1
|
Xiang S, Li Y, Khan SN, Zhang W, Yuan G, Cui J. Exploiting the Anticancer, Antimicrobial and Antiviral Potential of Naphthoquinone Derivatives: Recent Advances and Future Prospects. Pharmaceuticals (Basel) 2025; 18:350. [PMID: 40143127 PMCID: PMC11944738 DOI: 10.3390/ph18030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer remains a primary cause of mortality, with over 18.1 million new cases and 9.6 million deaths globally in 2018. Chemotherapy, which utilizes a spectrum of cytotoxic drugs targeting the rapidly dividing cancer cells, is a predominant treatment modality. However, the tendency of chemotherapeutics to induce drug resistance and exhibit non-specific cytotoxicity necessitates the development of new anticancer agents with heightened efficacy and minimized toxicity. In recent years, the discovery of safe and effective antibacterial/antiviral agents has also been a hot spot in medicinal chemistry. This paper comprehensively reviews the synthesis, anticancer/antibacterial/antiviral activity, and structure-activity relationships of natural 1,4-naphthoquinones and their derivatives. It highlights their potential as efficient and low-toxicity antitumor and anti-infectious drug candidates.
Collapse
Affiliation(s)
- Shouyan Xiang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shah Nawaz Khan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Weixin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoyang Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
| | - Jiahua Cui
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Mardaneh P, Pirhadi S, Mohabbati M, Khoshneviszadeh M, Rezaei Z, Saso L, Edraki N, Firuzi O. Design, synthesis and pharmacological evaluation of 1,4-naphthoquinone- 1,2,3-triazole hybrids as new anticancer agents with multi-kinase inhibitory activity. Sci Rep 2025; 15:6639. [PMID: 39994286 PMCID: PMC11850817 DOI: 10.1038/s41598-025-87483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Targeting important oncogenic kinases that contribute to hallmarks of cancer has revolutionized cancer therapy. Ten 1,4-naphthoquinone derivatives linked to 1,2,3-triazole (4a-4j) were designed and synthesized as kinase inhibitors especially aimed at blocking CDK2, a validated and important cancer target. Assessment of the antiproliferative activity of the synthesized compounds against lung (EBC-1), pancreatic ductal adenocarcinoma (PDAC, AsPC-1 and Mia-Paca-2), colorectal (HT-29), and breast cancer (MCF-7) cells revealed that most of the derivatives possess considerable antiproliferative potential, with IC50 values as low as 0.3 µM. In contrast, the compounds relatively spared NIH3T3 non-cancer cell line. The kinase inhibitory effect of the best compounds was examined against a panel of 30 important oncogenic kinases. Derivatives 4a (bearing a benzyl ring) and 4i (bearing a p-methyl benzyl ring) inhibited CDK2, FLT4 (VEGFR3) and PDGFRA kinases with IC50 values in the range of 0.55-1.67 and 0.22-11.32 µM, respectively. These compounds also caused S phase arrest and induced characteristic features of apoptosis in PDAC cells. Molecular modeling simulation validated the binding interactions between the synthesized derivatives and the active sites of the 3 target kinases. Finally, the compounds also possessed drug-like features as examined by in silico studies. The results of this study indicate that 1,4-naphthoquinone derivatives could have promising anticancer potential as multi-kinase inhibitors.
Collapse
Affiliation(s)
- Pegah Mardaneh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, P. le Aldo Moro 5, Rome, 00185, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Glorieux C, Enríquez C, Buc Calderon P. The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment. Biochem Pharmacol 2025; 232:116729. [PMID: 39709038 DOI: 10.1016/j.bcp.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS). On the one hand, ROS can inhibit or activate mTOR pathway in cancer cells through various mechanisms. Conversely, mTOR signaling can induce oxidative stress in tumor cells notably due to the inhibition in the expression of antioxidant enzyme genes. Since mTOR is often activated and plays crucial role in cancer cell survival, the use of mTOR inhibitors, which often induce ROS accumulation, could be an interesting approach for cancer treatment. This review will address the advantages, disadvantages, combination strategies, and limitations associated with therapeutic modulation of mTOR signaling pathway in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China.
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Programa de Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
4
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
5
|
Ishikawa T, Eguchi Y, Igarashi M, Okajima T, Mita K, Yamasaki Y, Sumikura K, Okumura T, Tabuchi Y, Hayashi C, Pasqua M, Coluccia M, Prosseda G, Colonna B, Kohayakawa C, Tani A, Haruta JI, Utsumi R. Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases. J Antibiot (Tokyo) 2024; 77:522-532. [PMID: 38918599 PMCID: PMC11284088 DOI: 10.1038/s41429-024-00726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6-305 µM, MIC: 0.5-128 µg ml-1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.
Collapse
Affiliation(s)
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | | | - Toshihide Okajima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Kohei Mita
- Graduate School of Education, Okayama University, Okayama, Japan
| | - Yuri Yamasaki
- Graduate School of Education, Okayama University, Okayama, Japan
| | - Kaho Sumikura
- Graduate School of Education, Okayama University, Okayama, Japan
| | - Taisei Okumura
- Graduate School of Education, Okayama University, Okayama, Japan
| | - Yuna Tabuchi
- Graduate School of Education, Okayama University, Okayama, Japan
| | | | - Martina Pasqua
- Istituto Pasteur Italy, Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Marco Coluccia
- Istituto Pasteur Italy, Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italy, Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Bianca Colonna
- Istituto Pasteur Italy, Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Chie Kohayakawa
- Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Tani
- Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Jun-Ichi Haruta
- Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryutaro Utsumi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Kolancılar H, Özcan H, Yılmaz AŞ, Salan AS, Ece A. 2,3-Dichloronaphthoquinone derivatives: Synthesis, antimicrobial activity, molecular modelling and ADMET studies. Bioorg Chem 2024; 146:107300. [PMID: 38522391 DOI: 10.1016/j.bioorg.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.
Collapse
Affiliation(s)
- Hakan Kolancılar
- Department of Professional Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, 22030 Edirne, Türkiye.
| | - Hafize Özcan
- Department of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Türkiye
| | - Ayşen Şuekinci Yılmaz
- Department of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Türkiye
| | - Alparslan Semih Salan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, 22030 Edirne, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Türkiye
| |
Collapse
|
7
|
Sayfiddinov D, Kumar RS, Kaliannagounder VK, Ravichandiran P, Cho KB, Kim CS, Park CH, Shim KS, Choi HW, Park BH, Han MK, Yoo DJ. Strong intramolecular charge-transfer effect strengthening naphthoquinone-based chemosensor: Experimental and theoretical evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123908. [PMID: 38330753 DOI: 10.1016/j.saa.2024.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
An aminophenol-linked naphthoquinone-based fluorometric and colorimetric chemosensor 2-chloro-3-((3-hydroxyphenyl) amino) naphthalene-1,4-dione (2CAN-Dione) was synthesized for selective detection of Sn2+ ion in aqueous solution. The amine and conversion of carbonyl into carboxyl groups play a vital role in the sensing mechanism when Sn2+ is added to 2CAN-Dione. Comprehensive characterization of the sensor was carried out using standard spectral and analytical approaches. Because of the intramolecular charge transfer (ICT) effect and the turn-on sensing mode, the strong fluorometric emission towards Sn2+ was observed at about 435 nm. The chemosensor exhibited good selectivity for Sn2+ in the presence of coexisting metal ions. An improved linear connection was established with a low limit of detection (0.167 μM). FT-IR, 1H NMR, 13C NMR, and quantum chemistry methods were performed to verify the binding coordination mechanism. The chemosensing probe 2CAN-Dione was successfully employed in bioimaging investigations, demonstrating that it is a reliable fluorescent marker for Sn2+ in human cancer cells.
