazid AM. Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of Lactobacillus. Poult Sci 2010; 89:470-6. [PMID: 20181862 DOI: 10.3382/ps.2009-00495] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the bacterial fermentation end products in the chicken cecum, butyrate is of particular importance because of its nutritional properties for the epithelial cell and pathogen inhibitory effects in the gut. An in vitro experiment, operated with batch bioreactor, was conducted to quantify butyric-producing bacteria in a simulated broiler cecum supplemented with Lactobacillus salivarius ssp. salicinius JCM 1230 and Lactobacillus agilis JCM 1048 during 24 h of incubation. Selected bacterial species were determined by real-time PCR and short-chain fatty acids and lactate concentrations were monitored. The results showed that after 24 h of incubation, Lactobacillus supplementation significantly increased the number of lactobacilli, bifidobacteria and Faecalibacterium prausnitzii in medium containing cecal content and lactobacilli supplementation (Cc + L) compared with the control (Cc). Addition of lactobacilli did not alter Escherichia coli and Clostridium butyricum, whereas it significantly (P < 0.05) reduced Salmonella in treatment Cc + L compared with the Cc treatment. Propionate and butyrate formation were significantly (P < 0.05) increased in treatment Cc + L as compared with the Cc treatment. Lactate was only detected in treatment containing 2 Lactobacillus strains. After 24 h of incubation, acetate concentration significantly (P < 0.05) decreased in all treatments. It was suggested that lactate produced by Lactobacillus in the cecal content improved the growth of butyric producers such as F. prausnitzii, which significantly increased butyrate accumulation. Additionally, the results showed that butyrate and propionate inhibited Salmonella without influencing the E. coli profile.
Collapse
Affiliation(s)
- A Meimandipour
- Department of Food Technology, Faculty of Food Science and Technology, University of Putra Malaysia, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Biagi G, Cipollini I, Paulicks BR, Roth FX. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets. Arch Anim Nutr 2010; 64:121-35. [DOI: 10.1080/17450390903461584] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 2010; 16:684-95. [PMID: 19774643 DOI: 10.1002/ibd.21108] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The short-chain fatty acid butyrate, which is mainly produced in the lumen of the large intestine by the fermentation of dietary fibers, plays a major role in the physiology of the colonic mucosa. It is also the major energy source for the colonocyte. Numerous studies have reported that butyrate metabolism is impaired in intestinal inflamed mucosa of patients with inflammatory bowel disease (IBD). The data of butyrate oxidation in normal and inflamed colonic tissues depend on several factors, such as the methodology or the models used or the intensity of inflammation. The putative mechanisms involved in butyrate oxidation impairment may include a defect in beta oxidation, luminal compounds interfering with butyrate metabolism, changes in luminal butyrate concentrations or pH, and a defect in butyrate transport. Recent data show that butyrate deficiency results from the reduction of butyrate uptake by the inflamed mucosa through downregulation of the monocarboxylate transporter MCT1. The concomitant induction of the glucose transporter GLUT1 suggests that inflammation could induce a metabolic switch from butyrate to glucose oxidation. Butyrate transport deficiency is expected to have clinical consequences. Particularly, the reduction of the intracellular availability of butyrate in colonocytes may decrease its protective effects toward cancer in IBD patients.
Collapse
Affiliation(s)
- Ronan Thibault
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Université de Nantes, CHU Nantes, Nantes, France.
