1
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Raykova D, Kermpatsou D, Malmqvist T, Harrison PJ, Sander MR, Stiller C, Heldin J, Leino M, Ricardo S, Klemm A, David L, Spjuth O, Vemuri K, Dimberg A, Sundqvist A, Norlin M, Klaesson A, Kampf C, Söderberg O. A method for Boolean analysis of protein interactions at a molecular level. Nat Commun 2022; 13:4755. [PMID: 35963857 PMCID: PMC9375095 DOI: 10.1038/s41467-022-32395-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
Determining the levels of protein-protein interactions is essential for the analysis of signaling within the cell, characterization of mutation effects, protein function and activation in health and disease, among others. Herein, we describe MolBoolean - a method to detect interactions between endogenous proteins in various subcellular compartments, utilizing antibody-DNA conjugates for identification and signal amplification. In contrast to proximity ligation assays, MolBoolean simultaneously indicates the relative abundances of protein A and B not interacting with each other, as well as the pool of A and B proteins that are proximal enough to be considered an AB complex. MolBoolean is applicable both in fixed cells and tissue sections. The specific and quantifiable data that the method generates provide opportunities for both diagnostic use and medical research.
Collapse
Affiliation(s)
- Doroteya Raykova
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden.
| | - Despoina Kermpatsou
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | | | - Philip J Harrison
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Christiane Stiller
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Sara Ricardo
- Faculty of Medicine, University of Porto, Porto, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Anna Klemm
- Vi2, Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Leonor David
- Faculty of Medicine, University of Porto, Porto, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anders Sundqvist
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Axel Klaesson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | | | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
3
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
4
|
Liu G, Xu X, Wu C, Jia G, Zhao H, Chen X, Tian G, Cai J, Wang J. Spermine protects intestinal barrier integrity through ras-related C3 botulinum toxin substrate 1/phospholipase C-γ1 signaling pathway in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:135-143. [PMID: 34977383 PMCID: PMC8683656 DOI: 10.1016/j.aninu.2021.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P < 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P < 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P < 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Xiaomei Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Liu Y, Han X, Li L, Zhang Y, Huang X, Li G, Xu C, Yin M, Zhou P, Shi F, Liu X, Zhang Y, Wang G. Role of Nectin‑4 protein in cancer (Review). Int J Oncol 2021; 59:93. [PMID: 34664682 DOI: 10.3892/ijo.2021.5273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022] Open
Abstract
The Nectin cell adhesion molecule (Nectin) family members are Ca2+‑independent immunoglobulin‑like cellular adhesion molecules (including Nectins 1‑4), involved in cell adhesion via homophilic/heterophilic interplay. In addition, the Nectin family plays a significant role in enhancing cellular viability and movement ability. In contrast to enrichment of Nectins 1‑3 in normal tissues, Nectin‑4 is particularly overexpressed in a number of tumor types, including breast, lung, urothelial, colorectal, pancreatic and ovarian cancer. Moreover, the upregulation of Nectin‑4 is an independent biomarker for overall survival in numerous cancer types. A large number of studies have revealed that high expression of Nectin‑4 is closely related to tumor occurrence and development in various cancer types, but the manner in which Nectin‑4 protein contributes to the onset and development of these malignancies is yet unknown. The present review summarizes the molecular mechanisms and functions of Nectin‑4 protein in the biological processes and current advances with regard to its expression and regulation in various cancer types.
Collapse
Affiliation(s)
- Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaoyu Huang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chuncai Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Fanqi Shi
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
6
|
Abdrabou A, Wang Z. Post-Translational Modification and Subcellular Distribution of Rac1: An Update. Cells 2018; 7:cells7120263. [PMID: 30544910 PMCID: PMC6316090 DOI: 10.3390/cells7120263] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
7
|
Zhang Y, Zhang J, Shen Q, Yin W, Huang H, Liu Y, Ni Q. High expression of Nectin-4 is associated with unfavorable prognosis in gastric cancer. Oncol Lett 2018; 15:8789-8795. [PMID: 29805618 DOI: 10.3892/ol.2018.8365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/08/2018] [Indexed: 12/27/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell adhesion molecules that belong to a family of four members that function in a number of biological cellular activities. Nectin-4 is overexpressed in several types of human cancer; however, the functional and prognostic significance of Nectin-4 in gastric cancer (GC) remains unclear. In the present study, the reverse transcription-quantitative polymerase chain reaction and tissue microarray immunohistochemical analysis were used to investigate the expression of Nectin-4 in GC as well as its function in the prognosis of patients with GC. The results indicated that mRNA and protein expression of Nectin-4 were increased in tumor tissues compared with the matched non-tumor tissues. Expression of Nectin-4 was closely associated with differentiation (P=0.004), primary tumor (P=0.001), lymph node metastasis (P<0.001) and tumor-node-metastasis (TNM) stage (P<0.001). Positive Nectin-4 expression (P=0.001) and advanced TNM stage (P<0.001) were demonstrated to be associated with overall survival time in multivariate analyses. These results suggest that Nectin-4 may serve a significant function in GC and may serve as a novel clinic pathological biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiaxuan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qin Shen
- Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Yin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
8
|
Song HP, Hou XQ, Li RY, Yu R, Li X, Zhou SN, Huang HY, Cai X, Zhou C. Atractylenolide I stimulates intestinal epithelial repair through polyamine-mediated Ca 2+ signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 28:27-35. [PMID: 28478810 DOI: 10.1016/j.phymed.2017.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND An impairment of the integrity of the mucosal epithelial barrier can be observed in the course of various gastrointestinal diseases. The migration and proliferation of the intestinal epithelial (IEC-6) cells are essential repair modalities to the healing of mucosal ulcers and wounds. Atractylenolide I (AT-I), one of the major bioactive components in the rhizome of Atractylodes macrocephala Koidz. (AMR), possesses multiple pharmacological activities. This study was designed to investigate the therapeutic effects and the underlying molecular mechanisms of AT-I on gastrointestinal mucosal injury. METHODS Scratch method with a gel-loading microtip was used to detect IEC-6 cell migration. The real-time cell analyzer (RTCA) system was adopted to evaluate IEC-6 cell proliferation. Intracellular polyamines content was determined using high performance liquid chromatography (HPLC). Flow cytometry was used to measure cytosolic free Ca2+ concentration ([Ca2+]c). mRNA and protein expression of TRPC1 and PLC-γ1 were determined by real-time PCR and Western blotting assay respectively. RESULTS Treatment of IEC-6 cells with AT-I promoted cell migration and proliferation, increased polyamines content, raised cytosolic free Ca2+ concentration ([Ca2+]c), and enhanced TRPC1 and PLC-γ1 mRNA and protein expression. Depletion of cellular polyamines by DL-a-difluoromethylornithine (DFMO, an inhibitor of polyamine synthesis) suppressed cell migration and proliferation, decreased polyamines content, and reduced [Ca2+]c, which was paralleled by a decrease in TRPC1 and PLC-γ1 mRNA and protein expression in IEC-6 cells. AT-I reversed the effects of DFMO on polyamines content, [Ca2+]c, TRPC1 and PLC-γ1 mRNA and protein expression, and restored IEC-6 cell migration and proliferation to near normal levels. CONCLUSION Our data demonstrate that AT-I stimulates intestinal epithelial cell migration and proliferation via the polyamine-mediated Ca2+ signaling pathway. Therefore, AT-I may have the potential to be further developed as a promising therapeutic agent to treat diseases associated with gastrointestinal mucosal injury, such as inflammatory bowel disease and peptic ulcer.
