1
|
Lauro G, Aliberti M, De Nisco M, Pedatella S, Pepe G, Basilicata MG, Chini MG, Fischer K, Hofstetter RK, Werz O, Ferraro MG, Piccolo M, Irace C, Saviano A, Campiglia P, Bertamino A, Ostacolo C, Ciaglia T, Manfra M, Bifulco G. Furazanopyrazine-based novel promising anticancer agents interfering with the eicosanoid biosynthesis pathways by dual mPGES-1 and sEH inhibition. Eur J Med Chem 2025; 289:117402. [PMID: 40010271 DOI: 10.1016/j.ejmech.2025.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
We report the identification of a new set of compounds based on the furazanopyrazine core interfering with eicosanoid biosynthesis and acting as potentially effective anti-inflammatory and anticancer agents. Based on our previous promising results on a set of furazanopyrazine-based compounds against the microsomal prostaglandin E2 synthase-1 (mPGES-1) enzyme, we here identified derivatives with improved pharmacokinetic properties by replacing the ester moiety with a more stable ether group. A focused virtual library of 1 × 104 molecules was built and screened against mPGES-1 through molecular docking experiments, leading to the selection of 10 candidates for synthesis and biological evaluation. Several molecules were found to inhibit mPGES-1 and, among them, two items featured IC50 values in the low micromolar range. Additional computational studies on the collection of synthesized compounds demonstrated that compound 3b, previously emerged as an mPGES-1 inhibitor, interfered with soluble epoxide hydrolase (sEH) activity, thus emerging as a valuable dual mPGES-1/sEH inhibitor. The pharmacokinetic features of the most potent compounds were accurately estimated. Unfortunately, poor outcomes were obtained for 3b; on the other hand, compound 7e exhibited promising mPGES-1 inhibition and excellent pharmacokinetic profile, demonstrating that the novel furazanopyrazine-based items with ether moiety possess improved pharmacokinetic properties compared to the ester-based compounds reported in our previous study. Additionally, the anticancer properties of 7e and 7d, the latter emerged as the most active mPGES-1 inhibitor, were evaluated and both compounds showed promising activities against HCT-116 human colorectal cancer (CRC) cells. These findings highlight the furazanopyrazine core as a promising scaffold for disclosing new anti-inflammatory drugs with the ability to inhibit targets belonging to arachidonic acid cascade.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Michela Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Mauro De Nisco
- Department of Health Sciences, University of Basilicata, Viale dell'Ateneo Lucano, Potenza, I-85100, Italy
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza L. Miraglia 2, 80138, Naples, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Robert K Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Michele Manfra
- Department of Health Sciences, University of Basilicata, Viale dell'Ateneo Lucano, Potenza, I-85100, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy.
| |
Collapse
|
2
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adipose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA;
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany;
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Thompson MA, Shaffer L, Larson DA, Stavena-Holik M, Nail C, Leatherman L, Tomblyn S, Burnett L, Rizzo J, Christy RJ, Kowalczewski CJ. Subcutaneous Anti-inflammatory Therapies to Prevent Burn Progression in a Swine Model of Contact Burn Injury. Mil Med 2024; 189:1423-1431. [PMID: 38150385 DOI: 10.1093/milmed/usad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
INTRODUCTION If left untreated, burn injuries can deepen or progress in depth within the first 72 hours after injury as a result of increased wound inflammation, subsequently worsening healing outcomes. This can be especially detrimental to warfighters who are constrained to resource-limited environments with delayed evacuation times to higher roles of care and more effective treatment. Preventing this burn progression at the point of injury has the potential to improve healing outcomes but requires a field-deployable therapy and delivery system. Subcutaneous therapies known to treat inflammation delivered local to the wound site may prove to be one such avenue for success. MATERIALS AND METHODS Seven Yorkshire-cross swine received partial-thickness burn injuries using a previously established contact burn model. Each animal received one of the seven therapies: (1) saline, (2) heparin, (3) ibuprofen, (4) erythropoietin, (5) resolvin, (6) rapamycin, and (7) placental extract, all of which are either currently employed or are experimental in field use and indicated to treat inflammation. Treatments were delivered subcutaneously on the day of injury and 24 hours post-injury to simulate a prolonged field care scenario, before potential evacuation. Animals and wound development were observed for 28 days before euthanasia. Throughout the course of the study, wounds were observed macroscopically via non-invasive imaging. Histological analyses provided the critical metric of burn progression. Treatment success criteria were designated as the ability to prevent burn progression past 80% of the dermal depth in two of the three treated wounds, a clinically relevant metric of burn progression. RESULTS It was determined that the applied model successfully created reproducible partial-thickness burn injuries in this porcine study. No significant differences with regard to lateral wound size or the rate of lateral wound closure were observed in any treatments. Several treatments including resolvin, rapamycin, ibuprofen, and erythropoietin successfully reduced burn progression to less than 80% of the dermal depth in two of the three wounds, 24 hours after injury. CONCLUSIONS This report employs an established model of porcine contact burn injury in order to test the ability of local subcutaneous delivery of therapeutics to prevent burn progression at the point of injury, via what is believed to be the inhibition of inflammation. Several treatments successfully prevented burn progression to a full-thickness injury, potentially improving wound healing outcomes in a simulated battlefield scenario. Subcutaneously administered therapies combating burn-induced inflammation at the point of injury may serve as a field-deployable treatment modality to improve warfighter recovery and return to duty.
Collapse
Affiliation(s)
- Marc A Thompson
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Lucy Shaffer
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - David A Larson
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Michelle Stavena-Holik
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Carole Nail
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Logan Leatherman
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Seth Tomblyn
- Plakous Therapeutics LLC, Winston-Salem, NC 27103, USA
| | | | - Julie Rizzo
- Trauma Research, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Robert J Christy
- Combat Wound Care, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | | |
Collapse
|
4
|
Zhang X, Zhang H. Pro-resolving and anti-inflammatory effects of resolvins and protectins in rheumatoid arthritis. Inflammopharmacology 2023; 31:2995-3004. [PMID: 37831392 DOI: 10.1007/s10787-023-01343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Rheumatoid arthritis (RA) is typified by persistent joint inflammation, which leads to the deterioration of bone and cartilage and a reduction in overall quality of life. The global prevalence of pain as a primary symptom in RA is influenced by the interplay between inflammation and its resolution. The identification of a family of lipid mediators known as specialized pro-resolving mediators (SPM)s has contributed to the progress of our comprehension of inflammatory conditions. SPMs have been observed to trigger the process of inflammation resolution, thereby reinstating the homeostasis of the inflammatory response. Autacoids are synthesized through the stereo-selective transformation of essential fatty acids, resulting in molecules dynamically modulated during inflammation and possessing strong immunoregulatory properties. This review delves into the available evidence that supports the involvement of certain SPM as protective lipids, biomarkers with potential, and therapeutic targets in the context of RA.