| | | | | | | | | | | |
Collapse
|
25
|
Navaneethan U, Shen B. Laboratory tests for patients with ileal pouch-anal anastomosis: clinical utility in predicting, diagnosing, and monitoring pouch disorders. Am J Gastroenterol 2009; 104:2606-15. [PMID: 19603012 DOI: 10.1038/ajg.2009.392] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) is the surgical treatment of choice for patients with medically refractory ulcerative colitis (UC) or UC-associated dysplasia, and for the majority of patients with familial adenomatous polyposis. Pouchitis and other complications of IPAA are common. There are scant data on laboratory markers for the evaluation and diagnosis of pouch disorders. The presence of immunogenotypic markers such as genetic polymorphisms of interleukin-1 (IL-1) receptor antagonist, NOD2/CARD15, Toll-like receptor, and tumor necrosis factor-alpha has been reported to be associated with pouchitis. Immunophenotypic/serologic markers such as perinuclear antineutrophil cytoplasmic antibody and anti-CBir1 have been investigated as possible markers for predicting and diagnosing pouchitis. Fecal markers including lactoferrin and calprotectin seem to be useful in distinguishing inflammatory from noninflammatory pouch disorders. In our practice, we have encountered a large number of pouch patients with Clostridium difficile infection. Laboratory evaluation provides information on the etiology and pathogenesis of pouchitis, and it also helps practicing clinicians with accurate diagnosis, differential diagnosis, disease stratification, and management of ileal pouch disorders.
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- The Pouchitis Clinic, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
26
|
De Preter V, Bulteel V, Suenaert P, Geboes KP, De Hertogh G, Luypaerts A, Geboes K, Verbeke K, Rutgeerts P. Pouchitis, similar to active ulcerative colitis, is associated with impaired butyrate oxidation by intestinal mucosa. Inflamm Bowel Dis 2009; 15:335-40. [PMID: 18942762 DOI: 10.1002/ibd.20768] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Healthy colonic mucosa uses butyrate as the major energy source. In ulcerative colitis (UC) butyrate oxidation has been shown to be disturbed, but it remains unclear whether this is a primary defect. The aim of this study was to measure mucosal butyrate oxidation in UC (involved and noninvolved colon) and in pouchitis and to study the relationship with endoscopic as well as histological disease activity. METHODS Butyrate oxidation was measured in 73 UC patients, 22 pouchitis patients, and 112 controls (95 colon, 17 ileum) by incubating biopsies with 1 mM 14C-labeled Na-butyrate and measuring the released 14CO2. RESULTS Compared with that in normal colon, butyrate oxidation was significantly impaired in endoscopically active but not in quiescent disease or uninvolved colon segments. The severity of the metabolic defect was related to histological disease activity and decreased epithelial cell height. In active pouchitis, butyrate oxidation was significantly decreased compared with that in normal ileum and excluded pouches without inflammation. The histological pouchitis score correlated significantly with butyrate oxidation. CONCLUSIONS Active UC and pouchitis show the same inflammation-related metabolic defect. Our data suggest that the defect is a consequence of inflammation and that pouchitis is metabolically similar to active UC.
Collapse
Affiliation(s)
- Vicky De Preter
- Department of Gastrointestinal Research and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Prebiotics are nondigestible fermentable fibers that are reported to have health benefits for the host. Older as well as more recent studies show beneficial effects in experimental colitis and lately also in human inflammatory bowel diseases (IBD), such as Crohn's disease, ulcerative colitis, and chronic pouchitis. In this review we give an overview of the benefits of prebiotics in rodent IBD models and in IBD patients and discuss their possible protective mechanisms. Commensal intestinal bacteria induce and perpetuate chronic intestinal inflammation, whereas others are protective. However, most of the current medications are directed against the exaggerated proinflammatory immune response of the host, some of them toxic and costly. Feeding prebiotics changes the composition of the intestinal microflora toward more protective intestinal bacteria and alters systemic and mucosal immune responses of the host. Therapy for IBD targeting intestinal bacteria and their function is just emerging. Prebiotics have the promise to be relatively safe, inexpensive, and easy to administer. Unraveling their protective mechanisms will help to develop rational applications of prebiotics. However, the initial promising results with dietary prebiotics in preclinical trials as well as small studies in human IBD will need to be confirmed in large randomized controlled clinical trials.
