1
|
Fantacuzzi M, Carradori S, Giampietro L, Maccallini C, De Filippis B, Amoroso R, Ammazzalorso A. A novel life for antitumor combretastatins: Recent developments of hybrids, prodrugs, combination therapies, and antibody-drug conjugates. Eur J Med Chem 2025; 281:117021. [PMID: 39500065 DOI: 10.1016/j.ejmech.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Since their discovery from natural sources, the potent cytotoxic effects of combretastatins were widely studied for the application in antitumor therapy. However, major pharmacokinetic issues as low water solubility and chemical instability of the double bond configuration prevented their use in therapy. A lot of efforts have been directed towards the search of novel strategies, allowing a safer use of combretastatins as anticancer agents. This review analyses the recent landscape in combretastatin research, characterized by the identification of hybrids, prodrugs, and novel combination treatments. Interestingly, the potent cytotoxic agent combretastatin A4 (CA4) was recently proposed as payload in the construction of novel antibody-drug conjugates (ADCs), allowing an efficient targeting of the cytotoxic agent to specific tumors.
Collapse
Affiliation(s)
- Marialuigia Fantacuzzi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
2
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Ramos DO, Crapnell RD, Asra R, Bernalte E, Oliveira ACM, Muñoz RAA, Richter EM, Jones AM, Banks CE. Conductive Polypropylene Additive Manufacturing Feedstock: Application to Aqueous Electroanalysis and Unlocking Nonaqueous Electrochemistry and Electrosynthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39358698 PMCID: PMC11492246 DOI: 10.1021/acsami.4c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Additive manufacturing electrochemistry is an ever-expanding field; however, it is limited to aqueous environments due to the conductive filaments currently available. Herein, the production of a conductive poly(propylene) filament, which unlocks the door to organic electrochemistry and electrosynthesis, is reported. A filament with 40 wt % carbon black possessed enhanced thermal stability, excellent low-temperature flexibility, and high conductivity. The filament produced highly reproducible additive manufactured electrodes that were electrochemically characterized, showing a k0 of 2.00 ± 0.04 × 10-3 cm s-1. This material was then applied to three separate electrochemical applications. First, the electroanalytical sensing of colchicine within environmental waters, where a limit of detection of 10 nM was achieved before being applied to tap, bottled, and river water. Second, the electrodes were stable in organic solvents for 100 cyclic voltammograms and 15 days. Finally, these were applied toward an electrosynthetic reaction of chlorpromazine, where the electrodes were stable for 24-h experiments, outperforming a glassy carbon electrode, and were able to be reused while maintaining a good electrochemical performance. This material can revolutionize the field of additive manufacturing electrochemistry and expand research into a variety of new fields.
Collapse
Affiliation(s)
- David
L. O. Ramos
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Robert D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| | - Ridho Asra
- School
of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Elena Bernalte
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| | - Ana C. M. Oliveira
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Rodrigo A. A. Muñoz
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Eduardo M. Richter
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Alan M. Jones
- School
of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Craig E. Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| |
Collapse
|
4
|
Zhang H, Su X, Gu L, Tan M, Liu Y, Xu K, Ren J, Chen J, Li Z, Cheng S. Colchicine-mediated selective autophagic degradation of HBV core proteins inhibits HBV replication and HBV-related hepatocellular carcinoma progression. Cell Death Discov 2024; 10:352. [PMID: 39107264 PMCID: PMC11303544 DOI: 10.1038/s41420-024-02122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
The HBV core protein (HBc) is an important viral protein of HBV that plays an indispensable role in the lifecycle of HBV, including capsid assembly and transport, reverse transcription and virus release. In recent years, evidence has shown that HBc may be involved in the malignant progression of HCC. Thus, HBc is an attractive target for antiviral agents and provides a new strategy for the treatment of HBV-related HCC. Here, we identified a novel anti-HBc compound-colchicine, an alkaloid compound-that promoted selective autophagic degradation of HBc through the AMPK/mTOR/ULK1 signalling pathway. We further confirmed that colchicine promoted the selective autophagy of HBc by enhancing the binding of HBc to the autophagy receptor p62. Finally, we evaluated the effects of colchicine on HBV replication and HBc-mediated HCC metastasis in vitro and in vivo. Our research indicated that the inhibitory effects of colchicine on HBV and HBV-related HCC depend on the selective autophagic degradation of HBc. Thus, colchicine is not only a promising therapeutic strategy for chronic hepatitis B but also a new treatment for HBV-related HCC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiameng Su
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Leirong Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuting Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhihong Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shengtao Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Zhang N, Tan Z, Wei J, Zhang S, Liu Y, Miao Y, Ding Q, Yi W, Gan M, Li C, Liu B, Wang H, Zheng Z. Identification of novel anti-ZIKV drugs from viral-infection temporal gene expression profiles. Emerg Microbes Infect 2023; 12:2174777. [PMID: 36715162 PMCID: PMC9946313 DOI: 10.1080/22221751.2023.2174777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Zika virus (ZIKV) infections are typically asymptomatic but cause severe neurological complications (e.g. Guillain-Barré syndrome in adults, and microcephaly in newborns). There are currently no specific therapy or vaccine options available to prevent ZIKV infections. Temporal gene expression profiles of ZIKV-infected human brain microvascular endothelial cells (HBMECs) were used in this study to identify genes essential for viral replication. These genes were then used to identify novel anti-ZIKV agents and validated in publicly available data and functional wet-lab experiments. Here, we found that ZIKV effectively evaded activation of immune response-related genes and completely reprogrammed cellular transcriptional architectures. Knockdown of genes, which gradually upregulated during viral infection but showed distinct expression patterns between ZIKV- and mock infection, discovered novel proviral and antiviral factors. One-third of the 74 drugs found through signature-based drug repositioning and cross-reference with the Drug Gene Interaction Database (DGIdb) were known anti-ZIKV agents. In cellular assays, two promising antiviral candidates (Luminespib/NVP-AUY922, L-161982) were found to reduce viral replication without causing cell toxicity. Overall, our time-series transcriptome-based methods offer a novel and feasible strategy for antiviral drug discovery. Our strategies, which combine conventional and data-driven analysis, can be extended for other pathogens causing pandemics in the future.
Collapse
Affiliation(s)
- Nailou Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhongyuan Tan
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Sai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yuanjiu Miao
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qingwen Ding
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wenfu Yi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Min Gan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chunjie Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bin Liu
- Characteristic Medical Center of Chinese People’s Armed Police Forces, Tianjin, People’s Republic of China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China, Zhenhua Zheng CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| |
Collapse
|
6
|
Shchegravina ES, Usova SD, Baev DS, Mozhaitsev ES, Shcherbakov DN, Belenkaya SV, Volosnikova EA, Chirkova VY, Sharlaeva EA, Svirshchevskaya EV, Fonareva IP, Sitdikova AR, Salakhutdinov NF, Yarovaya OI, Fedorov AY. Synthesis of conjugates of (a R,7 S)-colchicine with monoterpenoids and investigation of their biological activity. Russ Chem Bull 2023; 72:248-262. [PMID: 36817557 PMCID: PMC9926439 DOI: 10.1007/s11172-023-3730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/16/2023]
Abstract
Conjugates of the natural alkaloid (aR,7S)-colchicine with bicyclic monoterpenoids and their derivatives were synthesized for the first time. Molecular docking of the synthesized agents in the active site of the main viral protease of the SARS-CoV-2 virus was carried out. The cytotoxic properties of the agents against different cell lines and the ability to inhibit the main viral protease 3CLPro were studied.