Collapse
Affiliation(s)
- Xiurong Zhang
- Department of Rheumatology, The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hongting Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
5
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
6
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
7
|
Jackson CD, Hilliard KA, Brown CR. 12/15-lipoxygenase activity promotes efficient inflammation resolution in a murine model of Lyme arthritis. Front Immunol 2023; 14:1144172. [PMID: 37143678 PMCID: PMC10151577 DOI: 10.3389/fimmu.2023.1144172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/22/2023] [Indexed: 05/06/2023] Open
Abstract
Infection of C3H/HeJ (C3H) mice with Borrelia burgdorferi results in the development of a robust inflammatory arthritis that peaks around 3-4 weeks post-infection and then spontaneously resolves over the next few weeks. Mice lacking cyclooxygenase (COX)-2 or 5-lipoxygenase (5-LO) activity develop arthritis similar to wild-type mice but display delayed or prolonged joint resolution. Since 12/15-lipoxygenase (12/15-LO) activity is generally down-stream of both COX-2 and 5-LO activity and results in the production of pro-resolution lipids such as lipoxins and resolvins among others, we investigated the impact of 12/15-LO deficiency on the resolution of Lyme arthritis in mice on a C3H background. We found the expression of Alox15 (12/15-LO gene) peaked around 4-weeks post-infection in C3H mice suggesting a role for 12/15-LO in mediating arthritis resolution. A deficiency in 12/15-LO resulted in exacerbated ankle swelling and arthritis severity during the resolution phase without compromising anti-Borrelia antibody production and spirochete clearance. However, clearance of inflammatory cells was impeded. Therapeutic treatment of B. burgdorferi-infected C3H mice with lipoxin A4 (LXA4) near the peak of disease resulted in significantly decreased ankle swelling and a switch of joint macrophages to a resolving phenotype but did not directly impact arthritis severity. These results demonstrate that 12/15-LO lipid metabolites are important components of inflammatory arthritis resolution in murine Lyme arthritis and may be a therapeutic target for treatment of joint edema and pain for Lyme arthritis patients without compromising spirochete clearance.
Collapse
|
8
|
Pan G, Zhang P, Yang J, Wu Y. The regulatory effect of specialized pro-resolving mediators on immune cells. Biomed Pharmacother 2022; 156:113980. [DOI: 10.1016/j.biopha.2022.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
9
|
van Hoorebeke C, Yang K, Mussetter SJ, Koch G, Rutz N, Lokey RS, Crews P, Holman TR. Reevaluation of a Bicyclic Pyrazoline as a Selective 15-Lipoxygenase V-Type Activator Possessing Fatty Acid Specificity. ACS OMEGA 2022; 7:43169-43179. [PMID: 36467910 PMCID: PMC9713885 DOI: 10.1021/acsomega.2c05877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Regulation of lipoxygenase (LOX) activity is of great interest due to the involvement of the various LOX isoforms in the inflammatory process and hence many diseases. The bulk of investigations have centered around the discovery and design of inhibitors. However, the emerging understanding of the role of h15-LOX-1 in the resolution of inflammation provides a rationale for the development of activators as well. Bicyclic pyrazolines are known bioactive molecules that have been shown to display antibiotic and anti-inflammatory activities. In the current work, we reevaluated a previously discovered bicyclic pyrazoline h15-LOX-1 activator, PKUMDL_MH_1001 (written as 1 for this publication), and determined that it is inactive against other human LOX isozymes, h5-LOX, h12-LOX, and h15-LOX-2. Analytical characterization of 1 obtained in the final synthesis step identified it as a mixture of cis- and trans-diastereomers: cis-1 (12%) and trans-1 (88%); and kinetic analysis indicated similar potency between the two. Using compound 1 as the cis-trans mixture, h15-LOX-1 catalysis with arachidonic acid (AA) (AC50 = 7.8 +/- 1 μM, A max = 240%) and linoleic acid (AC50 = 5.3 +/- 0.7 μM, A max = 98%) was activated, but not with docosahexaenoic acid (DHA) or mono-oxylipins. Steady-state kinetics demonstrate V-type activation for 1, with a β value of 2.2 +/- 0.4 and an K x of 16 +/- 1 μM. Finally, it is demonstrated that the mechanism of activation for 1 is likely not due to decreasing substrate inhibition, as was postulated previously. 1 also did not affect the activity of the h15-LOX-1 selective inhibitor, ML351, nor did 1 affect the activity of allosteric effectors, such as 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) and 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA). These data confirm that 1 binds to a distinct activation binding site, as previously postulated. Future work should be aimed at the development of selective activators that are capable of activating h15-LOX-1 catalysis with DHA, thus enhancing the production of DHA-derived pro-resolution biomolecules.
Collapse
Affiliation(s)
- Christopher van Hoorebeke
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Kevin Yang
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Samuel J. Mussetter
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Grant Koch
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Natalie Rutz
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - R. Scott Lokey
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Phillip Crews
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Theodore R. Holman
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
10
|
TRPV3 and Itch: The Role of TRPV3 in Chronic Pruritus according to Clinical and Experimental Evidence. Int J Mol Sci 2022; 23:ijms232314962. [PMID: 36499288 PMCID: PMC9737326 DOI: 10.3390/ijms232314962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Itching is a sensory phenomenon characterized by an unpleasant sensation that makes you want to scratch the skin, and chronic itching diminishes the quality of life. In recent studies, multiple transient receptor potential (TRP) channels present in keratinocytes or nerve endings have been shown to engage in the propagation of itch signals in chronic dermatological or pruritic conditions, such as atopic dermatitis (AD) and psoriasis (PS). TRPV3, a member of the TRP family, is highly expressed in the epidermal keratinocytes. Normal TRPV3 signaling is essential for maintaining epidermal barrier homeostasis. In recent decades, many studies have suggested that TRPV3 contributes to detecting pruritus signals. Gain-of-function mutations in TRPV3 in mice and humans are characterized by severe itching, hyperkeratosis, and elevated total IgE levels. These studies suggest that TRPV3 is an important channel for skin itching. Preclinical studies have provided evidence to support the development of TRPV3 antagonists for treating inflammatory skin conditions, itchiness, and pain. This review explores the role of TRPV3 in chronic pruritus, collating clinical and experimental evidence. We also discuss underlying cellular and molecular mechanisms and explore the potential of TRPV3 antagonists as therapeutic agents.