Collapse
Affiliation(s)
- Mirjam A C Looijer-van Langen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
28
|
Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. J Anim Sci 2008; 84:370-8. [PMID: 16424265 DOI: 10.2527/2006.842370x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gluconic acid (GA) derives from the incomplete oxidation of glucose by some Gluconobacter strains. When fed to nonruminant animals, GA is only poorly absorbed in the small intestine and is primarly fermented to butyric acid in the lower gut. This study investigated the effect of GA on in vitro growth response and metabolism of swine cecal microflora and on animal growth performance, intestinal wall morphology, and intestinal microflora. During a 24-h in vitro cecal fermentation, total gas production and maximum rate of gas production were increased by GA (linear, P < 0.001). Ammonia in cecal liquor was reduced by GA after 4, 8, and 24 h of fermentation (quadratic, P < 0.01). After 24 h of fermentation, total short-chain fatty acids, acetic acid, propionic acid, n-butyric acid, acetic to propionic acid ratio, and acetic + butyric to propionic acid ratio were linearly increased by GA (P < 0.001). In the in vivo study, 48 piglets were divided into 4 groups and housed in individual cages for 6 wk. Piglets received a basal diet with a) no addition (control) or with GA addition at b) 3,000 ppm, c) 6,000 ppm, or d) 12,000 ppm. After 6 wk, 4 animals per treatment were killed, and samples of intestinal content and mucosa were collected. Compared with control, GA tended to increase average daily gain (+13 and +14% for GA at 3,000 and 6,000 ppm, respectively; P of the model = 0.11; quadratic, P < 0.05). Daily feed consumption and gain to feed ratio were not influenced by GA. Intestinal counts of clostridia, enterobacteriaceae, and lactic acid bacteria were not affected by GA. Gluconic acid tended to increase total short-chain fatty acids in the jejunum (+174, +87, and +74% for GA at 3,000, 6,000, and 12,000 ppm, respectively; P of the model = 0.07; quadratic, P = 0.07). Morphological evaluation of intestinal mucosa from jejunum, ileum, and cecum did not show any significant differences among treatments. This study showed that feeding GA influences the composition and activity of the intestinal microflora and may improve growth performance of piglets after weaning.
Collapse
Affiliation(s)
- G Biagi
- Department of Veterinary Morphophysiology and Animal Production, Università di Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy.
| | | | | | | | | |
Collapse
|
29
|
Roda A, Simoni P, Magliulo M, Nanni P, Baraldini M, Roda G, Roda E. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J Gastroenterol 2007; 13:1079-84. [PMID: 17373743 PMCID: PMC4146871 DOI: 10.3748/wjg.v13.i7.1079] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a new formulation with hydroxy propyl methyl cellulose and Shellac coating for extended and selective delivery of butyrate in the ileo-caecal region and colon.
METHODS: One-gram sodium butyrate coated tablets containing 13C-butyrate were orally administered to 12 healthy subjects and 12 Crohn’s disease patients and the rate of 13C-butyrate absorption was evaluated by 13CO2 breath test analysis for eight hours. Tauroursodeoxycholic acid (500 mg) was co-administered as a biomarker of oro-ileal transit time to determine also the site of release and absorption of butyrate by the time of its serum maximum concentration.
RESULTS: The coated formulation delayed the 13C-butyrate release by 2-3 h with respect to the uncoated tablets. Sodium butyrate was delivered in the intestine of all subjects and a more variable transit time was found in Crohn’s disease patients than in healthy subjects. The variability of the peak 13CO2 in the kinetic release of butyrate was explained by the inter-subject variability in transit time. However, the coating chosen ensured an efficient release of the active compound even in patients with a short transit time.
CONCLUSION: Simultaneous evaluation of breath 13CO2 and tauroursodeoxycholic acid concentration-time curves has shown that the new oral formulation consistently releases sodium butyrate in the ileo-cecal region and colon both in healthy subjects and Crohn’s disease patients with variable intestinal transit time. This formulation may be of therapeutic value in inflammatory bowel disease patients due to the appropriate release of the active compound.