Collapse
Affiliation(s)
- Dilmurod Sayfiddinov
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Ramasamy Santhosh Kumar
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Palanisamy Ravichandiran
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114 Karnataka, India
| | - Kyung-Bin Cho
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
8
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
9
|
Zhang Y, Wu X, Sun X, Yang J, Liu C, Tang G, Lei X, Huang H, Peng J. The Progress of Small Molecule Targeting BCR-ABL in the Treatment of Chronic Myeloid Leukemia. Mini Rev Med Chem 2024; 24:642-663. [PMID: 37855278 DOI: 10.2174/0113895575218335230926070130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 10/20/2023]
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease. According to the American Cancer Society's 2021 cancer data report, new cases of CML account for about 15% of all leukemias. CML is generally divided into three stages: chronic phase, accelerated phase, and blast phase. Nearly 90% of patients are diagnosed as a chronic phase. Allogeneic stem cell transplantation and chemotherapeutic drugs, such as interferon IFN-α were used as the earliest treatments for CML. However, they could generate obvious side effects, and scientists had to seek new treatments for CML. A new era of targeted therapy for CML began with the introduction of imatinib, the first-generation BCR-ABL kinase inhibitor. However, the ensuing drug resistance and mutant strains led by T315I limited the further use of imatinib. With the continuous advancement of research, tyrosine kinase inhibitors (TKI) and BCR-ABL protein degraders with novel structures and therapeutic mechanisms have been discovered. From biological macromolecules to classical target protein inhibitors, a growing number of compounds are being developed to treat chronic myelogenous leukemia. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in CML therapy, including TKIs and BCR-ABL protein degrader. The examples provided herein describe the pharmacology activity of small-molecule drugs. These drugs will provide new enlightenment for future treatment directions.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Wu
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xueyan Sun
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Yang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Chang Liu
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Guotao Tang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Honglin Huang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Junmei Peng
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
10
|
Campaniço A, Harjivan SG, Freitas E, Serafini M, Gaspar MM, Capela R, Gomes P, Jordaan A, Madureira AM, André V, Silva AB, Duarte MT, Portugal I, Perdigão J, Moreira R, Warner DF, Lopes F. Structural Optimization of Antimycobacterial Azaaurones Towards Improved Solubility and Metabolic Stability. ChemMedChem 2023; 18:e202300410. [PMID: 37845182 DOI: 10.1002/cmdc.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Shrika G Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Elisabete Freitas
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marco Serafini
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Manuela Gaspar
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Pedro Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Ana M Madureira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Avenida António José de Almeida, n.° 12, 1000-043, Lisboa, Portugal
| | - Andreia B Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Teresa Duarte
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
11
|
Zaky MY, Mahmoud R, Farghali AA, Abd El-Raheem H, Hassaballa A, Mohany M, Alkhalifah DHM, Hozzein WN, Mohamed A. A New Cu/Fe Layer Double Hydroxide Nanocomposite Exerts Anticancer Effects against PC-3 Cells by Inducing Cell Cycle Arrest and Apoptosis. Biomedicines 2023; 11:2386. [PMID: 37760826 PMCID: PMC10525695 DOI: 10.3390/biomedicines11092386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer treatment poses significant challenges due to its varying aggressiveness, potential for metastasis, and the complexity of treatment options. Balancing the effectiveness of therapies, minimizing side effects, and personalizing treatment strategies are ongoing challenges in managing this disease. Significant advances in the use of nanotechnology for the treatment of prostate cancer with high specificity, sensitivity, and efficacy have recently been made. This study aimed to synthesize and characterize a novel Cu/Fe layer double hydroxide (LDH) nanocomposite for use as an anticancer agent to treat prostate cancer. Cu/Fe LDH nanocomposites with a molar ratio of 5:1 were developed using a simple co-precipitation approach. FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses confirmed the nanocomposite. Moreover, the MTT cell viability assay, scratch assay, and flow cytometry were utilized to examine the prospective anticancer potential of Cu/Fe LDH on a prostate cancer (PC-3) cell line. We found that Cu/Fe LDH reduced cell viability, inhibited cell migration, induced G1/S phase cell cycle arrest, and triggered apoptotic effect in prostate cancer cells. The findings also indicated that generating reactive oxygen species (ROS) formation could improve the biological activity of Cu/Fe LDH. Additionally, Cu/Fe LDH showed a good safety impact on the normal lung fibroblast cell line (WI-38). Collectively, these findings demonstrate that the Cu/Fe LDH nanocomposite exhibited significant anticancer activities against PC-3 cells and, hence, could be used as a promising strategy in prostate cancer treatment.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (H.A.E.-R.)
| | - Hany Abd El-Raheem
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (H.A.E.-R.)
- Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, Giza 12578, Egypt
| | - Ahmed Hassaballa
- Nutrition and Food Science, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA;
- ZeroHarm L.C., Farmington Hills, Farmington, MI 48333, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Abdelrahman Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
12
|
Andrade KHS, Coelho JAS, Frade R, Madureira AM, Nunes JPM, Caddick S, Gomes RFA, Afonso CAM. Functionalized Cyclopentenones with Low Electrophilic Character as Anticancer Agents. ChemMedChem 2023; 18:e202300104. [PMID: 37062707 DOI: 10.1002/cmdc.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
In this study were synthesized non-Michael acceptor cyclopentenones (CP) from biomass derivative furfural as anticancer agents. Cyclic enones, both from natural sources and synthetic analogues, have been described as cytotoxic agents. Most of these agents were unsuccessful in becoming valuable therapeutic agents due to toxicity problems derived from unselective critical biomacromolecule alkylation. This may be caused by Michael addition to the enone system. Ab initio studies revealed that 2,4-substituted CPs are less prone to Michael additions, and as such were tested three families of those derivatives. We prepare the new CPs from furfural through a tandem furan ring opening/Nazarov electrocyclization and further functionalization. Experimentally the 2,4-substituted CPs exhibited no reactivity towards sulphur nucleophiles, while maintaining cytotoxicity against HT-29, MCF-7, NCI-H460, HCT-116 and MDA-MB 231 cells lines. Moreover, the selected CP are non-toxic against healthy HEK 293T cell lines and present proper calculated drug-like properties.
Collapse
Affiliation(s)
- Késsia H S Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Raquel Frade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - João P M Nunes
- Abzena Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Rafael F A Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749-024, Lisboa, Portugal
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| |
Collapse
|
13
|
Mena-Silva D, Alfaro A, León A, Guajardo-Correa E, Elgueta E, Diaz P, Vilos C, Cardenas H, Denardin JC, Orihuela PA. Zeolite Nanoparticles Loaded with 2-Methoxystradiol as a Novel Drug Delivery System for the Prostate Cancer Therapy. Int J Mol Sci 2023; 24:10967. [PMID: 37446151 DOI: 10.3390/ijms241310967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The estrogen metabolite 2-methoxyestradiol (2ME) is a promissory anticancer drug mainly because of its pro-apoptotic properties in cancer cells. However, the therapeutic use of 2ME has been hampered due to its low solubility and bioavailability. Thus, it is necessary to find new ways of administration for 2ME. Zeolites are inorganic aluminosilicates with a porous structure and are considered good adsorbents and sieves in the pharmaceutical field. Here, mordenite-type zeolite nanoparticles were loaded with 2ME to assess its efficiency as a delivery system for prostate cancer treatment. The 2ME-loaded zeolite nanoparticles showed an irregular morphology with a mean hydrodynamic diameter of 250.9 ± 11.4 nm, polydispersity index of 0.36 ± 0.04, and a net negative surface charge of -34 ± 1.73 meV. Spectroscopy with UV-vis and Attenuated Total Reflectance Infrared Fourier-Transform was used to elucidate the interaction between the 2ME molecules and the zeolite framework showing the formation of a 2ME-zeolite conjugate in the nanocomposite. The studies of adsorption and liberation determined that zeolite nanoparticles incorporated 40% of 2ME while the liberation of 2ME reached 90% at pH 7.4 after 7 days. The 2ME-loaded zeolite nanoparticles also decreased the viability and increased the mRNA of the 2ME-target gene F-spondin, encoded by SPON1, in the human prostate cancer cell line LNCaP. Finally, the 2ME-loaded nanoparticles also decreased the viability of primary cultures from mouse prostate cancer. These results show the development of 2ME-loaded zeolite nanoparticles with physicochemical and biological properties compatible with anticancer activity on the human prostate and highlight that zeolite nanoparticles can be a good carrier system for 2ME.