Collapse
|
11
|
Belkadi A, Thareja G, Abbaszadeh F, Badii R, Fauman E, Albagha OM, Suhre K. Identification of PCSK9-like human gene knockouts using metabolomics, proteomics, and whole-genome sequencing in a consanguineous population. CELL GENOMICS 2022; 3:100218. [PMID: 36777185 PMCID: PMC9903797 DOI: 10.1016/j.xgen.2022.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Natural human knockouts of genes associated with desirable outcomes, such as PCSK9 with low levels of LDL-cholesterol, can lead to the discovery of new drug targets and treatments. Rare loss-of-function variants are more likely to be found in the homozygous state in consanguineous populations, and deep molecular phenotyping of blood samples from homozygous carriers can help to discriminate between silent and functional variants. Here, we combined whole-genome sequencing with proteomics and metabolomics for 2,935 individuals from the Qatar Biobank (QBB) to evaluate the power of this approach for finding genes of clinical and pharmaceutical interest. As proof-of-concept, we identified a homozygous carrier of a very rare PCSK9 variant with extremely low circulating PCSK9 levels and low LDL. Our study demonstrates that the chances of finding such variants are about 168 times higher in QBB compared with GnomAD and emphasizes the potential of consanguineous populations for drug discovery.
Collapse
Affiliation(s)
- Aziz Belkadi
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar,Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA,Corresponding author
| |
Collapse
|
12
|
Król M, Kupnicka P, Bosiacki M, Chlubek D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching-A Review. Int J Mol Sci 2022; 23:ijms231710127. [PMID: 36077525 PMCID: PMC9456560 DOI: 10.3390/ijms231710127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
Stretching is one of the popular elements in physiotherapy and rehabilitation. When correctly guided, it can help minimize or slow down the disabling effects of chronic health conditions. Most likely, the benefits are associated with reducing inflammation; recent studies demonstrate that this effect from stretching is not just systemic but also local. In this review, we present the current body of knowledge on the anti-inflammatory properties of stretching at a molecular level. A total of 22 papers, focusing on anti-inflammatory and anti-cancer properties of stretching, have been selected and reviewed. We show the regulation of oxidative stress, the expression of pro- and anti-inflammatory genes and mediators, and remodeling of the extracellular matrix, expressed by changes in collagen and matrix metalloproteinases levels, in tissues subjected to stretching. We point out that a better understanding of the anti-inflammatory properties of stretching may result in increasing its importance in treatment and recovery from diseases such as osteoarthritis, systemic sclerosis, and cancer.
Collapse
Affiliation(s)
- Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| | - Mateusz Bosiacki
- Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
13
|
Repositioning of Quinazolinedione-Based Compounds on Soluble Epoxide Hydrolase (sEH) through 3D Structure-Based Pharmacophore Model-Driven Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123866. [PMID: 35744994 PMCID: PMC9228872 DOI: 10.3390/molecules27123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.
Collapse
|
14
|
Pascoal LB, Palma BB, Chaim FHM, de Castro MM, Damázio TA, Franceschini APMDF, Milanski M, Velloso LA, Leal RF. New translational and experimental insights into the role of pro-resolving lipid mediators in inflammatory bowel disease. World J Exp Med 2022; 12:1-15. [PMID: 35096550 PMCID: PMC8771592 DOI: 10.5493/wjem.v12.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/21/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
The resolution of inflammation is an active process, guided by specialized pro-resolution lipid mediators (SPMs). These mediators originate from polyunsaturated fatty acids, such as omega-3. Sufficient evidence suggests that the beneficial effects attributed to omega-3 are, at least in part, the result of the immunomodulatory action of the SPMs, which act systemically by overcoming inflammation and repairing tissue damage, without suppressing the immune response. Recent studies suggest that an imbalance in the synthesis and/or activity of these compounds may be associated with the pathogenesis of several inflammatory conditions, such as inflammatory bowel disease (IBD). Thus, this review highlights the advances made in recent years with regard to the endo-genous synthesis and the biological role of lipoxins, resolvins, protectins, and maresins, as well as their precursors, in the regulation of inflammation; and provides an update on the participation of these mediators in the development and evolution of IBD and the therapeutic approaches that these immunomodulating substances are involved in this context.
Collapse
Affiliation(s)
- Lívia Bitencourt Pascoal
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Bruna Biazon Palma
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Fabio Henrique Mendonça Chaim
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Marina Moreira de Castro
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Tiago Andrade Damázio
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Ana Paula Menezes de Freitas Franceschini
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Marciane Milanski
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas, Campinas 13083-864, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| |
Collapse
|
15
|
Zamproni LN, Mundim MTVV, Porcionatto MA. Neurorepair and Regeneration of the Brain: A Decade of Bioscaffolds and Engineered Microtissue. Front Cell Dev Biol 2021; 9:649891. [PMID: 33898443 PMCID: PMC8058361 DOI: 10.3389/fcell.2021.649891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/12/2021] [Indexed: 01/24/2023] Open
Abstract
Repairing the human brain remains a challenge, despite the advances in the knowledge of inflammatory response to injuries and the discovery of adult neurogenesis. After brain injury, the hostile microenvironment and the lack of structural support for neural cell repopulation, anchoring, and synapse formation reduce successful repair chances. In the past decade, we witnessed the rise of studies regarding bioscaffolds’ use as support for neuro repair. A variety of natural and synthetic materials is available and have been used to replace damaged tissue. Bioscaffolds can assume different shapes and may or may not carry a diversity of content, such as stem cells, growth factors, exosomes, and si/miRNA that promote specific therapeutic effects and stimulate brain repair. The use of these external bioscaffolds and the creation of cell platforms provide the basis for tissue engineering. More recently, researchers were able to engineer brain organoids, neural networks, and even 3D printed neural tissue. The challenge in neural tissue engineering remains in the fabrication of scaffolds with precisely controlled topography and biochemical cues capable of directing and controlling neuronal cell fate. The purpose of this review is to highlight the existing research in the growing field of bioscaffolds’ development and neural tissue engineering. Moreover, this review also draws attention to emerging possibilities and prospects in this field.
Collapse
Affiliation(s)
- Laura N Zamproni
- Molecular Neurobiology Laboratory, Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mayara T V V Mundim
- Molecular Neurobiology Laboratory, Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A Porcionatto
- Molecular Neurobiology Laboratory, Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 2021; 64:401-421. [PMID: 32618335 PMCID: PMC7517362 DOI: 10.1042/ebc20190082] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.