Collapse
Affiliation(s)
- Aldo Roda
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate. J Anim Sci 2007; 85:1184-91. [PMID: 17296766 DOI: 10.2527/jas.2006-378] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adding organic acids to piglet diets is known to be helpful in overcoming postweaning syndrome, and butyric acid is known to be the main energy source for the epithelial cells of the large intestine and the terminal ileum. This study investigated the effect of sodium butyrate (SB) on in vitro and in vivo swine microflora, piglet growth performance, and intestinal wall morphology. During a 24-h in vitro cecal fermentation, total gas production and maximal rate of gas production were reduced linearly by SB (P < 0.001). Ammonia in cecal liquor was increased linearly by SB after 4, 8, and 24 h of fermentation (P < 0.001). In the in vivo study, 48 piglets housed in individual crates were allotted to 4 treatment groups (12 animals per treatment) for 6 wk. Piglets received a basal diet with a) no addition (control), or with SB at b) 1,000 ppm, c) 2,000 ppm, or d) 4,000 ppm. After 6 wk, 6 animals per treatment were killed, and samples of intestinal content and mucosa were collected. Sodium butyrate did not improve the animal growth performance. In the cecum, SB increased pH and isobutyric acid concentration (linear, P < 0.05) and tended to increase ammonia concentration (P = 0.056). Intestinal counts of clostridia, enterobacteriaceae, and lactic acid bacteria as well as intestinal mucosal morphology were not affected by feeding SB. This study showed that SB influenced the cecal microflora in an in vitro system, reducing the total gas production but increasing ammonia concentrations. When fed to piglets, SB did not improve the animal growth performance, increased cecal pH, and tended to increase cecal ammonia concentrations. Further studies will be needed to better understand the mechanisms underlying the effects observed when SB is fed to piglets.
Collapse
Affiliation(s)
- G Biagi
- DIMORFIPA, Università di Bologna, 40064 Ozzano Emilia, Italy.
| | | | | | | | | |
Collapse
|
31
|
Kato K, Ishii Y, Mizuno S, Sugitani M, Asai S, Kohno T, Takahashi K, Komuro S, Iwamoto M, Miyamoto S, Takayama T, Arakawa Y. Usefulness of rectally administering [1-(13)C]-butyrate for breath test in patients with active and quiescent ulcerative colitis. Scand J Gastroenterol 2007; 42:207-14. [PMID: 17327940 DOI: 10.1080/00365520600955070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Impaired butyrate metabolism plays a part in ulcerative colitis (UC). To assess the usefulness of measuring butyrate metabolism as an indication of inflammatory activity, we investigated the rate of butyrate metabolism by breath test after administering [1-(13)C]-butyrate rectally to patients with UC. MATERIAL AND METHODS Thirty-eight UC patients (22 active, 16 quiescent) and 15 healthy controls were given [1-(13)C]-butyrate enemas. The (13)CO2 production rate was measured by breath test using an infrared spectrometric analyzer. RESULTS The quantity of expired (13)CO2 was significantly lower in the active than in the quiescent UC and control groups. Cumulative (13)CO2 production at 240 min showed significant negative correlations with the clinical activity index (r=-0.65, p<0.0001), endoscopic activity index (r=-0.63, p=0.0001) and histology (r=-0.71, p<0.0001) in the active UC group. The (13)CO2 production rate was significantly increased in the quiescent stage as compared with the active stage in six UC patients, in whom clinical remission was achieved, in accordance with improvements in the clinical activity index, the endoscopic activity index, histology and fecal butyrate concentrations. Significant inverse correlations between the cumulative (13)CO2 production rate and these three parameters were seen in these six UC patients assessed in both the active and quiescent stages. CONCLUSIONS Measurement of expired (13)CO2 after rectally administering [1-(13)C]-butyrate in active and quiescent UC appears to be a promising and reliable method for evaluating disease activity and metabolic changes associated with amelioration of inflammation.