Collapse
Affiliation(s)
- Hou-Pan Song
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical College, Taian, Shandong 271000, China
| | - Ru-Yi Li
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Rong Yu
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Sai-Nan Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Hui-Yong Huang
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Cai
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
9
|
López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci 2017; 74:803-826. [PMID: 27624395 PMCID: PMC11107577 DOI: 10.1007/s00018-016-2363-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
10
|
The regulation of male fertility by the PTPN11 tyrosine phosphatase. Semin Cell Dev Biol 2016; 59:27-34. [DOI: 10.1016/j.semcdb.2016.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/04/2023]
|
11
|
Kaduwal S, Jeong WJ, Park JC, Lee KH, Lee YM, Jeon SH, Lim YB, Min DS, Choi KY. Sur8/Shoc2 promotes cell motility and metastasis through activation of Ras-PI3K signaling. Oncotarget 2016; 6:33091-105. [PMID: 26384305 PMCID: PMC4741751 DOI: 10.18632/oncotarget.5173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Sur8 (also known as Shoc2) is a Ras-Raf scaffold protein that modulates signaling through extracellular signal-regulated kinase (ERK) pathway. Although Sur8 has been shown to be a scaffold protein of the Ras-ERK pathway, its interaction with other signaling pathways and its involvement in tumor malignancy has not been reported. We identified that Sur8 interacts with the p110α subunit of phosphatidylinositol 3-kinase (PI3K), as well as with Ras and Raf, and these interactions are increased in an epidermal growth factor (EGF)- and oncogenic Ras-dependent manner. Sur8 regulates cell migration and invasion via activation of Rac and matrix metalloproteinases (MMPs). Interestingly, using inhibitors of MEK and PI3K we found Sur8 mediates these cellular behaviors predominantly through PI3K pathway. We further found that human metastatic melanoma tissues had higher Sur8 content followed by activations of Akt, ERK, and Rac. Lentivirus-mediated Sur8-knockdown attenuated metastatic potential of highly invasive B16-F10 melanoma cells indicating the role of Sur8 in melanoma metastasis. This is the first report to identify the role of scaffold protein Sur8 in regulating cell motility, invasion, and metastasis through activation of both ERK and PI3K pathways.
Collapse
Affiliation(s)
- Saluja Kaduwal
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Woo-Jeong Jeong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Kug Hwa Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Young-Mi Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea.,Current address: Division of Pharmacology and Translational Research, Hanmi Research Center, Hwaseong-si Gyeonggi-do, 445-813, Korea
| | - Soung-Hoo Jeon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea.,Current address: Department of Microbiology and Immunology, Xenotransplantation Research Center, Medical Research Center, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, 110-799, Korea
| | - Yong-Beom Lim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, 609-735, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| |
Collapse
|
12
|
Zhang Y, Liu S, Wang L, Wu Y, Hao J, Wang Z, Lu W, Wang XA, Zhang F, Cao Y, Liang H, Li H, Ye Y, Ma Q, Zhao S, Shu Y, Bao R, Jiang L, Hu Y, Zhou J, Chen L, Liu Y. A novel PI3K/AKT signaling axis mediates Nectin-4-induced gallbladder cancer cell proliferation, metastasis and tumor growth. Cancer Lett 2016; 375:179-189. [PMID: 26949052 DOI: 10.1016/j.canlet.2016.02.049] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 01/25/2023]
Abstract
Nectin-4 is a Ca(2+)-independent immunoglobulin-like cell adhesion molecule which has diverse functions in cell-cell adhesion via homophilic and heterophilic interactions. Cell-cell adhesive processes are central to cell polarization, differentiation, proliferation, survival and movement. Here we report that Nectin-4 is substantially overexpressed in gallbladder cancer (GBC), the most common biliary tract malignancy with a high risk of local tumor spread and invasion. Further, Nectin-4 high expression in GBC patients was associated with pathologic T stage and lymph node metastasis status, and the expression level of the downstream target Rac1 and poor prognoses were also correlated with Nectin-4. Ectopic expression of Nectin-4 promoted GBC cell growth, motility and tumor growth in a mouse model. The depletion of Nectin-4 inhibited GBC cell proliferation and migration both in cell culture and in mice. Our data suggest that activation of the PI3K/AKT pathway was involved in the oncogenic function of Nectin-4 to activate Rac1 in GBC. Inhibition of PI3K/AKT with LY294002 and/or Rac1 with NSC23766 impaired Nectin-4-mediated GBC cell proliferation and motility. We hypothesize that Nectin-4 is critical for GBC progression via PI3K/AKT pathway activation of Rac1. Nectin-4 may be a novel prognostic factor and therapeutic target in GBC patients.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Shibo Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Lei Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yaoshi Wu
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, China
| | - Jiaqi Hao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Zheng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Lu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xu-An Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Fei Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yang Cao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Haibin Liang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Huaifeng Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuanyuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Qiang Ma
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Shuai Zhao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yijun Shu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Runfa Bao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Lin Jiang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jian Zhou
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Lei Chen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yingbin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
13
|
Direct effect of infliximab on intestinal mucosa sustains mucosal healing: exploring new mechanisms of action. Dig Liver Dis 2016; 48:391-8. [PMID: 26804809 DOI: 10.1016/j.dld.2015.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infliximab is effective in inflammatory bowel disease through several mechanisms, possibly acting at the mucosal level. AIM To assess the role of infliximab on intestinal mucosa and whether it contributes to mucosal healing. METHODS Human colonic mucosal biopsies were incubated with or without infliximab. Cultured biopsies were evaluated for histological staining, CD68, CD3, E-cadherin and phospho-extracellular signal-regulated kinases (ERK) expression, and apoptosis. A scratch assay and MTT assay were performed with Caco2 cells in the presence of infliximab and/or tumour necrosis factor (TNF)-α or treated with supernatants obtained from human peripheral blood mononuclear cells or human intestinal fibroblasts treated with TNF-α and infliximab alone or in association. RESULTS Infliximab-treated biopsies displayed a better histological appearance, reduced inflammation with an increase of E-cadherin, phospho-ERK and apoptosis. Supernatants showed lower TNF-α, IL-17, IL-6 and IL-8 concentration, with an increase in fibroblast-growth-factor. Motility at scratch assay and proliferation at MTT assay of Caco2 cells displayed differential modulation by TNF-α and infliximab, directly or through supernatants of human intestinal fibroblasts and human peripheral blood mononuclear cells exposed to them. CONCLUSION Infliximab contributes to the mucosal healing process by acting directly at an intestinal mucosal level; infliximab indirectly affects epithelial cell migration and proliferation by acting on both fibroblasts and leukocytes.
Collapse
|
14
|
López-Posadas R, Becker C, Günther C, Tenzer S, Amann K, Billmeier U, Atreya R, Fiorino G, Vetrano S, Danese S, Ekici AB, Wirtz S, Thonn V, Watson AJM, Brakebusch C, Bergö M, Neurath MF, Atreya I. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation. J Clin Invest 2016; 126:611-26. [PMID: 26752649 DOI: 10.1172/jci80997] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing the transcriptome of IECs from IBD patients using a genome-wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBDs, and inflammation was associated with suppressed Rho-A activation due to reduced expression of the Rho-A prenylation enzyme geranylgeranyltransferase-I (GGTase-I). Functionally, we found that mice with conditional loss of Rhoa or the gene encoding GGTase-I, Pggt1b, in IECs exhibit spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding, ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBDs. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I-deficient IECs, our findings suggest new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients.
Collapse
|
15
|
Nörz D, Grottke A, Bach J, Herzberger C, Hofmann BT, Nashan B, Jücker M, Ewald F. Discontinuing MEK inhibitors in tumor cells with an acquired resistance increases migration and invasion. Cell Signal 2015; 27:2191-200. [PMID: 26210887 DOI: 10.1016/j.cellsig.2015.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Development of small molecular inhibitors against BRAF and MEK has been a breakthrough in the treatment of malignant melanoma. However, the long-term effect is foiled in virtually all patients by the emergence of resistant tumor cell populations. Therefore, mechanisms resulting in the acquired resistance against BRAF and MEK inhibitors have gained much attention and several strategies have been proposed to overcome tumor resistance, including interval treatment or withdrawal of these compounds after disease progression. METHODS Using a panel of cell lines with an acquired resistance against MEK inhibitors, we have evaluated the sensitivity of these cells against compounds targeting AKT/mTOR signaling, as well as novel ERK1/2 inhibitors. Furthermore, the effects of withdrawal of MEK inhibitor on migration in resistant cell lines were analyzed. RESULTS We demonstrate that withdrawal of BRAF or MEK inhibitors in tumor cells with an acquired resistance results in reactivation of ERK1/2 signaling and upregulation of EMT-inducing transcription factors, leading to a highly migratory and invasive phenotype of cancer cells. Furthermore, we show that migration in these cells is independent from AKT/mTOR signaling. However, combined targeting of AKT/mTOR using MK-2206 and AZD8055 efficiently inhibits proliferation in all resistant tumor cell lines analyzed. CONCLUSIONS We propose that combined targeting of MEK/AKT/mTOR or treatment with a novel ERK1/2 inhibitor downstream of BRAF/MEK suppresses proliferation as well as migration and invasion in resistant tumor cells. We provide a rationale against the discontinuation of BRAF or MEK inhibitors in patients with an acquired resistance, and provide a rationale for combined targeting of AKT/mTOR and MEK/ERK1/2, or direct targeting of ERK1/2 as an effective treatment strategy.