Collapse
|
17
|
Bilodeau JF, Gevariya N, Larose J, Robitaille K, Roy J, Oger C, Galano JM, Bergeron A, Durand T, Fradet Y, Julien P, Fradet V. Long chain omega-3 fatty acids and their oxidized metabolites are associated with reduced prostate tumor growth. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102215. [PMID: 33276284 DOI: 10.1016/j.plefa.2020.102215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Cancer has been associated with increased oxidative stress and deregulation of bioactive oxylipins derived from long-chain polyunsaturated fatty acids (LC-PUFA) like arachidonic acid (AA). There is a debate whether ω-3 LC-PUFA could promote or prevent prostate tumor growth through immune modulation and reduction of oxidative stress. Our aim was to study the association between enzymatically or non-enzymatically produced oxidized-LC-PUFA metabolites and tumor growth in an immune-competent eugonadal and castrated C57BL/6 male mice injected with TRAMP-C2 prostate tumor cells, fed with ω-3 or ω-6 LC-PUFA-rich diets. MATERIALS AND METHODS Tumor fatty acids were profiled by gas chromatography and 26 metabolites derived from either AA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were assessed by liquid chromatography-mass spectrometry. RESULTS The enriched ω-3 diet did not reduce oxidative stress overall in tumors but favored the formation of ω-3 rather than ω-6 derived isoprostanoids. We discovered that EPA and its oxidized-derivatives like F3-isoprostanes and prostaglandin (PG)F3α, were inversely correlated with tumor volume (spearman correlations and T-test, p<0.05). In contrast, F2-isoprostanes, adrenic acid, docosapentaenoic acid (DPAω-6) and PGE2 were positively correlated with tumor volume. Interestingly, F4-neuroprostanes, PGD2, PGF2α, and thromboxane were specifically increased in TRAMP-C2 tumors of castrated mice compared to those of eugonadal mice. DISCUSSION Decreasing tumor growth under ω-3 diet could be attributed in part to increased levels of EPA and its oxidized-derivatives, a reduced level of pro-angiogenic PGE2 and increased levels of F4-neuroprostanes and resolvins content in tumors, suspected of having anti-proliferative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jean-François Bilodeau
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Jessica Larose
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Jérôme Roy
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Département de Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Centre Nutrition, santé et société (NUTRISS) et Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, Canada.
| |
Collapse
|
18
|
Resolvin D3 Promotes Inflammatory Resolution, Neuroprotection, and Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2020; 58:424-438. [PMID: 32964315 DOI: 10.1007/s12035-020-02118-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Resolvins, a new family from the endogenous specialized pro-resolving mediators (SPMs), promote the resolution of the inflammatory response. Resolvin D3 (RvD3), a docosahexaenoic acid (DHA) product, has been known to suppress the inflammatory response. However, the anti-inflammatory and neuroprotective effects of RvD3 are not known in a model of spinal cord injury (SCI). Here, we investigated the anti-inflammatory and neuroprotective effect of RvD3 in a mouse model of SCI. Processes associated with anti-inflammation and angiogenesis were studied in RAW 264.7 cells and the human brain endothelial cell line hCMEC/D3, respectively. Additionally, female C57BL/6 mice were subjected to moderate compression SCI (20-g weight compression for 1 min) followed by intrathecal injection of vehicle or RvD3 (1 μg/20 μL) at 1 h post-SCI. RvD3 decreased the lipopolysaccharide (LPS)-induced production of inflammatory mediators and nitric oxide (NO) in RAW 264.7 cells and promoted an angiogenic effect in the hCMEC/D3 cell line. Treatment with RvD3 improved locomotor recovery and reduced thermal hyperalgesia in SCI mice compared with vehicle treatment at 14 days post-SCI. Remarkably, RvD3-treated mice exhibited reduced expression of inflammatory cytokines (TNF-α, IL6, IL1β) and chemokines (CCL2, CCL3). Also, RvD3-treated mice exhibited increased expression of tight junction proteins such as zonula occludens (ZO)-1 and occludin. Furthermore, immunohistochemistry showed a decreased level of gliosis (GFAP, Iba-1) and neuroinflammation (CD68, TGF-β) and enhanced neuroprotection. These data provide evidence that intrathecal injection of RvD3 represents a promising therapeutic strategy to promote inflammatory resolution, neuroprotection, and neurological functional recovery following SCI.
Collapse
|
19
|
Karatay E, Utku ÖG. Serum resolvin D1 levels as a marker of inflammation in constipation dominant irritable bowel syndrome. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:113-119. [PMID: 32141819 DOI: 10.5152/tjg.2020.19751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS The objective of this study is to determine the role of circulating resolvin D1 (RvD1) in patients with constipation subtype of irritable bowel syndrome (IBS-C) and evaluate the relationship between abdominal pain severity and RvD1 levels. MATERIALS AND METHODS This research included 55 patients with IBS-C and 36 healthy controls. Controls were selected from patients who applied to our department with similar complaints as IBS but were not diagnosed with any type of pathology after further investigations. All participants underwent complete blood count, C-reactive protein (CRP), and RvD1 levels measurements. We also recorded abdominal pain severity and the number of bowel movements. Patients with IBS-C were compared with respect to the demographic features and laboratory measurements. RESULTS The median CRP concentration in patients with IBS-C was significantly higher than that of controls (p=0.003). However, the median RvD1 concentration was significantly lower in the IBS group than that of the control group (p<0.001). The receiver operating characteristic curve analyses revealed that RvD1 concentration lower than 0.47 ng/mL and CRP concentration higher than 3.40 mg/L may identify patients with IBS-C with a high specificity. In the IBS group, there was a strong negative correlation between abdominal pain severity and RvD1 concentration (r=-0.766, p=0.001). CONCLUSION This research demonstrates that patients with IBS-C have higher CRP and lower RvD1 concentrations than healthy controls. Both RvD1 and CRP concentrations predict the presence of IBS-C. Additionally, RvD1 concentrations decreased with the increase in abdominal pain severity. Further research works are needed for investigating the role of the RvD1 analogs in the treatment of IBS.
Collapse
Affiliation(s)
- Eylem Karatay
- Department of Gastroenterology, GOP Taksim Training and Research Hospital, İstanbul, Turkey
| | - Özlem Gül Utku
- Department of Gastroenterology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| |
Collapse
|
20
|
Association between erythrocyte membrane n-3 and n-6 polyunsaturated fatty acids and carotid atherosclerosis: A prospective study. Atherosclerosis 2020; 298:7-13. [PMID: 32126389 DOI: 10.1016/j.atherosclerosis.2020.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS The relationship of polyunsaturated fatty acids (PUFAs) with cardiovascular risk is still controversial. We aimed to determine whether erythrocyte n-3 and n-6 PUFAs are related to the risk of carotid atherosclerosis. METHODS From 2008 to 2019, baseline erythrocyte n-3 and n-6 PUFAs were determined in a cohort of 4040 Chinese adults (40-75 ys). The intima-media thickness (IMT) at the common carotid artery (CCA) and bifurcation of the carotid artery (BIF) and carotid plaque were assessed using ultrasonography at baseline and every 3 years. RESULTS During a median follow-up of 8.8 years, we identified the following newly diagnosed cases: 535 cases of CCAIMT thickening, 654 cases of BIFIMT thickening, and 850 cases of carotid plaque. Higher erythrocyte docosahexaenoic acid (DHA) and arachidonic acid (ARA) and lower gamma-linolenic acid (GLA) were associated with decreased risks of BIFIMT thickening. N-3 eicosatrienoic acid (ETrA), docosapentaenoic acid (DPA), and n-6 dodecylthioacetic acid (DTA) presented a significant beneficial association with carotid IMT thickening in the short-term (2.8 y) follow-up (all p trend <0.02), although the association was attenuated in the relatively long-term (8.8 y) follow-up. In addition, carotid plaque risk was found to be inversely associated with ETrA and DHA but positively associated with alpha-linolenic acid (ALA). N-6 linolenic acid (LA) and eicosadienoic acid (EDA) were not significantly associated with carotid atherosclerosis risk. CONCLUSIONS Higher erythrocyte very-long-chain n-3 and n-6 PUFAs (especially DHA and ARA) and lower erythrocyte GLA are associated with lower carotid atherosclerosis risk, suggesting potential cardioprotective roles of very-long-chain PUFAs.