Collapse
Affiliation(s)
- E. S. Shchegravina
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - S. D. Usova
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - D. S. Baev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - E. S. Mozhaitsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - D. N. Shcherbakov
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
| | - S. V. Belenkaya
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
- Novosibirsk State University, 1 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - E. A. Volosnikova
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
| | - V. Yu. Chirkova
- Altai State University, 61 Leninsky prosp., 656049 Barnaul, Russian Federation
| | - E. A. Sharlaeva
- Altai State University, 61 Leninsky prosp., 656049 Barnaul, Russian Federation
| | - E. V. Svirshchevskaya
- Department of Immunology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 ul. Miklukho-Maklaya, 117997 Moscow, Russian Federation
| | - I. P. Fonareva
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - A. R. Sitdikova
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - N. F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - O. I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
7
|
Perricone C, Scarsi M, Brucato A, Pisano P, Pigatto E, Becattini C, Cingolani A, Tiso F, Prota R, Tomasoni LR, Cutolo M, Tardella M, Rozza D, Zerbino C, Andreoni M, Poletti V, Bartoloni E, Gerli R. Treatment with COLchicine in hospitalized patients affected by COVID-19: The COLVID-19 trial. Eur J Intern Med 2023; 107:30-36. [PMID: 36396522 PMCID: PMC9618432 DOI: 10.1016/j.ejim.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate whether the addition of colchicine to standard of care (SOC) results in better outcomes in hospitalized patients with COVID-19. DESIGN This interventional, multicenter, randomized, phase 2 study, evaluated colchicine 1.5 mg/day added to SOC in hospitalized COVID-19 patients (COLVID-19 trial) and 227 patients were recruited. The primary outcome was the rate of critical disease in 30 days defined as need of mechanical ventilation, intensive care unit (ICU), or death. RESULTS 152 non-anti-SARS-CoV-2-vaccinated patients (colchicine vs controls: 77vs75, mean age 69.1±13.1 vs 67.9±15 years, 39% vs 33.3% females, respectively) were analyzed. There was no difference in co-primary end-points between patients treated with colchicine compared to controls (mechanical ventilation 5.2% vs 4%, ICU 1.3% vs 5.3%, death 9.1% vs 6.7%, overall 11 (14.3%) vs 10 (13.3%) patients, P=ns, respectively). Mean time to discharge was similar (colchicine vs controls 14.1±10.4 vs 14.7±8.1 days). Older age (>60 years, P=0.025), P/F<275 mmHg (P=0.005), AST>40 U/L (P<0.001), pre-existent heart (P=0.02), lung (P=0.003), upper-gastrointestinal (P=0.014), lower-gastrointestinal diseases (P=0.009) and cancer (P=0.008) were predictive of achieving the primary outcome. Diarrhoea (9.1% vs 0%, p=0.0031) and increased levels of AST at 6 days (76.9±91.8 vs 33.5±20.7 U/l, P=0.016) were more frequent in the colchicine group. CONCLUSION Colchicine did not reduce the rate and the time to the critical stage. Colchicine was relatively safe although adverse hepatic effects require caution. We confirm that older (>60 years) patients with comorbidities are characterized by worse outcome.
Collapse
Affiliation(s)
- Carlo Perricone
- Reumatologia, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | | | - Antonio Brucato
- Università degli Studi di Milano, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paola Pisano
- Asl Cagliari, Dipartimento di Area Medica, Struttura Complessa Medicina Interna, Italy
| | - Erika Pigatto
- Ospedale Classificato Villa Salus, Mestre (VE), Italy
| | - Cecilia Becattini
- Medicina Interna, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | | | - Francesco Tiso
- Medicina d'urgenza, Ospedale Alto Vicentino - AULSS 7 Pedemontana, Santorso (VI), Italy
| | - Roberto Prota
- Azienda Ospedaliera Ordine Mauriziano, Torino, Italy
| | | | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology, Division of Rheumatology, Department of Internal Medicine, University of Genova, IRCCS Polyclinic Hospital San Martino, Genoa, Italy
| | - Marika Tardella
- Ospedale Carlo Urbani - Università Politecnica delle Marche, Ancona, Italy
| | - Davide Rozza
- Centro Studi SIR, Società Italiana di Reumatologia, Milan, Italy
| | | | - Massimo Andreoni
- Malattie Infettive, Dipartimento Processi Assistenziali Integrati, Policlinico Tor Vergata, Rome, Italy
| | - Venerino Poletti
- Dipartimento Toracico, Azienda AUSL Romagna, Ospedale G.B. Morgagni, Forlì, Italy; Department of Respiratory Diseases and Allergy, Aarhus University, Aarhus, Denmark
| | - Elena Bartoloni
- Reumatologia, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Gerli
- Reumatologia, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
8
|
Pu LY, Li Z, Li L, Ma Y, Ma M, Hu S, Wu Z. Asymmetric Synthesis of (–)-Colchicine and Its Natural Analog (–)- N-Acetylcolchicine Methyl Ether. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Mukherjee S, Sharma D, Sharma AK, Jaiswal S, Sharma N, Borah S, Kaur G. Flavan-based phytoconstituents inhibit Mpro, a SARS-COV-2 molecular target, in silico. J Biomol Struct Dyn 2022; 40:11545-11559. [PMID: 34348081 DOI: 10.1080/07391102.2021.1960196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A well-validated in-silico approach can provide promising drug candidates for the treatment of the ongoing CoVID19 pandemic. In this study, we have screened 32 phytochemical constituents (PCCs) with Mpro binding site (PDB:6W63) based on which we identified three possible candidates that are likely to be effective against CoVID19-viz., licoleafol (binding energy: -8.1 kcal/mol), epicatechin gallate (-8.5 kcal/mol) and silibinin (-8.4 kcal/mol) that result in higher binding affinity than the known inhibitor, X77 (-7.7 kcal/mol). Molecular dynamics (MD) simulations of PCCs-Mpro complex confirmed molecular docking results with high structural and dynamical stability. The selected compounds were found to exhibit low mean squared displacements (licoleafol: 2.25 ± 0.43 Å, epicatechin gallate: 1.93 ± 0.35 Å, and silibinin: 1.39 ± 0.19 Å) and overall low fluctuations of the binding complexes (root mean squared fluctuations below 2 Å). Visualization of the MD trajectories and structural analyses revealed that they remain confined to the initial binding region, with mean fluctuations lower than 3 Å. To access the collective motion of the atoms, we performed principal component analysis demonstrating that the first 10 principal components are the major contributors (approximate contribution of 80%) and are responsible for the overall PCCs motion. Considering that the three selected PCCs share the same flavan backbone and exhibit antiviral activity against hepatitis C, we opine that licoleafol, epi-catechin gallate, and silibinin can be promising anti-CoVID19 drug candidates. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soham Mukherjee