Collapse
Affiliation(s)
- Kimitoshi Kato
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chapman MAS, Hutton M, Grahn MF, Williams NS. Metabolic adaptation of terminal ileal mucosa after construction of an ileoanal pouch. Br J Surg 2005. [DOI: 10.1046/j.1365-2168.1997.d01-1075.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Galvez J, Rodríguez-Cabezas ME, Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res 2005; 49:601-8. [PMID: 15841496 DOI: 10.1002/mnfr.200500013] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chronic idiopathic inflammatory bowel diseases (IBDs), namely Crohn's disease and ulcerative colitis, appear to be derived from an inappropriate reaction towards a luminal agent, most probably driven by the intestinal microflora, which upregulates the synthesis and release of different pro-inflammatory mediators, thus contributing to tissue damage that characterizes these intestinal conditions. Several studies have reported that IBD is associated with impairment in short-chain fatty acid (SCFA) production, mainly acetate, propionate, and butyrate. They are produced in the large bowel by anaerobic bacterial fermentation of undigested dietary carbohydrates and fiber polysaccharides, with butyrate being considered as the major fuel source for colonocytes. These SCFAs have been proposed to play a key role in the maintenance of colonic homeostasis. Therefore, it is reasonable to consider therapeutic approaches that increase colonic SCFA production, as it can be achieved by administration of dietary fiber to IBD patients. Unfortunately, there is quite limited documentation of efficacy of dietary fiber in properly designed trials. This review discusses the rationale, available evidence for the use of dietary fiber and its mechanisms of action in the treatment and prevention of IBDs.
Collapse
Affiliation(s)
- Julio Galvez
- Department of Pharmacology, School of Pharmacy, University of Granada, Spain.
| | | | | |
Collapse
|
34
|
Bartosch S, Fite A, Macfarlane GT, McMurdo MET. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004; 70:3575-81. [PMID: 15184159 PMCID: PMC427772 DOI: 10.1128/aem.70.6.3575-3581.2004] [Citation(s) in RCA: 558] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fecal bacteria were studied in healthy elderly volunteers (age, 63 to 90 years; n = 35) living in the local community, elderly hospitalized patients (age, 66 to 103; n = 38), and elderly hospitalized patients receiving antibiotic treatment (age, 65 to 100; n = 21). Group- and species-specific primer sets targeting 16S rRNA genes were used to quantitate intestinal bacteria by using DNA extracted from feces and real-time PCR. The principal difference between healthy elderly volunteers and both patient cohorts was a marked reduction in the Bacteroides-Prevotella group following hospitalization. Reductions in bifidobacteria, Desulfovibrio spp., Clostridium clostridiiforme, and Faecalibacterium prausnitzii were also found in the hospitalized patients. However, total 16S rRNA gene copy numbers (per gram of wet weight of feces) were generally lower in the stool samples of the two groups of hospitalized patients compared to the number in the stool samples of elderly volunteers living in the community, so the relative abundance (percentage of the group- and species-specific rRNA gene copies in relation to total bacterial rRNA gene copies) of bifidobacteria, Desulfovibrio spp., C. clostridiiforme, and F. prausnitzii did not change. Antibiotic treatment resulted in further reductions in the numbers of bacteria and their prevalence and, in some patients, complete elimination of certain bacterial communities. Conversely, the numbers of enterobacteria increased in the hospitalized patients who did not receive antibiotics, and due to profound changes in fecal microbiotas during antibiotic treatment, the opportunistic species Enterococcus faecalis proliferated.
Collapse
Affiliation(s)
- Sabine Bartosch
- MRC Microbiology and Gut Biology Group, University of Dundee, Dundee, United Kingdom
| | | | | | | |
Collapse
|
35
|
Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 2003; 69:4320-4. [PMID: 12839823 PMCID: PMC165216 DOI: 10.1128/aem.69.7.4320-4324.2003] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
16S rRNA-targeted oligonucleotide probes were designed for butyrate-producing bacteria from human feces. Three new cluster-specific probes detected bacteria related to Roseburia intestinalis, Faecalibacterium prausnitzii, and Eubacterium hallii at mean populations of 2.3, 3.8, and 0.6%, respectively, in samples from 10 individuals. Additional species-level probes accounted for no more than 1%, with a mean of 7.7%, of the total human fecal microbiota identified as butyrate producers in this study. Bacteria related to E. hallii and the genera Roseburia and Faecalibacterium are therefore among the most abundant known butyrate-producing bacteria in human feces.
