1
|
Bonaz B. Enteric neuropathy and the vagus nerve: Therapeutic implications. Neurogastroenterol Motil 2024:e14842. [PMID: 38873822 DOI: 10.1111/nmo.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Enteric neuropathies are characterized by abnormalities of gut innervation, which includes the enteric nervous system, inducing severe gut dysmotility among other dysfunctions. Most of the gastrointestinal tract is innervated by the vagus nerve, the efferent branches of which have close interconnections with the enteric nervous system and whose afferents are distributed throughout the different layers of the digestive wall. The vagus nerve is a key element of the autonomic nervous system, involved in the stress response, at the interface of the microbiota-gut-brain axis, has anti-inflammatory and prokinetic properties, modulates intestinal permeability, and has a significant capacity of plasticity and regeneration. Targeting these properties of the vagus nerve, with vagus nerve stimulation (or non-stimulation/ pharmacological methods), could be of interest in the therapeutic management of enteric neuropathies.
Collapse
Affiliation(s)
- Bruno Bonaz
- Grenoble Institut des Neurosciences, Université Grenoble Alpes-Faculté de Médecine, Grenoble, France
| |
Collapse
|
2
|
Isabella AJ, Moens CB. Development and regeneration of the vagus nerve. Semin Cell Dev Biol 2024; 156:219-227. [PMID: 37537116 PMCID: PMC10830892 DOI: 10.1016/j.semcdb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.
Collapse
Affiliation(s)
- Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Liao X, Gao S, Xie F, Wang K, Wu X, Wu Y, Gao W, Wang M, Sun J, Liu D, Xu W, Li Q. An underlying mechanism behind interventional pulmonology techniques for refractory asthma treatment: Neuro-immunity crosstalk. Heliyon 2023; 9:e20797. [PMID: 37867902 PMCID: PMC10585236 DOI: 10.1016/j.heliyon.2023.e20797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Asthma is a common disease that seriously threatens public health. With significant developments in bronchoscopy, different interventional pulmonology techniques for refractory asthma treatment have been developed. These technologies achieve therapeutic purposes by targeting diverse aspects of asthma pathophysiology. However, even though these newer techniques have shown appreciable clinical effects, their differences in mechanisms and mutual commonalities still deserve to be carefully explored. Therefore, in this review, we summarized the potential mechanisms of bronchial thermoplasty, targeted lung denervation, and cryoablation, and analyzed the relationship between these different methods. Based on available evidence, we speculated that the main pathway of chronic airway inflammation and other pathophysiologic processes in asthma is sensory nerve-related neurotransmitter release that forms a "neuro-immunity crosstalk" and amplifies airway neurogenic inflammation. The mechanism of completely blocking neuro-immunity crosstalk through dual-ablation of both efferent and afferent fibers may have a leading role in the clinical efficacy of interventional pulmonology in the treatment of asthma and deserves further investigation.
Collapse
Affiliation(s)
- Ximing Liao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoyong Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyang Xie
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yin Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Muyun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongchen Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Abstract
When it comes to food, one tempting substance is sugar. Although sweetness is detected by the tongue, the desire to consume sugar arises from the gut. Even when sweet taste is impaired, animals can distinguish sugars from non-nutritive sweeteners guided by sensory cues arising from the gut epithelium. Here, we review the molecular receptors, cells, circuits and behavioural consequences associated with sugar sensing in the gut. Recent work demonstrates that some duodenal cells, termed neuropod cells, can detect glucose using sodium-glucose co-transporter 1 and release glutamate onto vagal afferent neurons. Based on these and other data, we propose a model in which specific populations of vagal neurons relay these sensory cues to distinct sets of neurons in the brain, including neurons in the caudal nucleus of the solitary tract, dopaminergic reward circuits in the basal ganglia and homeostatic feeding circuits in the hypothalamus, that alter current and future sugar consumption. This emerging model highlights the critical role of the gut in sensing the chemical properties of ingested nutrients to guide appetitive decisions.