- School of Pharmaceutical Sciences, Shoolini University, Solan, India.,Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Deepika Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Ajay Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Shreya Jaiswal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Nancy Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Sangkha Borah
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| |
Collapse
|
10
|
Gorial FI, Maulood MF, Abdulamir AS, Alnuaimi AS, abdulrrazaq MK, Bonyan FA. Randomized controlled trial of colchicine add on to the standard therapy in moderate and severe corona virus Disease-19 infection. Ann Med Surg (Lond) 2022; 77:103593. [PMID: 35432984 PMCID: PMC8994704 DOI: 10.1016/j.amsu.2022.103593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background COVID19 complications cause inflammatory storm. Colchicine is a potent anti-inflammatory medication that has been proposed as a possible treatment option for COVID-19. Objective to assess effectiveness and safety of add on use of colchicine to the standard treatment in moderate and severe COVID-19. Patients and methods In this randomized controlled open label clinical trial, 160 patients hospitalized equally divided between moderate and severe COVID19 categories were randomized to 4 study groups in a 1:1:1:1 allocation (n = 40 for each group) according to type of treatment. Patients were randomly assigned to receive the standard treatment for 14 days (control group) or colchicine add on to the standard treatment 1 mg daily orally for 7 days then 0.5 mg daily for another 7 days. Survival rate, time to cure in days, and side effects were assessed. Results Colchicine add on treatment was associated with a significantly shorter time to cure (referring to start of first symptom) by an average of 5 days in severe disease and 2 days in moderate disease (log-rank P=<0.001). In addition, the Colchicine add on significantly increased the risk of cure per unit of time by 2.69 times compared to controls after adjusting for disease severity, age, and time since the start of the disease to start of treatment. A severe COVID19 disease, a longer time for starting treatment, and the older age notably reduced the risk of cure (HR = 0.72, p = 0.07; HR = 0.74, p < 0.001; and HR = 0.59, p = 0.015 respectively). Possible side effects reported due to colchicine were 8/40 (20%) of severe COVID19 patients and 3/40 (7.5%) of moderate COVID19, non of which warranted stopping treatment by the data monitoring board. Generally, the side effects were 8/11 (72.73%) gastrointestinal disturbances. No immediate or late allergic reactions were observed. Conclusions Colchicine add on treatment reduced significantly time to recovery in severe COVID19 (by five days) and in moderate cases (by two days) but did not lower the death rate. Side effects were mild, well tolerated and confined to gastrointestinal adverse events.
Collapse
Affiliation(s)
- Faiq I. Gorial
- College of Medicine, University of Baghdad, Bab Al-Muadham, Baghdad, Iraq
| | | | | | | | | | - Fadil Agla Bonyan
- Emergency Physician, Director of EMS of Iraq, Emergency Medical Department, Baghdad Teaching Hospital, Iraq
| |
Collapse
|
11
|
Zein AFMZ, Raffaello WM. Effect of colchicine on mortality in patients with COVID-19 - A systematic review and meta-analysis. Diabetes Metab Syndr 2022; 16:102395. [PMID: 35078098 PMCID: PMC8752163 DOI: 10.1016/j.dsx.2022.102395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM This systematic review and meta-analysis aimed to evaluate the latest evidence on the association between colchicine and mortality in patients with COVID-19. METHODS We performed a comprehensive literature search from the PubMed, Scopus, Embase, EuropePMC, and Clinicaltrials.gov up until 02 January 2022. We include randomized controlled trials (RCTs) and observational studies reporting colchicine use in patients with COVID-19 and mortality within 30 days. The intervention group was patients given colchicine during the course of treatment. The control group was patients given placebo or standard of care at the respective institutions. The outcome was mortality. The effect estimate was reported as risk ratio (RR). RESULTS There were 12 studies comprising of 6953 patients included in this meta-analysis. Mortality rate was 0.18 [95%CI 0.10, 0.26] in the colchicine group and 0.26 [95%CI 0.15, 0.38] in the control group. Colchicine was associated with reduction in mortality (RR 0.66 [95%CI 0.53, 0.83], p < 0.001; I2: 42%). Sensitivity analysis using fixed-effect model (RR 0.73 [95%CI 0.63, 0.83], p < 0.001; I2: 42%. Subgroup analysis on the four RCTs showed non-significant result (RR 0.81 [95%CI 0.54, 1.20], p = 0.29; I2: 10%). Meta-regression showed that the association between colchicine and reduced mortality was not affected by age (p = 0.613) [Fig. 3], sex (p = 0.915), diabetes (p = 0.795), and hypertension (p = 0.403). CONCLUSION Though the meta-analysis showed decreased mortality with colchicine in patients with COVID-19, the meta-analysis of randomized trials did not show any significant effect of colchicine on mortality.
Collapse
Affiliation(s)
- Ahmad Fariz Malvi Zamzam Zein
- Department of Internal Medicine, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia; Department of Internal Medicine, Waled General Hospital, Cirebon, Indonesia.
| | | |
Collapse
|
12
|
Pyta K, Skrzypczak N, Ruszkowski P, Bartl F, Przybylski P. Regioselective approach to colchiceine tropolone ring functionalization at C(9) and C(10) yielding new anticancer hybrid derivatives containing heterocyclic structural motifs. J Enzyme Inhib Med Chem 2022; 37:597-605. [PMID: 35067138 PMCID: PMC8788354 DOI: 10.1080/14756366.2022.2028782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The influence of base type, temperature, and solvent on regioselective C(9)/C(10) “click” modifications within the tropolone ring of colchiceine (2) is investigated. New ether derivatives of 2, bearing alkyne, azide, vinyl, or halide aryl groups enable assembly of the alkaloid part with heterocycles or important biomolecules such as saccharides, geldanamycin or AZT into hybrid scaffolds by dipolar cycloaddition (CuAAC) or Heck reaction. Compared to colchicine (1) or colchiceine (2), ether congeners, as e.g. 3e [IC50s(3e) ∼ 0.9 nM], show improved or similar anticancer effects, whereby the bulkiness of the substituents and the substitution pattern of the tropolone proved to be essential. Biological studies reveal that expanding the ether arms by terminal basic heterocycles as quinoline or pyridine, decreases the toxicity in HDF cells at high anticancer potency (IC50s ∼ 1–2 nM). Docking of ether and hybrid derivatives into the colchicine pocket of αGTP/β tubulin dimers reveals a relationship between the favourable binding mode and the attractive anticancer potency.