Collapse
Affiliation(s)
- Georgina L Hold
- Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.
| | | | | | | | | |
Collapse
|
36
|
CHAPMAN MAS. The Role of the Colonic Flora in Maintaining a Healthy Large Bowel Mucosa. Biosci Microflora 2003. [DOI: 10.12938/bifidus1996.22.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
37
|
Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem 2001; 276:44641-6. [PMID: 11572859 DOI: 10.1074/jbc.m105170200] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Butyrate is derived from the microbial metabolism of dietary fiber in the colon where it plays an important role in linking colonocyte turnover and differentiation to luminal content. In addition, butyrate appears to have both anti-inflammatory and cancer chemopreventive activities. Using confocal microscopy and cell fractionation studies, butyrate pretreatment of a human colon cell line (HT-29 cells) inhibited the tumor necrosis factor-alpha (TNF-alpha)-induced nuclear translocation of the proinflammatory transcription factor NF-kappaB. Butyrate inhibited NF-kappaB DNA binding within 30 min of TNF-alpha stimulation, consistent with an inhibition of nuclear translocation. IkappaB.NF-kappaB complexes extracted from butyrate-treated cells were relatively resistant to in vitro dissociation by deoxycholate, suggesting a change in cellular IkappaB composition. Butyrate treatment increased p100 expression, an IkappaB that was not degraded upon TNF-alpha treatment. Butyrate also reduced the extent of TNF-alpha-induced IkappaB-alpha degradation and enhanced the presence of ubiquitin-conjugated IkappaB-alpha. The suppression of IkappaB-alpha degradation corresponded with a reduction in cellular proteasome activity as determined by in vitro proteasome assays and the increased presence of ubiquitin-conjugated proteins. The butyrate suppression of IkappaB-alpha degradation and proteasome activity may derive from its ability to inhibit histone deacetylases since the specific deacetylase inhibitor trichostatin A had similar effects. These results suggest a potential mechanism for the anti-inflammatory activity of butyrate and demonstrate the interplay between short chain fatty acids and cellular proteasome activity.
Collapse
Affiliation(s)
- L Yin
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
38
|
Kong SE, Hall JC, Cooper D, McCauley RD. Starvation alters the activity and mRNA level of glutaminase and glutamine synthetase in the rat intestine. J Nutr Biochem 2000; 11:393-400. [PMID: 11044634 DOI: 10.1016/s0955-2863(00)00095-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The metabolism of glutamine, the main respiratory fuel of enterocytes, is governed by the activity of glutaminase and glutamine synthetase. Because starvation induces intestinal atrophy, it might alter the rate of intestinal glutamine utilization. This study examined the effect of starvation on the activity, level of mRNA, and distribution of mRNA of glutaminase and glutamine synthetase in the rat intestine. Rats were randomized into groups and were either: (1) fed for 2 days with rat food ad libitum or (2) starved for 2 days. Standardized segments of jejunum and ileum were removed for the estimation of enzyme activity, level of mRNA, and in situ hybridization analysis. The jejunum of the fed rats had a greater activity of both enzymes per centimeter of intestine (P < 0.01), a greater glutaminase specific activity (1.97 +/- 0.45 vs. 1.09 +/- 0.34 micromol/hr/mg protein, P < 0.01), and a lower level of glutaminase and glutamine synthetase mRNA. The ileum of the fed rats had a greater activity of glutamine synthetase per centimeter of intestine (162.9 +/- 50.6 vs. 91.0 +/- 23.1 nmol/hr/cm bowel, P < 0.01), a lower level of glutaminase mRNA, and a greater level of glutamine synthetase mRNA. In situ hybridization analysis showed that starvation does not alter the distribution of glutaminase and glutamine synthetase mRNA in the intestinal mucosa. This study confirms that starvation decreases the total intestinal activity per centimeter of both glutaminase and glutamine synthetase. More importantly, the results indicate that the intestine adapts to starvation by accumulating glutaminase mRNA. This process prepares the intestine for a restoration of intake.