Collapse
Affiliation(s)
- Dominik Nörz
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Germany.
| | - Astrid Grottke
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Germany.
| | - Johanna Bach
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Germany.
| | - Christiane Herzberger
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Germany.
| | - Bianca T Hofmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany.
| | - Bjorn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse52, 20246 Hamburg, Germany.
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Germany.
| | - Florian Ewald
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse52, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Wang Y, Chen Y, Wu M, Lan T, Wu Y, Li Y, Qian H. Type II cyclic guanosine monophosphate-dependent protein kinase inhibits Rac1 activation in gastric cancer cells. Oncol Lett 2015; 10:502-508. [PMID: 26171059 DOI: 10.3892/ol.2015.3173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
Enhanced motility of cancer cells is a critical step in promoting tumor metastasis, which remains the major cause of gastric cancer-associated mortality. The small GTPase Rac1 is a key signaling component in the regulation of cell migration. Previous studies have demonstrated that Rac1 activity may be regulated by protein kinase G (PKG); however, the underlying mechanism is not yet clear. The current study aimed to investigate the effect of type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) on Rac1 activity. The human gastric cancer cell line AGS was infected with adenoviral constructs encoding PKG II to increase the expression of this enzyme, and treated with a cGMP analog (8-pCPT-cGMP) to induce its activation. A Transwell assay was employed to measure cell migration, and the activity of Rac1 was assessed using a pull-down assay. Immunoprecipitation was used to isolate the Rac1 protein. Phosphorylation of phosphatidylinositol 4,5 bisphosphate 3 kinase (PI3K) and its downstream effecter protein kinase B (Akt) are associated with lysophosphatidic acid (LPA)-induced motility/migration of cancer cells. Extracellular signal regulated kinase (ERK) is the major signaling molecule of the Mitogen activated protein kinase (MAPK) mediated signaling pathway. ERK and its upstream activator MAPK kinase (MEK) are also involved in LPA-induced motility/migration of cancer cells. Phosphorylation of PI3K/Akt, MEK/ERK and enriched Rac1 were detected by western blotting. The results revealed that blocking the activation of Rac1 by ectopically expressing an inactive Rac1 mutant (T17N) impeded LPA-induced cell migration. Increased PKG II activity inhibited LPA-induced migration and LPA-induced activation of Rac1; however, it had no effect on the phosphorylation of Rac1. PKG II also inhibited the activation of PI3K/Akt and MEK/ERK mediated signaling, which is important for LPA-induced Rac1 activation. These results suggest that PKG II affects LPA-stimulated migration of AGS cells by blocking Rac1 activation, via inhibition of PI3K/Akt and MEK/ERK mediated signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Min Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Lan
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yueying Li
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
17
|
Mar VJ, Wong SQ, Logan A, Nguyen T, Cebon J, Kelly JW, Wolfe R, Dobrovic A, McLean C, McArthur GA. Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma. Pigment Cell Melanoma Res 2014; 27:1117-25. [PMID: 25043693 DOI: 10.1111/pcmr.12295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/16/2014] [Indexed: 01/12/2023]
Abstract
Activating mutations in the GTPase RAC1 are a recurrent event in cutaneous melanoma. We investigated the clinical and pathological associations of RAC1(P29S) in a cohort of 814 primary cutaneous melanomas with known BRAF and NRAS mutation status. The RAC1(P29S) mutation had a prevalence of 3.3% and was associated with increased thickness (OR=1.6 P = 0.001), increased mitotic rate (OR=1.3 P = 0.03), ulceration (OR=2.4 P = 0.04), nodular subtype (OR=3.4 P = 0.004), and nodal disease at diagnosis (OR=3.3 P = 0.006). BRAF mutant tumors were also associated with nodal metastases (OR=1.9 P = 0.004), despite being thinner at diagnosis than BRAF WT (median 1.2 mm versus 1.6 mm, P < 0.001). Immunohistochemical analysis of 51 melanomas revealed that 47% were immunoreactive for RAC1. Melanomas were more likely to show RAC1 immunoreactivity if they were BRAF mutant (OR=5.2 P = 0.01). RAC1 may therefore be important in regulating the early migration of BRAF mutant tumors. RAC1 mutations are infrequent in primary melanomas but may accelerate disease progression.
Collapse
Affiliation(s)
- Victoria J Mar
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic., Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yen JH, Yang DJ, Chen MC, Yi-Ying W, Hsieh YF, Cheng YM, Huang WN, Szondy Z, Tsay GJ. Daidzein enhances efferocytosis via transglutaminase 2 and augmentation of Rac1 activity. Mol Immunol 2014; 60:135-42. [PMID: 24859791 DOI: 10.1016/j.molimm.2014.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
Clearance of apoptotic cells, termed "efferocytosis", is the mechanism required to prevent secondary necrosis and release of proinflammatory cytokines. Defective efferocytosis is cumulatively regarded as one of mechanisms in the development of autoimmune and chronic inflammatory diseases. Our previous finding showed that ethanolic extract from Glycine tomentella Hayata (GTH) can enhance mouse macrophage RAW264.7 efferocytosis (clearance of apoptotic cells). We have demonstrated that the major components of GTH are daidzein, catechin, epicatechin and naringin. Here, we explore the potential of each component in modulating efferocytic capability. For this, RAW264.7 cells were cultured with CFDA-stained apoptotic cells and assayed by flow cytometry. We found that daidzein is the main component of GTH, and it can enhance RAW264.7 efferocytosis dose-dependently. Moreover, the enhancive effect of daidzein on macrophage efferocytic capability is accompanied by increased transglutaminase 2 (TG2) at both mRNA and protein levels. TG2 knockdown attenuated daidzein increased macrophage efferocytic capability. After treatment with daidzein, increased phosphorylation was observed in Erk, but not in p38 and JNK. Finally, we report that after daidzein treatment, Rac1 activity was markedly increased and the mitochondrial membrane potential was decreased, which may contribute to efferocytosis. Taken together, these data suggest that enhancement of macrophage efferocytic capability by daidzein treatment was mainly through up-regulation of TG2 expression and Rac1 activity. Daidzein may have the therapeutical potential in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Hau Yen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Deng-Jye Yang
- School of Health Diet and Industry Management, Chung Shan Medical University, Taichung, Taiwan
| | | | - Wu Yi-Ying
- Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-Fan Hsieh
- Institute of Microbiology and Immunology, Taiwan
| | | | - Wen-Nan Huang
- Department of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taiwan
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Gregory J Tsay
- Institute of Microbiology and Immunology, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
19
|
Abstract
Dormant carcinoma cancer cells showing epithelial characteristics can be activated to dissipate into the surrounding tissue or organs through epithelial-mesenchymal transition (EMT). However, the molecular details underlying the activation of dormant cancer cells have been less explored. In this study, we examined the molecular pathway to activate dormant breast cancer cells. Rho-associated kinase (ROCK) inhibition disrupted cell junction, promoted cell proliferation and migration / invasion in both two-dimensional and three-dimensional substrates. The disintegration of cell junction upon ROCK inhibition, coupled with the loss of E-cadherin and b-catenin from the cell membrane, was associated with the activation of Rac1 upon ROCK inhibition. Migration / invasion also increased upon ROCK inhibition. However, the activation of MCF-7 cells upon ROCK inhibition was not associated with the up-regulation of typical EMT markers, such as snail and slug. Based on these results, we suggest the potential risk for dormant cancer cells to dissipate through non-typical EMT when ROCK activity is down-regulated.