Collapse
|
21
|
Fonteh AN, Cipolla M, Chiang AJ, Edminster SP, Arakaki X, Harrington MG. Polyunsaturated Fatty Acid Composition of Cerebrospinal Fluid Fractions Shows Their Contribution to Cognitive Resilience of a Pre-symptomatic Alzheimer's Disease Cohort. Front Physiol 2020; 11:83. [PMID: 32116789 PMCID: PMC7034243 DOI: 10.3389/fphys.2020.00083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) pathology is characterized by an early and prolonged decrease in the amyloid peptide (Aβ) levels concomitant with a later increase in phospho-tau concentrations in cerebrospinal fluid (CSF). We propose that changes in lipid metabolism can contribute to the abnormal processing of Aβ42 in AD. Our aim was to determine if polyunsaturated fatty acid (PUFA) metabolism can differentiate pre-symptomatic AD from normal aging and symptomatic AD. Using neuropsychology measures and Aβ42/T-tau in cerebrospinal fluid (CSF), we classify three groups of elderly study participants: cognitively healthy with normal Aβ42/T-tau (CH-NAT), cognitively healthy with pathological Aβ42/T-tau (CH-PAT), and AD individuals. We determined the size distribution and the concentration of CSF particles using light scattering and quantified PUFA composition in the nanoparticulate (NP) fraction, supernatant fluid (SF), and unesterified PUFA levels using gas chromatography combined with mass spectrometry. Four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3) were enriched in NP of AD compared with CH-NAT. C20:3n-3 levels were higher in the NP fraction from AD compared with CH-PAT. When normalized to the number of NPs in CSF, PUFA levels were significantly higher in CH-NAT and CH-PAT compared with AD. In the SF fractions, only the levels of docosahexaenoic acid (DHA, C22:6n-3) differentiated all three clinical groups. Unesterified DHA was also higher in CH-NAT compared with the other clinical groups. Our studies also show that NP PUFAs in CH participants negatively correlate with CSF Aβ42 while C20:4n-6, DHA, and n-3 PUFAs in the SF fraction positively correlate with T-tau. The profile of PUFAs in different CSF fractions that correlate with Aβ42 or with T-tau are different for CH-NAT compared with CH-PAT. These studies show that PUFA metabolism is associated with amyloid and tau processing. Importantly, higher PUFA levels in the cognitively healthy study participants with abnormal Aβ42/T-tau suggest that PUFA enhances the cognitive resilience of the pre-symptomatic AD population. We propose that interventions that prevent PUFA depletion in the brain may prevent AD pathology by stabilizing Aβ42 and tau metabolism. Further studies to determine changes in PUFA composition during the progression from pre-symptomatic to AD should reveal novel biomarkers and potential preventive approaches.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Matthew Cipolla
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Abby J Chiang
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Sarah P Edminster
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael G Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
22
|
Bashir S, Sharma Y, Jairajpuri D, Rashid F, Nematullah M, Khan F. Alteration of adipose tissue immune cell milieu towards the suppression of inflammation in high fat diet fed mice by flaxseed oil supplementation. PLoS One 2019; 14:e0223070. [PMID: 31622373 PMCID: PMC6797118 DOI: 10.1371/journal.pone.0223070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
The present study evaluates the effect of flaxseed oil (FXO) supplementation on adipose tissue macrophages (ATM’s), E and D series resolvin (Rv) levels and adipose tissue inflammation. Male C57BL/6J mice were divided into five groups (n = 5): lean group (given standard chow diet), HFD group given high fat diet (approx. 18 weeks) till they developed insulin resistance and 4, 8 or 16 mg/kg group (HFD group later orally supplemented with 4, 8 or 16 mg/kg body weight flaxseed oil) for 4 weeks.The present study showed that FXO supplementation led to enhanced DHA, EPA, RvE1-E2, RvD2, RvD5- D6, IL-4, IL-10 and arginase 1 levels in ATMs together with altered immune cell infiltration and reduced NF-κB expression. The FXO supplementation suppresses immune cell infiltration into adipose tissue and alters adipose tissue macrophage phenotype towards the anti-inflammatory state via enhancement of E and D series resolvins, arginase 1 expression and anti-inflammatory cytokines level (IL-4 and IL-10.) leading to amelioration of insulin resistance in flaxseed oil supplemented HFD mice.
Collapse
Affiliation(s)
- Samina Bashir
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Yadhu Sharma
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Deeba Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Faraz Rashid
- 121 DHR, Udyog Vihar, Phase IV, Gurugram, Haryana, India
| | - Md. Nematullah
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Farah Khan
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
- * E-mail:
| |
Collapse
|
23
|
Docosahexaenoic acid,22:6n-3: Its roles in the structure and function of the brain. Int J Dev Neurosci 2019; 79:21-31. [PMID: 31629800 DOI: 10.1016/j.ijdevneu.2019.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Docosahexaenoic acid,22:6n-3 (DHA) and its metabolites are vital for the structure and functional brain development of the fetus and infants, and also for maintenance of healthy brain function of adults. DHA is thought to be an essential nutrient required throughout the life cycle for the maintenance of overall brain health. The mode of actions of DHA and its derivatives at both cellular and molecular levels in the brain are emerging. DHA is the major prevalent fatty acid in the brain membrane. The brain maintains its fatty acid levels mainly via the uptake of plasma free fatty acids. Therefore, circulating plasma DHA is significantly related to cognitive abilities during ageing and is inversely associated with cognitive decline. The signaling pathways of DHA and its metabolites are involved in neurogenesis, antinociceptive effects, anti-apoptotic effect, synaptic plasticity, Ca2+ homeostasis in brain diseases, and the functioning of nigrostriatal activities. Mechanisms of action of DHA metabolites on various processes in the brain are not yet well known. Epidemiological studies support a link between low habitual intake of DHA and a higher risk of brain disorders. A diet characterized by higher intakes of foods containing high in n-3 fatty acids, and/or lower intake of n-6 fatty acids was strongly associated with a lower Alzheimer's Disease and other brain disorders. Supplementation of DHA improves some behaviors associated with attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior, as well as cognition. Nevertheless, the outcomes of trials with DHA supplementation have been controversial. Many intervention studies with DHA have shown an apparent benefit in brain function. However, clinical trials are needed for definitive conclusions. Dietary deficiency of n-3 fatty acids during fetal development in utero and the postnatal state has detrimental effects on cognitive abilities. Further research in humans is required to assess a variety of clinical outcomes, including quality of life and mental status, by supplementation of DHA.