Collapse
Affiliation(s)
- S E Kong
- University Department of Surgery, Royal Perth Hospital, Perth, Australia
| | | | | | | |
Collapse
|
39
|
Kaya E, Gür ES, Ozgüç H, Bayer A, Tokyay R. L-glutamine enemas attenuate mucosal injury in experimental colitis. Dis Colon Rectum 1999; 42:1209-15. [PMID: 10496564 DOI: 10.1007/bf02238577] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to investigate the role of 1-glutamine, short chain fatty acid, prednisolone, and mesalazine (5-aminosalicylic acid) enemas on mucosal damage and inflammation in experimental colitis. METHODS Colitis was induced in rats with trinitrobenzene sulfonic acid in ethanol. Saline (n = 14), prednisolone (n = 13), 5-aminosalicylic acid (n = 14), 1-glutamine (n = 14), and short chain fatty acid (n = 13) enemas were applied twice daily to the rats for seven days after the induction of colitis. The sham group (n = 9) received only saline enemas. Rats were killed at the seventh day and their colonic macroscopic inflammatory scores were determined. Colonic mucosal gamma glutamyl transpeptidase activity and colonic mucosal malondialdehyde levels were measured. The same measurements but no enemas were done in the control group (n = 7). RESULTS There were significant differences in macroscopic inflammatory scores between sham and colitis groups (P < 0.001). The macroscopic inflammatory scores of the colitis group were higher than the short chain fatty acid and glutamine groups (P < 0.05). Whereas the mucosal gamma glutamyl transpeptidase activity was diminished in prednisolone, 5-aminosalicylic acid, and short chain fatty acid groups when compared with the control group; in the colitis, sham, and glutamine groups the activity of this enzyme did not change. The mucosal malondialdehyde levels were significantly lower in the prednisolone and glutamine groups than in the colitis group. CONCLUSION Only one of four agents tested, namely, 1-glutamine enemas, could decrease the severity of colitis both morphologically and biochemically. Moreover, L-glutamine prevented the colitis-induced oxidant injury in the colonic mucosa. On the other hand, prednisolone and short chain fatty acids seemed to improve only the physiologic changes of colitis.
Collapse
Affiliation(s)
- E Kaya
- Department of Surgery, Uludag University School of Medicine, Bursa, Turkey
| | | | | | | | | |
Collapse
|
40
|
Duffy MM, Regan MC, Ravichandran P, O'Keane C, Harrington MG, Fitzpatrick JM, O'Connell PR. Mucosal metabolism in ulcerative colitis and Crohn's disease. Dis Colon Rectum 1998; 41:1399-405. [PMID: 9823806 DOI: 10.1007/bf02237056] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Colonic mucosal metabolism of butyrate may be impaired in ulcerative colitis. In this study we sought to confirm this observation, to determine if a similar change occurs in Crohn's colitis, and to establish whether a panenteric disorder of butyrate metabolism exists in either condition. METHODS With use of a microculture technique, mucosal metabolic fluxes of 14[C]-labeled butyrate and 14[C]-labeled glutamine were measured as 14[C] carbon dioxide production in mucosal biopsy specimens from the colon and ileum in patients with ulcerative colitis, Crohn's colitis, and healthy bowel. Results were expressed as pmol/microg biopsy DNA/hour. RESULTS In the colon the mucosal metabolic fluxes of both butyrate and glutamine are reduced in both ulcerative colitis and Crohn's colitis compared with healthy controls. These changes were most marked in the presence of moderate to severe mucosal inflammation, there being no significant difference in mucosal metabolic flux between mildly inflamed mucosa and healthy controls. In the ileum the mucosal metabolic fluxes of butyrate and glutamine did not differ between healthy controls and those with either ulcerative colitis or Crohn's colitis. CONCLUSIONS Changes in colonic mucosal metabolism of butyrate and glutamine in inflammatory bowel disease occur as a consequence of the inflammatory process and are not peculiar to ulcerative colitis. Ileal mucosal metabolism is unchanged in ulcerative colitis and Crohn's colitis, indicating the absence of a panenteric abnormality of mucosal metabolism in these two conditions.