Collapse
Affiliation(s)
- Seungwon Yang
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Man Kim
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Wang F, Chang Z, Fan Q, Wang L. Epigallocatechin‑3‑gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase‑2. Mol Med Rep 2014; 9:1085-9. [PMID: 24452912 DOI: 10.3892/mmr.2014.1909] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/20/2014] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG), a major catechin in green tea, has recently been reported to exhibit anticancer effects on a number of types of cancer cells in vitro; however, the molecular mechanisms of this anticancer effect remain poorly understood. In the current study, the effects of EGCG on the proliferation and migration of the OVCAR‑3 human ovarian carcinoma cell line were investigated. Cells were treated with EGCG and their proliferation rates were determined by an MTT assay. In addition, cell migration was detected by transwell assay. The activity of mitogen‑activated protein kinases (MAPKs) and the expression of matrix metalloproteinase‑2/9 (MMP‑2/9) were examined by western blotting. The results showed that EGCG significantly inhibited (P<0.05) the proliferation of OVCAR‑3 cells in a time‑ and concentration‑dependent manner. EGCG (100 µM) time‑dependently increased (P<0.05) the activity of p38, but not extracellular signal‑regulated kinases 1/2. SB203580, a specific p38 MAPK inhibitor, completely diminished EGCG‑induced phosphorylation of p38 and partially blocked EGCG‑inhibited OVCAR‑3 cell proliferation. Furthermore, EGCG (0‑100 µM) dose‑dependently inhibited (P<0.05) OVCAR‑3 cell migration. The protein expression levels of MPP‑2, but not MMP‑9, were dose‑dependently decreased following treatment with EGCG (0‑100 µM) for 48 h. These data indicated that EGCG inhibited OVCAR‑3 cell proliferation and migration, potentially mediated via the activation of p38 MAPK and downregulation of the protein expression of MMP2. Thus, the therapeutic potential of EGCG for ovarian cancer requires further investigation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
21
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
22
|
Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol 2013; 15:1042-57. [PMID: 23279089 PMCID: PMC5584544 DOI: 10.1111/cmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.
Collapse
Affiliation(s)
- Vonetta L. Edwards
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Valerie Dawson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
23
|
Song S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, Driever W. Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell 2013; 24:486-501. [PMID: 23484854 DOI: 10.1016/j.devcel.2013.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 01/19/2013] [Indexed: 01/05/2023]
Abstract
Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that, in zebrafish maternal and zygotic (MZ)spg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cadherin (E-cad) endosomal trafficking, and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGF receptor may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other.
Collapse
Affiliation(s)
- Sungmin Song
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
PKG II inhibits EGF/EGFR-induced migration of gastric cancer cells. PLoS One 2013; 8:e61674. [PMID: 23613900 PMCID: PMC3627897 DOI: 10.1371/journal.pone.0061674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 03/12/2013] [Indexed: 01/04/2023] Open
Abstract
Background Our previous research results showed that Type II cGMP dependent protein kinase (PKG II) could block the activation of epidermal growth factor receptor (EGFR) and consequently inhibit the proliferation and the related MAPK/ERK-mediated signal transduction of gastric cancer cell line BGC-823, suggesting that PKG II might inhibit other EGFR-triggered signal transduction pathways and related biological activities of gastric cancer cells. This paper was designed to investigate the potential inhibition of PKG II on EGF/EGFR-induced migration activity and the related signal transduction pathways. Methodology/Principal Findings In gastric cancer cell line AGS, expression and activity of PKG II were increased by infecting the cells with adenoviral construct encoding PKG II cDNA (Ad-PKG II) and treating the cells with cGMP analogue 8-pCPT-cGMP. Phosphorylation of proteins was detected by Western Blotting and active small G protein Ras and Rac1 was measured by “Pull-down” method. Cell migration activity was detected with trans-well equipment. Binding between PKG II and EGFR was detected with Co-IP. The results showed EGF stimulated migration of AGS cell and the effect was related to PLCγ1 and ERK-mediated signal transduction pathways. PKG II inhibited EGF-induced migration activity and blocked EGF-initiated signal transduction of PLCγ1 and MAPK/ERK-mediated pathways through preventing EGF-induced Tyr 992 and Tyr 1068 phosphorylation of EGFR. PKG II bound with EGFR and caused threonine phosphorylation of it. Conclusion/Significance Our results systemically confirms the inhibition of PKG II on EGF-induced migration and related signal transduction of PLCγ1 and MAPK/ERK-mediated pathways, indicating that PKG II has a fargoing inhibition on EGF/EGFR related signal transduction and biological activities of gastric cancer cells through phosphorylating EGFR and blocking the activation of it.
Collapse
|
25
|
Abstract
The ability of cells to invade into the dermis is a critical event in the development of cutaneous melanoma and ultimately an indicator of poor prognosis. However, the molecular events surrounding the acquisition of this invasive phenotype remain incompletely understood. Mutations in B-RAF are frequent in melanoma and are known to regulate the invasive phenotype. In this study, we sought to determine the molecular mechanisms controlling melanoma invasion. We found that mutant B-RAF signaling regulates a cadherin switch. In melanoma cells expressing mutant B-RAF we observed high levels of N-cadherin and low levels of E-cadherin. Depletion of mutant B-RAF, by siRNA, caused a decrease in the levels of N-cadherin and an increase in the levels of E-cadherin. Mechanistically, we found that this cadherin switch required the activity of Rac1 and its GEF, Tiam1, both of which show suppressed activity in the presence of mutant B-RAF. Consistent with the work of others, we found that depletion of mutant B-RAF decreased the invasive capacity of the melanoma cells. However, simultaneous depletion of B-RAF and Rac or Tiam1 resulted in invasive capacity similar to that of control cells. Taken together, our results suggest that mutant B-RAF signaling downregulates Tiam1/Rac activity resulting in an increase in N-cadherin levels and a decrease in E-cadherin levels and ultimately enhanced invasion.
Collapse
|
26
|
Zhang LJ, Tao BB, Wang MJ, Jin HM, Zhu YC. PI3K p110α isoform-dependent Rho GTPase Rac1 activation mediates H2S-promoted endothelial cell migration via actin cytoskeleton reorganization. PLoS One 2012; 7:e44590. [PMID: 22970259 PMCID: PMC3436785 DOI: 10.1371/journal.pone.0044590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H(2)S) is now considered as the third gaseotransmitter, however, the signaling pathways that modulate the biomedical effect of H(2)S on endothelial cells are poorly defined. In the present study, we found in human endothelial cells that H(2)S increased cell migration rates and induced a marked reorganization of the actin cytoskeleton, which was prevented by depletion of Rac1. Pharmacologic inhibiting vascular endothelial growth factor receptor (VEGFR) and phosphoinositide 3-kinase (PI3K) both blunted the activation of Rac1 and the promotion of cell migration induced by H(2)S. Moreover, H(2)S-induced Rac1 activation was selectively dependent on the presence of the PI3K p110α isoform. Activated Rac1 by H(2)S thus in turn resulted in the phosphorylation of the F-actin polymerization modulator, cofilin. Additionally, inhibiting of extracellular signal-regulated kinase (ERK) decreased the augmented cell migration rate by H(2)S, but had no effect on Rac1 activation. These results indicate that Rac1 conveys the H(2)S signal to microfilaments inducing rearrangements of actin cytoskeleton that regulates cell migration. VEGFR-PI3K was found to be upstream pathway of Rac1, while cofilin acted as a downstream effector of Rac1. ERK was also shown to be involved in the action of H(2)S on endothelial cell migration, but independently of Rac1.
Collapse
Affiliation(s)
- Li-Jia Zhang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Bei-Bei Tao
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming-Jie Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Hui-Ming Jin
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
- * E-mail:
| |
Collapse
|
27
|
Xu B, Chelikani P, Bhullar RP. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase. PLoS One 2012; 7:e42975. [PMID: 22905193 PMCID: PMC3419704 DOI: 10.1371/journal.pone.0042975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 07/16/2012] [Indexed: 02/04/2023] Open
Abstract
Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s) in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151–164 in Rac1 is essential for calmodulin binding. Within the 151–164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A) demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A), activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.