Collapse
Affiliation(s)
- Denisse Mena-Silva
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Aline Alfaro
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Andrea León
- Faculty of Chemistry and Food Chemistry, Technische Universitat Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Emanuel Guajardo-Correa
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas y Universidad de Chile, Santiago 8380000, Chile
| | - Estefania Elgueta
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Patricia Diaz
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Cristian Vilos
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Juliano C Denardin
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
- Departamento de Física, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| |
Collapse
|
14
|
Durán AG, Chinchilla N, Simonet AM, Gutiérrez MT, Bolívar J, Valdivia MM, Molinillo JMG, Macías FA. Biological Activity of Naphthoquinones Derivatives in the Search of Anticancer Lead Compounds. Toxins (Basel) 2023; 15:toxins15050348. [PMID: 37235382 DOI: 10.3390/toxins15050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it is also worth mentioning that many anticancer drugs possess a naphthoquinone backbone in their structure. Considering this background, the work described herein reports the evaluation of the cytotoxicity of different acyl and alkyl derivatives from juglone and lawsone that showed the best activity results from a etiolated wheat coleoptile bioassay. This bioassay is rapid, highly sensitive to a wide spectrum of activities, and is a powerful tool for detecting biologically active natural products. A preliminary cell viability bioassay was performed on cervix carcinoma (HeLa) cells for 24 h. The most promising compounds were further tested for apoptosis on different tumoral (IGROV-1 and SK-MEL-28) and non-tumoral (HEK-293) cell lines by flow cytometry. Results reveal that derivatives from lawsone (particularly derivative 4) were more cytotoxic on tumoral than in non-tumoral cells, showing similar results to those obtained with of etoposide, which is used as a positive control for apoptotic cell death. These findings encourage further studies on the development of new anticancer drugs for more directed therapies and reduced side effects with naphthoquinone skeleton.
Collapse
Affiliation(s)
- Alexandra G Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Nuria Chinchilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Ana M Simonet
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - M Teresa Gutiérrez
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Manuel M Valdivia
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - José M G Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
15
|
Esawi E, Mahmoud IS, Abdullah MS, Abuarqoub DA, Ahram MA, Alshaer WM. 1,4-Naphthoquinone Induces FcRn Protein Expression and Albumin Recycling in Human THP-1 Cells. ACS OMEGA 2023; 8:16491-16499. [PMID: 37179634 PMCID: PMC10173444 DOI: 10.1021/acsomega.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
The neonatal Fc receptor (FcRn) has been established as a major factor in regulating the metabolism of albumin and IgG in humans by protecting them from intracellular degradation after they are endocytosed into cells. We assume that increasing the levels of endogenous FcRn proteins in cells would be beneficial to enhance the recycling of these molecules. In this study, we identify the compound 1,4-naphthoquinone as an efficient stimulator of FcRn protein expression in human THP-1 monocytic cells with potency at the submicromolar range. Also, the compound increased the subcellular localization of FcRn to the endocytic recycling compartment and enhanced human serum albumin recycling in the PMA-induced THP-1 cells. These results suggest that 1,4-naphthoquinone stimulates FcRn expression and activity in human monocytic cells in vitro and it could open a new avenue for designing cotreatment agents to enhance the efficacy of biological treatments such as albumin-conjugated drugs in vivo.
Collapse
Affiliation(s)
- Ezaldeen
Ismael Esawi
- Department
of Pathology and Laboratory Medicine, King
Hussein Cancer Centre, Amman 11941, Jordan
| | - Ismail Sami Mahmoud
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
- . Tel: 00962797545880
| | | | - Duaa Azmi Abuarqoub
- Cell
Therapy Centre, The University of Jordan, Amman 11942, Jordan
- Department
of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical
Sciences, University of Petra, Amman 11180, Jordan
| | - Mamoun Ahmad Ahram
- Department
of Physiology and Biochemistry, The University
of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
16
|
Novel pyrrolidine-aminophenyl-1,4-naphthoquinones: structure-related mechanisms of leukemia cell death. Mol Cell Biochem 2023; 478:393-406. [PMID: 35836027 DOI: 10.1007/s11010-022-04514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
Novel derivatives of aminophenyl-1,4-naphthoquinones, in which a pyrrolidine group was added to the naphthoquinone ring, were synthesized and investigated for the mechanisms of leukemic cell killing. The novel compounds, TW-85 and TW-96, differ in the functional (methyl or hydroxyl) group at the para-position of the aminophenyl moiety. TW-85 and TW-96 were found to induce concentration- and time-dependent apoptotic and/or necrotic cell death in human U937 promonocytic leukemia cells but only TW-96 could also kill K562 chronic myeloid leukemia cells and CCRF-CEM lymphoblastic leukemia cells. Normal peripheral blood mononuclear cells were noticeably less responsive to both compounds than leukemia cells. At low micromolar concentrations used, TW-85 killed U937 cells mainly by inducing apoptosis. TW-96 was a weaker apoptotic agent in U937 cells but proved to be cytotoxic and a stronger inducer of necrosis in all three leukemic cell lines tested. Both compounds induced mitochondrial permeability transition pore opening, cytochrome c release, and caspase activation in U937 cells. Cytotoxicity induced by TW-96, but not by TW-85, was associated with the elevation of the cytosolic levels of reactive oxygen species (ROS). The latter was attenuated by diphenyleneiodonium, indicating that NADPH oxidase was likely to be the source of ROS generation. Activation of p38 MAPK by the two agents appeared to prevent necrosis but differentially affected apoptotic cell death in U937 cells. These results further expand our understanding of the structure-activity relationship of aminophenyl-1,4-naphthoquinones as potential anti-leukemic agents with distinct modes of action.
Collapse
|
17
|
Docetaxel Loaded in Copaiba Oil-Nanostructured Lipid Carriers as a Promising DDS for Breast Cancer Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248838. [PMID: 36557969 PMCID: PMC9788038 DOI: 10.3390/molecules27248838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Breast cancer is the neoplasia of highest incidence in women worldwide. Docetaxel (DTX), a taxoid used to treat breast cancer, is a BCS-class-IV compound (low oral bioavailability, solubility and intestinal permeability). Nanotechnological strategies can improve chemotherapy effectiveness by promoting sustained release and reducing systemic toxicity. Nanostructured lipid carriers (NLC) encapsulate hydrophobic drugs in their blend-of-lipids matrix, and imperfections prevent drug expulsion during storage. This work describes the preparation, by design of experiments (23 factorial design) of a novel NLC formulation containing copaiba oil (CO) as a functional excipient. The optimized formulation (NLCDTX) showed approximately 100% DTX encapsulation efficiency and was characterized by different techniques (DLS, NTA, TEM/FE-SEM, DSC and XRD) and was stable for 12 months of storage, at 25 °C. Incorporation into the NLC prolonged drug release for 54 h, compared to commercial DTX (10 h). In vitro cytotoxicity tests revealed the antiproliferative effect of CO and NLCDTX, by reducing the cell viability of breast cancer (4T1/MCF-7) and healthy (NIH-3T3) cells more than commercial DTX. NLCDTX thus emerges as a promising drug delivery system of remarkable anticancer effect, (strengthened by CO) and sustained release that, in clinics, may decrease systemic toxicity at lower DTX doses.
Collapse
|
18
|
Choura E, Elghali F, Bernard PJ, Msalbi D, Marco-Contelles J, Aifa S, Ismaili L, Chabchoub F. Benzochromenopyrimidines: Synthesis, Antiproliferative Activity against Colorectal Cancer and Physicochemical Properties. Molecules 2022; 27:molecules27227878. [PMID: 36431976 PMCID: PMC9694646 DOI: 10.3390/molecules27227878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Ten new differently substituted 3-benzyl-5-aryl-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidin-4,6,11-triones 3 were synthesized by a simple and cost-efficient procedure in a one-pot, three-component reaction from readily available ethyl 2-amino-4-aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene-3-carboxylates, benzylamine and triethyl orthoformate under solvent- and catalyst-free conditions. All the new compounds were screened for their antiproliferative activity against two colorectal-cancer-cell lines. The results showed that the compounds 3-benzyl-5-phenyl-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11-trione (3a) and 3-benzyl-5-(3-hydroxyphenyl)-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11-trione (3g) exhibited the most potent balanced inhibitory activity against human LoVo and HCT-116 cancer cells.
