1
|
Luo T, Shi J, Zhang P, Yang S, Liu G, Peijnenburg WJGM. Toxicological effects, bioaccumulation, and metabolic pathways of tricresyl phosphate in Scenedesmus obliquus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107330. [PMID: 40179773 DOI: 10.1016/j.aquatox.2025.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
In this study, Scenedesmus obliquus (S. obliquus) has been employed as a model organism to investigate the bioaccumulation, metabolism, and toxicity mechanisms of tricresyl phosphate (TCP). The results indicated that S. obliquus enhanced TCP degradation in water by 97 % after 14 days. The bioaccumulation factor of tricresyl phosphate in S. obliquus were calculated to be 8. When exposed to a high concentration of TCP (160 μmol/L), the algal growth rate was initially negative at 24 h, but gradually recovered over time. By 96 h, the inhibition rate was 64.74 % and the EC50 values was determined to be 86.41 μmol/L. Prolonged exposure to TCP substantially inhibited photosynthesis in S. obliquus, as indicated by a significant reduction in chlorophyll content. The addition of humic acid (HA), a representative substance of dissolved organic matter, exacerbated TCP toxicity by increasing ROS production, indicating a synergistic effect between HA and TCP. Conversely, a mixed nitrogen source reduced TCP toxicity. Four TCP metabolites were identified, resulting from hydroxylation, ketonization, hydrolysis, and ester bond cleavage. ECOSAR analysis revealed that these metabolites exhibit lower toxicity compared to TCP. These findings indicate that metabolic transformations within the algae may mitigate TCP toxicity, whereas HA significantly exacerbates TCP-induced oxidative stress. This study offers novel insights into the ecological risks of TCP in aquatic environments, especially in the presence of natural organic matter.
Collapse
Affiliation(s)
- Tianlie Luo
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jingjing Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Ping Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Shuang Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300, RA, The Netherlands; National Institute of Public Health and the Environment, Centre for the Safety of Substances and Products, Bilthoven, 3720, BA, The Netherlands
| |
Collapse
|
2
|
Zhang Y, Liu J, Shi J, Wu B, He Z, Wu X. The interaction and response of gut microbes to exposure to chiral ethiprole in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137112. [PMID: 39756327 DOI: 10.1016/j.jhazmat.2025.137112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Widespread pesticide use is believed to be a major factor contributing to the decline of bee populations. Previous studies have shown that enantiomers of chiral pesticides may have different toxicities on bee, but the effects of pesticide enantiomers on honeybees and their gut microbiota are still unknown. In this study, we assessed the gut microbial and their host toxicities of ethiprole enantiomers at a concentration of 15 μg/L in honeybees. Compared to the sucrose control and R-ethiprole, S-ethiprole exposure significantly reduced bee survival. Notably, bees exposed to ethiprole and its enantiomers affected sucrose consumption and body weight, and developed a small gut with thinning and degeneration. 16S rRNA gene amplicon sequencing of the bee gut revealed that ethiprole and its enantiomers significantly disrupted the microbial communities. In contrast, S-ethiprole exposure markedly reduced community size and diversity and exhibited a lower niche width. In addition, the expression of immune detoxification genes (Defensin1,Defensin2,GST3) was upregulated by R-ethiprole in bees and S-ethiprole downregulated the mRNA levels of CYP6AS14 in bees. The expression of immune response-related genes was negatively correlated with core bacteria.This study offers comprehensive insights the effect of chiral ethiprole on the health of bees, particularly the risk of S-ethiprole in bees. Moreover, it provides a reference for exploring the interactions between host and microbiota systems under exogenous stress.
Collapse
Affiliation(s)
- Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Baohui Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zetian He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
3
|
Li F, Pang J, Wang M, Yang T, Wang Y, Sun D, Zhang Q. Neurotoxicity of hexaconazole on rat brain: The aspect of biological rhythm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116722. [PMID: 39003869 DOI: 10.1016/j.ecoenv.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Hexaconazole is a widely used and frequently detected fungicide which is also reported to be persistent in environment. The toxicity of Hex to non-organisms such as reproductive toxicity, endocrine disrupting toxicity, and carcinogenic toxicity had been reported. However, study on the Hex-induced neurotoxicity is rare and the mechanism is still unclear. Therefore, in this study, environmental related concentrations of Hex were chosen to investigate the effects of Hex on nervous system from the aspect of biological rhythm under 90 d sub-chronic exposure. The results showed that Hex significantly affected the cognitive function of rats resulting in the deterioration of learning and memory ability and induced oxidative stress in rat brain. Moreover, the notable changes of neurotransmitters in rat brain suggested the disorder of nerve signaling conduction induced by Hex. The influence of Hex on biological rhythm was further detected which showed that levels of rhythm regulatory genes and proteins significantly disturbed at four monitored time periods. Based on these results, it was supposed that the underlying mechanism of Hex-induced cognitive dysfunction might through oxidative stress pathway. Our findings could systematically and comprehensively clarify the effects of Hex on nervous system and were helpful for prevention neurological diseases induced by triazole pesticides.
Collapse
Affiliation(s)
- Fumin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Junxiao Pang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Min Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Tianming Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yao Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China.
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
4
|
Zhang W, Teng M, Chen L. A review on the enantioselective distribution and toxicity of chiral pesticides in aquatic environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:317. [PMID: 39002095 DOI: 10.1007/s10653-024-02102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Chiral pesticides account for about 40% of the total pesticides. In the process of using pesticides, it will inevitably flow into the surface water and even penetrate into the groundwater through surface runoff and other means, as a consequence, it affects the water environment. Although the enantiomers of chiral pesticides have the same physical and chemical properties, their distribution, ratio, metabolism, toxicity, etc. in the organism are often different, and sometimes even show completely opposite biological activities. In this article, the selective fate of different types of chiral pesticides such as organochlorine, organophosphorus, triazole, pyrethroid and other chiral pesticides in natural water bodies and sediments, acute toxicity to aquatic organisms, chronic toxicity and other aspects are summarized to further reflect the risks between the enantiomers of chiral pesticides to non-target organisms in the water environment. In this review, we hope to further explore its harm to human society through the study of the toxicity of chiral pesticide enantiomers, so as to provide data support and theoretical basis for the development and production of biochemical pesticides.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Baruah P, Srivastava A, Mishra Y, Chaurasia N. Modulation in growth, oxidative stress, photosynthesis, and morphology reveals higher toxicity of alpha-cypermethrin than chlorpyrifos towards a non-target green alga at high doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104376. [PMID: 38278501 DOI: 10.1016/j.etap.2024.104376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Considering the frequent detection of pesticides in the aquatic environment, the ecotoxicological effects of Chlorpyrifos (CHP), an organophosphate, and alpha-cypermethrin (ACM), a pyrethroid, on freshwater microalgae were compared for the first time in this study. High concentrations of both CHP and ACM significantly suppressed the growth of test microalga Graesiella emersonii (p < 0.05). The 96-h EC50 of CHP and ACM were 54.42 mg L-1 and 29.40 mg L-1, respectively. Sub-inhibitory doses of both pesticides increased ROS formation in a concentration-dependent manner, which was accompanied by changes in antioxidant enzymes activities, lipid peroxidation, and variations in photosynthetic pigment concentration. Furthermore, both pesticides influenced photosystem II performance, oxygen-evolving complex efficiency and, intracellular ATP levels. Scanning electron microscopy analysis revealed that high concentrations of both CHP and ACM caused considerable morphological changes in the microalga. In comparison, CHP was more toxic than ACM at low concentrations, whereas ACM was more toxic at high concentrations.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
6
|
Liang J, Zhang CM, Zhu CC. Toxic effects and mechanisms of cationic blue SD-GSL on Chlorella vulgaris before and after the biological decolorization process. CHEMOSPHERE 2024; 349:140947. [PMID: 38104738 DOI: 10.1016/j.chemosphere.2023.140947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biodegradation is regarded as an efficient way to decolorize azo dyes. However, the changes in the algal toxicity of azo dyes during biodecolorization are still unclear. In this study, the physiological responses of Chlorella vulgaris to the hydrophobic and hydrophilic components of cationic blue SD-GSL (a typical monoazo dye) and its biodecolorization products were investigated. The toxicity of each component to Chlorella vulgaris and the sources of the toxicity were analyzed. The cationic blue SD-GSL components inhibited the algal cell division and superoxide dismutase (SOD) activity at all concentrations, and inhibited the synthesis of chlorophyll-a (Chl-a) at concentrations >100 mg/L, whereas increased the malondialdehyde (MDA) content. The hydrophobic and hydrophilic components of its biodecolorization products had enhanced inhibition rates on cell density (10.7% and 15.6%, respectively), Chl-a content (31.2% and 8.4%, respectively), and SOD activity (13.5% and 1.9%, respectively) of Chlorella vulgaris, and further stimulated an increase in MDA content (4.4% and 7.0%, respectively), indicating that the biodecolorization products were more toxic than the pristine dye. Moreover, the toxic effect of hydrophobic components on Chlorella vulgaris was stronger than that of hydrophilic components. The sensitivity sequence of Chlorella vulgaris to the toxicity of cationic blue SD-GSL and its biodecolorization product components was: Chl-a synthesis > SOD activity > cell division. SUVA analysis and 3D-EEM analysis revealed that the enhanced algal toxicity of the biodecolorization products of cationic blue SD-GSL was attributed to the aromatic compounds, which were mainly concentrated in the hydrophobic components. UPLC-Q-TOF-MS was used to verify dye biodecolorization byproducts. The information obtained from this study helps to understand the decolorization products toxicities of the biologically treated azo dyes, thereby providing new insights into the environmental safety of textile wastewater after traditional biological treatment.