Collapse
Affiliation(s)
- Krystian Pyta
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultät, Institut für Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin Invalidenstraße 42, Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Ozcifci G, Aydin T, Atli Z, Balkan II, Tabak F, Oztas M, Ozguler Y, Ugurlu S, Hatemi G, Melikoglu M, Fresko I, Hamuryudan V, Seyahi E. The incidence, clinical characteristics, and outcome of COVID-19 in a prospectively followed cohort of patients with Behçet's syndrome. Rheumatol Int 2022; 42:101-113. [PMID: 34825278 PMCID: PMC8614218 DOI: 10.1007/s00296-021-05056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/13/2021] [Indexed: 12/28/2022]
Abstract
Initial case series of small number of patients at the beginning of the pandemic reported a rather guarded prognosis for Behçet's syndrome (BS) patients infected with SARS-CoV-2. In this prospective study, we describe the incidence, clinical characteristics, disease course, management, and outcome in a large cohort of BS patients with laboratory-confirmed infection of SARS-CoV-2. We defined a cohort of 1047 registered BS patients who were aged between 16 and 60 years and seen routinely before the pandemic at the multidisciplinary outpatient clinic. We followed prospectively this cohort from beginning of April 2020 until the end of April 2021. During 13 months of follow-up, of the 1047 (599 M/448 F) patients, 592 (56.5%) were tested for SARS-CoV-2 PCR at least once and 215 (20.5%; 95% CI 0.18-0.23) were tested positive. We observed 2 peaks which took place in December 2020 and April 2021. Of the 215 PCR positive patients, complete information was available in 214. Of these 214, 14 (6.5%) were asymptomatic for COVID-19. In the remaining, the most common symptoms were anosmia, fatigue, fever, arthralgia, and headache. A total of 40 (18.7%) had lung involvement, 25 (11.7%) were hospitalized, 1 was admitted to the intensive care unit while none died. Favipiravir was the most prescribed drug (74.3%), followed by colchicine (40.2%), and hydroxychloroquine (20.1%) in the treatment of COVID-19. After COVID-19, 5 patients (2.3%) were given supplemental O2 and 31 (14.5%) antiaggregant or anticoagulants. During COVID-19, of the 214 PCR positive patients, 116 (54.2%) decreased the dose of their immunosuppressives or stopped taking completely; 36 (16.8%) experienced a BS flare which was mostly oral ulcers (10.3%). None of the patients reported a thrombotic event. A total of 93 (43.5%) patients reported BS flares after a median 45 days of COVID-19 infection and this was found to be significantly associated with immunosuppressive drug discontinuation. Multiple regression analysis adjusted for age and gender indicated that smoking and using interferon-alpha decreased the likelihood of getting COVID-19. The incidence and severity of COVID-19 did not differ between those who were using colchicine or not. The cumulative incidence of COVID-19 in this prospectively followed cohort of BS patients was almost two folds of that estimated for the general population living in Istanbul, Turkey, however, the clinical outcome of COVID-19 was not severe and there was no mortality. The protective effect of smoking and interferon deserves further investigation. On the other hand, colchicine did not have any positive or negative effect against COVID-19. Significant number of patients flared after COVID-19, however, this was significantly associated with immunosuppressive discontinuation during the infection. Contrary to our previous observations, COVID-19 did not seem to exacerbate thrombotic events during or after the infection.
Collapse
Affiliation(s)
- Guzin Ozcifci
- Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tahacan Aydin
- Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Atli
- Department of Accounting and Taxation, Sinop University, Sinop, Turkey
| | - Ilker Inanc Balkan
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mert Oztas
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Yesim Ozguler
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Serdal Ugurlu
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Gulen Hatemi
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Melike Melikoglu
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Izzet Fresko
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Vedat Hamuryudan
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| | - Emire Seyahi
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, 81310 Turkey
| |
Collapse
|
14
|
Sirakanyan S, Arabyan E, Hakobyan A, Hakobyan T, Chilingaryan G, Sahakyan H, Sargsyan A, Arakelov G, Nazaryan K, Izmailyan R, Abroyan L, Karalyan Z, Arakelova E, Hakobyan E, Hovakimyan A, Serobian A, Neves M, Ferreira J, Ferreira F, Zakaryan H. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity. Emerg Microbes Infect 2021; 10:783-796. [PMID: 33706677 PMCID: PMC8079068 DOI: 10.1080/22221751.2021.1902751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
African swine fever virus (ASFV) is the causal agent of a fatal disease of domestic swine for which no effective antiviral drugs are available. Recently, it has been shown that microtubule-targeting agents hamper the infection cycle of different viruses. In this study, we conducted in silico screening against the colchicine binding site (CBS) of tubulin and found three new compounds with anti-ASFV activity. The most promising antiviral compound (6b) reduced ASFV replication in a dose-dependent manner (IC50 = 19.5 μM) with no cellular (CC50 > 500 μM) and animal toxicity (up to 100 mg/kg). Results also revealed that compound 6b interfered with ASFV attachment, internalization and egress, with time-of-addition assays, showing that compound 6b has higher antiviral effects when added within 2-8 h post-infection. This compound significantly inhibited viral DNA replication and disrupted viral protein synthesis. Experiments with ASFV-infected porcine macrophages disclosed that antiviral effects of the compound 6b were similar to its effects in Vero cells. Tubulin polymerization assay and confocal microscopy demonstrated that compound 6b promoted tubulin polymerization, acting as a microtubule-stabilizing, rather than a destabilizing agent in cells. In conclusion, this work emphasizes the idea that microtubules can be targets for drug development against ASFV.
Collapse
Affiliation(s)
- Samvel Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Erik Arabyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Astghik Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Tamara Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Garri Chilingaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Harutyun Sahakyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Arsen Sargsyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Grigor Arakelov
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Karen Nazaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Roza Izmailyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Liana Abroyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Zaven Karalyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia
| | - Elina Arakelova
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Elmira Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Anush Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Andre Serobian
- Advanced Solutions Center, Foundation for Armenian Science and Technology, Yerevan, Armenia
| | - Marco Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fernando Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Hovakim Zakaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Denovo Sciences, Yerevan, Armenia
| |
Collapse
|
15
|
Estebanez EB, Alconero LL, Fernández BJ, Marguello MG, Caro JCL, Vallejo JD, Sampedro MF, Cacho PM, Espiga CR, Saiz MMG. The effectiveness of early colchicine administration in patients over 60 years old with high risk of developing severe pulmonary complications associated with coronavirus pneumonia SARS-CoV-2 (COVID-19): study protocol for an investigator-driven randomized controlled clinical trial in primary health care-COLCHICOVID study. Trials 2021; 22:590. [PMID: 34488841 PMCID: PMC8419390 DOI: 10.1186/s13063-021-05544-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND There is no strong evidence that any drug is beneficial either for the treatment of SARS-CoV-2 disease or for post-exposure prophylaxis. Therefore, clinical research is crucial to generate results and evaluate strategies against COVID-19. Primary care (PC) centers, the first level of care in the health system, are in a favorable position to carry out clinical trials (CD), as they work with a large volume of patients with varied profiles (from acute to chronic pathologies). During the COVID-19 pandemic, the need for hospital admission and mortality is higher in people > 60 years. Therefore, this is a target population to try to reduce the serious complications and lethality of COVID pneumonia and to avoid overloading the hospital system. Given the pharmacological properties of colchicine (anti-inflammatory and anti-fibrotic, possible inhibition of viral replication, and inhibitory effect on coagulation activation), early treatment with colchicine may reduce the rate of death and serious pulmonary complications from COVID-19 in vulnerable patients. METHODS The COLCHICOVID study is a randomized, multicenter, controlled, open-label parallel group (2:1 ratio), phase III clinical trial to investigate the efficacy of early administration of colchicine in reducing the development of severe pulmonary complications associated with COVID-19 infection in patients over 60 years of age with at-risk comorbidities. DISCUSSION This is a pragmatic clinical trial, adapted to usual clinical practice. The demonstration that early administration of colchicine has clinical effectiveness in reducing the complications of SARS-CoV-2 infection in a population highly susceptible may mitigate the health crisis and prevent the collapse of the health system in the successive waves of the coronavirus pandemic. In addition, colchicine is a well-known medicine, simple to use in the primary care setting and with a low cost for the health system. TRIAL REGISTRATION ClinicalTrials.gov NCT04416334 . Registered on 4 June 2020. Protocol version: v 3.0, dated 22 September 2020.