Collapse
|
24
|
Domínguez-Perles R, Gil-Izquierdo A, Ferreres F, Medina S. Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns - Nutritional and dietary effects. Free Radic Biol Med 2019; 142:38-51. [PMID: 30902759 DOI: 10.1016/j.freeradbiomed.2019.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
The scientific background of perinatal pathology, regarding both mother and offspring, from the lipidomic perspective, has highlighted the possibility of identifying new, promising clinical markers of oxidative stress and inflammation, closely related to the normal development of unborn and newborn children, together with their application. In this regard, in recent years, significant advances have been achieved, assisted by both newly developed analytical tools and basic knowledge on the biological implications of oxylipins. Hence, in the light of this recent progress, this review aims to provide an update on the relevance of human oxylipins during pregnancy and in the unborn and newborn child, covering two fundamental aspects. Firstly, the evidence from human clinical studies and dietary intervention trials will be used to shed light on the extent to which dietary supplementation can modulate the lipidomic markers of oxidative stress and inflammation in the perinatal state, emphasizing the role of the placenta and metabolic disturbances in the mother and fetus. The second part of this article comprises a review of existing data on specific pathophysiological aspects of human reproduction, in relation to lipidomic markers in pregnant women, unborn children, and newborn children. The information reviewed here evidences the current opportunity to correct reproductive disturbances, in the framework of lipidomics, by fine-tuning dietary interventions.
Collapse
Affiliation(s)
- R Domínguez-Perles
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| | - A Gil-Izquierdo
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain.
| | - F Ferreres
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| | - S Medina
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| |
Collapse
|
25
|
Yaribeygi H, Atkin SL, Simental-Mendía LE, Barreto GE, Sahebkar A. Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. J Cell Physiol 2019; 234:14873-14882. [PMID: 30746696 DOI: 10.1002/jcp.28315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The incidence of diabetes mellitus is growing rapidly. The exact pathophysiology of diabetes is unclear, but there is increasing evidence of the role of the inflammatory response in both developing diabetes as well as its complications. Resolvins are naturally occurring polyunsaturated fatty acids that are found in fish oil and sea food that have been shown to possess anti-inflammatory actions in several tissues including the kidneys. The pathways by which resolvins exert this anti-inflammatory effect are unclear. In this review we discuss the evidence showing that resolvins can suppress inflammatory responses via at least five molecular mechanisms through inhibition of the nucleotide-binding oligomerization domain protein 3 inflammasome, inhibition of nuclear factor κB molecular pathways, improvement of oxidative stress, modulation of nitric oxide synthesis/release and prevention of local and systemic leukocytosis. Complete understanding of these molecular pathways is important as this may lead to the development of new effective therapeutic strategies for diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Individual differences in EPA and DHA content of Atlantic salmon are associated with gene expression of key metabolic processes. Sci Rep 2019; 9:3889. [PMID: 30846825 PMCID: PMC6405848 DOI: 10.1038/s41598-019-40391-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore how individual differences in content of the omega-3 fatty acids EPA and DHA in skeletal muscle of slaughter-sized Atlantic salmon, are associated with expression of genes involved in key metabolic processes. All experimental fish were fed the same diet throughout life and fasted for 14 days prior to slaughter. Still, there were relatively large individual variations in EPA and DHA content of skeletal muscle. Higher DHA content was concurrent with increased expression of genes of the glycolytic pathway and the production of pyruvate and lactate, whereas EPA was associated with increased expression of pentose phosphate pathway and glycogen breakdown genes. Furthermore, EPA, but not DHA, was associated with expression of genes involved in insulin signaling. Expression of genes specific for skeletal muscle function were positively associated with both EPA and DHA. EPA and DHA were also associated with expression of genes related to eicosanoid and resolvin production. EPA was negatively associated with expression of genes involved in lipid catabolism. Thus, a possible reason why some individuals have a higher level of EPA in the skeletal muscle is that they deposit - rather than oxidize - EPA for energy.
Collapse
|
27
|
Capel N, Lindley MR, Pritchard GJ, Kimber MC. Indium-Mediated 2-Oxonia Cope Rearrangement of 1,4-Dienols to 1,3-Dienols. ACS OMEGA 2019; 4:785-792. [PMID: 31459359 PMCID: PMC6648455 DOI: 10.1021/acsomega.8b03118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/25/2018] [Indexed: 06/10/2023]
Abstract
An indium-mediated isomerization of 1,4-dienols to 1,3-dienols is described. This procedure consists of the addition of pentadienylindium, in a protic solvent, to aldehydes giving the kinetic γ-allylation product in high yields. The subsequent conversion of this γ-allylation product to its thermodynamic 1,3-dienol α-isomer can be achieved by its exposure to indium triflate in the presence of a substoichiometric amount of aldehyde at room temperature. This transformation exhibited moderate to good substrate scope and has been shown to proceed by a 2-oxonia Cope rearrangement.
Collapse
Affiliation(s)
- Natalie
J. Capel
- School
of Science, Department of Chemistry, and School of Sports Exercise and Health
Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Martin R. Lindley
- School
of Science, Department of Chemistry, and School of Sports Exercise and Health
Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Gareth J. Pritchard
- School
of Science, Department of Chemistry, and School of Sports Exercise and Health
Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Marc C. Kimber
- School
of Science, Department of Chemistry, and School of Sports Exercise and Health
Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
28
|
Role of the Specialized Proresolving Mediator Resolvin D1 in Systemic Lupus Erythematosus: Preliminary Results. J Immunol Res 2018; 2018:5264195. [PMID: 30420970 PMCID: PMC6215556 DOI: 10.1155/2018/5264195] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is an autoimmune systemic disease and its pathogenesis has not yet been completely clarified. Patients with SLE show a deranged lipid metabolism, which can contribute to the immunopathogenesis of the disease and to the accelerated atherosclerosis. Resolvin D1 (RvD1), a product of the metabolism of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), acts as a specialized proresolving mediator which can contribute in restoring the homeostasis in inflamed tissues. The aim of the present pilot study is to evaluate plasma levels of RvD1 in patients with SLE and healthy subjects, investigating its potential role as a biomarker of SLE and assessing its relationship with disease activity and laboratory parameters. Methods Thirty patients with SLE and thirty age- and sex-matched healthy subjects (HSs) have been consecutively recruited at Campus Bio-Medico University Hospital. RvD1 plasma levels were measured by ELISA according to the manufacturer's protocol (Cayman Chemical Co.). RvD1 levels were compared using Mann-Whitney test. Discriminatory ability for SLE has been evaluated by the area under the ROC curve. Results Lower levels of RvD1, 45.6 (35.5-57.4) pg/ml, in patients with SLE have been found compared to HSs, 65.1 (39.43-87.95) pg/ml (p = 0.0043). The area under the ROC curve (AUC) for RvD1 was 0.71 (95% CI: 0.578-0.82) and the threshold value of RvD1 for the classification of SLE was <58.4 pg/ml, sensitivity 80% (95% CI: 61.4-92.3), and specificity 63.3% (95% CI: 43.9-80.1), likelihood ratio 2.2 (95% CI: 1.3-3.6). Conclusions The present preliminary study allows hypothesizing a dysregulation of RvD1 in patients with SLE, confirming the emerging role of bioactive lipids in this disease.