Collapse
Affiliation(s)
- Jie Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cong-Cong Zhu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
7
|
Wang Z, Wang M, Yang T, Wang Y, Sun D, Pang J. Effect of Processing on Reduction in Chiral Pesticide Hexaconazole for Kiwifruit Juice. Molecules 2023; 28:6113. [PMID: 37630365 PMCID: PMC10459332 DOI: 10.3390/molecules28166113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the residue levels of chiral pesticide hexaconazole during kiwifruit juice processing (peeling, homogenization, and sterilization) were investigated by using high-performance liquid chromatography (HPLC), and the dietary risk during these processes was also assessed. Hexaconazole was applied at dosages of 173.33 and 346.66 mg/L (recommended and double recommended dosage) in kiwifruit. In the peeling process, 87.7% to 89.2% of the residues were decreased after peeling. Levels of hexaconazole residues in homogenization and sterilization processes further increased from 0.49% to 24.3% and from 0.2% to 3.0%, respectively. Processing factors (PFs) for (+)- and (-)-hexaconazole after peeling, homogenization, and sterilization were 0.12, 0.88, 0.99 for low-dose treatment and 0.12, 0.87, 0.99 for high-dose treatment, respectively. The enantioselectivity of hexaconazole during these procedures was evaluated by enantiomeric fractions (EFs) values, which were around 0.5 throughout all the procedures, indicating that hexaconazole enantiomers had similar dissipation behaviors during kiwifruit juice processing. The RQc of hexaconazole in pre-peeling samples was significantly greater than 100% under two dosages, while the peeling process can notably decrease the values to an acceptable level. The results of this study could provide guidance for agriculture applications and kiwi commodity production to decrease the risk of hexaconazole residue.
Collapse
Affiliation(s)
- Zelan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (M.W.); (T.Y.); (Y.W.)
| | - Min Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (M.W.); (T.Y.); (Y.W.)
| | - Tianming Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (M.W.); (T.Y.); (Y.W.)
| | - Yao Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (M.W.); (T.Y.); (Y.W.)
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (M.W.); (T.Y.); (Y.W.)
| | - Junxiao Pang
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
8
|
Li X, Lin Z, Yuan M, Zhao L, Yin P. The effects of extracellular algicidal compounds of Bacillus sp. B1 on Heterosigma akashiwo: a metabolomics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35635-35645. [PMID: 36534259 DOI: 10.1007/s11356-022-24255-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Heterosigma akashiwo (H. akashiwo), a harmful algal species, has been a global environmental problem. Extracellular algicidal compounds (EACs) extracted from Bacillus sp. B1 exhibited algicidal effects against H. akashiwo. However, little is known about the algicidal mechanism and metabolic process. In this study, metabolomics and physiological analyses were combined to investigate the cellular responses of H. akashiwo when treated with EACs. The results indicated that EACs at 10% (vEACs/vsample) showed more than 90% inhibition of H. akashiwo. EAC treatment resulted in excessive reactive oxygen species (ROS) production in algal cells, causing stress responses such as inhibition of photosynthetic pigment synthesis, reduction of sugar synthesis, imbalance of osmotic pressure in the cell membrane, disruption of cell size and morphology, and eventual cell death. The results reveal the underlying mechanism of the algicidal process and provide new insights into algae-bacteria interactions and the application of metabolomics to algal research.
Collapse
Affiliation(s)
- Xuanyue Li
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, People's Republic of China
| | - Zehong Lin
- Zijin Mining Group Co., Ltd., 364200, Longyan, People's Republic of China
| | - Meiyi Yuan
- School of Environment, Jinan University, 511443, Guangzhou, People's Republic of China
| | - Ling Zhao
- School of Environment, Jinan University, 511443, Guangzhou, People's Republic of China.
| | - Pinghe Yin
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Luo G, Pang J, Sun D, Zhang Q. Stereoselective Toxicokinetic and Distribution Study on the Hexaconazole Enantiomers in Mice. TOXICS 2023; 11:145. [PMID: 36851020 PMCID: PMC9966998 DOI: 10.3390/toxics11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Hexaconazole (Hex) has been widely used in agricultural products, and its residues may pose a potential risk to human health. However, the metabolic behavior of Hex enantiomers in mammal organisms is still unknown, which is important for evaluating the differences in their toxicity. In this study, the distribution of S-(+)- and R-(-)-Hex in mice was detected by an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), and the mechanism differences in the toxicokinetic behavior were analyzed by molecular docking. Good linearities, accuracies, and precisions were achieved for S-(+)- and R-(-)-Hex, with recoveries of 88.7~104.2% and RSDs less than 9.45% in nine tissues of mice. This established method was then used to detect the toxicokinetic of Hex enantiomers in mice after oral administration within 96 h. The results showed that the half-lives of S-(+)- and R-(-)-Hex were 3.07 and 3.71 h in plasma. Hex was mainly accumulated in the liver, followed by the kidneys, brain, lungs, spleen, and heart. The enantiomeric fraction (EF) values of Hex enantiomers in most of the samples were below 1, indicating that S-(+)-Hex decreased faster than its antipode. The molecular docking showed that the binding of S-(+)-Hex with P450arom was much more stable than R-(-)-Hex, which verified the fact that S-(+)-Hex was prefer to decrease in most of the tissues. The results of this study could be helpful for further evaluating the potential toxic risk of Hex enantiomers and for the development and usage of its pure monomer.
Collapse
Affiliation(s)
- Guofei Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Junxiao Pang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
10
|
Ji C, Song Z, Tian Z, Feng Z, Fan L, Shou C, Zhao M. Enantioselectivity in the toxicological effects of chiral pesticides: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159656. [PMID: 36280076 DOI: 10.1016/j.scitotenv.2022.159656] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
As a special category of pesticides, chiral pesticides have increased the difficulty in investigating pesticide toxicity. Based on their usage, chiral pesticides can be divided into insecticides, herbicides, and fungicides. Over the past decades, great efforts have been made on elucidating their toxicological effects. However, no literature has reviewed the enantioselective toxicity of chiral pesticides since 2014. In recent years, more chiral pesticides have been registered for application. As such, huge research progresses have been achieved in enantioselective toxicity of chiral pesticides. Generally, more researches have remedied the knowledge gap in toxicological effects of old and new chiral pesticides. And the toxicological endpoints being evaluated have become more specific rather than centering on basic toxicity and target organisms. Besides, the underlying mechanisms accounting for the enantioselectivity in toxicological effects of chiral pesticides have been discussed as well. All in all, this review provides the critical knowledge for risk assessments, and help to drive the green-technology of single- or enriched-enantiomer pesticides and formulation of relevant laws and regulations.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zixuan Feng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lele Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenfei Shou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Li D, Wang Y, Song X, Jiang M, Zhao X, Cao X. The inhibitory effects of simulated light sources on the activity of algae cannot be ignored in photocatalytic inhibition. CHEMOSPHERE 2022; 309:136611. [PMID: 36179922 DOI: 10.1016/j.chemosphere.2022.136611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms (HABs) destroy the balance of the aquatic ecosystem, causing huge economic losses and even further endangers human health. In addition to traditional methods of algae removal, photocatalytic inhibition of algae is drawing more and more interests with rich application scenarios and considerable potential. Simulated visible light sources are used to excite photocatalytic materials and optimize their performance. However, most of the light irradiation intensities used in the study exceeded 50 mW/cm2. And the effects of intense light irradiation conditions on algal growth have rarely been addressed in previous studies. So we focused on the effect of different intensity of light irradiation on the growth of algae. We explored the relationship between light irradiation intensity and algal inactivation rate, and investigated the changes in ROS levels in algal cells under different light irradiation and the resulting response of the antioxidant system. We have found that several major antioxidant enzyme activities, such as SOD and CAT, were significantly higher and lipid peroxidation products (MDA) were accumulating. Intense light irradiation had the most direct effect on the photosynthetic system of algal cells, with the photosynthetic rate and relative electron transfer rate decaying to almost 0 within 30 min, indicating that algal photosynthesis was inhibited in a fairly short period of time. We further observed the physiological and morphological changes of algal cells during this process using TEM and found that the progressive dissolution of the cell membrane system and the damage of organelles associated with photosynthesis play a major role in promoting cell death. We thus conclude that light irradiation has a significant effect on the physiological activity of algal cells and is a non-negligible factor in the study of photocatalytic removal of harmful algae. It will provide theoretical guidance for the future study of photocatalysis on algae inhibition.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mengqi Jiang
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Yao X, Zhang J, Wang C, Wang Q, Li X, Zhang D, Wang J, Zhu L, Wang J. Toxicity of dibutyl phthalate to pakchoi (Brassica campestris L.): Evaluation through different levels of biological organization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157943. [PMID: 35952877 DOI: 10.1016/j.scitotenv.2022.157943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Dibutyl phthalate (DBP) is a typical persistent organic pollutant with a high load in the agricultural soils of vegetable crops. Currently, studies on the toxicity of DBP in vegetable crops are limited. Therefore, in this study, pakchoi (Brassica campestris L.), a typical vegetable crop, was used to evaluate the toxic effects of DBP. Pakchoi was exposed to DBP for 24 d at three doses (2, 20, and 200 mg/kg), and the phenotypic, biochemical, and molecular indicators were determined. The results revealed that DBP could reduce the emergence of pakchoi and inhibit plant height, root length, fresh weight, and leaf area. At the biochemical level, DBP exposure could reduce the content of three typical photosynthetic pigments (chlorophyll a and b and carotenoids). The effects of DBP exposure on the quality of pakchoi were primarily through reduced soluble sugar and increased proline contents. In addition, O2·- and H2O2 levels increased after DBP stress, and the corresponding antioxidant enzymes (SOD, POD, and CAT) were activated to resist oxidative damage. The dose- and time-dependent toxicities of DBP to pakchoi were demonstrated using an integrated biological response index. Finally, the molecular-level results on Day 24 showed that the three antioxidant enzyme genes (sod, pod, and cat) were significantly downregulated, and the antioxidant enzyme genes were more sensitive biomarkers than the enzyme activities. However, the expression level of enzyme genes was opposite to that of enzyme activity (SOD and POD); thus, DBP might directly interact with these enzymes. Molecular docking showed that DBP could stably bind near the SOD/POD active center through intermolecular interaction forces. This study provides essential information on the risk of DBP toxicity to vegetable crops.