Collapse
Affiliation(s)
- Elena Bustamante Estebanez
- Management of primary health care centers, Area I, Area II, Area III and Area IV, Servicio Cantabro de Salud, C. Vargas 57, 39010 Santander, Cantabria Spain
| | - Lucía Lavín Alconero
- Marqués de Valdecilla Research Institute (IDIVAL), s/n, Calle Cardenal Herrera Oria, 39012 Santander, Cantabria Spain
- Clinical Trials Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria Spain
| | - Beatriz Josa Fernández
- Management of primary health care centers, Area I, Area II, Area III and Area IV, Servicio Cantabro de Salud, C. Vargas 57, 39010 Santander, Cantabria Spain
| | - Monica Gozalo Marguello
- Marqués de Valdecilla Research Institute (IDIVAL), s/n, Calle Cardenal Herrera Oria, 39012 Santander, Cantabria Spain
- Department of Microbiology, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria Spain
| | - Juan Carlos López Caro
- Management of primary health care centers, Area I, Area II, Area III and Area IV, Servicio Cantabro de Salud, C. Vargas 57, 39010 Santander, Cantabria Spain
| | - Jonathan Diez Vallejo
- Management of primary health care centers, Area I, Area II, Area III and Area IV, Servicio Cantabro de Salud, C. Vargas 57, 39010 Santander, Cantabria Spain
| | - Marta Fernandez Sampedro
- Marqués de Valdecilla Research Institute (IDIVAL), s/n, Calle Cardenal Herrera Oria, 39012 Santander, Cantabria Spain
- Department of Infectious Diseases, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria Spain
| | - Pedro Muñoz Cacho
- Marqués de Valdecilla Research Institute (IDIVAL), s/n, Calle Cardenal Herrera Oria, 39012 Santander, Cantabria Spain
- Department of Community Health, Servicio Cantabro de Salud, C. Luis Vicente de Velasco 1, 39011 Santander, Cantabria Spain
| | - Carlos Richard Espiga
- Marqués de Valdecilla Research Institute (IDIVAL), s/n, Calle Cardenal Herrera Oria, 39012 Santander, Cantabria Spain
- Emeritus Doctor, Department of Hematology, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria Spain
| | - María Mar García Saiz
- Marqués de Valdecilla Research Institute (IDIVAL), s/n, Calle Cardenal Herrera Oria, 39012 Santander, Cantabria Spain
- Clinical Trials Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria Spain
- Department of Clinical Pharmacology, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria Spain
| |
Collapse
|
16
|
Lavorgna G, Cavalli G, Dagna L, Gregori S, Larcher A, Landoni G, Ciceri F, Montorsi F, Salonia A. A virus-free cellular model recapitulates several features of severe COVID-19. Sci Rep 2021; 11:17473. [PMID: 34471195 PMCID: PMC8410838 DOI: 10.1038/s41598-021-96875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
As for all newly-emergent pathogens, SARS-CoV-2 presents with a relative paucity of clinical information and experimental models, a situation hampering both the development of new effective treatments and the prediction of future outbreaks. Here, we find that a simple virus-free model, based on publicly available transcriptional data from human cell lines, is surprisingly able to recapitulate several features of the clinically relevant infections. By segregating cell lines (n = 1305) from the CCLE project on the base of their sole angiotensin-converting enzyme 2 (ACE2) mRNA content, we found that overexpressing cells present with molecular features resembling those of at-risk patients, including senescence, impairment of antibody production, epigenetic regulation, DNA repair and apoptosis, neutralization of the interferon response, proneness to an overemphasized innate immune activity, hyperinflammation by IL-1, diabetes, hypercoagulation and hypogonadism. Likewise, several pathways were found to display a differential expression between sexes, with males being in the least advantageous position, thus suggesting that the model could reproduce even the sex-related disparities observed in the clinical outcome of patients with COVID-19. Overall, besides validating a new disease model, our data suggest that, in patients with severe COVID-19, a baseline ground could be already present and, as a consequence, the viral infection might simply exacerbate a variety of latent (or inherent) pre-existing conditions, representing therefore a tipping point at which they become clinically significant.
Collapse
Affiliation(s)
- Giovanni Lavorgna
- grid.18887.3e0000000417581884Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Cavalli
- grid.15496.3fUniversity Vita-Salute San Raffaele, Milan, Italy ,grid.18887.3e0000000417581884Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- grid.15496.3fUniversity Vita-Salute San Raffaele, Milan, Italy ,grid.18887.3e0000000417581884Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- grid.18887.3e0000000417581884San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandro Larcher
- grid.18887.3e0000000417581884Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Landoni
- grid.15496.3fUniversity Vita-Salute San Raffaele, Milan, Italy ,grid.18887.3e0000000417581884Anesthesia and Intensive Care Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Ciceri
- grid.15496.3fUniversity Vita-Salute San Raffaele, Milan, Italy ,grid.18887.3e0000000417581884Hematology and Bone Marrow Transplant Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- grid.18887.3e0000000417581884Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy ,grid.15496.3fUniversity Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- grid.18887.3e0000000417581884Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy ,grid.15496.3fUniversity Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
17
|
Günendi Z, Yurdakul FG, Bodur H, Cengiz AK, Uçar Ü, Çay HF, Şen N, Keskin Y, Gürer G, Melikoğlu MA, Altıntaş D, Deveci H, Baykul M, Nas K, Çevik R, Karahan AY, Toprak M, Ketenci S, Nayimoğlu M, Sezer İ, Demir AN, Ecesoy H, Duruöz MT, Yurdakul OV, Sarıfakıoğlu AB, Ataman Ş. The impact of COVID-19 on familial Mediterranean fever: a nationwide study. Rheumatol Int 2021; 41:1447-1455. [PMID: 34032894 PMCID: PMC8144686 DOI: 10.1007/s00296-021-04892-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022]
Abstract
The study aimed to evaluate the impact of the coronavirus disease 2019 (COVID-19) in patients with familial Mediterranean fever (FMF) and to assess the relationships between FMF characteristics and severe COVID-19 outcomes such as hospitalization. The study was planned within a national network of 21 different centers. Demographics, FMF-related clinical and genetic characteristics, and COVID-19 outcomes were obtained. A total of 822 patients with FMF (mean age of 36 years) were included in the study. Fifty-nine of them (7%) had a COVID-19 diagnosis confirmed by real-time PCR test or chest CT findings. Most FMF patients with COVID-19 (58) had mild and moderate disease activity. All patients were on colchicine treatment. However, 8 of them (13.6%) were not compliant with colchicine use and 9 of them (15.3%) were colchicine resistant. Twelve FMF patients with COVID-19 were hospitalized. There were 4 patients requiring oxygen support. COVID-19 related complications were observed in 2 patients (1 thromboembolism, 1 acute respiratory distress syndrome). Hospitalized COVID-19 patients with FMF were older than non-hospitalized patients (median ages: 51 and 31 years, respectively; p: 0.002). Other FMF-related characteristics were similar between the groups. FMF-related characteristics were not found to be associated with poor outcomes in COVID-19. Thus, FMF may not be a risk factor for poor COVID-19 outcomes.