Collapse
Affiliation(s)
- M M Duffy
- Department of Surgery, Mater Misericordiae Hospital and University College, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
41
|
Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology 1998; 115:584-90. [PMID: 9721155 DOI: 10.1016/s0016-5085(98)70137-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Impaired short-chain fatty acid metabolism by the colonocyte has been suggested as a pathogenic factor in ulcerative colitis (UC). The aim of this study was to measure in vivo butyrate metabolism in UC and to correlate butyrate oxidation with colonic permeability. METHODS Butyrate oxidation was measured by means of a 14CO2-breath test after rectal instillation of 14C-butyrate. 51Cr-ethylenediaminetetraacetic acid (EDTA) was added to the enema, and the urinary % dose excretion of 51Cr-EDTA after 6 hours was a measure for permeability. RESULTS Patients with active extensive UC showed a significantly lower butyrate oxidation and increased colonic permeability in comparison to healthy controls. Butyrate oxidation correlated significantly negative with clinical activity. Oxidation of butyrate was not decreased in most patients with inactive extensive UC. In 3 patients with inactive disease and decreased oxidation, a relapse occurred within a few weeks after the test, whereas all patients with normal oxidation maintained their remission for at least 3 months. A significantly negative correlation existed between butyrate oxidation and colonic permeability. CONCLUSIONS Patients with active extensive UC have a decreased colonic butyrate oxidation. However, the fact that remission is associated with normal oxidation suggests that UC mucosa is not intrinsically altered in butyrate oxidation, making this unlikely to be a primary defect in UC.
Collapse
Affiliation(s)
- E Den Hond
- Department of Gastroenterology, University Hospital Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Scheppach W, Christl SU, Bartram HP, Richter F, Kasper H. Effects of short-chain fatty acids on the inflamed colonic mucosa. SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY. SUPPLEMENT 1997; 222:53-7. [PMID: 9145448 DOI: 10.1080/00365521.1997.11720719] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selected inflammatory conditions of the distal alimentary tract may respond to topical SCFA treatment. The rationale for using SCFA enemas is based on Roediger's (1980) observation that butyrate is the preferred fuel of colonocytes and that SCFA deficiency could lead, in the short term, to mucosal hypoplasia and, in the long term, to colitis. The absence of luminal nutrients is especially evident in the excluded rectum after complete diversion of the faecal stream. Harig et al. (1989) were the first to treat successfully diversion colitis with SCFA irrigation (acetate 60 mM, propionate 30 mM, n-butyrate 40 mM). However, subsequent studies could not reproduce the initial positive data. In distal ulcerative colitis an impaired mucosal oxidation of SCFAs has been described despite their luminal abundance. Pilot studies using either the SCFA mixture or butyrate monotherapy have yielded promising results. However, extended confirmatory studies with a larger sample size have not yet been performed. Preliminary data are also available for the use of SCFA in pouchitis and radiation proctitis. In summary, SCFA topical therapy seems to be a promising option in distinct forms of inflammatory bowel disease; however, the routine use of SCFAs cannot be recommended until their efficacy has been confirmed in larger trials.
Collapse
Affiliation(s)
- W Scheppach
- Dept. of Medicine, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Chapman MAS, Hutton M, Grahn MF, Williams NS. Metabolic adaptation of terminal ileal mucosa after construction of an ileoanal pouch. Br J Surg 1997. [DOI: 10.1002/bjs.1800840127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Abstract
Fecal pathogens have been suspected to cause ulcerative colitis, yet none have been identified. Meanwhile, the 400 species comprising normal colonic flora have received little attention as potential pathogens. Sulfate-reducing bacteria (SRB), a frequent colonic commensal, have been identified in greater numbers in people with ulcerative colitis. The bacteria produce hydrogen sulfide, a toxic compound with the potential to cause colonic injury and possibly ulcerative colitis. If these bacteria are pathogenic, high-risk populations may harbor greater numbers of these organisms in their colons. We compared a group with a high incidence of ulcerative colitis, Ashkenazi Jews, to a control population to assess carriage rates for SRB. Breath samples were collected to indirectly determine colonic conditions. No difference was found between the two groups studied.
Collapse
Affiliation(s)
- J Levine
- Department of Medicine, Minneapolis VA Medical Center, Minnesota, USA
| | | | | |
Collapse
|