Collapse
Affiliation(s)
- Emna Choura
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, BP 802, Sfax 3000, Tunisia
| | - Fares Elghali
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - Paul J. Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université Franche-Comté, UFR Santé, 19, Rue Ambroise Paré, F-25000 Besançon, France
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 28006 Madrid, Spain
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université Franche-Comté, UFR Santé, 19, Rue Ambroise Paré, F-25000 Besançon, France
- Correspondence: (L.I.); (F.C.)
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, BP 802, Sfax 3000, Tunisia
- Correspondence: (L.I.); (F.C.)
| |
Collapse
|
19
|
Yuan Y, Liu Y, Wang H, Zhang X. Fe(III)‐Mediated
para
‐Selective Nucleophilic Thiocyanation and Oxidation Reactions, Access to Thiocyanated Amidophenols and Amidoquinones. ChemistrySelect 2022. [DOI: 10.1002/slct.202203719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - Yibo Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - HongLing Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - Xiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| |
Collapse
|
20
|
In Vitro Cytotoxicity Evaluation of Plastoquinone Analogues against Colorectal and Breast Cancers along with In Silico Insights. Pharmaceuticals (Basel) 2022; 15:ph15101266. [PMID: 36297378 PMCID: PMC9609592 DOI: 10.3390/ph15101266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) and breast cancer are leading causes of death globally, due to significant challenges in detection and management. The late-stage diagnosis and treatment failures require the discovery of potential anticancer agents to achieve a satisfactory therapeutic effect. We have previously reported a series of plastoquinone analogues to understand their cytotoxic profile. Among these derivatives, three of them (AQ-11, AQ-12, and AQ-15) were selected by the National Cancer Institute (NCI) to evaluate their in vitro antiproliferative activity against a panel of 60 human tumor cell lines. AQ-12 exhibited significant antiproliferative activity against HCT-116 CRC and MCF-7 breast cancer cells at a single dose and further five doses. MTT assay was also performed for AQ-12 at different concentrations against these two cells, implying that AQ-12 exerted notable cytotoxicity toward HCT-116 (IC50 = 5.11 ± 2.14 μM) and MCF-7 (IC50 = 6.06 ± 3.09 μM) cells in comparison with cisplatin (IC50 = 23.68 ± 6.81 μM and 19.67 ± 5.94 μM, respectively). This compound also augmented apoptosis in HCT-116 (62.30%) and MCF-7 (64.60%) cells comparable to cisplatin (67.30% and 78.80%, respectively). Molecular docking studies showed that AQ-12 bound to DNA, forming hydrogen bonding through the quinone scaffold. In silico pharmacokinetic determinants indicated that AQ-12 demonstrated drug-likeness with a remarkable pharmacokinetic profile for future mechanistic anti-CRC and anti-breast cancer activity studies.
Collapse
|
21
|
Exploring the Anticancer Effects of Brominated Plastoquinone Analogs with Promising Cytotoxic Activity in MCF-7 Breast Cancer Cells via Cell Cycle Arrest and Oxidative Stress Induction. Pharmaceuticals (Basel) 2022; 15:ph15070777. [PMID: 35890076 PMCID: PMC9318129 DOI: 10.3390/ph15070777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Plastoquinone analogs are privileged structures among the known antiproliferative natural product-based compound families. Exploiting one of these analogs as a lead structure, we report the investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute of Bethesda within the Developmental Therapeutics Program (DTP). These analogs exhibited growth inhibition in the micromolar range across leukemia, non-small cell lung cancer (EKVX, HOP-92, and NCI-H522), colon cancer (HCT-116, HOP-92), melanoma (LOX IMVI), and ovarian cancer (OVCAR-4) cell lines. One brominated PQ analog (BrPQ5) was selected for a full panel five-dose in vitro assay by the NCI’s Development Therapeutic Program (DTP) division to determine GI50, TGI, and LC50 parameters. The brominated PQ analog (BrPQ5) displayed remarkable activity against most tested cell lines, with GI50 values ranging from 1.55 to 4.41 µM. The designed molecules (BrPQ analogs) obeyed drug-likeness rules, displayed a favorable predictive Absorption, Distribution, Metabolism, and Excretion (ADME) profile, and an in silico simulation predicted a possible BrPQ5 interaction with proteasome catalytic subunits. Furthermore, the in vitro cytotoxic activity of BrPQ5 was assessed, and IC50 values for U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145 prostate cancer, HCT-116 colon cancer, and VHF93 fibroblast cell lines were evaluated using an MTT assay. MCF-7 was the most affected cell line, and the effects of BrPQ5 on cell proliferation, cell cycle, oxidative stress, apoptosis/necrosis induction, and proteasome activity were further investigated in MCF-7 cells. The in vitro assay results showed that BrPQ5 caused cytotoxicity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction. However, BrPQ5 did not inhibit the catalytic activity of the proteasome. These results provide valuable insights for further discovery of novel antiproliferative agents.
Collapse
|
22
|
Venturini Filho E, Antoniazi MK, Ferreira RQ, dos Santos GFS, Pessoa C, Guimarães CJ, Vieira Neto JB, Silva AMS, Greco S. A green multicomponent domino Mannich‐Michael reaction to synthesize novel naphthoquinone‐polyphenols with antiproliferative and antioxidant activities. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eclair Venturini Filho
- Federal University of Espirito Santo: Universidade Federal do Espirito Santo Chemistry BRAZIL
| | - Mariana K Antoniazi
- Federal University of Espirito Santo: Universidade Federal do Espirito Santo Chemistry BRAZIL
| | - Rafael Q Ferreira
- Federal University of Espirito Santo: Universidade Federal do Espirito Santo Chemistry BRAZIL
| | | | - Claudia Pessoa
- Federal University of Ceara: Universidade Federal do Ceara Department of Physiology and Pharmacology BRAZIL
| | - Celina J. Guimarães
- Federal University of Ceara: Universidade Federal do Ceara Department of Physiology and Pharmacology BRAZIL
| | - José B. Vieira Neto
- Federal University of Ceara: Universidade Federal do Ceara Department of Physiology and Pharmacology BRAZIL
| | | | - Sandro Greco
- Universidade Federal do Espírito Santo Química Avenida Fernando Ferrari 514Goiabeiras 29075910 Vitória BRAZIL
| |
Collapse
|
23
|
Mahalapbutr P, Leechaisit R, Thongnum A, Todsaporn D, Prachayasittikul V, Rungrotmongkol T, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Discovery of Anilino-1,4-naphthoquinones as Potent EGFR Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Comprehensive Molecular Modeling. ACS OMEGA 2022; 7:17881-17893. [PMID: 35664590 PMCID: PMC9161259 DOI: 10.1021/acsomega.2c01188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 μM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Department
of Biochemistry, and Center for Translational Medicine, Faculty of
Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Duangjai Todsaporn
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Thanyada Rungrotmongkol
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry and Program in Chemical Sciences, Chulabhorn Research Institute, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Commission
on Higher Education, Ministry of Education, Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| |
Collapse
|
24
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Radwan MO, Jannuzzi AT, Otsuka M, Fujita M, TuYuN AF. Promising Antibacterial and Antifungal Agents Based on Thiolated Vitamin K3 Analogs: Synthesis, Bioevaluation, Molecular Docking. Pharmaceuticals (Basel) 2022; 15:586. [PMID: 35631412 PMCID: PMC9146127 DOI: 10.3390/ph15050586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
In the present study, we designed and synthesized thiolated VK3 analogs (VK3a-g) along with an extensive antimicrobial study. After the evaluation of the antibacterial and antifungal activity against various bacterial and fungal strains, we presented an initial structure-activity relationship study on these VK3 analogs. In particular, four thiolated VK3 analogs exhibited superior biological potency against some Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). Next, all thiolated VK3 analogs were evaluated for their potential of cell growth inhibition on the NCI-60 cancer cell lines panel. This screening underlined that the thiolated VK3 analogs have no visible cytotoxicity on different cancer cell lines. The selected two thiolated VK3 analogs (VK3a and VK3b), having minimal hemolytic activity, which also have the lowest MIC values on S. aureus and E. faecalis, were further evaluated for their inhibition capacities on biofilm formation after evaluating their potential in vitro antimicrobial activity against each of the 20 clinically obtained resistant strains of Staphylococcus aureus. VK3b showed excellent antimicrobial activity against clinically resistant S. aureus isolates. Furthermore, the tested molecules showed nearly two log10 reduction in the viable cell count at six hours according to the time kill curve studies. Although these molecules decreased biofilm attachment about 50%, when sub-MIC concentrations were used these molecules increased the percentage of biofilm formation. The molecular docking of VK3a and VK3b in S. aureus thymidylate kinase was conducted in order to predict their molecular interactions. VK3a and VK3b exhibited excellent lead-likeness properties and pharmacokinetic profiles that qualify them for further optimization and development. In conclusion, since investigating efficient novel antimicrobial molecules is quite difficult, these studies are of high importance, especially in the present era of antimicrobial resistance.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey;
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Mohamed Osman Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul 34126, Turkey
| |
Collapse
|
25
|
Xiong L, He SQ, Pan J, Yu B. Metal-/catalyst-free one-pot three-component thioamination of 1,4-naphthoquinone in a sustainable solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj05741c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-/catalyst-free protocol for the direct thioamination of 1,4-naphthoquinone with thiophenols and amines using air as an oxidant in a green solvent has been developed. This environmentally friendly strategy was...