Collapse
Affiliation(s)
- Zafer Günendi
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatma Gül Yurdakul
- Department of Physical Medicine and Rehabilitation, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Hatice Bodur
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ministry of Health Ankara City Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ahmet Kıvanç Cengiz
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, 19 Mayıs University , Samsun, Turkey
| | - Ülkü Uçar
- Department of Physical Medicine and Rehabilitation, Rheumatology Clinic, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hasan Fatih Çay
- Department of Physical Medicine and Rehabilitation, Rheumatology Clinic, Antalya Training and Research Hospital, Antalya, Turkey
| | - Nesrin Şen
- Rheumatology Clinic, Kartal Dr. Lütfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Yaşar Keskin
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Gülcan Gürer
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Meltem Alkan Melikoğlu
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Duygu Altıntaş
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Hülya Deveci
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Merve Baykul
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Kemal Nas
- Division of Rheumatology and Immunology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Remzi Çevik
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Ali Yavuz Karahan
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Uşak University, Uşak, Turkey
| | - Murat Toprak
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | - Sertaç Ketenci
- Rheumatology Clinic, Ministry of Health Manisa City Hospital, Manisa, Turkey
| | - Mehmet Nayimoğlu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Namik Kemal University, Tekirdaǧ, Turkey
| | - İlhan Sezer
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ali Nail Demir
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilal Ecesoy
- Department of Physical Medicine and Rehabilitation Rheumatology Clinic, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Tuncay Duruöz
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ozan Volkan Yurdakul
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayşe Banu Sarıfakıoğlu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Şebnem Ataman
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021; 26:3526. [PMID: 34207756 PMCID: PMC8228528 DOI: 10.3390/molecules26123526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, humanity has faced an important global threat. Many studies have been published on the origin, structure, and mechanism of action of the SARS-CoV-2 virus and the treatment of its disease. The priority of scientists all over the world has been to direct their time to research this subject. In this review, we highlight chemical studies and therapeutic approaches to overcome COVID-19 with seven different sections. These sections are the structure and mechanism of action of SARS-CoV-2, immunotherapy and vaccine, computer-aided drug design, repurposing therapeutics for COVID-19, synthesis of new molecular structures against COVID-19, food safety/security and functional food components, and potential natural products against COVID-19. In this work, we aimed to screen all the newly synthesized compounds, repurposing chemicals covering antiviral, anti-inflammatory, antibacterial, antiparasitic, anticancer, antipsychotic, and antihistamine compounds against COVID-19. We also highlight computer-aided approaches to develop an anti-COVID-19 molecule. We explain that some phytochemicals and dietary supplements have been identified as antiviral bioproducts, which have almost been successfully tested against COVID-19. In addition, we present immunotherapy types, targets, immunotherapy and inflammation/mutations of the virus, immune response, and vaccine issues.
Collapse
Affiliation(s)
- Aliye Gediz Erturk
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Arzu Sahin
- Department of Basic Medical Sciences—Physiology, Faculty of Medicine, Uşak University, 1-EylulUşak 64000, Turkey;
| | - Ebru Bati Ay
- Department of Plant and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Emel Pelit
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli 39000, Turkey;
| | - Emine Bagdatli
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Irem Kulu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli 41400, Turkey;
| | - Melek Gul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey
| | - Seda Mesci
- Scientific Technical Application and Research Center, Hitit University, Çorum 19030, Turkey;
| | - Serpil Eryilmaz
- Department of Physics, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| | - Sirin Oba Ilter
- Food Processing Department, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Tuba Yildirim
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| |
Collapse
|
19
|
Peele KA, Kumar V, Parate S, Srirama K, Lee KW, Venkateswarulu TC. Insilico drug repurposing using FDA approved drugs against Membrane protein of SARS-CoV-2. J Pharm Sci 2021; 110:2346-2354. [PMID: 33684397 PMCID: PMC7934671 DOI: 10.1016/j.xphs.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus (SARS-CoV-2) outbreak has started taking away the millions of lives worldwide. Identification of known and approved drugs against novel coronavirus disease (COVID-19) seems to be an urgent need for the repurposing of the existing drugs. So, here we examined a safe strategy of using approved drugs of SuperDRUG2 database against modeled membrane protein (M-protein) of SARS-CoV-2 which is essential for virus assembly by using molecular docking-based virtual screening. A total of 3639 drugs from SuperDRUG2 database and additionally 14 potential drugs reported against COVID-19 proteins were selected. Molecular docking analyses revealed that nine drugs can bind the active site of M-protein with desirable molecular interactions. We therefore applied molecular dynamics simulations and binding free energy calculation using MM-PBSA to analyze the stability of the compounds. The complexes of M-protein with the selected drugs were simulated for 50 ns and ranked according to their binding free energies. The binding mode of the drugs with M-protein was analyzed and it was observed that Colchicine, Remdesivir, Bafilomycin A1 from COVID-19 suggested drugs and Temozolomide from SuperDRUG2 database displayed desirable molecular interactions and higher binding affinity towards M-protein. Interestingly, Colchicine was found as the top most binder among tested drugs against M-protein. We therefore additionally identified four Colchicine derivatives which can bind efficiently with M-protein and have better pharmacokinetic properties. We recommend that these drugs can be tested further through in vitro studies against SARS-CoV-2 M-protein.