Collapse
Affiliation(s)
- Bing Xu
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Prashen Chelikani
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rajinder P. Bhullar
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
28
|
Hu Z, Du J, Yang L, Zhu Y, Yang Y, Zheng D, Someya A, Gu L, Lu X. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells. PLoS One 2012; 7:e38777. [PMID: 22701712 PMCID: PMC3372492 DOI: 10.1371/journal.pone.0038777] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/10/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Epidermal growth factor (EGF) signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH) domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N) also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.
Collapse
Affiliation(s)
- ZhenZhen Hu
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Suzhou University, Suzhou, China
| | - YiChao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu Yang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - DaTong Zheng
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University School of Medicine, Tokyo, Japan
| | - Luo Gu
- Cancer Center, Nanjing Medical University, Nanjing, China
- * E-mail: (LG); (XL)
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (LG); (XL)
| |
Collapse
|
29
|
Ray RM, Li C, Bhattacharya S, Naren AP, Johnson LR. Spermine, a molecular switch regulating EGFR, integrin β3, Src, and FAK scaffolding. Cell Signal 2012; 24:931-942. [PMID: 22227249 PMCID: PMC3334284 DOI: 10.1016/j.cellsig.2011.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 12/21/2022]
Abstract
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, The University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
30
|
Tang FY, Pai MH, Chiang EPI. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model. J Nutr Biochem 2012; 23:1302-13. [PMID: 22221675 DOI: 10.1016/j.jnutbio.2011.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/09/2011] [Accepted: 07/27/2011] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies suggest that intake of high-fat diet (HFD) promotes colon carcinogenesis. Epithelial-mesenchymal transition (EMT) and inflammation play important roles during tumor progression of colorectal cancer (CRC). Oncogenic pathways such as phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK)/ERK signaling cascades induce EMT and inflammation in cancer. No experimental evidence has been demonstrated regarding HFD-mediated tumor progression including EMT in CRC so far. Our results demonstrated that HFD consumption could induce tumor growth and progression, including EMT and inflammation, in a mouse xenograft tumor model. The molecular mechanisms were through activation of MAPK/ERK and PI3K/Akt/mTOR signaling pathways. HFD induced up-regulation of cyclooxygenase-2, cyclin D1 and proliferating cell nuclear antigen proteins concomitant with increases in expression of nuclear factor-κB p65 (RelA) and β-catenin proteins. Surprisingly, HFD consumption could suppress p21(CIP1/WAF1) expression through increases in nuclear histone deacetylase complex (HDAC). Moreover, HFD could mediate the disassembly of E-cadherin adherent complex and the up-regulation of Vimentin and N-cadherin proteins in tumor tissues. Taken together, our novel findings support evidence for HFD-mediated modulation of HDAC activity and activation of oncogenic cascades, which involve EMT and inflammation in CRC, playing important roles in tumor growth and progression in a mouse xenograft model.
Collapse
Affiliation(s)
- Feng-Yao Tang
- Department of Nutrition, Biomedical Science Laboratory, China Medical University, Taichung 40402, Taiwan.
| | | | | |
Collapse
|
31
|
Valderrama F, Thevapala S, Ridley AJ. Radixin regulates cell migration and cell-cell adhesion through Rac1. J Cell Sci 2012; 125:3310-9. [DOI: 10.1242/jcs.094383] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ERM proteins ezrin, radixin and moesin are adaptor proteins that link plasma membrane receptors to the actin cytoskeleton. Ezrin and moesin have been implicated in cell polarization and cell migration, but little is known about the involvement of radixin in these processes. Here we show that radixin is required for migration of PC3 prostate cancer cells, and that radixin, but not ezrin or moesin, depletion by RNAi increases cell spread area and cell-cell adhesion mediated by adherens junctions. Radixin depletion also alters actin organization and distribution of active phosphorylated ezrin and moesin. Similar effects were observed in MDA-MB-231 breast cancer cells. The phenotype of radixin-depleted cells is similar to that induced by constitutively active Rac1, and Rac1 is required for the radixin knockdown phenotype. Radixin depletion also increases the activity of Rac1 but not Cdc42 or RhoA. Analysis of Rac guanine nucleotide exchange factors (GEFs) suggests that radixin affects the activity of Vav GEFs. Indeed, Vav GEF depletion reverts the phenotype of radixin knockdown and reduces the effect of radixin knockdown on Rac1 activity. Our results indicate that radixin plays an important role in promoting cell migration by regulating Rac1-mediated epithelial polarity and formation of adherens junctions through Vav GEFs.
Collapse
|
32
|
Kim DY, Yang WM. Panax ginseng ameliorates airway inflammation in an ovalbumin-sensitized mouse allergic asthma model. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:230-235. [PMID: 21549818 DOI: 10.1016/j.jep.2011.04.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/11/2011] [Accepted: 04/20/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (PG) is a medicinal herb that has been used to treat various immune diseases including asthma and COPD. In this study, we investigated the inhibitory mechanism of PG on asthma parameters in mice. MATERIALS AND METHODS BALB/c mice were sensitized with 20 μg/200 μl OVA adsorbed on 1.0mg/50 μl aluminum hydroxide gel adjuvant by i.p. injection on days 0 and 14. Mice were then challenged with 5% OVA in PBS to the nose for 30 min once a day for 3 days, from day 20 until day 22, using a nebulizer. PG (20mg/kg) or vehicle was administrated by i.p. injection once a day 10 min before every OVA challenge for 3 days. The recruitment of inflammatory cells into bronchoalveolar lavage fluid or lung tissues was measured. The expression of EMBP, Muc5ac, CD40, and CD40 ligand (CD40L) in lung tissues was investigated. In addition, the cytokines and mitogen activated protein (MAP) kinases were measured by RT-PCR and Western blot. RESULTS AND CONCLUSIONS PG restored the expression of EMBP, Muc5ac, CD40, and CD40L, as well as the mRNA and protein levels of interleukin (IL)-1β, IL-4, IL-5, and tumor necrosis factor (TNF)-α. In addition, PG inhibited the numbers of goblet cells and further small G proteins and MAP kinases in bronchoalveolar lavage cells and lung tissues increased in ovalbumin-induced allergic asthma in mice. These results suggest that PG may be used as a therapeutic agent in asthma, based on reductions of various allergic responses.
Collapse
Affiliation(s)
- Dae Yong Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
33
|
Acetylbritannilactone induces G1 arrest and apoptosis in vascular smooth muscle cells. Int J Cardiol 2011; 149:30-8. [DOI: 10.1016/j.ijcard.2009.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/01/2009] [Accepted: 11/29/2009] [Indexed: 11/19/2022]
|
34
|
Reduction of the putative CD44+CD24- breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anticancer Drugs 2011; 21:897-906. [PMID: 20838207 DOI: 10.1097/cad.0b013e32833f2f77] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are considered to be of particular concern in cancer as they possess inherent properties of self-renewal and differentiation, along with expressing certain genes related to a mesenchymal phenotype. These features favour the promotion of tumour recurrence and metastasis in cancer patients. Thus, the optimal chemotherapeutic treatment should target the CSC population, either by killing these cells and/or by inducing their transition to a more differentiated epithelial-like phenotype. Experiments were carried out on the trastuzumab-resistant human epidermal growth factor receptor 2-overexpressing breast cancer cell line JIMT-1 to unravel the chemotherapeutic effects of the polyamine analogue [1N,12N]bis(ethyl)-cis-6,7-dehydrospermine (PG11047) and of the polyamine biosynthetic inhibitor 2-difluoromethylornithine (DFMO) on the CD44+CD24- CSC population. Furthermore, effects on the properties of self-renewal and epithelial/mesenchymal markers were also investigated. Treatment with PG11047 reduced the CD44+CD24- subpopulation of JIMT-1 cells by approximately 50%, inhibited and/or reduced self-renewal capability of the CSC population, decreased cell motility and induced expression of mesenchymal to epithelial transition-associated proteins that are involved in promoting an epithelial phenotype. By contrast, DFMO slightly increased the CD44+CD24- subpopulation, increased cell motility and the level of mesenchymal-related proteins. DFMO treatment reduced the self-renewal capability of the CSC population. Both PG11047 and DFMO reduced the expression of the human epidermal growth factor receptor 2 protein, which is correlated to malignancy and resistance to trastuzumab in JIMT-1 cells. Our findings indicate that treatment with PG11047 targeted the CSC population by interfering with several stem cell-related properties, such as self-renewal, differentiation, motility and the mesenchymal phenotype.