Collapse
|
26
|
Swami S, Shrivastava R, Sharma N, Agarwala A, Verma VP, Singh AP. An ultrasound-assisted solvent and catalyst-free synthesis of structurally diverse pyrazole centered 1,5-disubstituted tetrazoles via one-pot four-component reaction. LETT ORG CHEM 2021. [DOI: 10.2174/1570178619666211220094516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
1,5-Disubstituted tetrazoles are vital drug-like scaffold usually encountered as valuable bioisosteres of cis-amide bond. In this article, we reported synthesis of some novel medicinally relevant pyrazole centered 1,5-disubstituted tetrazoles using ultrasound irradiation via a one-pot 4-C reaction from various pyrazole originated aldehyde, amine, isocyanide, and sodium azide. All the synthesized derivatives were characterized by IR, 1H NMR, 13C NMR, spectroscopic techniques, and mass analysis. This ultrasound-assisted green protocol has several advantages like mild reaction condition, high yield, catalyst and solvent-free reaction protocol, 15 minutes reaction time and easy workup.
Collapse
Affiliation(s)
- Suman Swami
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007, India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007, India
| | - Arunava Agarwala
- Department of Chemistry, Malda College, Malda, West Bengal, India
| | | | - Atul Pratap Singh
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
27
|
Jannuzzi AT, Yıldız M, Bayrak N, Yıldırım H, Shilkar D, Jayaprakash V, TuYuN AF. Anticancer agents based on Plastoquinone analogs with N-phenylpiperazine: Structure-activity relationship and mechanism of action in breast cancer cells. Chem Biol Interact 2021; 349:109673. [PMID: 34560069 DOI: 10.1016/j.cbi.2021.109673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
2,3-Dimethyl-1,4-benzoquinones named as Plastoquinone (PQ) analogs have antiproliferative activity and are promising new members of molecules that can be used to cope with cancer. In an attempt to develop effective and potentially safe antiproliferative agents, previously reported twelve Plastoquinone analogs (PQ1-12) have been obtained to understand their antiproliferative profile. All PQ analogs have been selected by the National Cancer Institute (NCI) of Bethesda based on the NCI Developmental Therapeutics Program and tested against the panel of 60 cancer cell lines. Based on those studies, the cytotoxicity of the selected PQ analogs (PQ8, PQ9, PQ11, and PQ12) was determined using four breast cancer cell lines (MCF7, UACC-2087, MDA-MB-231, and MDA-MB-435) and a normal cell line (HaCaT). For better understanding, apoptosis induction, changes in cell proliferation, cell migration, and reactive oxygen species (ROS) generation were investigated for the selected PQ analog (PQ11) on MCF7 and UACC-2087 cell lines. According to the study results, PQ11 showed the most promising anticancer activity against MCF7 cell line through increased oxidative stress and apoptosis and suppression of cell proliferation. Based on the biological activity profile, we hypothesize that PQ11 could be a modulator of the cannabinoid 2 (CB2) receptor. Accordingly, we analyzed molecular level interaction of PQ11 with CB2 receptor through molecular docking simulation and it was also predicted to have a favorable ADMET profile. Overall, our findings suggest that integration of the N-phenylpiperazine moiety can be a good strategy for the structural optimization of PQ analogs as anticancer agents, especially in breast cancer.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Pharmaceutical Toxicology Department, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Mahmut Yıldız
- Chemistry Department, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcılar, 34320, Istanbul, Turkey
| | - Hatice Yıldırım
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcılar, 34320, Istanbul, Turkey
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey.
| |
Collapse
|
28
|
Kędzierska M, Blilid S, Miłowska K, Kołodziejczyk-Czepas J, Katir N, Lahcini M, El Kadib A, Bryszewska M. Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. Int J Mol Sci 2021; 22:11386. [PMID: 34768816 PMCID: PMC8583768 DOI: 10.3390/ijms222111386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
29
|
Yıldız M, Bayrak N, Yıldırım H, Mataracı-Kara E, Shilkar D, Jayaprakash V, Fatih Tuyun A. Exploration of brominated Plastoquinone analogs: Discovery and structure-activity relationships of small antimicrobial lead molecules. Bioorg Chem 2021; 116:105316. [PMID: 34509796 DOI: 10.1016/j.bioorg.2021.105316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/28/2021] [Indexed: 11/19/2022]
Abstract
In the fight with the antimicrobial resistance, our continuous effort to find quinone analogs with higher inhibitory activity has previously led us to the promising Plastoquinone analogs. The 1,4-quinone moiety substituted with alkoxy substituent(s) plays an important role in the field of antimicrobial and anticancer drug discovery and development. Thus, an extensive series of 1,4-quinones, substituted in different positions with a variety of alkoxy substituents, has been designed, synthesized, and evaluated for their antimicrobial activity. Here, we describe the synthesis of brominated Plastoquinone analogs (BrPQ1-15) based on the dimethyl-1,4-quinone scaffold by employing two different paths. We also present here the in vitro antimicrobial activity of these analogs (BrPQ1-15) against a panel of pathogenic organisms. These studies resulted in several new selective antibacterial inhibitors and gave valuable insights into the structure-activity relationships. Among all the analogs studied, two analogs BrPQ1 with a methoxy substituent and BrPQ14 with a cyclic dioxy stand out as the most promising antibacterial molecules against Staphylococcus aureus and Staphylococcus epidermidis. Afterwards, two analogs were selected for a further investigation for biofilm evaluation. Finally, molecular docking studies for BrPQ1 and BrPQ14 with probable target S. aureus PNPase (5XEX) and predictive ADMET studies were also carried out.
Collapse
Affiliation(s)
- Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar 34320, Istanbul, Turkey
| | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar 34320, Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit 34116, Istanbul, Turkey
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Amaç Fatih Tuyun
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey.