Collapse
Affiliation(s)
- Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Dexin Zhang
- Bureau of Agriculture and Rural Affairs of Changle, Weifang, Shandong 262400, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
13
|
Meng Z, Cui J, Li R, Sun W, Bao X, Wang J, Zhou Z, Zhu W, Chen X. Systematic evaluation of chiral pesticides at the enantiomeric level: A new strategy for the development of highly effective and less harmful pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157294. [PMID: 35839878 DOI: 10.1016/j.scitotenv.2022.157294] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, pesticides have been used in large quantities, and they pose potential risks to organisms across various environments. Reducing the use of pesticides and their environmental risks has been an active research focus and difficult issue worldwide. As a class of pesticides with special structures, chiral pesticides generally exhibit enantioselectivity differences in biological activity, ecotoxicity, and environmental behavior. At present, replacing the racemates of chiral pesticides by identifying and developing their individual enantiomers with high efficiency and environmentally friendly characteristics is an effective strategy to reduce the use of pesticides and their environmental risks. In this study, we review the stereoselective behaviors of chiral pesticide, including their environmental behavior, stereoselective biological activity, and ecotoxicity. In addition, we emphasize that the systematic evaluation of chiral pesticides at the enantiomeric level is a promising novel strategy for developing highly effective and less harmful pesticides, which will provide important data support and an empirical basis for reducing pesticide application.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Jiajia Cui
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Ruisheng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Landscape Research Institute of Zhumadian, Zhumadian, Henan 463000, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Bao
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Jianjun Wang
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
14
|
Jiao Q, Mu Y, Deng J, Yao X, Zhao X, Liu X, Li X, Jiang X, Zhang F. Direct toxicity of the herbicide florasulam against Chlorella vulgaris: An integrated physiological and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114135. [PMID: 36201917 DOI: 10.1016/j.ecoenv.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Herbicides are the agents of choice for use in weed control; however, they can enter the aquatic environment, with potentially serious consequences for non-target organisms. Despite the possible deleterious effects, little information is available regarding the ecotoxicity of the herbicide florasulam toward aquatic organisms. Accordingly, in this study, we investigated the toxic effect of florasulam on the freshwater microalga Chlorella vulgaris and sought to identify the underlying mechanisms. For this, we employed a growth inhibition toxicity test, and then assessed the changes in physiological and metabolomic parameters, including photosynthetic pigment content, antioxidant system, intracellular structure and complexity, and metabolite levels. The results showed that treatment with florasulam for 96 h at the concentration of 2 mg/L, 2.84 mg/L, and 6 mg/L in medium significantly inhibited algal growth and photosynthetic pigment content. Moreover, the levels of reactive oxygen species were also increased, resulting in oxidative damage and the upregulation of the activities of several antioxidant enzymes. Transmission electron microscopic and flow cytometric analysis further demonstrated that exposure to florasulam (6 mg/L) for 96 h disrupted the cell structure of C. vulgaris, characterized by the loss of cell membrane integrity and alterations in cell morphology. Changes in amino acid metabolism, carbohydrate metabolism, and the antioxidant system were also observed and contributed to the suppressive effect of florasulam on the growth of this microalga. Our findings regarding the potential risks of florasulam in aquatic ecosystems provide a reference for the safe application of this herbicide in the environment.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yuelin Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
15
|
Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156069. [PMID: 35605851 DOI: 10.1016/j.scitotenv.2022.156069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fludioxonil is widely used in the control of crop diseases because of its broad spectrum and high activity, but its presence is now common in waterways proximate to treated areas. This study examined the toxic effects and mechanisms of fludioxonil on the microalgal taxa Chlorella vulgaris. The results showed that fludioxonil limited the growth of C. vulgaris and the median inhibitory concentration at 96 h was 1.87 mg/L. Concentrations of 0.75 and 3 mg/L fludioxonil reduced the content of photosynthetic pigments in algal cells to different degrees. Fludioxonil induced oxidative damage by altering C. vulgaris antioxidant enzyme activities and increasing reactive oxygen species levels. Fludioxonil at 0.75 mg/L significantly increased the activity of antioxidant enzymes. The highest level of activity was 1.60 times that of the control group. Both fludioxonil treatment groups significantly increased ROS levels, with the highest increase being 1.90 times that of the control group. Transmission electron microscope showed that treatment with 3 mg/L fludioxonil for 96 h disrupted cell integrity and changed cell morphology, and flow cytometer analysis showed that fludioxonil induced apoptosis. Changes in endogenous substances indicated that fludioxonil negatively affects C. vulgaris via altered energy metabolism, biosynthesis of amino acids, and unsaturated fatty acids. This study elucidates the effects of fludioxonil on microalgae and the biological mechanisms of its toxicity, providing insights into the importance of the proper management of this fungicide.
Collapse
Affiliation(s)
- Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Luo Gong
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
16
|
Meng X, Wang F, Li Y, Deng P, Hu D, Zhang Y. Comparing toxicity and biodegradation of racemic glufosinate and L-glufosinate in green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153791. [PMID: 35150682 DOI: 10.1016/j.scitotenv.2022.153791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Glufosinate-ammonium, a widely used chiral herbicide, has become the focus of attention because of its toxicity toward non-target organisms and its degradation behavior in the environment. With the introduction of L-glufosinate-ammonium products, the toxicity and environmental behavior of rac-glufosinate-ammonium and L-glufosinate-ammonium have become the subject of increasing interest. The overall goal of this study was to investigate the differences in toxicity and biodegradation of rac-glufosinate-ammonium and L-glufosinate-ammonium in an aquatic organism, Scenedesmus obliquus. The toxicity of rac-glufosinate-ammonium and L-glufosinate-ammonium to S. obliquus was compared by measuring EC50, malondialdehyde (MDA) content, protein content and antioxidant enzyme activity. The 96-h EC50 values of rac-glufosinate-ammonium and L-glufosinate-ammonium were 57.22 μg/mL and 25.55 μg/mL, respectively, which indicated that L-glufosinate-ammonium was more toxic to S. obliquus than rac-glufosinate-ammonium. Based on the MDA content, protein content, and antioxidant enzyme (SOD and CAT) activity, we found that L-glufosinate-ammonium could cause more serious oxidative damage than rac-glufosinate-ammonium. The residual amount of glufosinate-ammonium and its metabolites in the culture medium and S. obliquus were determined by HPLC-HRMS. Comparison of glufosinate-ammonium concentrations in algae-free and algae-containing media, showed that glufosinate-ammonium degradation in the S. obliquus system was significantly increased, and the degradation rate of L-glufosinate-ammonium was faster than that of D-glufosinate-ammonium. No enantiomerization was observed for pure L-glufosinate-ammonium treatment. N-acetyl-glufosinate was identified as the main metabolite of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xiurou Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Fei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunfang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Pengyu Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
17
|
Wang Y, Gong X, Huang D, Zhang J. Increasing oxytetracycline and enrofloxacin concentrations on the algal growth and sewage purification performance of an algal-bacterial consortia system. CHEMOSPHERE 2022; 286:131917. [PMID: 34426270 DOI: 10.1016/j.chemosphere.2021.131917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Oxytetracycline (OTC) and enrofloxacin (EFX) pollution in surface water are very common. Using the algal-bacterial consortia system to remove antibiotics remains to be further studied. In this study, the algal growth and sewage purification performance were studied in an algal-bacterial consortia system with different concentrations of antibiotics. The enzyme activity, malondialdehyde content, chlorophyll-a content, extracellular polysaccharide, and protein content of algae were also tested. It was found that the algal growth was promoted by low-dose antibiotics, 21.83% and 22.11% promotion at 0.1 mg L-1 OTC and EFX, respectively. The nutrients and antibiotics removals of the low-dose groups (OTC <5 mg L-1, EFX <1 mg L-1) were not affected significantly. More than 70% of total organic carbon and total phosphorus, and 97.84-99.76% OTC, 42.68-42.90% EFX were removed in the low-dose groups. However, the algal growth was inhibited, and the nutrients removals performance also declined in the high-concentration groups (10 mg L-1 OTC, 5 mg L-1 EFX). The superoxide dismutase and catalase activity, and malondialdehyde content increased significantly (P < 0.05), indicating the increased activity of reactive oxygen species. In addition, the decreased chlorophyll-a content, thylakoid membrane deformation, starch granules accumulation, and plasmolysis showed that the algal physiological functions were affected. These results showed that the algal-bacterial consortia system was more suitable to treat low-concentration antibiotics and provided basic parameters for the consortia application.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xinye Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, PR China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
18
|
Zhu N, Li R, Zhang J, Yan Q, Jiao J, Liang D, Yue H, Sang N, Li G. Photo-degradation behavior of seven benzoylurea pesticides with C 3N 4 nanofilm and its aquatic impacts on Scendesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149470. [PMID: 34371413 DOI: 10.1016/j.scitotenv.2021.149470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Present concerns on the residual benzoylurea pesticides (BUPs) are rapidly climbing as their market shares increase and now seven typical compounds were picked to study their photo-degradation behavior and ecological impacts. Carbon nitride (C3N4) nanofilm at a thickness of 50-80 nm was built on the glass slides and utilized to evaluate the photostability of pesticides under visible light. The results showed that the nano-C3N4 can promote the degradation efficiency of BUPs and it follows the first-order dynamic mechanism. They could be divided into three categories with the substituents and their degradations were discriminated in order of chlorofluoro-, chlorofluoroalkoxy- and chlorofluorophenoxy- substituted ones. Analyzing the intermediates by UHPLC-MS, it can be speculated that the similar pathways came to BUPs such as cleavage of urea-bridge, hydroxylation and dehalogenation. It is attractive that they all passed into a same molecule, 2-fluorobenzamide (m/z, 301.14). Moreover Scendesmus obliquus was applied to indicate the ecological impacts of originals and their photoproducts. Exposed to pesticides, the levels of chlorophyll a demonstrated much more inhibition than chlorophyll b. Lufenuron and chlorfuazuron among seven showed the higher toxicity for algal cells and finally the photodegradation products showed the lowest toxicity. The activities of antioxidant enzymes happened to a significant remedy after photodegradation. It can be concluded that the residual BUPs under visible-light irradiation may degrade through similar pathways and reduce the aquatic toxicity with the presence of C3N4 nanofilm.