Collapse
Affiliation(s)
- K Abraham Peele
- Department of Bio-Technology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India
| | - Vikas Kumar
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Shraddha Parate
- Division of Applied Life Sciences, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Krupanidhi Srirama
- Department of Bio-Technology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India
| | - Keun Woo Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - T C Venkateswarulu
- Department of Bio-Technology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India.
| |
Collapse
|
20
|
Salah HM, Mehta JL. Meta-analysis of the Effect of Colchicine on Mortality and Mechanical Ventilation in COVID-19. Am J Cardiol 2021; 145:170-172. [PMID: 33617817 PMCID: PMC7894200 DOI: 10.1016/j.amjcard.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Husam M Salah
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Jawahar L Mehta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas.
| |
Collapse
|
21
|
Al-Kuraishy HM, Al-Gareeb AI, Qusty N, Cruz-Martins N, El-Saber Batiha G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm Pharmacol Ther 2021; 67:102008. [PMID: 33727066 PMCID: PMC7955803 DOI: 10.1016/j.pupt.2021.102008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus virus disease 2019 (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), actually considered as a global pandemic. The entry-point for SARS-CoV-2 is angiotensin converting enzyme 2 (ACE2) and dipeptidyl peptidase 4 (DPP4), which are highly expressed in the lung. Among other complications, COVID-19leads to fatal pneumonia, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to development of cytokine storm (CS). The pathogenesis of SARS-CoV-2 infection depends on the viral load and human innate/adaptive immune response that are required for viral elimination in the first phase of COVID-19. However, an exaggerated immune response in the second phase of COVID-19 results in immune overreaction and CS-induced ALI and ARDS. Thus, in view of these considerations, we report here a series of five patients with COVID-19 pneumonia who developed ALI. In addition to the supportive therapy, the patients received doxycycline in the first week and doxycycline plus colchicine in the second week. Following sequential therapy with doxycycline and/or colchicine in patients with COVID-19 pneumonia, the patients had reduction of disease severity and symptoms with better clinical and radiological outcomes. However, it is tough to confirm the link between this therapeutic combination and recovery from COVID-19 pneumonia, as it is a small case-series report. Nevertheless, this study gives a rational for large-scale prospective studies to evaluate the dual sequential effect of doxycycline and colchicine on the COVID-19 severity. This case-series illustrated that use of colchicine: doxycycline combination is linked with marked improvements in the clinical, laboratory and radiological outcomes in patients with COVID-19 pneumonia. However, we cannot sketch any definitive conclusion from our observation, despite we hypothesize that this combination therapeutic regimen may attenuate and treat COVID-19. Further, namely prospective, randomized, and controlled clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, AL-Mustansiriyiah University, Iraq.
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, AL-Mustansiriyiah University, Iraq.
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
22
|
Elagawany M, Maram L, Elgendy B. Novel synthesis of benzotriazolyl alkyl esters: an unprecedented CH 2 insertion. RSC Adv 2021; 11:7564-7569. [PMID: 35423285 PMCID: PMC8694985 DOI: 10.1039/d0ra10413b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
We have developed a novel method for the synthesis of benzotriazolyl alkyl esters (BAEs) from N-acylbenzotriazoles and dichloromethane (DCM) under mild conditions. This reaction is one of few examples to show the use of DCM as a C-1 surrogate in carbon-heteroatom bond formation and to highlight the versatility of using DCM as a methylene building block.
Collapse
Affiliation(s)
- Mohamed Elagawany
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy St. Louis MO 63110 USA
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis College of Pharmacy St. Louis MO 63110 USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University Damanhour Egypt
| | - Lingaiah Maram
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy St. Louis MO 63110 USA
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis College of Pharmacy St. Louis MO 63110 USA
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy St. Louis MO 63110 USA
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis College of Pharmacy St. Louis MO 63110 USA
- Chemistry Department, Faculty of Science, Benha University Benha 13518 Egypt
| |
Collapse
|
23
|
McEwan T, Robinson PC. A systematic review of the infectious complications of colchicine and the use of colchicine to treat infections. Semin Arthritis Rheum 2021; 51:101-112. [PMID: 33360321 PMCID: PMC7832726 DOI: 10.1016/j.semarthrit.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Colchicine has been used historically as an anti-inflammatory agent for a wide range of diseases. Little is known regarding the relationship between colchicine use and infectious disease outcomes. The objective of this study was to systematically examine infectious adverse events associated with colchicine usage and the clinical use of colchicine for infectious diseases. METHODS A systematic review was conducted in accordance with PRISMA methodology. PubMed, EMBASE, Scopus and Cochrane Library databases were searched (up to 12th October, 2020) for interventional and observational studies that included colchicine usage associated with infectious adverse events or infectious disease outcomes. RESULTS A total of 9,237 studies were initially identified and after exclusions, 36 articles comprising 21 interventional studies and 15 observational studies were included in this systematic review. There were 19 studies that reported infectious adverse events and 17 studies that examined the efficacy of colchicine in treating infectious disease. Only two out of six studies reported a significant benefit using colchicine in the management of viral liver disease. There was some evidence colchicine is beneficial in managing COVID-19 by reducing time to deterioration, length of stay in hospital and mortality. Colchicine had some benefit in managing malaria, condyloma accuminata and verruca vulgaris, viral myocarditis and erythema nodosum leprosum based on case-series or small, pilot clinical studies. Two of the clinical trials and five of the observational studies reported significant associations between infections adverse events and colchicine usage. Risk of pneumonia was found in three studies and post-operative infections were reported in two studies. Risks of urinary tract infections, H. pylori and C.difficile were only reported by one study each. CONCLUSION There is a current lack of clinical evidence that colchicine has a role in treating or managing infectious diseases. Preliminary studies have demonstrated a possible role in the management of COVID-19 but results from more clinical trials are needed. There is inconclusive evidence that suggests colchicine is associated with increased risk of infections, particularly pneumonia.
Collapse
Affiliation(s)
- Timothy McEwan
- University of Queensland School of Clinical Medicine, Queensland, Australia
| | - Philip C Robinson
- University of Queensland School of Clinical Medicine, Queensland, Australia.
| |
Collapse
|
24
|
Cañas CA, Cañas F, Bautista-Vargas M, Bonilla-Abadía F. Role of Tissue Factor in the Pathogenesis of COVID-19 and the Possible Ways to Inhibit It. Clin Appl Thromb Hemost 2021; 27:10760296211003983. [PMID: 33784877 PMCID: PMC8020089 DOI: 10.1177/10760296211003983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of antiphospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in addition to its anti-inflammatory effect, through inhibition of TF.
Collapse
Affiliation(s)
- Carlos A. Cañas
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| | - Felipe Cañas
- Unit of Cardiology, Clínica Medellín, Medellín, Colombia
| | | | - Fabio Bonilla-Abadía
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| |
Collapse
|
25
|
Colchicine, an anti-rheumatic agent, as a potential compound for the treatment of COVID-19. Reumatologia 2020; 58:261-264. [PMID: 33227067 PMCID: PMC7667946 DOI: 10.5114/reum.2020.100088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
|
26
|
Škubník J, Jurášek M, Ruml T, Rimpelová S. Mitotic Poisons in Research and Medicine. Molecules 2020; 25:E4632. [PMID: 33053667 PMCID: PMC7587177 DOI: 10.3390/molecules25204632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| |
Collapse
|
27
|
Brunetti L, Diawara O, Tsai A, Firestein BL, Nahass RG, Poiani G, Schlesinger N. Colchicine to Weather the Cytokine Storm in Hospitalized Patients with COVID-19. J Clin Med 2020; 9:jcm9092961. [PMID: 32937800 PMCID: PMC7565543 DOI: 10.3390/jcm9092961] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
The repurposing of colchicine for the treatment of COVID-19 was suggested based in its immunomodulatory, anti-inflammatory, and anti-viral properties. We performed a single-center propensity score matched cohort study, including all consecutive COVID-19 patients admitted to a community hospital between 1 March 2020 and 30 May 2020. Patients were stratified according to the receipt of colchicine. The primary endpoint was defined as in-hospital death within 28-days follow-up. Secondary endpoints included favorable change in the Ordinal Scale for Clinical Improvement on days 14 and 28 versus baseline, proportion of patients not requiring supplemental oxygen on days 14 and 28, and proportion of patients discharged by day 28. In total data for 303 PCR positive COVID-19 patients were extracted and 66 patients were included in the 1:1 matched cohort study. At the end of the 28 day follow-up, patients receiving colchicine were approximately five times more likely to be discharged (odds ratio, 5.0; 95% confidence interval, 1.25–20.1; p = 0.023) and when comparing mortality, there were 3 deaths (9.1%) in patients receiving colchicine versus 11 deaths (33.3%) in the groups receiving standard of care (odds ratio, 0.20; 95% confidence interval, 0.05–0.80; p = 0.023). These observations warrant further investigation in large controlled clinical trials.