| |
Collapse
|
30
|
Ravichandiran P, Kaliannagounder VK, Maroli N, Boguszewska-Czubara A, Masłyk M, Kim AR, Park BH, Han MK, Kim CS, Park CH, Yoo DJ. A dual-channel colorimetric and ratiometric fluorescence chemosensor for detection of Hg 2+ ion and its bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119776. [PMID: 33857751 DOI: 10.1016/j.saa.2021.119776] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
A new colorimetric and ratiometric fluorescence chemosensor 4-((3-(octadecylthio)-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4DBS) was synthesized and investigated for the selective detection of Hg2+ in DMSO-H2O (9:1, v/v) solution. The chemosensor was efficiently synthesized in two steps via Michael-like addition and nucleophilic substitution reactions. The ratiometric fluorescence turn-on response was obtained towards Hg2+, and its fluorescence emission peak was red-shifted by 140 nm with an associated color change from light maroon to pale yellow due to the intramolecular charge transfer effect. The formed coordination metal complex was further evaluated by FT-IR, 1H NMR, and quantum chemical analyses to confirm the binding mechanism. The detection process was sensitive/reversible, and the calculated limit of detection for Hg2+ was 0.451 µM. Furthermore, 4DBS was effectively utilized as a bioimaging agent for detection of Hg2+ in live cells and zebrafish larvae. Additionally, 4DBS showed distinguishing detection of Hg2+ in cancer cells in comparison with normal cells. Thus, 4DBS could be employed as an efficient bioimaging probe for discriminative identification of human cancer cells.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, 20-093 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Ae Rhan Kim
- Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
31
|
Ravichandiran P, Prabakaran DS, Maroli N, Boguszewska-Czubara A, Masłyk M, Kim AR, Kolandaivel P, Ramalingam P, Park BH, Han MK, Ramesh T, Yoo DJ. Mitochondria-targeted dual-channel colorimetric and fluorescence chemosensor for detection of Sn 2+ ions in aqueous solution based on aggregation-induced emission and its bioimaging applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125593. [PMID: 33730641 DOI: 10.1016/j.jhazmat.2021.125593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Several fluorescence and colorimetric chemosensory for Sn2+ detection in an aqueous media have been reported, but applications remain limited for discriminative Sn2+ detection in live human cells and zebrafish larvae. Herein, a mitochondria-targeted Sn2+ "turn-on" colorimetric and fluorescence chemosensor, 2CTA, with an aggregation-induced emission (AIE) response was developed. The sensing of Sn2+ was enabled by a reduction-enabled binding pathway, with the conversion of -C˭O groups to -C-OH groups at the naphthoquinone moiety. The color changed from light maroon to milky white in a buffered aqueous solution. The chemosensor 2CTA possessed the excellent characteristics of good water solubility, fast response (less than 10 s), and high sensitivity (79 nM) and selectivity for Sn2+ over other metal ions, amino acids, and peptides. The proposed binding mechanism was experimentally verified by means of FT-IR and NMR studies. The chemosensor 2CTA was successfully employed to recognize Sn2+ in live human cells and in zebrafish larvae. In addition, a colocalization study proved that the chemosensor had the ability to target mitochondria and overlapped almost completely with MitoTracker Red. Furthermore, a bioimaging study of live cells demonstrated the discriminative detection of Sn2+ in human cancer cells and the practical applications of 2CTA in biological systems.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea; Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Nikhil Maroli
- Computational Biology Division, DRDO BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore 641046, India; Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, 20-093 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Ae Rhan Kim
- Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | | | | | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box: 173, Al-Kharj 11942, Saudi Arabia
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
32
|
Plastoquinone analogs: a potential antimicrobial lead structure intensely suppressing Staphylococcus epidermidis and Candida albicans growth. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02772-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Dangi M, Khichi A, Jakhar R, Chhillar AK. Growing Preferences towards Analog-based Drug Discovery. Curr Pharm Biotechnol 2021; 22:1030-1045. [PMID: 32900347 DOI: 10.2174/1389201021666200908121409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The major concern of today's time is the developing resistance in most of the clinically derived pathogenic micro-organisms for available drugs through several mechanisms. Therefore, there is a dire need to develop novel molecules with drug-like properties that can be effective against the otherwise resistant micro-organisms. METHODS New drugs can be developed using several methods like structure-based drug design, ligandbased drug design, or by developing analogs of the available drugs to further improve their effects. However, the smartness is to opt for the techniques that have comparatively less expenditure, lower failure rates, and faster discovery rates. RESULTS Analog-Based Drug Design (ABDD) is one such technique that researchers worldwide are opting to develop new drug-like molecules with comparatively lower market values. They start by first designing the analogs sharing structural and pharmacological similarities to the existing drugs. This method embarks on scaffold structures of available drugs already approved by the clinical trials, but are left ineffective because of resistance developed by the pathogens. CONCLUSION In this review, we have discussed some recent examples of anti-fungal and anti-bacterial (antimicrobial) drugs that were designed based on the ABDD technique. Also, we have tried to focus on the in silico tools and techniques that can contribute to the designing and computational screening of the analogs, so that these can be further considered for in vitro screening to validate their better biological activities against the pathogens with comparatively reduced rates of failure.
Collapse
Affiliation(s)
- Mehak Dangi
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| | - Alka Khichi
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| | - Ritu Jakhar
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| | - Anil K Chhillar
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| |
Collapse
|
34
|
fard MA, Manafi M, Motevalian M, Homami SS. Design, Synthesis and Acetylcholinesterase and Butylcholinesterase Inhibition Activity of Novel 1-(Alkyl)-3-(2-oxo-2H-chromenyloxy Acetamido) methylpyridinium Salts. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200818165935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, a novel series of 1-(alkyl)-3-(2-oxo-2H-chromenyloxy acetamido) methylpyridinium
salts were synthesized in a simple and efficient way. The method showed to be facile and the
compounds were obtained in high isolated yields. All the synthesized compounds were characterized
by <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR, Mass and elemental analysis. AChE and BuChE inhibition activity of
the synthesized compounds were evaluated and the results showed that all the compounds were active
in the inhibition of the mentioned enzymes. All the compounds were active in the inhibition of the two
studied enzymes. Among all the compounds, the compound 6a (1.85 μM) and 6i (0.106 μM) showed
the highest inhibition activity against AChE and BuChE, respectively. The kinetic study was performed
to get more insight into the mechanism of action of the synthesized compounds. Docking studies were
also performed to obtain the interactions between the synthesized compounds and the enzymes.
Collapse
Affiliation(s)
- Mehri Abdollahi fard
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran,Iran
| | - Mohammadreza Manafi
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran,Iran
| | - Manijeh Motevalian
- Medical School & Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran,Iran
| |
Collapse
|
35
|
Rani R, Narasimhan B, Varma RS, Kumar R. Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activity against Trypanosoma evansi. Vet Parasitol 2021; 290:109367. [PMID: 33516118 DOI: 10.1016/j.vetpar.2021.109367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Trypanosoma evansi is an extracellular flagellate blood protozoan parasite and an etiological agent of animal trypanosomosis. Presently, only a few drugs are registered and have been used for the treatment of animal trypanosomosis, but they show severe toxic effects and also face the problem of drug resistance. Naphthoquinones (NTQ) are considered as fortunate structures in the field of medicinal chemistry as they have been reported for their antitrypanosomal potential against other trypanosomes-T. brucei and T. cruzi. In the present study, six naphthoquinones (NTQ1-NTQ6) derivatives were evaluated for anti-trypanosomal activity by demonstrating their growth inhibitory effect against T. evansi. All NTQs significantly (p < 0.001) exhibited activity against parasite growth and multiplication with IC50 values of 11.48 μM, 373.6 μM, 12.97 μM, 21.97 μM, 18.19 μM and 5.758 μM but NTQ1, NTQ3 and NTQ6 were selected based on their IC50 value for further studies. The dose-and time-dependent morphological effect on parasite was evaluated including the measurement of reactive oxygen species (ROS) by spectrofluorometery and measurement of apoptosis by flow cytometry. The selected NTQs exhibited a significant production of ROS and displayed a significant AV+ and PI+ labelled cells in the axenic culture of T. evansi than quinapyramine methyl sulphate (QPS), as reference control. NTQs also showed more cytotoxic effect on horse peripheral blood mononuclear cells as compare to QPS. Therefore, we confirmed the antitrypanosomal activity and apoptotic-like mechanism of NTQs in an axenic culture of T. evansi.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equine, Hisar, 125001, Haryana, India
| | | | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| | - Rajender Kumar
- ICAR-National Research Centre on Equine, Hisar, 125001, Haryana, India.