Collapse
Affiliation(s)
- Na Zhu
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Ruiying Li
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Jie Zhang
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Qian Yan
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Junheng Jiao
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Dong Liang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Huifeng Yue
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China.
| | - Nan Sang
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Guangke Li
- College of Environmental and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
19
|
Li D, Kang X, Chu L, Wang Y, Song X, Zhao X, Cao X. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117644. [PMID: 34426391 DOI: 10.1016/j.envpol.2021.117644] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Water eutrophication caused by harmful algal blooms (HABs) occurs worldwide. It causes huge economic losses and has serious and potentially life-threatening effects on human health. In this study, the bacterium Raoultella sp. S1 with high algicidal efficiency against the harmful algae Microcystis aeruginosa was isolated from eutrophic water. The results showed that Raoultella sp. S1 initially flocculated the algae, causing the cells to sediment within 180 min and then secreted soluble algicidal substances that killed the algal cells completely within 72 h. The algicidal activity was stable across the temperature range -85.0 to 85.0 °C and across the pH range 3.00-11.00. Scanning electron microscopy (SEM) revealed the crumpling and fragmentation of cells algal cells during the flocculation and lysis stages. The antioxidant system was activated under conditions of oxidative stress, causing the increased antioxidant enzymes activities. Meanwhile, the oxidative stress response triggered by the algicidal substances markedly increased the malondialdehyde (MDA) and glutathione (GSH) content. We investigated the content of Chl-a and the relative expression levels of genes related to photosynthesis, verifying that the algicidal compounds attack the photosynthetic system by degrading the photosynthetic pigment and inhibiting the expression of key genes. Also, the results of photosynthetic efficiency and relative electric transport rate confirmed that the photosynthetic system in algal cells was severely damaged within 24 h. The algicidal effect of Raoultella sp. S1 against Microcystis aeruginosa was evaluated by analyzing the physiological response and photosynthetic system impairment of the algal cells. The concentration of microcystin-LR (MC-LR) slightly increased during the process of algal cells ruptured, and then decreased below its initial level due to the biodegradation of Raoultella sp. S1. To further investigate the algicidal mechanism of Raoultella sp. S1, the main components in the cell-free supernatant was analyzed by UHPLC-TOF-MS. Several low-molecular-weight organic acids might be responsible for the algicidal activity of Raoultella sp. S1. It is concluded that Raoultella sp. S1 has the potential to control Microcystis aeruginosa blooms.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Linglong Chu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
20
|
Li L, Sun X, Zhao X, Xiong Y, Gao B, Zhang J, Shi H, Wang M. Absolute Configuration, Enantioselective Bioactivity, and Degradation of the Novel Chiral Triazole Fungicide Mefentrifluconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4960-4967. [PMID: 33877830 DOI: 10.1021/acs.jafc.0c07947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mefentrifluconazole is a new chiral triazole fungicide with a pair of enantiomers. However, the enantioselective differences in the biological effects and environmental behaviors of mefentrifluconazole are unclear. In the present work, a new simultaneous determination method of mefentrifluconazole enantiomers was established using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The absolute configuration of the two mefentrifluconazole enantiomers was confirmed by comparing the experimental and calculated ECD spectra. The enantioselective bioactivity to target fungi and degradation in cucumber samples were also assessed. The absolute configurations of the two enantiomers eluted on the Superchiral IG-3 column were confirmed as R-(-)-mefentrifluconazole and S-(+)-mefentrifluconazole. The R-(-)-mefentrifluconazole possessed 5-473 times higher bioactivity than S-(+)-mefentrifluconazole toward six kinds of target pathogenic fungi. In addition, R-(-)-mefentrifluconazole exhibited stronger efficacy of suppression of ergosterol biosynthesis. The molecular docking results indicated that R-(-)-mefentrifluconazole had shorter binding distances and lower energies with the target protein than S-(+)-mefentrifluconazole, which may result in the enantioselective bioactivity. The high-efficiency enantiomer of R-(-)-mefentrifluconazole has longer duration in cucumber samples due to the relatively long half-life of 4.0 days. This research has clarified the bioactivity differences and mechanism between mefentrifluconazole enantiomers against target fungi and laid the foundation for an in-depth study of mefentrifluconazole at the chiral level.
Collapse
Affiliation(s)
- Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Yudie Xiong
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| |
Collapse
|
21
|
Li L, Huang P, Li J. Enantioselective effects of the fungicide metconazole on photosynthetic activity in Microcystis flos-aquae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111894. [PMID: 33472108 DOI: 10.1016/j.ecoenv.2021.111894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Enantiomers of chiral fungicides usually display different toxic effects on nontarget organisms in the surrounding environment, although there are rare reports on the enantioselective toxicity of metconazole (MEZ) to aquatic organisms, such as Microcystis flos-aquae (M. flos-aquae). To explore the enantioselective toxicity of MEZ in algae, the impact of various concentrations (0.001, 0.003, 0.01, 0.03 and 0.1 mg/L) of MEZ on M. flos-aquae over 8 days was investigated. Significant differences were observed between the four enantiomers in chlorophyll a (Chl a) contents, carotenoids, photochemical efficiency (Fv/Fm), rapid light-response curves (RLCs), utilization efficiency of light energy (α) and protein contents during treatment time. MEZ can enantioselectively stimulate the chlorophyll fluorescence parameters (RLCs, Fv/Fm and α) and carotenoid and Chl a contents of M. flos-aquae, especially at low concentrations (0.001 or 0.003 mg/L). At high concentrations of 0.03 or 0.1 mg/L, the chlorophyll fluorescence parameters (RLCs, Fv/Fm and α), protein and Chl a contents of M. flos-aquae exposed to cis-enantiomers were lower than those of M. flos-aquae exposed to trans-enantiomers. These observations indicated that the enantiomers of MEZ pose different toxicities to M. flos-aquae, with the cis-enantiomers more toxic than the trans-enantiomers. These results are beneficial for understanding the enantioselective effects of MEZ enantiomers on nontarget organisms and helpful for evaluating their eco-environment risk.
Collapse
Affiliation(s)
- Ling Li
- College of Chemical Engineering, Huaqiao University, Fujiang 361000, China.
| | - Peiling Huang
- College of Chemical Engineering, Huaqiao University, Fujiang 361000, China
| | - Junjie Li
- College of Chemical Engineering, Huaqiao University, Fujiang 361000, China
| |
Collapse
|
22
|
Bielská L, Hale SE, Škulcová L. A review on the stereospecific fate and effects of chiral conazole fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141600. [PMID: 33182213 DOI: 10.1016/j.scitotenv.2020.141600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The production and use of chiral pesticides are triggered by the need for more complex molecules capable of effectively combating a greater spectrum of pests and crop diseases, while sustaining high production yields. Currently, chiral pesticides comprise about 30% of all pesticides in use; however, some pesticide groups such as conazole fungicides (CFs) consist almost exclusively of chiral compounds. CFs are produced and field-applied as racemic (1:1) mixtures of two enantiomers (one chiral center in the molecule) or four diastereoisomers, i.e., two pairs of enantiomers (two chiral centers in the molecule). Research on the stereoselective environmental behavior and effects of chiral pesticides such as CFs has become increasingly important within the fields of environmental chemistry and ecotoxicology. This is motivated by the fact that currently, the fate and effects of chiral pesticides such as CFs that arise due to their stereoselectivity are not fully understood and integrated into risk assessment and regulatory decisions. In order to fill this gap, a summary of the state-of-the-art literature related to the stereospecific fate and effects of CFs is needed. This will also benefit the agrochemistry industry as they enhance their understanding of the environmental implications of CFs which will aid future research and development of chiral products. This review provides a collection of >80 stereoselective studies for CFs related to chiral analytical methods, fungicidal activity, non-target toxicity, and behavior of this broadly used pesticide class in the soil environment. In addition, the review sheds more light on mechanisms behind stereoselectivity, considers possible agricultural and environmental implications, and suggests future directions for the safe use of chiral CFs and the reduction of their environmental footprint.