Collapse
Affiliation(s)
- Luigi Brunetti
- Robert Wood Johnson University Hospital Somerset, 110 Rehill Avenue, Somerville, NJ 08876, USA; (O.D.); (A.T.); (R.G.N.); (G.P.)
- Ernest Mario School of Pharmacy, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Center of Excellence in Pharmaceutical Translational Research and Education, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.:+1-(908)-595-2645
| | - Oumou Diawara
- Robert Wood Johnson University Hospital Somerset, 110 Rehill Avenue, Somerville, NJ 08876, USA; (O.D.); (A.T.); (R.G.N.); (G.P.)
| | - Andrew Tsai
- Robert Wood Johnson University Hospital Somerset, 110 Rehill Avenue, Somerville, NJ 08876, USA; (O.D.); (A.T.); (R.G.N.); (G.P.)
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Ronald G. Nahass
- Robert Wood Johnson University Hospital Somerset, 110 Rehill Avenue, Somerville, NJ 08876, USA; (O.D.); (A.T.); (R.G.N.); (G.P.)
- IDCare, Hillsborough, NJ 08844, USA
| | - George Poiani
- Robert Wood Johnson University Hospital Somerset, 110 Rehill Avenue, Somerville, NJ 08876, USA; (O.D.); (A.T.); (R.G.N.); (G.P.)
- Division of Pulmonary/Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| |
Collapse
|
28
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
29
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
30
|
Abstract
Purpose of Review Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, is a pandemic causing havoc globally. Currently, there are no Food and Drug Administration (FDA)-approved drugs to treat COVID-19. In the absence of effective treatment, off-label drug use, in lieu of evidence from published randomized, double-blind, placebo-controlled clinical trials, is common in COVID-19. Although it is vital to treat affected patients with antiviral drugs, there is a knowledge gap regarding the use of anti-inflammatory drugs in these patients. Recent Findings Colchicine trials to combat inflammation in COVID-19 patients have not received much attention. We await the results of ongoing colchicine randomized controlled trials in COVID-19, evaluating colchicine's efficacy in treating COVID-19. Summary This review gives a spotlight on colchicine's anti-inflammatory and antiviral properties and why colchicine may help fight COVID-19. This review summarizes colchicine's mechanism of action via the tubulin-colchicine complex. Furthermore, it discussed how colchicine interferes with several inflammatory pathways, including inhibition of neutrophil chemotaxis, adhesion, and mobilization; disruption of superoxide production, inflammasome inhibition, and tumor necrosis factor reduction; and its possible antiviral properties. In addition, colchicine dosing and pharmacokinetics, as well as drug interactions and how they relate to ongoing, colchicine in COVID-19 clinical trials, are examined.
Collapse
Affiliation(s)
- Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903-0019 USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082 USA
| | - Luigi Brunetti
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| |
Collapse
|
31
|
Imazio M, Brucato A, Lazaros G, Andreis A, Scarsi M, Klein A, De Ferrari GM, Adler Y. Anti-inflammatory therapies for pericardial diseases in the COVID-19 pandemic: safety and potentiality. J Cardiovasc Med (Hagerstown) 2020; 21:625-629. [DOI: 10.2459/jcm.0000000000001059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
33
|
Kühl N, Graf D, Bock J, Behnam MAM, Leuthold MM, Klein CD. A New Class of Dengue and West Nile Virus Protease Inhibitors with Submicromolar Activity in Reporter Gene DENV-2 Protease and Viral Replication Assays. J Med Chem 2020; 63:8179-8197. [DOI: 10.1021/acs.jmedchem.0c00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Dominik Graf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Josephine Bock
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mira A. M. Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila-Mareen Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Gracheva IA, Shchegravina ES, Schmalz HG, Beletskaya IP, Fedorov AY. Colchicine Alkaloids and Synthetic Analogues: Current Progress and Perspectives. J Med Chem 2020; 63:10618-10651. [PMID: 32432867 DOI: 10.1021/acs.jmedchem.0c00222] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colchicine, the main alkaloid of Colchicum autumnale, is one of the most famous natural molecules. Although colchicine belongs to the oldest drugs (in use since 1500 BC), its pharmacological potential as a lead structure is not yet fully exploited. This review is devoted to the synthesis and structure-activity relationships (SAR) of colchicine alkaloids and their analogues with modified A, B, and C rings, as well as hybrid compounds derived from colchicinoids including prodrugs, conjugates, and delivery systems. The systematization of a vast amount of information presented to date will create a paradigm for future studies of colchicinoids for neoplastic and various other diseases.
Collapse
Affiliation(s)
- Iuliia A Gracheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | | | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
35
|
Ghawanmeh AA, Al-Bajalan HM, Mackeen MM, Alali FQ, Chong KF. Recent developments on (−)-colchicine derivatives: Synthesis and structure-activity relationship. Eur J Med Chem 2020; 185:111788. [DOI: 10.1016/j.ejmech.2019.111788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022]
|
36
|
Richter M, Leuthold MM, Graf D, Bartenschlager R, Klein CD. Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids To Selectively Target Infected Cells. ACS Med Chem Lett 2019; 10:1115-1121. [PMID: 31413794 DOI: 10.1021/acsmedchemlett.9b00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023] Open
Abstract
Infections with flaviviruses such as dengue virus (DENV) are prevalent throughout tropical regions worldwide. Replication of these viruses depends on tubulin, a host cell factor that can be targeted to obtain broad-spectrum antiviral agents. Targeting of tubulin does, however, require specific measures to avoid toxic side-effects. Herein, we report the synthesis and biological evaluation of combretastatin peptide hybrids that incorporate the cleavage site of the DENV protease to allow activation of the tubulin ligand within infected cells. The prodrug candidates have no effect on tubulin polymerization in vitro and are 20-2000-fold less toxic than combretastatin A-4. Several of the prodrug candidates were cleaved by the DENV protease in vitro with similar efficiency as the natural viral substrates. Selected compounds were studied in DENV and Zika virus replication assays and had antiviral activity at subcytotoxic concentrations.
Collapse
Affiliation(s)
- Michael Richter
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Mila M. Leuthold
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Dominik Graf
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, D-69120 Heidelberg, Germany
- German Center for Infection Research (DZIF),
Heidelberg Partner Site, Heidelberg, Germany
| | - Christian D. Klein
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
- German Center for Infection Research (DZIF),
Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|