Collapse
|
29
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
30
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Peroxisomal Acyl-CoA Oxidase Type 1: Anti-Inflammatory and Anti-Aging Properties with a Special Emphasis on Studies with LPS and Argan Oil as a Model Transposable to Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6986984. [PMID: 29765501 PMCID: PMC5889864 DOI: 10.1155/2018/6986984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.
Collapse
|
32
|
Bradbury J, Myers SP, Meyer B, Brooks L, Peake J, Sinclair AJ, Stough C. Chronic Psychological Stress Was Not Ameliorated by Omega-3 Eicosapentaenoic Acid (EPA). Front Pharmacol 2017; 8:551. [PMID: 29163147 PMCID: PMC5671493 DOI: 10.3389/fphar.2017.00551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Chronic psychological stress and mental health disorders are endemic in Western culture where population dietary insufficiencies of omega-3 fatty acids (n-3FA) from seafood have been observed. Objective: This study was designed to test for a causal relationship between one of the most active components of fish oil, eicosapentaenoic acid (EPA), and chronic psychological stress. Method: A randomized double-blind, placebo-controlled clinical trial with parallel-assignment to two groups was designed (Trial Id: ACTRN12610000404022). The interventions were four EPA-rich fish oil capsules per day, delivering 2.2 g/d EPA (and 0.44 g/d DHA), or identical placebo (low-phenolic olive oil capsules with 5% fish oil to aid blinding). The primary outcome was the between-group difference on the Perceived Stress Scale (PSS-10) after 12 weeks supplementation. An a priori power analysis determined that group sizes of 43 would provide 80% power to detect a significant between-group difference of 12.5%, at α = 0.05. Ninety community members (64 females, 26 males) reporting chronic work stress were recruited via public advertising in northern NSW, Australia. Results: At baseline the omega-3 index (EPA + DHA as % to total fatty acids in red blood cell membranes) was 5.2% in both groups (SD = 1.6% control group; 1.8% active group). After supplementation this remained stable at 5.3% (SD = 1.6%) for the control group but increased to 8.9% (SD = 1.5%) for the active group, demonstrating successful incorporation of EPA into cells. Intention-to-treat (ITT) analysis found no significant between-group differences in PSS outcome scores post-intervention (b = 1.21, p = 0.30) after adjusting for sex (b = 2.36, p = 0.079), baseline PSS (b = 0.42, p = 0.001) and baseline logEPA [b = 1.41, p = 0.185; F(3, 86) = 8.47, p < 0.01, n = 89, R-square = 0.243]. Discussion: Treatment increased cell membrane EPA but, contrary to the hypothesis, there was no effect on perceived stress. Limitations included an imbalance of gender in groups after randomization (68% of the males were in the placebo group). While we found no significant interaction between sex and group on the outcome after adjusting for baseline PSS, larger studies with groups stratified for gender may be required to further confirm these findings. Conclusion: This study demonstrated that 2. 2 g/day of EPA for 12 weeks did not reduce chronic psychological stress.
Collapse
Affiliation(s)
- Joanne Bradbury
- School of Health and Human Sciences, Southern Cross University, Gold Coast, QLD, Australia
| | - Stephen P. Myers
- NatMed-Research, Division of Research, Southern Cross University, Lismore, NSW, Australia
| | - Barbara Meyer
- Faculty of Science Medicine and Health, Lipid Research Centre, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lyndon Brooks
- Division of Research, Southern Cross University, Lismore, NSW, Australia
| | - Jonathan Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew J. Sinclair
- Faculty of Health, Office of Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Zhao Q, Wu J, Lin Z, Hua Q, Zhang W, Ye L, Wu G, Du J, Xia J, Chu M, Hu X. Resolvin D1 Alleviates the Lung Ischemia Reperfusion Injury via Complement, Immunoglobulin, TLR4, and Inflammatory Factors in Rats. Inflammation 2017; 39:1319-33. [PMID: 27145782 PMCID: PMC4951504 DOI: 10.1007/s10753-016-0364-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung ischemia-reperfusion injury (LIRI) is still an unsolved medical issue, which negatively affects the prognosis of many lung diseases. The aim of this study is to determine the effects of RvD1 on LIRI and the potential mechanisms involved. The results revealed that the levels of complement, immunoglobulin, cytokines, sICAM-1, MPO, MDA, CINC-1, MCP-1, ANXA-1, TLR4, NF-κBp65, apoptosis index, and pulmonary permeability index were increased, whereas the levels of SOD, GSH-PX activity, and oxygenation index were decreased in rats with LIRI. Except for ANXA-1, these responses induced by LIRI were significantly inhibited by RvD1 treatment. In addition, LIRI-induced structure damages of lung tissues were also alleviated by RvD1 as shown by H&E staining and transmission electron microscopy. The results suggest that RvD1 may play an important role in protection of LIRI via inhibition of complement, immunoglobulin, and neutrophil activation; down-regulation of TLR4/NF-κB; and the expression of a variety of inflammatory factors.
Collapse
Affiliation(s)
- Qifeng Zhao
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Ji Wu
- Wuhan Medical & Healthcare Center for Woman and Children, Wuhan, People's Republic of China
| | - Zhiyong Lin
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Qingwang Hua
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Weixi Zhang
- The Children's Department of Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Leping Ye
- The Children's Department of Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Guowei Wu
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jie Du
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jie Xia
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Maoping Chu
- The Children's Department of Cardiovascular Medicine, Children's Heart Center, the Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xingti Hu
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
34
|
Buechler C, Pohl R, Aslanidis C. Pro-Resolving Molecules-New Approaches to Treat Sepsis? Int J Mol Sci 2017; 18:ijms18030476. [PMID: 28241480 PMCID: PMC5372492 DOI: 10.3390/ijms18030476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a complex response of the body to exogenous and endogenous insults. Chronic and systemic diseases are attributed to uncontrolled inflammation. Molecules involved in the initiation of inflammation are very well studied while pathways regulating its resolution are insufficiently investigated. Approaches to down-modulate mediators relevant for the onset and duration of inflammation are successful in some chronic diseases, while all of them have failed in sepsis patients. Inflammation and immune suppression characterize sepsis, indicating that anti-inflammatory strategies alone are inappropriate for its therapy. Heme oxygenase 1 is a sensitive marker for oxidative stress and is upregulated in inflammation. Carbon monoxide, which is produced by this enzyme, initiates multiple anti-inflammatory and pro-resolving activities with higher production of omega-3 fatty acid-derived lipid metabolites being one of its protective actions. Pro-resolving lipids named maresins, resolvins and protectins originate from the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid while lipoxins are derived from arachidonic acid. These endogenously produced lipids do not simply limit inflammation but actively contribute to its resolution, and thus provide an opportunity to combat chronic inflammatory diseases and eventually sepsis.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93042 Regensburg, Germany.