Collapse
Affiliation(s)
- Lucie Bielská
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Lucia Škulcová
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
23
|
Nong QY, Liu YA, Qin LT, Liu M, Mo LY, Liang YP, Zeng HH. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. CHEMOSPHERE 2021; 262:127793. [PMID: 32799142 DOI: 10.1016/j.chemosphere.2020.127793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Currently, few studies have investigated the joint toxicity mechanism of azole fungicides at different exposure times and mixed at the relevant environmental concentrations. In this study, three common azole fungicides, namely, myclobutanil (MYC), propiconazole (PRO), and tebuconazole (TCZ), were used in studying the toxic mechanisms of a single substance and its ternary mixture exposed to ambient concentrations of Chlorella pyrenoidosa. Superoxide dismutase (SOD), catalase (CAT), chlorophyll a (Chla), and total protein (TP), were used as physiological indexes. Results showed that three azole fungicides and ternary mixture presented obvious time-dependent toxicities at high concentrations. MYC induced a hormetic effect on algal growth, whereas PRO and TCZ inhibit algal growth in the entire range of the tested concentrations. The toxicities of the three azole fungicides at 7 days followed the order PRO > TCZ > MYC. Three azole fungicides and their ternary mixture induced different levels of SOD and CAT activities in algae at high concentrations. The ternary mixture showed additive effects after 4 and 7 days exposure, but no effect was observed at actual environmental concentrations. The toxic mechanisms may be related to the continuous accumulation of reactive oxygen species, which not only affected protein structures and compositions but also damaged thylakoid membranes, hindered the synthesis of proteins and chlorophyll a, and eventually inhibited algal growth. These findings increase the understanding of the ecotoxicity of azole fungicides and use of azole fungicides in agricultural production.
Collapse
Affiliation(s)
- Qiong-Yuan Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yong-An Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Min Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ling-Yun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yan-Peng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
24
|
Wang W, Gong W, Zhou S, Han J, Qi D, Qu H. β-cyclodextrin improve the tolerant of freshwater algal Spiny Scenedesmus to chiral drugs venlafaxine and its metabolite. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123076. [PMID: 32540709 DOI: 10.1016/j.jhazmat.2020.123076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study based on the freshwater algae Spiny scenedesmus (S. scenedesmus) with tolerance to venlafaxine aiming to investigate algae removal abilities. Here presented for the first time to evaluate the effect of β-cyclodextrin (β-CD) on reduce toxicity and enhance removal ability of venlafaxine and O-desmethylvenlafaxine to S. scenedesmus. Based on dose-response results, the toxicity of R-venlafaxine (EC50 = 6.81 mg·L -1) and R-O-desmethylvenlafaxine (EC50 = 3.36 mg·L -1) to algae were more than two times than those in the presence of β-CD treatment (10.64 mg L -1 for R-venlafaxine and 11.87 mg L -1 for R-O-desmethylvenlafaxine). The significant differences were observed between S-venlafaxine (11.07 mg L -1) and S-O-desmethylvenlafaxine (10.24 mg L -1), which were more toxic than R-forms. The half-lives of R- and S-venlafaxine were 0.8 d and 0.5 d in the presence of β-CD, which were obvious shorter than those in alone treatments. In addition, our experiments not only demonstrated that β-CD performed particularly well for removal of venlafaxine and O-desmethylvenlafaxine, it significantly reduces the toxicity of venlafaxine to alga. These results highlight advantages of β-CD relevant to chiral drugs removal and protection of aquatic organisms, which may have a better application for environmental and ecological safety in future.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Wenwen Gong
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Rm LM 321, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Han Qu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China; Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85712, United States.
| |
Collapse
|
25
|
Baruah P, Chaurasia N. Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp.: Growth inhibition and oxidative stress studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103347. [PMID: 32058321 DOI: 10.1016/j.etap.2020.103347] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Alpha-cypermethrin (ACy) is a synthetic pyrethroid insecticide commonly used in agricultural practices for controlling a broad range of insect pests particularly belonging to the order Lepidoptera and Coleoptera. The present study aims to evaluate the toxic effect of ACy on microalgae by studying its influence on Chlorella sp. According to our knowledge, this is the first detailed study of ACy toxicity on microalgae. Significant growth inhibition of Chlorella sp. was observed at high ACy concentration (6-48 mg L-1) during the entire 96 h bioassay. The 96 h median effective concentration (EC50) of ACy was estimated to be 11.00 mg L-1. Flow cytometry analysis showed an enhanced generation of reactive oxygen species (ROS) and intracellular lipid accumulation after 96 h exposure to 11.00 mg L-1 of ACy. Further, the same ACy concentration showed a significant decrease in photosynthetic pigment content and an increase in antioxidant enzyme activity and malondialdehyde (MDA) content in Chlorella sp.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
26
|
Hamed SM, Hassan SH, Selim S, Wadaan MAM, Mohany M, Hozzein WN, AbdElgawad H. Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113681. [PMID: 31843238 DOI: 10.1016/j.envpol.2019.113681] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 05/12/2023]
Abstract
Metalaxyl is a broad-spectrum chiral fungicide that used for the protection of plants, however extensive use of metalaxyl resulted in serious environmental problems. Thus, a study on the detoxification mechanism in algae/cyanobacteria and their ability for phycoremediation is highly recommended. Here, we investigated the physiological and biochemical responses of two cyanobacterial species; Anabaena laxa and Nostoc muscorum to R-metalaxyl toxicity as well as their ability as phycoremediators. Two different levels of R-metalaxyl, at mild (10 mg/L) and high dose (25 mg/L), were applied for one-week. We found that A. laxa absorbed and accumulated more intracellular R-metalaxyl compared to N. muscorum. R-metalaxyl, which triggered a dose-based reduction in cell growth, photosynthetic pigment content, and photosynthetic key enzymes' activities i.e., phosphoenolpyruvate carboxylase (PEPC) and ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo). These decreases were significantly less pronounced in A. laxa. On the other hand, R-metalaxyl significantly induced oxidative damage markers, e.g., H2O2 levels, lipid peroxidation (MDA), protein oxidation and NADPH oxidase activity. However, these increases were also lower in A. laxa compared to N. muscorum. To alleviate R-metalaxyl toxicity, A. laxa induced the polyphenols, flavonoids, tocopherols and glutathione (GSH) levels as well as peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-s-transferase (GST) enzyme activities. On the contrary, the significant induction of antioxidants in N. muscorum was restricted to ascorbate, catalase (CAT) and ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) enzyme activities. Although A. laxa accumulated more R-metalaxyl, it experienced less stress due to subsequent induction of antioxidants. Therefore, A. laxa may be a promising R-metalaxyl phycoremediator. Our results provided basic data for understanding the ecotoxicology of R-metalaxyl contamination in aquatic habitats and the toxicity indices among cyanobacteria.
Collapse
Affiliation(s)
- Seham M Hamed
- Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt.