| |
Collapse
|
36
|
Babaee S, Zarei M, Zolfigol MA, Khazalpour S, Hasani M, Rinner U, Schirhagl R, Norouzi N, Rostamnia S. Synthesis of biological based hennotannic acid-based salts over porous bismuth coordination polymer with phosphorous acid tags. RSC Adv 2021; 11:2141-2157. [PMID: 35424185 PMCID: PMC8693640 DOI: 10.1039/d0ra06674e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
In this paper, a novel porous polymer capable of coordinating to bismuth (PCPs-Bi) was synthesized. The Bi-PCPs was then reacted with phosphorous acid to produce a novel polymer PCPs(Bi)N(CH2PO3H2)2 which is shown to act as an efficient and recyclable catalyst. The mentioned catalyst was applied for the efficient synthesis of new mono and bis naphthoquinone-based salts of piperidine and/or piperazine via the reaction of hennotannic acid with various aldehydes, piperidine and/or piperazine, respectively. The structure of the resulting mono and bis substituted piperazine or piperidine-based naphthoquinone salts was thoroughly characterized spectroscopically. The electrochemical behavior of the products was also investigated. The presented protocol has the advantages of excellent yields (82-95%), short reaction times (4-30 min) and simple work-up.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Sadegh Khazalpour
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Uwe Rinner
- Department of Life Sciences, IMC University of Applied Sciences Piaristengasse 1, 3500 Krems Austria
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University Antonius Deusinglaan 1, 9713 AV Groningen Netherlands
| | - Neda Norouzi
- University Medical Center Groningen, Groningen University Antonius Deusinglaan 1, 9713 AV Groningen Netherlands
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh PO Box 55181-83111 Maragheh Iran
| |
Collapse
|
37
|
Pedrood K, Sherafati M, Mohammadi-Khanaposhtani M, Asgari MS, Hosseini S, Rastegar H, Larijani B, Mahdavi M, Taslimi P, Erden Y, Günay S, Gulçin İ. Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives. Int J Biol Macromol 2020; 170:1-12. [PMID: 33352155 DOI: 10.1016/j.ijbiomac.2020.12.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
In this study, novel quinazolinone derivatives 7a-n were synthesized and evaluated against metabolic enzymes including α-glycosidase, acetylcholinesterase, butyrylcholinesterase, human carbonic anhydrase I, and II. These compounds exhibited high inhibitory activities in comparison to used standard inhibitors with Ki values in the range of 19.28-135.88 nM for α-glycosidase (Ki value for standard inhibitor = 187.71 nM), 0.68-23.01 nM for acetylcholinesterase (Ki value for standard inhibitor = 53.31 nM), 1.01-29.56 nM for butyrylcholinesterase (Ki value for standard inhibitor = 58.16 nM), 10.25-126.05 nM for human carbonic anhydrase I (Ki value for standard inhibitor = 248.18 nM), and 13.46-178.35 nM for human carbonic anhydrase II (Ki value for standard inhibitor = 323.72). Furthermore, the most potent compounds against each enzyme were selected in order to evaluate interaction modes of these compounds in the active site of the target enzyme. Cytotoxicity assay of the title compounds 7a-n against cancer cell lines MCF-7 and LNCaP demonstrated that these compounds do not show significant cytotoxic effects.
Collapse
Affiliation(s)
- Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Sherafati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey.
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Sevilay Günay
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
38
|
Ravichandiran P, Kaliannagounder VK, Bella AP, Boguszewska-Czubara A, Masłyk M, Kim CS, Park CH, Johnson PM, Park BH, Han MK, Kim AR, Yoo DJ. Simple Colorimetric and Fluorescence Chemosensing Probe for Selective Detection of Sn2+ Ions in an Aqueous Solution: Evaluation of the Novel Sensing Mechanism and Its Bioimaging Applications. Anal Chem 2020; 93:801-811. [DOI: 10.1021/acs.analchem.0c03196] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Sciences, College of Natural Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Antony Paulraj Bella
- PG and Research Department of Chemistry, Bishop Heber College, Vayalur Road, Puthur, Tiruchirappalli, Tamil Nadu 620017, India
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, Lublin 20-093, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, Lublin 20-708, Poland
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Princy Merlin Johnson
- PG and Research Department of Chemistry, Bishop Heber College, Vayalur Road, Puthur, Tiruchirappalli, Tamil Nadu 620017, India
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Ae Rhan Kim
- Department of Life Sciences, College of Natural Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of Life Sciences, College of Natural Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
39
|
New 2-Acetyl-3-aminophenyl-1,4-naphthoquinones: Synthesis and In Vitro Antiproliferative Activities on Breast and Prostate Human Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8939716. [PMID: 33101594 PMCID: PMC7574025 DOI: 10.1155/2020/8939716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
The reaction of 2-acyl-1,4-naphthoquinones with N,N-dimethylaniline and 2,5-dimethoxyaniline, promoted by catalytic amounts of CeCl3·7H2O under “open-flask” conditions, produced a variety of 2-acyl-3-aminophenyl-1,4-naphthoquinones structurally related to the cytotoxic 2-acetyl-3-phenyl-1,4-naphthoquinone, an inhibitor of the heat shock chaperone protein Hsp90. The members of the 2-acyl-3-aminophenyl-1,4-naphthoquinone series were isolated in good yields (63-98%). The cyclic voltammograms of the 2-acyl-3-aminophenyl-1,4-naphthoquinone exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasireversible oxidation peaks. The first and second half-wave potential values (E1/2) of the members of the series are sensitive to the push-pull electronic effects of the substituents in the naphthoquinone scaffold. Furthermore, the in vitro antiproliferative properties of these new quinones were evaluated on two human cancer cells DU-145 (prostate) and MCF-7 (mammary) and a nontumorigenic HEK-293 (kidney) cell line, using the MTT colorimetric method. Two members, within the series, exhibited interesting cytotoxic activities on human prostate and mammary cancer cells.
Collapse
|
40
|
Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL. Synergistic Antibacterial Activity Between 1,4-Naphthoquinone and β-Lactam Antibiotics Against Methicillin-Resistant Staphylococcus aureus. Microb Drug Resist 2020; 27:234-240. [PMID: 32589487 DOI: 10.1089/mdr.2020.0178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
Collapse
Affiliation(s)
- Jeremy Kean Yi Yap
- School of Postgraduate Studies, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Sharon Yoke Ying Tan
- School of Health Sciences, and Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shi Qi Tang
- School of Health Sciences, and Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Vui Kien Thien
- School of Health Sciences, and Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Elaine Wan Ling Chan
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Ourhzif EM, Decombat C, Abrunhosa-Thomas I, Delort L, Khouili M, Akssira M, Caldefie-Chezet F, Chalard P, Troin Y. Synthesis and Biological Evaluation of New Naphthoquinones Derivatives. Curr Org Synth 2020; 17:224-229. [DOI: 10.2174/1570179417666200212111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
Abstract
:
New substituted 1,4-naphthoquinones have been prepared in good overall yields through the
naphthol route. The cytotoxicity of these compounds was tested in vitro on MCF-7 breast tumor cells. The
most active compound 14 displayed an IC50 of 15μM.
Objective:
To investigate the cytotoxicity of new naphthoquinones derivatives on MCF-7 cells.
Methods:
Synthesis of new naphtoquinones derivatives and in vitro evaluation of their cytotoxicity on MCF-7
cells (rezasurin cell-based assay).
Results:
Starting from Ethyl 4-hydroxy-6,7-dimethoxy-2-naphthoate, four naphthoquinones were prepared and
exhibited substantial cytotoxicity against MCF-7 cells.
Conclusion:
Preliminary studies of the structure-activity relationship have shown the influence of the structural
parameters and, in particular, the nature of the naphthoquinone side chain.