Collapse
|
35
|
p21-Activated kinases are required for transformation in a cell-based model of neurofibromatosis type 2. PLoS One 2010; 5:e13791. [PMID: 21072183 PMCID: PMC2970553 DOI: 10.1371/journal.pone.0013791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/11/2010] [Indexed: 12/25/2022] Open
Abstract
Background NF2 is an autosomal dominant disease characterized by development of bilateral vestibular schwannomas and other benign tumors in central nervous system. Loss of the NF2 gene product, Merlin, leads to aberrant Schwann cell proliferation, motility, and survival, but the mechanisms by which this tumor suppressor functions remain unclear. One well-defined target of Merlin is the group I family of p21-activated kinases, which are allosterically inhibited by Merlin and which, when activated, stimulate cell cycle progression, motility, and increased survival. Here, we examine the effect of Pak inhibition on cells with diminished Merlin function. Methodology/Principal Findings Using a specific peptide inhibitor of group I Paks, we show that loss of Pak activity restores normal cell movement in cells lacking Merlin function. In addition, xenografts of such cells form fewer and smaller tumors than do cells without Pak inhibition. However, in tumors, loss of Pak activity does not reduce Erk or Akt activity, two signaling proteins that are thought to mediate Pak function in growth factor pathways. Conclusions/Significance These results suggest that Pak functions in novel signaling pathways in NF2, and may serve as a useful therapeutic target in this disease.
Collapse
|
36
|
Elias BC, Bhattacharya S, Ray RM, Johnson LR. Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr 2010; 4:419-30. [PMID: 20448461 DOI: 10.4161/cam.4.3.12043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.
Collapse
Affiliation(s)
- Bertha C Elias
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
37
|
Kim M, Jang HR, Haam K, Kang TW, Kim JH, Kim SY, Noh SM, Song KS, Cho JS, Jeong HY, Kim JC, Yoo HS, Kim YS. Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hypermethylation in gastric cancer. Carcinogenesis 2010; 31:1685-93. [PMID: 20627872 DOI: 10.1093/carcin/bgq144] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Popeye domain-containing (POPDC) genes BVES, POPDC2 and POPDC3 encode proteins that regulate cell-cell adhesion and cell migration during development. Herein, we report the frequent downregulation of BVES and POPDC3 by promoter hypermethylation in gastric cancer. POPDC expression in 11 gastric cancer cell lines and 96 paired gastric tumor and normal adjacent tissues was analyzed with quantitative reverse transcription-polymerase chain reaction. The methylation status of BVES and POPDC3 was analyzed with methylated DNA immunoprecipitation sequencing, bisulfite sequencing and pyrosequencing. Expression of BVES and POPDC3 was downregulated in 73% of the gastric cancer cell lines and in 69% (BVES) and 87% (POPDC3) of the gastric cancer tissues. The BVES and POPDC3 promoter regions were hypermethylated in the gastric cancer cell lines in which they were silenced. Combined treatment with a DNA methylation inhibitor and a histone deacetylase inhibitor strongly induced BVES and POPDC3 expression. BVES and POPDC3 were hypermethylated in 69% (BVES) and 64% (POPDC3) of the gastric cancer tissues. We knocked down POPDC3 expression with short hairpin RNAs and examined the consequences on cell migration and invasion. Knockdown of POPDC3 in SNU-216 cells caused increased cell migration and invasion. Thus, epigenetic inactivation of BVES and POPDC3 occurs frequently in gastric tumors and may promote gastric cancer cell migration and invasion.
Collapse
Affiliation(s)
- Mirang Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea 305-806
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Samson T, Welch C, Monaghan-Benson E, Hahn KM, Burridge K. Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell 2010; 21:1629-42. [PMID: 20237158 PMCID: PMC2861620 DOI: 10.1091/mbc.e09-09-0809] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this article it is shown that EGF stimulation leads to rapid activation of RhoG through Vav GEFs and the GEF PLEKHG6. Importantly, different cellular responses induced by EGF are determined by the available GEFs. Furthermore, this article presents results showing that EGF-stimulated cell migration and EGFR internalization are regulated by RhoG. RhoG is a member of the Rac-like subgroup of Rho GTPases and has been linked to a variety of different cellular functions. Nevertheless, many aspects of RhoG upstream and downstream signaling remain unclear; in particular, few extracellular stimuli that modulate RhoG activity have been identified. Here, we describe that stimulation of epithelial cells with epidermal growth factor leads to strong and rapid activation of RhoG. Importantly, this rapid activation was not observed with other growth factors tested. The kinetics of RhoG activation after epidermal growth factor (EGF) stimulation parallel the previously described Rac1 activation. However, we show that both GTPases are activated independently of one another. Kinase inhibition studies indicate that the rapid activation of RhoG and Rac1 after EGF treatment requires the activity of the EGF receptor kinase, but neither phosphatidylinositol 3-kinase nor Src kinases. By using nucleotide-free RhoG pull-down assays and small interfering RNA-mediated knockdown studies, we further show that guanine-nucleotide exchange factors (GEFs) of the Vav family mediate EGF-induced rapid activation of RhoG. In addition, we found that in certain cell types the recently described RhoG GEF PLEKHG6 can also contribute to the rapid activation of RhoG after EGF stimulation. Finally, we present results that show that RhoG has functions in EGF-stimulated cell migration and in regulating EGF receptor internalization.
Collapse
Affiliation(s)
- Thomas Samson
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
39
|
Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. ACTA ACUST UNITED AC 2010; 188:547-63. [PMID: 20156964 PMCID: PMC2828922 DOI: 10.1083/jcb.200908086] [Citation(s) in RCA: 697] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inhibitors of Na+/H+ exchange proteins block macropinocytosis by lowering the pH near the plasma membrane, which in turn inhibits actin remodeling by Rho family GTPases. Macropinocytosis is differentiated from other types of endocytosis by its unique susceptibility to inhibitors of Na+/H+ exchange. Yet, the functional relationship between Na+/H+ exchange and macropinosome formation remains obscure. In A431 cells, stimulation by EGF simultaneously activated macropinocytosis and Na+/H+ exchange, elevating cytosolic pH and stimulating Na+ influx. Remarkably, although inhibition of Na+/H+ exchange by amiloride or HOE-694 obliterated macropinocytosis, neither cytosolic alkalinization nor Na+ influx were required. Instead, using novel probes of submembranous pH, we detected the accumulation of metabolically generated acid at sites of macropinocytosis, an effect counteracted by Na+/H+ exchange and greatly magnified when amiloride or HOE-694 were present. The acidification observed in the presence of the inhibitors did not alter receptor engagement or phosphorylation, nor did it significantly depress phosphatidylinositol-3-kinase stimulation. However, activation of the GTPases that promote actin remodelling was found to be exquisitely sensitive to the submembranous pH. This sensitivity confers to macropinocytosis its unique susceptibility to inhibitors of Na+/H+ exchange.