| | - Sherif H Hassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Meng Z, Liu L, Xi Y, Jia M, Yan S, Tian S, Sun W, Zhu W, Li X, Zhou Z. Different effects of exposure to penconazole and its enantiomers on hepatic glycolipid metabolism of male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113555. [PMID: 31733957 DOI: 10.1016/j.envpol.2019.113555] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
(±) - PEN is a chiral fungicide widely used to control powdery mildew in agriculture. Currently, only a few studies have investigated the toxic effects of (±) - penconazole ((±) - PEN) on non-target organisms, and whether (±) - PEN from the enantiomeric level have toxic effects remains unclear. In this study, we systematically evaluated the effects of exposure to (±) - PEN, (+) - PEN and (-) - PEN on liver function in mice. Biochemical and histopathological analyses showed that exposure to (±) - PEN and (-) - PEN led to significant liver damage and inflammation. However, exposure to (+) - PEN treatment did not cause no adverse effects on liver function and inflammation. 1H-NMR-based metabolomics revealed that exposure to (±) - PEN, (+) - PEN and (-) - PEN led to the animals developing liver metabolic disorder that was caused by changes in glycolipid metabolism. Quantitative analysis of genes regulating glycolipid metabolism revealed that expression of gluconeogenesis and glycolytic pathway genes were altered in individuals exposed to (±) - PEN, (+) - PEN and (-) - PEN. We also found that (±) - PEN, (+) - PEN and (-) - PEN have different effects on lipid metabolism of the liver. Exposure to (±) - PEN and (-) - PEN resulted in significant accumulation of lipids by regulating fatty acid synthesis, triglyceride synthesis, and fatty acid β oxidation pathways. In summary, we found different toxicological effects in individuals exposed to (±) - PEN, (+) - PEN and (-) - PEN. The results of this study are important for assessing the potential health risks of (±) - PEN.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yexun Xi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Xi J, Shao J, Wang Y, Wang X, Yang H, Zhang X, Xiong D. Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:135-142. [PMID: 31378349 DOI: 10.1016/j.pestbp.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
Triflumizole is one of imidazole fungicides that works by inhibiting ergosterol biosynthesis, and is widely used for the control of powdery mildew and scabs on various fruits and crops. Triflumizole residue has been frequently detected in soil and aquatic ecosystems. While many studies have focused on its toxic effect on terrestrial and aquatic animals, little attention has been paid to aquatic algae, the primary producers of aquatic environments. Therefore, we evaluated the acute (96 h) toxicity effects of triflumizole on the freshwater algae Chlorella vulgaris, by examining growth, cell morphology, photosynthesis, and oxidative stress. The results showed that the 96 h median inhibition concentration (96 h-EC50) was 0.82 mg/L (95% confidential interval 0.70-0.98 mg/L).The growth of algal cells was conspicuously inhibited by triflumizole exposure, and the cell surfaces appeared to be shrunkThe chlorophyll content (including Chl-a, Chl-b and T-Chl) dramatically decreased at triflumizole concentrations of 0.2 and 1.0 mg/L. In addition, the transcript abundance of photosynthesis-related genes (psaB, psbC and rbcL) showed obvious decreases in above treatments after 96 h of exposure to triflumizole. Moreover, the algal growth inhibition was accompanied by an increase in intracellular reactive oxygen species and malondialdehyde content, as well as increased activity of antioxidant enzymes such as superoxide dismutase and peroxidase, indicating oxidative stress and lipid peroxidation. Our findings reveal that triflumizole has potential toxicity to the primary producers (freshwater algae) in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiejun Xi
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Shao
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinwei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongmei Xiong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Kuhlmann J, Kretschmann AC, Bester K, Bollmann UE, Dalhoff K, Cedergreen N. Enantioselective mixture toxicity of the azole fungicide imazalil with the insecticide α-cypermethrin in Chironomus riparius: Investigating the importance of toxicokinetics and enzyme interactions. CHEMOSPHERE 2019; 225:166-173. [PMID: 30875499 DOI: 10.1016/j.chemosphere.2019.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The fungicide imazalil is a chiral compound with one R- and one S-enantiomer. Enantiomers, while having the same chemical properties, can differ in their biological activity expressed as efficacy/toxicity as well as in their degradation kinetics and pathways. Azoles such as imazalil have been shown to synergize the effect of pyrethroid insecticides like α-cypermethrin through inhibition of cytochrome P450 monooxygenase responsible for pyrethroid detoxification. The aim of this study was to investigate, if the enantiomers of imazalil are selective in their synergistic potential in a mixture with a pyrethroid insecticide tested in Chironomus riparius. Potential enantioselectivity was studied on the level of uptake and elimination, inhibition of cytochrome P450 activity measured in vitro and in vivo and on synergistic potential of α-cypermethrin induced immobilization. Synergy was measured as an increase in α-cypermethrin toxicity after 144h applying a constant non-lethal imazalil concentration of 0.65 μmol/L. The R- and S-imazalil enantiomers increased α-cypermethrin toxicity from an EC50 of 1580 ± 980 pmol/L to an EC50 of 83 ± 10 pmol/L and 53 ± 8 pmol/L, respectively. The relatively small potency difference between imazalil enantiomers could not be explained by the in vitro cytochrome P450 inhibition, as the IC50 values were similar (0.11 ± 0.01 and 0.09 ± 0.01 μmol/L for R- and S-imazalil). Measuring in vivo P450 inhibition and the toxicokinetic of imazalil did not show a clear trend of selectivity towards one or the other enantiomer. The study therefore suggests that cytochrome P450 enzymes involved in detoxification in C. riparius are not enantioselective for imazalil.
Collapse
Affiliation(s)
- Janna Kuhlmann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Andreas C Kretschmann
- Department of Pharmacy, Analytical Biosciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Kristoffer Dalhoff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
30
|
Response of Freshwater Biofilms to Antibiotic Florfenicol and Ofloxacin Stress: Role of Extracellular Polymeric Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050715. [PMID: 30818877 PMCID: PMC6427337 DOI: 10.3390/ijerph16050715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
Antibiotic residues have been detected in aquatic environments worldwide. Biofilms are one of the most successful life forms, and as a result are ubiquitous in natural waters. However, the response mechanism of freshwater biofilms to the stress of various antibiotic residues is still unclear. Here, the stress of veterinary antibiotic florfenicol (FF) and fluoroquinolone antibiotic ofloxacin (OFL) on freshwater biofilms were investigated by determining the changes in the key physicochemical and biological properties of the biofilms. The results showed that the chlorophyll a content in biofilms firstly decreased to 46–71% and then recovered to original content under the stress of FF and OFL with high, mid, and low concentrations. Meanwhile, the activities of antioxidant enzymes, including superoxide dismutase and catalase, increased between 1.3–6.7 times their initial values. FF was more toxic to the biofilms than OFL. The distribution coefficients of FF and OFL binding in extracellular polymeric substances (EPS)-free biofilms were 3.2 and 6.5 times higher than those in intact biofilms, respectively. It indicated that EPS could inhibit the FF and OFL accumulation in biofilm cells. The present study shows that the EPS matrix, as the house of freshwater biofilms, is the primary barrier that resists the stress from antibiotic residues.
Collapse
|
31
|
Wang Z, Wang X, Li S, Jiang Z, Guo X. Magnetic solid‐phase extraction based on carbon nanosphere@Fe3O4for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 2019; 40:1306-1313. [DOI: 10.1002/elps.201800530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Zhaokun Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xia Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Shuang Li
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Zhen Jiang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xingjie Guo
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| |
Collapse
|
32
|
Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Abu Seman I, Zainol Hilmi NH, Jeffery Daim LD. Enhanced fungicidal efficacy on Ganoderma boninense by simultaneous co-delivery of hexaconazole and dazomet from their chitosan nanoparticles. RSC Adv 2019; 9:27083-27095. [PMID: 35528577 PMCID: PMC9070574 DOI: 10.1039/c9ra05417k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
The excessive use of fungicides may be of environmental and health concerns. Hence, to overcome this problem, chitosan as a controlled release matrix was used in this work to encapsulate the fungicide for the development of enhanced fungicide nanodelivery system. In this proposed study, dual-loaded fungicides (hexaconazole and dazomet) were simultaneously encapsulated into chitosan nanoparticles as an antifungal agent on Ganoderma boninense (G. boninense). In this work, we report the synthesis and characterization of the nanoparticles prepared using various concentrations of the crosslinking agent of sodium tripolyphosphate (TPP); 2.5, 5, 10, and 20 mg mL−1, which resulted in the nanoparticles of CHDEN2.5, CHDEN5, CHDEN10, and CHDEN20, respectively. The effect of TPP on the synthesized nanoparticle size revealed that an increase of TPP resulted in smaller particles, which in turn play a crucial role in controlling G. boninense growth. CHDEN20 shows the highest antifungal efficacy with the lowest half-maximal effective concentration (EC50) on G. boninense. The formulated nanocarrier system of fungicide aims to enhance the efficient delivery of the active ingredients to the target site, able to sustain in it for a longer time, and consequently improve the fungicide efficacy in combating the basal stem rot disease in oil palm. Dual encapsulation of fungicides into the chitosan was synthesized and proven to prolong the release time and enhance the antifungal activity.![]()
Collapse
Affiliation(s)
| | - Mohd Zobir Hussein
- Institute of Advanced Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Nor Azah Yusof
- Institute of Advanced Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
- Department of Chemistry
| | - Sharida Fakurazi
- Department of Human Anatomy
- Faculty of Medicine and Health Sciences
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | | | | | - Leona Daniela Jeffery Daim
- Sime Darby Technology Centre Sdn. Bhd
- UPM-MTDC Technology Centre III
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| |
Collapse
|
33
|
Qian L, Qi S, Cao F, Zhang J, Zhao F, Li C, Wang C. Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:171-181. [PMID: 29980035 DOI: 10.1016/j.envpol.2018.06.055] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 05/24/2023]
Abstract
Boscalid is one of the most frequently detected pesticides in main coastal estuaries in California, with concentrations as high as 36 μg/L. However, ecotoxicology information about boscalid to aquatic organisms is scarce. To investigate toxic effects and mechanisms of boscalid on freshwater algae Chlorella vulgaris (C. vulgaris), C. vulgaris were exposed to a range of boscalid concentrations (0, 0.8, 1.6, 2.4 and 3.2 mg/L) for 96 h to study the changes in photosynthetic pigment contents, responses of the antioxidant enzyme system and alterations in endogenous substances. Results indicated that the growth of algae and the content of chlorophyll and carotenoids were significantly inhibited by 1.6 mg/L boscalid. Reactive oxygen species (ROS) and oxidative damage of C. vulgaris could be induced by boscalid, in accordance with significant changes in ROS levels and a series of antioxidant enzyme activities. Moreover, the alterations in endogenous substances showed that boscalid could affect photosynthesis and energy metabolism of C. vulgaris. These results demonstrated that boscalid could induce impacts on C. vulgaris mainly through disturbing the photosynthesis, oxidative damage and energy metabolism. The present study provided a better understanding of the negative effects and mechanisms of bosaclid in microalgae.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| | - Fangjie Cao
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Feng Zhao
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Changping Li
- Plant Protection Station, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Cheng C, Ma R, Lu Y, Liu C, Zhang W, Di S, Chen L, Diao J, Zhou Z, Hou Y. Enantioselective toxic effects and digestion of furalaxyl enantiomers in Scenedesmus obliquus. Chirality 2018; 30:1269-1276. [PMID: 30238504 DOI: 10.1002/chir.23020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/27/2018] [Accepted: 08/30/2018] [Indexed: 01/19/2023]
Abstract
Research on the enantioselective environmental behavior of chiral pesticides has been a hot spot of environmental chemistry recently. In this study, the acute toxicity and digestion of furalaxyl enantiomers were determined on the aquatic algae Scendesmus obliquus. After exposure for 96 hours, the EC50 values for (S)-furalaxyl and (R)-furalaxyl were 13.59 and 15.26 mg/L, respectively. In addition, enantioselectivity was observed from the determined chlorophyll contents and antioxidant enzyme (CAT and SOD) activities of algae cells after exposure to furalaxyl enantiomers for 96 hours. The digestion rate of (S)-furalaxyl and (R)-furalaxyl were almost the same in S. obliquus. On the basis of these data, the inactive enantiomers (S)- furalaxyl is more toxic than the active one on the non-target species S. obliquus, indicating that such enantiomeric differences should be taken into consideration in the study of pesticide risk assessment.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Science, China Agricultural University, Beijing, China
| | - Rui Ma
- College of Science, China Agricultural University, Beijing, China
| | - Yuele Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunxiao Liu
- College of Science, China Agricultural University, Beijing, China
| | - Wenjun Zhang
- College of Science, China Agricultural University, Beijing, China
| | - Shanshan Di
- College of Science, China Agricultural University, Beijing, China
| | - Li Chen
- College of Science, China Agricultural University, Beijing, China
| | - Jinling Diao
- College of Science, China Agricultural University, Beijing, China
| | - Zhiqiang Zhou
- College of Science, China Agricultural University, Beijing, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Fang B, Shi J, Qin L, Feng M, Cheng D, Wang T, Zhang X. Toxicity evaluation of 4,4'-di-CDPS and 4,4'-di-CDE on green algae Scenedesmus obliquus: growth inhibition, change in pigment content, and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15630-15640. [PMID: 29574639 DOI: 10.1007/s11356-018-1749-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated diphenyl sulfides and polychlorinated diphenyl ethers are two types of dioxin-like pollutants, which are prevalent in aquatic environments. However, to date, limited information is available regarding their toxicity to green algae. In this study, growth inhibition, effect on pigment content, and oxidative stress potentials of 4,4'-di-CDPS and 4,4'-di-CDE on green algae Scenedesmus obliquus were investigated. The results indicate that the EC50 values of 4,4'-di-CDPS after 24, 48, 72, and 96 h of exposure were 1.736, 1.172, 0.994, and 0.820 mg/L, while the corresponding values for 4,4'-di-CDE were 0.697, 1.087, 0.833, and 0.327 mg/L. As compared to the control group, most of the measured pigment content in algal cells significantly decreased after 96-h exposure to these two chemicals, suggesting their suppressive capability on the photosynthesis process in algal cells. Additionally, oxidative stress occurred as demonstrated by the significantly inhibited activities of the antioxidant enzymes (total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GPx)), and high increases in malondialdehyde (MDA) content in all 4,4'-di-CDE-treated groups and some moderate-dose and high-dose treatments with 4,4'-di-CDPS. Acute toxicity tests and biochemical analysis showed that 4,4'-di-CDE was more toxic than 4,4'-di-CDPS on S. obliquus.