| |
Collapse
|
35
|
Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM. Macrophages and the Recovery from Acute and Chronic Inflammation. Annu Rev Physiol 2017; 79:567-592. [PMID: 27959619 PMCID: PMC5912892 DOI: 10.1146/annurev-physiol-022516-034348] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, researchers have devoted much attention to the diverse roles of macrophages and their contributions to tissue development, wound healing, and angiogenesis. What should not be lost in the discussions regarding the diverse biology of these cells is that when perturbed, macrophages are the primary contributors to potentially pathological inflammatory processes. Macrophages stand poised to rapidly produce large amounts of inflammatory cytokines in response to danger signals. The production of these cytokines can initiate a cascade of inflammatory mediator release that can lead to wholesale tissue destruction. The destructive inflammatory capability of macrophages is amplified by exposure to exogenous interferon-γ, which prolongs and heightens inflammatory responses. In simple terms, macrophages can thus be viewed as incendiary devices with hair triggers waiting to detonate. We have begun to ask questions about how these cells can be regulated to mitigate the collateral destruction associated with macrophage activation.
Collapse
Affiliation(s)
- Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - Stephen M Christensen
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - Elizabeth Dalby
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| |
Collapse
|
36
|
Masoudi S, Zhao Z, Willcox M. Relation between Ocular Comfort, Arachidonic Acid Mediators, and Histamine. Curr Eye Res 2017; 42:822-826. [DOI: 10.1080/02713683.2016.1255338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- The Vision Cooperative Research Centre, Sydney, Australia
| | - Zhenjun Zhao
- The Vision Cooperative Research Centre, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Fink NH, Collins CT, Gibson RA, Makrides M, Penttila IA. Targeting inflammation in the preterm infant: The role of the omega-3 fatty acid docosahexaenoic acid. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
38
|
Is Synovial Macrophage Activation the Inflammatory Link Between Obesity and Osteoarthritis? Curr Rheumatol Rep 2016; 18:57. [DOI: 10.1007/s11926-016-0605-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
ω-3 Fatty Acids and Cardiovascular Diseases: Effects, Mechanisms and Dietary Relevance. Int J Mol Sci 2015; 16:22636-61. [PMID: 26393581 PMCID: PMC4613328 DOI: 10.3390/ijms160922636] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
ω-3 fatty acids (n-3 FA) have, since the 1970s, been associated with beneficial health effects. They are, however, prone to lipid peroxidation due to their many double bonds. Lipid peroxidation is a process that may lead to increased oxidative stress, a condition associated with adverse health effects. Recently, conflicting evidence regarding the health benefits of intake of n-3 from seafood or n-3 supplements has emerged. The aim of this review was thus to examine recent literature regarding health aspects of n-3 FA intake from fish or n-3 supplements, and to discuss possible reasons for the conflicting findings. There is a broad consensus that fish and seafood are the optimal sources of n-3 FA and consumption of approximately 2-3 servings per week is recommended. The scientific evidence of benefits from n-3 supplementation has diminished over time, probably due to a general increase in seafood consumption and better pharmacological intervention and acute treatment of patients with cardiovascular diseases (CVD).
Collapse
|
40
|
Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 2015. [PMID: 26219838 DOI: 10.1016/j.prostaglandins.2015.07.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) have been reported to improve obesity-associated metabolic disorders including chronic inflammation, insulin resistance and dyslipidaemia. Growing evidence exits about adipose tissue as a target in mediating the beneficial effects of these marine n-3 PUFAs in adverse metabolic syndrome manifestations. Therefore, in this manuscript we focus in reviewing the current knowledge about effects of marine n-3 PUFAs on adipose tissue metabolism and secretory functions. This scope includes n-3 PUFAs actions on adipogenesis, lipogenesis and lipolysis as well as on fatty acid oxidation and mitochondrial biogenesis. The effects of n-3 PUFAs on adipose tissue glucose uptake and insulin signaling are also summarized. Moreover, the roles of peroxisome proliferator-activated receptor γ (PPARγ) and AMPK activation in mediating n-3 PUFAs actions on adipose tissue functions are discussed. Finally, the mechanisms underlying the ability of n-3 PUFAs to prevent and/or ameliorate adipose tissue inflammation are also revised, focusing on the role of n-3 PUFAs-derived specialized proresolving lipid mediators such as resolvins, protectins and maresins.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Ana E Huerta
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
41
|
Pickens CA, Sordillo LM, Comstock SS, Harris WS, Hortos K, Kovan B, Fenton JI. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot Essent Fatty Acids 2015; 95:31-40. [PMID: 25559239 PMCID: PMC4361296 DOI: 10.1016/j.plefa.2014.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
Abstract
The obese lipid profile is associated with increased free fatty acids and triacylglycerides. Currently, little is known about the plasma lipid species associated with obesity. In this study, we compared plasma lipid fatty acid (FA) profiles as a function of BMI. Profiling phospholipid (PL) FAs and their respective oxylipids could predict which obese individuals are more likely to suffer from diseases associated with chronic inflammation or oxidative stress. We investigated the relationship between BMI and plasma PL (PPL) FA composition in 126 men using a quantitative gas chromatography analysis. BMI was inversely associated with both PPL nervonic and linoleic acid (LA) but was positively associated with both dihomo-γ-linolenic and palmitoleic acid. Compared to lean individuals, obese participants were more likely to have ω-6 FAs, except arachidonic acid and LA, incorporated into PPLs. Obese participants were less likely to have EPA and DHA incorporated into PPLs compared to lean participants. Non-esterified plasma PUFA and oxylipid analysis showed ω-6 oxylipids were more abundant in the obese plasma pool. These ω-6 oxylipids are associated with increased angiogenesis (i.e. epoxyeicosatrienoates), reactive oxygen species (i.e. 9-hydroxyeicosatetraenoate), and inflammation resolution (i.e. Lipoxin A4). In summary, BMI is directly associated with specific PPL FA and increased ω-6 oxylipids.
Collapse
Affiliation(s)
- C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Lorraine M Sordillo
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - William S Harris
- Sanford School of Medicine, The University of South Dakota, Sioux Falls, SD, USA
| | - Kari Hortos
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Bruce Kovan
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Tri-County Gastroenterology Professional Corporation, Clinton Tri-County Gastroenterology Professional Corporation, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|