Collapse
Affiliation(s)
- Mirkka Koivusalo
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fujita T, Kishimoto A, Shiba H, Hayashida K, Kajiya M, Uchida Y, Matsuda S, Takeda K, Ouhara K, Kawaguchi H, Abiko Y, Kurihara H. Irsogladine maleate regulates neutrophil migration and E-cadherin expression in gingival epithelium stimulated by Aggregatibacter actinomycetemcomitans. Biochem Pharmacol 2010; 79:1496-505. [PMID: 20096665 DOI: 10.1016/j.bcp.2010.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 02/05/2023]
Abstract
Irsogladine maleate (IM) counters Aggregatibacter actinomycetemcomitans-induced reduction of the gap junction intercellular communication and the expression of zonula occludens-1, which is a major tight junction structured protein, in cultured human gingival epithelial cells (HGEC). In addition, IM obviates the A. actinomycetemcomitans-induced increase in interleukin (IL)-8 levels in HGEC. Thus, by regulating the intercellular junctional complex and chemokine secretion in HGEC, IM may be useful to prevent periodontal disease. To clarify the effects and regulatory mechanism of IM in vivo and in vitro, we examined the expression of E-cadherin and neutrophil chemotaxis induced by A. actinomycetemcomitans under IM pretreatment. Immunohistochemical studies revealed that A. actinomycetemcomitans application to the gingival sulcus decreased the number of cells positive for E-cadherin and increased those positive for cytokine-induced neutrophil chemoattractant-2alpha (CINC-2alpha) in rat gingival epithelium. However, in IM-pretreated rats, A. actinomycetemcomitans application had little effect on CINC-2alpha and E-cadherin in gingival epithelium. In cultured HGEC, real-time PCR and Western blotting showed that IM and the ERK inhibitor PD98059 abolished the A. actinomycetemcomitans-induced increase in CXCL-1 and IL-8 in HGEC. On the other hand, IM, PD98059, and the p38 MAP kinase inhibitor SB203580 recovered the decrease in E-cadherin expression. In addition, conditioned medium from A. actinomycetemcomitans-stimulated HGEC enhanced human neutrophil chemotaxis, compared to that from un-stimulated HGEC or that from A. actinomycetemcomitans-stimulated HGEC under IM pretreatment. Furthermore, IM down-regulated the p38 MAP kinase and ERK phosphorylations induced by A. actinomycetemcomitans. In conclusion, IM may control A. actinomycetemcomitans-induced gingival inflammation by regulating neutrophil migration and E-cadherin expression in gingival epithelium.
Collapse
Affiliation(s)
- Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
S-Allylcysteine modulates the expression of E-cadherin and inhibits the malignant progression of human oral cancer. J Nutr Biochem 2009; 20:1013-20. [DOI: 10.1016/j.jnutbio.2008.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 09/24/2008] [Accepted: 09/30/2008] [Indexed: 01/11/2023]
|
42
|
Wang SY, Wang K, Xin Y, Lv DC. Maggot excretions/secretions induces human microvascular endothelial cell migration through AKT1. Mol Biol Rep 2009; 37:2719-25. [PMID: 19757167 DOI: 10.1007/s11033-009-9806-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 09/02/2009] [Indexed: 12/21/2022]
Abstract
Maggot therapy is a simple and highly successful method for healing of infected and necrotic wounds. The increasing evidences indicate that Maggot excretions/secretions (ES) plays important roles in the wounds healing process. But the precise molecular mechanisms remain undefined. Herein, we investigated if ES induced cell migration during wound healing process using microvascular endothelial cells (HMEC-1) as model, and this effect was associated with the activation of AKT1 and ERK1/2. Wound healing and transwell migration assays were performed to study the effects of ES on HMEC-1 cell migration. Our data showed that ES significantly induced HMEC-1 cell migration in both wound healing and transwell assays, and time-dependently (P < 0.05) activated AKT1, but not ERK1/2. Moreover LY294002 (a PI3K inhibitor) partially attenuated (P < 0.05) ES-induced cell migration in wound healing assay while completely inhibited (P < 0.05) ES-induced AKT1 activation. These findings demonstrate that ES directly induces HMEC-1 cell migration and this event is partially mediated by the activation of AKT1.
Collapse
Affiliation(s)
- Shou-yu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, 222 Zhong Shan Road, 116011, Dalian, Liaoning, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Westhoff MA, Fulda S. Adhesion-mediated apoptosis resistance in cancer. Drug Resist Updat 2009; 12:127-36. [PMID: 19726220 DOI: 10.1016/j.drup.2009.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/14/2009] [Accepted: 08/03/2009] [Indexed: 01/06/2023]
Abstract
Adhesion-mediated apoptosis resistance (AMAR) is an emerging concept that may explain the observed differences in survival between cells within the three-dimensional structure of a tumor and the standard monolayer culture conditions in the laboratory. Not only the cancer cells' motility and invasiveness are different in a three-dimensional tumor, but - crucially - the cells' sensitivity towards apoptosis, a form of programmed cell death, varies widely between the in vivo and in vitro situation. Tumor cells interacting either with a specific extracellular matrix protein substrate or with each other or with non-transformed cells, such as fibroblasts, exhibit increased resistance towards a wide variety of therapeutic approaches. In this review we discuss the molecular basis of these interactions and the main downstream effectors that are involved in the enhancement of the tumor cells' survival. In particular, we show that the pathways activated by adhesion are not unique, but involve the MAPK/ERK and PI3K/Akt pathways, which are reused between different forms of AMAR and are also found in adhesion-independent modes of resistance. Thus, the tools to overcome AMAR are already at our disposal and using them in this novel context of AMAR should lead to significant therapeutic benefit.
Collapse
|
44
|
Restoration of E-cadherin cell-cell junctions requires both expression of E-cadherin and suppression of ERK MAP kinase activation in Ras-transformed breast epithelial cells. Neoplasia 2009; 10:1444-58. [PMID: 19048123 DOI: 10.1593/neo.08968] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/12/2008] [Accepted: 09/19/2008] [Indexed: 12/23/2022] Open
Abstract
E-cadherin is a main component of the cell-cell adhesion junctions that play a principal role in maintaining normal breast epithelial cell morphology. Breast and other cancers that have up-regulated activity of Ras are often found to have down-regulated or mislocalized E-cadherin expression. Disruption of E-cadherin junctions and consequent gain of cell motility contribute to the process known as epithelial-to-mesenchymal transition (EMT). Enforced expression of E-cadherin or inhibition of Ras-signal transduction pathway has been shown to be effective in causing reversion of EMT in several oncogene-transformed and cancer-derived cell lines. In this study, we investigated MCF10A human breast epithelial cells and derivatives that were transformed with either activated H-Ras or N-Ras to test for the reversion of EMT by inhibition of Ras-driven signaling pathways. Our results demonstrated that inhibition of mitogen-activated protein kinase (MAPK) kinase, but not PI3-kinase, Rac, or myosin light chain kinase, was able to completely restore E-cadherin cell-cell junctions and epithelial morphology in cell lines with moderate H-Ras expression. In MCF10A cells transformed by a high-level expression of activated H-Ras or N-Ras, restoration of E-cadherin junction required both the enforced reexpression of E-cadherin and suppression of MAPK kinase. Enforced expression of E-cadherin alone did not induce reversion from the mesenchymal phenotype. Our results suggest that Ras transformation has at least two independent actions to disrupt E-cadherin junctions, with effects to cause both mislocalization of E-cadherin away from the cell surface and profound decrease in the expression of E-cadherin.
Collapse
|
45
|
Kim DY, Park JW, Jeoung D, Ro JY. Celastrol suppresses allergen-induced airway inflammation in a mouse allergic asthma model. Eur J Pharmacol 2009; 612:98-105. [PMID: 19356734 DOI: 10.1016/j.ejphar.2009.03.078] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/15/2008] [Accepted: 03/25/2009] [Indexed: 12/29/2022]
Abstract
Celastrol has anti-inflammatory and immunomodulatory activities, but its anti-allergic effects remain poorly understood. Therefore, we aimed to investigate the ability of celastrol to inhibit asthmatic reactions in a mouse allergic asthma model. BALB/c mice were sensitized and challenged with ovalbumin to induce asthma. We measured the recruitment of inflammatory cells into the bronchoalveolar lavage fluid or lung tissues by Diff-Quik and hematoxylin and eosin staining, respectively, goblet cell hyperplasia by periodic acid-Schiff (PAS) staining, airway hyperresponsiveness by Flexvent system, mRNA and protein expression of cytokines, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) by reverse transcriptase polymerase chain reaction and ELISA, respectively, and the activities of mitogen-activated protein (MAP) kinases and nuclear factor-kappa B (NF-kappaB) in the bronchoalveolar lavage cells and lung tissues by Western blot and electrophoretic mobility shift assay (EMSA), respectively. Celastrol reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid and in peribronchial areas, and decreased the airway hyperresponsiveness, mRNA and protein expression levels for inflammatory cytokines such as interleukin (IL)-4, IL-13, TNF-alpha and IFN-gamma, and for MMPs and TIMPs, MAP kinases and NF-kappaB activities in the bronchoalveolar lavage cells and in the lung tissues increased in ovalbumin-induced allergic asthma in mice. Our data suggest that oral administration of celastrol suppresses ovalbumin-induced airway inflammation, hyperresponsiveness, and tissue remodeling by regulating the imbalance of MMP-2/-9 and TIMP-1/-2 by inflammatory cytokines via MAP kinases/NF-kappaB in inflammatory cells. Based on our findings, we suggest that celastrol may be used as a therapeutic agent for allergy-induced asthma.