Collapse
Affiliation(s)
- Bingxin Fang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Jiaqi Shi
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, 210042, Jiangsu, China
| | - Li Qin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Danru Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Tantan Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
36
|
Metabolism studies of chiral pesticides: A critical review. J Pharm Biomed Anal 2018; 147:89-109. [DOI: 10.1016/j.jpba.2017.08.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/24/2023]
|
37
|
Zhang Z, Zhang Q, Gao B, Gou G, Li L, Shi H, Wang M. Simultaneous Enantioselective Determination of the Chiral Fungicide Prothioconazole and Its Major Chiral Metabolite Prothioconazole-Desthio in Food and Environmental Samples by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8241-8247. [PMID: 28844143 DOI: 10.1021/acs.jafc.7b02903] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An efficient and sensitive chiral analytical method was established for the determination of the chiral fungicide prothioconazole and its major chiral metabolite prothioconazole-desthio in agricultural and environmental samples using ultraperformance liquid chromatography-tandem mass spectrometry. The optical rotation and absolute configuration of enantiomers were identified by optical rotation detector and electronic circular dichroism spectra. The elution order of prothioconazole and its chiral metabolite enantiomers was R-(+)-prothioconazole-desthio, S-(-)-prothioconazole-desthio, R-(-)-prothioconazole, and S-(+)-prothioconazole. The mean recoveries from the samples was 71.8-102.0% with intraday relative standard deviations (RSDs) of 0.3-11.9% and interday RSDs of 0.9-10.6%. The formation of prothioconazole-desthio was studied in soil under field conditions and enantioselective degradation was observed for chiral prothioconazole. Remarkable enantioselective degradation was observed: R-prothioconazole degraded preferentially with EF values from 0.48 to 0.37. Although prothioconazole-desthio is the most remarkably bioactive metabolite, no obvious enantioselective behavior was observed in soil. These results may help to systematically evaluate prothioconazole and its metabolites in food and environmental safety.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095, China
| | - Qing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095, China
| | - Gaozhang Gou
- College of Science, Honghe University , Mengzi 661199, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095, China
| |
Collapse
|
38
|
Cheng C, Di S, Chen L, Zhang W, Diao J, Zhou Z. Enantioselective Bioaccumulation, Tissue Distribution, and Toxic Effects of Myclobutanil Enantiomers in Pelophylax nigromaculatus Tadpole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3096-3102. [PMID: 28291946 DOI: 10.1021/acs.jafc.7b00086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on the enantioselective behavior of chiral pesticides on amphibians has received growing attention, because amphibians are experiencing a population decline and amphibian metamorphosis shares many similarities with human fetal development. In this study, the enantioselective behavior of myclobutanil on Pelophylax nigromaculatus tadpole was studied. The antioxidant enzyme (SOD, GST) activities and malondialdehyde (MDA) content were investigated to assess the different toxic effects when tadpoles were exposed to myclobutanil enantiomers for 96 h. In the chronic exposure experiment, the bioaccumulation concentration of (-)-myclobutanil in tadpoles is significantly higher than that of (+)-myclobutanil, and the concentration of myclobutanil in tadpole intestine and liver was higher compared with other tissues. During the elimination experiment, about 95% of myclobutanil in tadpoles was eliminated within only 24 h. On the basis of these data, the enantiomeric differences should be taken into consideration in the risk assessment of myclobutanil.
Collapse
Affiliation(s)
- Cheng Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Yuanmingyuan West Road 2, Beijing 100193, China
| | - Shanshan Di
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Yuanmingyuan West Road 2, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
39
|
Xu P, Huang L. Stereoselective bioaccumulation, transformation, and toxicity of triadimefon inScenedesmus obliquus. Chirality 2016; 29:61-69. [DOI: 10.1002/chir.22671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Xu
- Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Ledan Huang
- School of Materials Science and Engineering; Beijing Institute of Fashion Technology; Beijing China
| |
Collapse
|
40
|
Zhang W, Cheng C, Chen L, Di S, Liu C, Diao J, Zhou Z. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa. CHEMOSPHERE 2016; 159:50-57. [PMID: 27268794 DOI: 10.1016/j.chemosphere.2016.05.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Enantioselectivity in ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to Chlorella pyrenoidosa was studied. The 96h-EC50 values of rac- and the four enantiomers were 9.005, 6.616, 8.311, 4.290 and 9.410 mg/L, respectively. At the concentrations of 8 mg/L and 14 mg/L, the contents of pigments exposed in rac-, enantiomer-2 and 4 were higher than that exposed in enantiomer-1 and 3. The superoxide dismutase (SOD) and catalase (CAT) activity of algae exposed to enantiomer-1 and 3 was higher than that exposed to the rac-, enantiomer-2 and 4 at three levels. In addition, the malondialdehyde (MDA) concentrations in algae disposed with enantiomer-1 and 3 were increased remarkably at three levels. For the digestion experiment, the half-lives of four enantiomers in algae suspension were 28.06, 19.10, 21.13, 15.17 days, respectively. During the uptake experiment, the order of the concentrations of cyproconazole in algae cells was enantiomer-4, 2, 3 and 1. Based on these data, we concluded that ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to C. pyrenoidosa were enantioselective, and such enantiomeric differences must be taken into consideration when assessing the risk of cyproconazole to environment.
Collapse
Affiliation(s)
- Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Cheng Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Shanshan Di
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Chunxiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
41
|
Liu C, Wang B, Diao J, Zhou Z. Enantioselective toxicity and bioaccumulation of epoxiconazole enantiomers to the green alga Scenedesmus obliquus. RSC Adv 2016. [DOI: 10.1039/c6ra12617k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enantioselectivity in environmental behaviour of chiral pesticides has become a subject of growing interest.