Collapse
Affiliation(s)
- El-Mahdi Ourhzif
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Laetitia Delort
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Mostafa Khouili
- Universite Sultan Moulay Slimane, FST, Laboratoire de Chimie Organique et Analytique, BP 523 Beni-Mellal, Morocco
| | - Mohamed Akssira
- Universite Hassan II Casablanca, FST, Laboratoire de Chimie Physique et Chimie Bio organique BP 146,28800 Mohammedia, Morocco
| | - Florence Caldefie-Chezet
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Pierre Chalard
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Yves Troin
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
42
|
Faber SC, Giani Tagliabue S, Bonati L, Denison MS. The Cellular and Molecular Determinants of Naphthoquinone-Dependent Activation of the Aryl Hydrocarbon Receptor. Int J Mol Sci 2020; 21:ijms21114111. [PMID: 32526934 PMCID: PMC7312509 DOI: 10.3390/ijms21114111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022] Open
Abstract
1,2-naphthoquinone (1,2-NQ) and 1,4-naphthoquinone (1,4-NQ) are clinically promising biologically active chemicals that have been shown to stimulate the aryl hydrocarbon receptor (AhR) signaling pathway, but whether they are direct or indirect ligands or activate the AhR in a ligand-independent manner is unknown. Given the structural diversity of AhR ligands, multiple mechanisms of AhR activation of gene expression, and species differences in AhR ligand binding and response, we examined the ability of 1,2-NQ and 1,4-NQ to bind to and activate the mouse and human AhRs using a series of in vitro AhR-specific bioassays and in silico modeling techniques. Both NQs induced AhR-dependent gene expression in mouse and human hepatoma cells, but were more potent and efficacious in human cells. 1,2-NQ and 1,4-NQ stimulated AhR transformation and DNA binding in vitro and was inhibited by AhR antagonists. Ligand binding analysis confirmed the ability of 1,2-NQ and 1,4-NQ to competitively bind to the AhR ligand binding cavity and the molecular determinants for interactions were predicted by molecular modeling methods. NQs were shown to bind distinctly differently from that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and differences were also observed between species. Mutation of amino acid residues (F289, M334, and M342) involved in critical NQ:AhR binding interactions, decreased NQ- and AhR-dependent gene expression, consistent with a role for these residues in binding and activation of the AhR by NQs. These studies provide insights into the molecular mechanism of action of NQs and contribute to the development of emerging NQ-based therapeutics.
Collapse
Affiliation(s)
- Samantha C. Faber
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.G.T.); (L.B.)
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-(530)-752-3879
| |
Collapse
|
43
|
Kara EM, Bayrak N, Yıldırım H, Yıldız M, Celik BO, Tuyun AF. Chlorinated plastoquinone analogs that inhibit Staphylococcus epidermidis and Candida albicans growth. Folia Microbiol (Praha) 2020; 65:785-795. [PMID: 32458315 DOI: 10.1007/s12223-020-00783-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Infectious diseases are the significant global health problem because of drug resistance to most classes of antimicrobials. Interest is growing in the development of new antimicrobials in pharmaceutical discovery. For that reason, the urgency for scientists to find and/or develop new important molecules is needed. Many natural active molecules that exhibit various biological activities have been isolated from the nature. For the present research, a new selected set of aminobenzoquinones, denoted as plastoquinone analogs (PQ1-24), was employed for their in vitro antimicrobial potential in a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungi. The results revealed PQ analogs with specific activity against bacteria including Staphylococcus epidermidis and pathogenic fungi, including Candida albicans. PQ8 containing methoxy group at the ortho position on the phenylamino moiety exhibited the highest growth inhibition against S. epidermidis with a minimum inhibitory concentration of 9.76 μg/mL. The antifungal profile of all PQ analogs indicated that five analogs (while PQ1, PQ8, PQ9, PQ11, and PQ18 were effective against Candida albicans, PQ1 and PQ18 were effective against Candida tropicalis) have potent antifungal activity. Selected analogs, PQ1 and PQ18, were studied for biofilm evaluation and time-kill kinetic study for better understanding.
Collapse
Affiliation(s)
- Emel Mataracı Kara
- Pharmaceutical Microbiology Department, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey.
| | - Nilüfer Bayrak
- Chemistry Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Hatice Yıldırım
- Chemistry Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Yıldız
- Chemistry Department, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Berna Ozbek Celik
- Pharmaceutical Microbiology Department, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Amaç Fatih Tuyun
- Department of Chemistry, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
44
|
Hamad Jaafari SAA, Athinarayanan J, Subbarayan Periasamy V, Alshatwi AA. Biogenic silica nanostructures derived from Sorghum bicolor induced osteogenic differentiation through BSP, BMP-2 and BMP-4 gene expression. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Bayrak N, Yıldırım H, Yıldız M, Radwan MO, Otsuka M, Fujita M, Ciftci HI, Tuyun AF. A novel series of chlorinated plastoquinone analogs: Design, synthesis, and evaluation of anticancer activity. Chem Biol Drug Des 2020; 95:343-354. [DOI: 10.1111/cbdd.13651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nilüfer Bayrak
- Chemistry Department Engineering Faculty Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Hatice Yıldırım
- Chemistry Department Engineering Faculty Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Mahmut Yıldız
- Chemistry Department Gebze Technical University Kocaeli Turkey
| | - Mohamed O. Radwan
- Department of Drug Discovery Science Farm Ltd. Kumamoto Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory Faculty of Life Sciences Kumamoto University Kumamoto Japan
- Chemistry of Natural Compounds Department Pharmaceutical and Drug Industries Research Division National Research Centre Cairo Egypt
| | - Masami Otsuka
- Department of Drug Discovery Science Farm Ltd. Kumamoto Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory Faculty of Life Sciences Kumamoto University Kumamoto Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory Faculty of Life Sciences Kumamoto University Kumamoto Japan
| | - Halil I. Ciftci
- Department of Drug Discovery Science Farm Ltd. Kumamoto Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory Faculty of Life Sciences Kumamoto University Kumamoto Japan
| | - Amaç Fatih Tuyun
- Department of Chemistry Faculty of Science Istanbul University Istanbul Turkey
| |
Collapse
|
46
|
Aminin D, Polonik S. 1,4-Naphthoquinones: Some Biological Properties and Application. Chem Pharm Bull (Tokyo) 2020; 68:46-57. [DOI: 10.1248/cpb.c19-00911] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science
| |
Collapse
|
47
|
Sivaramakarthikeyan R, Iniyaval S, Lim WM, Hii LW, Mai CW, Ramalingan C. Pyrazolylphenanthroimidazole heterocycles: synthesis, biological and molecular docking studies. NEW J CHEM 2020; 44:19612-19622. [DOI: 10.1039/d0nj02214d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
The synthesis of a series of novel pyrazolylphenanthroimidazoles 6a–6j has been accomplished utilizing a multi-step synthetic protocol, and characterized through physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Ling-Wei Hii
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
48
|
Hafidi Z, Yakkou L, Guouguaou FE, Amghar S, Achouri ME. Aminoalcohol-based surfactants (N-(hydroxyalkyl)-N, N- dimethyl N-alkylammonium bromide): evaluation of antibacterial activity and molecular docking studies against dehydrosqualene synthase enzyme (CrtM). J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1700134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zakaria Hafidi
- Laboratoire de physico-chimie des matériaux inorganiques et organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure-Rabat, Mohammed V University, Rabat, Morocco
| | - Lamia Yakkou
- Research Team: « Lumbricidae, Improving Soil Productivity and Environment » (LAPSE). Centre « Eau, Ressources Naturelles, Environnement et Développement Durable (CERN2D) », Ecole Normale Supérieure- University Mohamed V, Rabat, Morocco
| | - Fatima-Ezzahra Guouguaou
- Laboratoire de physico-chimie des matériaux inorganiques et organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure-Rabat, Mohammed V University, Rabat, Morocco
| | - Souad Amghar
- Research Team: « Lumbricidae, Improving Soil Productivity and Environment » (LAPSE). Centre « Eau, Ressources Naturelles, Environnement et Développement Durable (CERN2D) », Ecole Normale Supérieure- University Mohamed V, Rabat, Morocco
| | - Mohammed El Achouri
- Laboratoire de physico-chimie des matériaux inorganiques et organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure-Rabat, Mohammed V University, Rabat, Morocco
| |
Collapse
|
49
|
Kamalifar S, Kiyani H. An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b]acridine-1,6,11(2H)-triones. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Li L, Wang H, Jin Y, Wang P, Jia D. Sulfobetaine
N
‐Chloramines: Chemical Synthesis and Antibacterial Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201902555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingdong Li
- School of Petroleum and Chemical EngineeringDalian University of TechnologyState Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Hande Wang
- School of Petroleum and Chemical EngineeringDalian University of TechnologyState Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Yanan Jin
- School of Petroleum and Chemical EngineeringDalian University of TechnologyState Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Peiqi Wang
- School of Petroleum and Chemical EngineeringDalian University of TechnologyState Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Dongxue Jia
- School of Petroleum and Chemical EngineeringDalian University of TechnologyState Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| |
Collapse
|