Collapse
Affiliation(s)
- Dae Yong Kim
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Kalantari F, Auguste P, Ziafazeli T, Tzimas G, Malmström L, Bioulac-Sage P, Boismenu D, Vali H, Chevet E. Proteomics analysis of liver pathological calcification suggests a role for the IQ motif containing GTPase activating protein 1 in myofibroblast function. Proteomics Clin Appl 2009; 3:307-21. [PMID: 26238749 DOI: 10.1002/prca.200780133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Indexed: 12/14/2022]
Abstract
To date the cellular and molecular mechanisms by which liver pathological calcifications occur and are regulated are poorly investigated. To study the mechanisms linked to their appearance, we performed a proteomics analysis of calcified liver samples. To this end, human liver biopsies collected in noncalcified (N), precalcified (P), and calcified (C) areas of the liver were subjected to weak ion exchange chromatography, SDS-PAGE, and LC-ESI MS/MS analyses. As we previously demonstrated that alpha-smooth muscle actin (α-SMA) expressing myofibroblasts were involved in liver pathological calcification, we performed a targeted analysis of actin cytoskeleton remodeling-related proteins. This revealed dramatic changes in protein expression patterns in the periphery of the calcified areas. More particularly, we found that IQGAP1 and IQGAP2 proteins were subjected to major expression changes. We show that IQGAP1 expression within P and C areas of the liver correlates with the high abundance of myofibroblasts and that IQGAP1 is specifically expressed in these cells. In addition, we find that IQGAP1 is part of a protein complex including β-catenin and Rac1 mainly in P and C regions of the liver. These results suggest that IQGAP1 may play a critical role in the regulation of cytoskeleton remodeling in liver myofibroblasts in response to liver injury and consequently impact on their function.
Collapse
Affiliation(s)
- Fariba Kalantari
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Patrick Auguste
- Equipe Avenir, INSERM, Bordeaux, France. .,Université Bordeaux 2, Bordeaux, France. .,Université Bordeaux 1, Talence, France.
| | - Tahereh Ziafazeli
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - George Tzimas
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Lars Malmström
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | | | - Daniel Boismenu
- Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. .,Equipe Avenir, INSERM, Bordeaux, France. .,Université Bordeaux 2, Bordeaux, France. .,Department of Surgery, McGill University, Montreal, Quebec, Canada. .,Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA. .,Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
MAPK mediates Hsp25 signaling in incisor development. Histochem Cell Biol 2009; 131:593-603. [DOI: 10.1007/s00418-009-0568-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2009] [Indexed: 12/18/2022]
|
48
|
Cheng N, Chytil A, Shyr Y, Joly A, Moses HL. Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res 2008; 6:1521-33. [PMID: 18922968 DOI: 10.1158/1541-7786.mcr-07-2203] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblasts are major cellular components of the tumor microenvironment, regulating tumor cell behavior in part through secretion of extracellular matrix proteins, growth factors, and angiogenic factors. In previous studies, conditional deletion of the type II transforming growth factor-beta (TGF-beta) receptor in fibroblasts (Tgfbr2FspKO) was shown to promote mammary tumor metastasis in fibroblast-epithelial cell cotransplantation studies in mice, correlating with increased expression of hepatocyte growth factor (HGF). Here, we advance our findings to show that Tgfbr2(FspKO) fibroblasts enhance HGF/c-Met and HGF/Ron signaling to promote scattering and invasion of mammary carcinoma cells. Blockade of c-Met and Ron by small interfering RNA silencing and pharmacologic inhibitors significantly reduced mammary carcinoma cell scattering and invasion caused by Tgfbr2FspKO fibroblasts. Moreover, neutralizing antibodies to c-Met and Ron significantly inhibited HGF-induced cell scattering and invasion, correlating with reduced Stat3 and p42/44MAPK phosphorylation. Investigation of the signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways by pharmacologic inhibition and small interfering RNA silencing revealed a cooperative interaction between the two pathways to regulate HGF-induced invasion, scattering, and motility of mammary tumor cells. Furthermore, whereas c-Met was found to regulate both the Stat3 and MAPK signaling pathways, Ron was found to regulate Stat3 but not MAPK signaling in mammary carcinoma cells. These studies show a tumor-suppressive role for TGF-beta signaling in fibroblasts, in part by suppressing HGF signaling between mammary fibroblasts and epithelial cells. These studies characterize complex functional roles for HGF and TGF-beta signaling in mediating tumor-stromal interactions during mammary tumor cell scattering and invasion, with important implications in the metastatic process.
Collapse
Affiliation(s)
- Nikki Cheng
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-6838, USA.
| | | | | | | | | |
Collapse
|
49
|
Veluthakal R, Madathilparambil SV, McDonald P, Olson LK, Kowluru A. Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells. Biochem Pharmacol 2008; 77:101-13. [PMID: 18930714 DOI: 10.1016/j.bcp.2008.09.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Using various biochemical, pharmacological and molecular biological approaches, we have recently reported regulatory roles for Rac1, a small G-protein, in glucose-stimulated insulin secretion (GSIS). However, little is understood with respect to localization of, and regulation by, specific regulatory factors of Rac1 in GSIS. Herein, we investigated regulatory roles for Tiam1, a specific nucleotide exchange factor (GEF) for Rac1, in GSIS in pancreatic beta-cells. Western blot analysis indicated that Tiam1 is predominantly cytosolic in distribution. NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly attenuated glucose-induced, but not KCl-induced insulin secretion in INS 832/13 cells and normal rat islets. Further, NSC23766 significantly reduced glucose-induced activation (i.e. GTP-bound form) and membrane association of Rac1 in INS 832/13 cells and rat islets. Moreover, siRNA-mediated knock-down of Tiam1 markedly inhibited glucose-induced membrane trafficking and activation of Rac1 in INS 832/13 cells. Interestingly, however, in contrast to the inhibitory effects of NSC23766, Tiam1 gene depletion potentiated GSIS in these cells; such a potentiation of GSIS was sensitive to extracellular calcium. Together, our studies present the first evidence for a regulatory role for Tiam1/Rac1-sensitive signaling step in GSIS. They also provide evidence for the existence of a potential Rac1/Tiam1-independent, but calcium-sensitive component for GSIS in these cells.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | | | | | | | | |
Collapse
|
50
|
Desai LP, Chapman KE, Waters CM. Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1. Am J Physiol Lung Cell Mol Physiol 2008; 295:L958-65. [PMID: 18805958 DOI: 10.1152/ajplung.90218.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation can overdistend the lungs or generate shear forces in them during repetitive opening/closing, contributing to lung injury and inflammation in patients with acute respiratory distress syndrome (ARDS). Repair of the injured lung epithelium is important for restoring normal barrier and lung function. In the current study, we investigated the effects of cyclic mechanical strain (CS), constant distention strain (CD), and simulated positive end-expiratory pressure (PEEP) on activation of Rac1 and wound closure of rat primary alveolar type 2 (AT2) cells. Cyclic stretch inhibited the migration of wounded AT2 cells in a dose-dependent manner with no inhibition occurring with 5% CS, but significant inhibition with 10% and 15% CS. PEEP conditions were investigated by stretching AT2 cells to 15% maximum strain (at a frequency of 10 cycles/min) with relaxation to 10% strain. AT2 cells were also exposed to 20% CD. All three types of mechanical strain inhibited wound closure of AT2 cells compared with static controls. Since lamellipodial extensions in migrating cells at the wound edge were significantly smaller in stretched cells, we measured Rac1 activity and found it to be decreased in stretched cells. We also demonstrate that Tiam1, a Rac1-specific guanine nucleotide exchange factor, was expressed mainly in the cytosol of AT2 cells exposed to mechanical strain compared with membrane localization in static cells. Downregulation of Tiam1 with 100 microM NSC-23766 inhibited activation of Rac1 and migration of AT2 cells, suggesting its involvement in repair mechanisms of AT2 cells subjected to mechanical strain.
Collapse
Affiliation(s)
- Leena P Desai
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|