Collapse
Affiliation(s)
- Chunxiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Jingling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
42
|
Wang Y, Zhu W, Qiu J, Wang X, Zhang P, Yan J, Zhou Z. Monitoring tryptophan metabolism after exposure to hexaconazole and the enantioselective metabolism of hexaconazole in rat hepatocytes in vitro. JOURNAL OF HAZARDOUS MATERIALS 2015; 295:9-16. [PMID: 25863579 DOI: 10.1016/j.jhazmat.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 03/24/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
In the present study, the enantioselective metabolism, cytotoxicity of hexaconazole and its influence on tryptophan metabolism in rat hepatocytes in vitro were investigated. Following the exposure of primary rat hepatocytes to rac-hexaconazole, the concentrations of its enantiomers in the media were determined by chiral high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The half-lives (t1/2) of (+)-hexaconazole and (-)-hexaconazole were 5.17 h and 19.80 h, respectively, indicating that the metabolic process was enantioselective with (-)-hexaconazole enrichment. Using the MTT method, the EC50 values of rac-hexaconazole, (+)-hexaconazole and (-)-hexaconazole after 12h of exposure were determined to be 71.62, 62.71 and 67.94 μM, respectively. Tryptophan metabolism was monitored using metabolomics profiling techniques. Hexaconazole and its enantiomers caused the down-regulation of tryptophan levels and the up-regulation of kynurenine (KYN) levels, suggesting a role for hexaconazole in the activation of the KYN pathway and providing information for the mechanism of its toxicity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinru Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ping Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Cheng C, Huang L, Ma R, Zhou Z, Diao J. Enantioselective toxicity of lactofen and its metabolites in Scenedesmus obliquus. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Zhang Q, Zhou L, Yang Y, Hua X, Shi H, Wang M. Study on the stereoselective degradation of three triazole fungicides in sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 117:1-6. [PMID: 25814463 DOI: 10.1016/j.ecoenv.2015.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The stereoselective degradation behaviors of chiral triazole fungicides (hexaconazole, flutriafol and tebuconazole) in sediment were investigated under laboratory conditions. The enantiomers were completely separated by high-performance liquid chromatography on a cellulose tris(3-chloro-4-methylphenylcarbamate) (Lux Cellulose-2) column. The mean recoveries of hexaconazole, flutriafol and tebuconazole in sediment ranged from 86.7% to 105.9%. The methods were successfully applied for the enantioselective degradation analysis of fungicides in sediment. The results showed that the dissipation of hexaconazole, flutriafol and tebuconazole stereoisomers in sediment followed first-order kinetics (R(2)>0.95). The degradation rate of the enantiomers was different in sediment, and the (-)-enantiomer (t(1/2) was 86 days for hexaconazole, 139 for flutriafol and 136 for tebuconazole) degraded faster than the (+)-enantiomer (t(1/2) was 94 days for hexaconazole, 144 for flutriafol and 151 for tebuconazole) in native condition. The fungicides were degraded slowly, and no significant enantioselective degradation were observed under sterilized conditions. The results may hold promising implications for the environmental and ecological risk assessment of three important chiral triazole fungicides.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, PR China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, PR China
| | - Yu Yang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, PR China
| | - Xiude Hua
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, PR China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, PR China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, PR China.
| |
Collapse
|
45
|
Wang X, Qi P, Zhang H, Xu H, Wang X, Li Z, Wang Z, Wang Q. Enantioselective analysis and dissipation of triazole fungicide penconazole in vegetables by liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11047-11053. [PMID: 25349889 DOI: 10.1021/jf5034653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Penconazole is a typical triazole fungicide, which is commonly used to control powdery mildew in vineyard and vegetable field. In this study, the enantioselective dissipation of penconazole in cucumber, tomato, head cabbage, and pakchoi was investigated by field experiments. A sensitive method for enantiomeric analysis of penconazole was established on the basis of the buffered QuEChERS sample preparation technique followed by reverse-liquid chromatography equipped with a TSQ Discovery triple quadrupole mass spectrometer and a Lux Cellulose-2 chiral column. Methanol and 2 mM ammonium acetate buffer solution containing 0.1% formic acid (70:30, v/v) were used as mobile phase at a 0.2 mL L(-1) flow rate isocratic elution. The linearity, recovery, and precision of this method were also evaluated. Finally, the results of this study demonstrated that enantioselective dissipation occurred in head cabbage and pakchoi, with the preferential degradation of (-)-penconazole, and resulting in an enrichment of the (+)-penconazole residue in the two vegetables. However, the enantioselective behavior was not observed in cucumber and tomato. More importantly, this is the first report of enantioselective behavior of penconazole, and the result may provide useful information for the risk evaluation of penconazole in food and environmental safety.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA Key Lab for Pesticide Residue Detection, Zhejiang Province Key Laboratory of Detection for Pesticide Residues and Control, Institute of Quality and Standard on Agricultural Products, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Qu H, Ma RX, Liu DH, Wang P, Huang LD, Qiu XX, Zhou ZQ. Enantioselective toxicity and degradation of the chiral insecticide fipronil in Scenedesmus obliguus suspension system. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2516-2521. [PMID: 25077813 DOI: 10.1002/etc.2702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/14/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Fipronil is an effective insecticide, but it presents highly toxic effects in nontarget aquatic organisms. The present study examined the enantioselective toxicity and degradation of fipronil enantiomers in a freshwater algae Scenedesmus obliguus suspension. There was a substantial difference in the acute toxicity of the enantiomers to S. obliguus, with 72-h median effective concentrations (EC50s) of 0.29 mg L(-1) and 1.50 mg L(-1) for the R-fipronil and S-fipronil, respectively. The influences on the concentration of chlorophyll a, chlorophyll b, and carotenoids were determined, and the effects of fipronil on the concentration of chlorophyll a and chlorophyll b were also enantioselective. The degradation of fipronil in algae suspension was enantioselective, with half-lives for R-fipronil and S-fipronil of 2.9 d and 3.2 d, respectively, and the enantiomer fraction reaching 0.65 at the day 17. The enantiomeric differences should be taken into consideration for fipronil risk assessment.
Collapse
Affiliation(s)
- Han Qu
- Department of Applied Chemistry, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Nunes B, Pinto G, Martins L, Gonçalves F, Antunes SC. Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10815-10822. [PMID: 24888614 DOI: 10.1007/s11356-014-3059-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC50 = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.
Collapse
Affiliation(s)
- Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal,
| | | | | | | | | |
Collapse
|
48
|
Li Y, Dong F, Liu X, Xu J, Han Y, Zheng Y. Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2014; 265:115-123. [PMID: 24342051 DOI: 10.1016/j.jhazmat.2013.11.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 06/03/2023]
Abstract
Various chiral pesticides are used in greenhouses to ensure high crop yields. However, detailed knowledge on the environmental behavior of such chiral contaminants with respect to enantioselectivity in the greenhouse has received little attention so far. Here, the widely used fungicide triadimefon was chosen as a "chiral probe" to investigate its enantioselective degradation and formation of triadimenol in greenhouse tomato, cucumber, and soil under different application modes. In addition, the stereoselectivity of individual isomers of triadimefon and triadimenol in aquatic toxicity were first studied. Significant differences in their acute toxicity to Daphnia magna were observed among the isomers. Under foliage application or soil irrigation application, S-(+)-triadimefon was preferentially degraded, resulting in relative enrichment of the more toxic R-(-)-enantiomer in tomato, cucumber, and soil. Further enantioselective analysis of converted triadimenol showed that the compositions of the four product stereoisomers were different and closely dependent on environmental conditions: the most toxic RS-(+)-triadimenol was the most preferentially produced isomer in tomato under foliage treatment, while the RR-(+)-triadimenol was proved to be the highest amount of metabolite isomer in cucumber and soil under both treatment modes and in tomato under soil treatment.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, China
| | - Yongtao Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, China.
| |
Collapse
|
49
|
Han J, Jiang J, Su H, Sun M, Wang P, Liu D, Zhou Z. Bioactivity, toxicity and dissipation of hexaconazole enantiomers. CHEMOSPHERE 2013; 93:2523-2527. [PMID: 24206830 DOI: 10.1016/j.chemosphere.2013.09.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
In this study, the bioactivity, acute toxicity and dissipation in vegetables of the individual enantiomers of the fungicide hexaconazole had been investigated. The optical pure single enantiomers were prepared and the bioactivity of (+)-, (-)- and rac-hexaconazole was tested using four target fungi including Colletotrichum gloeosporioides Penz, Alternaria solani, Alternaria mali Roberts and Monilinia fructicola. The results showed (-)-hexaconazole was always more active than (+)-hexaconazole with the fungicidal activity 11–13-fold higher to A. solani, A. mali Roberts and Monilinia fructicola, and 1.26-fold higher to C. gloeosporioides Penz. (-)-Hexaconazole also showed 1.3-fold higher acute toxicity to aquatic species Daphnia magna based on the 48 h EC50 values. There was obvious enantioselectivity in the dissipation in tomato with (-)-hexaconazole degraded faster resulting an enrichment of (+)-form, and the half-lives of (-)-hexaconazole and (+)-hexaconazole in tomato were 2.96 d and 3.38 d respectively, while it was not enantioselective in green pepper, in which the both enantiomers had the half-lives about 4.36 d. The findings are helpful for better environmental and ecological risk assessment of hexaconazole on an enantiomeric level.
Collapse
|
50
|
Cheng C, Huang L, Diao J, Zhou Z. Enantioselective toxic effects and degradation of myclobutanil enantiomers in Scenedesmus obliquus. Chirality 2013; 25:858-64. [PMID: 23939881 DOI: 10.1002/chir.22226] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/25/2013] [Indexed: 11/10/2022]
Abstract
Research on the enantioselective environmental behavior of chiral pesticides has been a hot spot of environmental chemistry recently. In this study, the acute toxicity of myclobutanil enantiomers was investigated with the aquatic algae Scendesmus obliquus. After exposure for 96 h, the EC50 values for (-)-myclobutanil, rac-myclobutanil and (+)-myclobutanil were 3.951, 2.760, and 2.128 mg/L, respectively. The photosynthetic pigment (chlorophyll a, chlorophyll b, and carotenoids) and antioxidant enzyme activities catalase (CAT) were determined to evaluate the different toxic effects when S. obliquus were exposed to 1.5, 5 and 15 mg/L of rac-myclobutanil, (-)-myclobutanil, and (+)-myclobutanil for 96 h, respectively. In addition, the degradation of myclobutanil enantiomers in S. obliquus was also studied. Myclobutanil in the medium inoculated with algae degraded faster than in the uninoculated medium. The degradation of (-)-myclobutanil was faster than that of (+)-myclobutanil at a concentration of 3 mg/L. On the basis of these data, the acute toxicity and toxic effects of myclobutanil against S. obliquus were concluded to be enantioselective, and such enantiomeric differences should be taken into consideration in pesticide risk assessment.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Applied Chemistry, China Agricultural University, Beijing, People's Republic of China
| | | | | | | |
Collapse
|