Collapse
Affiliation(s)
- Winston W Liu
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Kapralou AN, Chrousos GP. Metabolic effects of truncal vagotomy when combined with bariatric-metabolic surgery. Metabolism 2022; 135:155263. [PMID: 35835160 DOI: 10.1016/j.metabol.2022.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Bariatric-metabolic surgery (BMS) in patients with obesity frequently leads to remission of concurrent type 2 diabetes mellitus (T2DM), even before body weight loss takes place. This is probably based on the correction of a dysmetabolic cycle in the gastrointestinal physiology of T2DM that includes increased vagus-dependent exocrine pancreatic secretion (EPS) and, hence, amplified digestion and nutrient absorption. The resultant chronic exposure of tissues to high plasma levels of glucose, fatty acids and amino acids causes tissue resistance to the actions of insulin and, at a later stage, β-cell dysfunction and reduction of insulin release. We hypothesize that the addition of a surgical truncal vagotomy (TV) may improve and solidify the beneficial results of BMS on T2DM by stably decreasing EPS, - hence reducing the digestion and absorption of nutrients -, and increasing incretin secretion as a result of increased delivery of unabsorbed nutrients to the distal intestine. This hypothesis is supported by surgical data from gastrointestinal malignancies and peptic ulcer operations that include TV, as well as by vagal blockade studies. We suggest that TV may result in a stable reduction of EPS, and that its combination with the appropriate type of BΜS, may enhance and sustain the salutary effects of the latter on T2DM.
Collapse
Affiliation(s)
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
6
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
7
|
Isabella AJ, Stonick JA, Dubrulle J, Moens CB. Intrinsic positional memory guides target-specific axon regeneration in the zebrafish vagus nerve. Development 2021; 148:272160. [PMID: 34427308 DOI: 10.1242/dev.199706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Regeneration after peripheral nerve damage requires that axons re-grow to the correct target tissues in a process called target-specific regeneration. Although much is known about the mechanisms that promote axon re-growth, re-growing axons often fail to reach the correct targets, resulting in impaired nerve function. We know very little about how axons achieve target-specific regeneration, particularly in branched nerves that require distinct targeting decisions at branch points. The zebrafish vagus motor nerve is a branched nerve with a well-defined topographic organization. Here, we track regeneration of individual vagus axons after whole-nerve laser severing and find a robust capacity for target-specific, functional re-growth. We then develop a new single-cell chimera injury model for precise manipulation of axon-environment interactions and find that (1) the guidance mechanism used during regeneration is distinct from the nerve's developmental guidance mechanism, (2) target selection is specified by neurons' intrinsic memory of their position within the brain, and (3) targeting to a branch requires its pre-existing innervation. This work establishes the zebrafish vagus nerve as a tractable regeneration model and reveals the mechanistic basis of target-specific regeneration.
Collapse
Affiliation(s)
- Adam J Isabella
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason A Stonick
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Liu Y, Forsythe P. Vagotomy and insights into the microbiota-gut-brain axis. Neurosci Res 2021; 168:20-27. [DOI: 10.1016/j.neures.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
|
9
|
Geisler CE, Ghimire S, Hepler C, Miller KE, Bruggink SM, Kentch KP, Higgins MR, Banek CT, Yoshino J, Klein S, Renquist BJ. Hepatocyte membrane potential regulates serum insulin and insulin sensitivity by altering hepatic GABA release. Cell Rep 2021; 35:109298. [PMID: 34192533 PMCID: PMC8341405 DOI: 10.1016/j.celrep.2021.109298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatic lipid accumulation in obesity correlates with the severity of hyperinsulinemia and systemic insulin resistance. Obesity-induced hepatocellular lipid accumulation results in hepatocyte depolarization. We have established that hepatocyte depolarization depresses hepatic afferent vagal nerve firing, increases GABA release from liver slices, and causes hyperinsulinemia. Preventing hepatic GABA release or eliminating the ability of the liver to communicate to the hepatic vagal nerve ameliorates the hyperinsulinemia and insulin resistance associated with diet-induced obesity. In people with obesity, hepatic expression of GABA transporters is associated with glucose infusion and disposal rates during a hyperinsulinemic euglycemic clamp. Single-nucleotide polymorphisms in hepatic GABA re-uptake transporters are associated with an increased incidence of type 2 diabetes mellitus. Herein, we identify GABA as a neuro-hepatokine that is dysregulated in obesity and whose release can be manipulated to mute or exacerbate the glucoregulatory dysfunction common to obesity.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susma Ghimire
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Chelsea Hepler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Robert H. Lurie Medical Research Center, Northwestern University, Chicago, IL 60611, USA
| | - Kendra E Miller
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Stephanie M Bruggink
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Kyle P Kentch
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mark R Higgins
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Tereshenko V, Dotzauer DC, Maierhofer U, Festin C, Luft M, Laengle G, Politikou O, Klein HJ, Blumer R, Aszmann OC, Bergmeister KD. Selective Denervation of the Facial Dermato-Muscular Complex in the Rat: Experimental Model and Anatomical Basis. Front Neuroanat 2021; 15:650761. [PMID: 33828465 PMCID: PMC8019738 DOI: 10.3389/fnana.2021.650761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The facial dermato-muscular system consists of highly specialized muscles tightly adhering to the overlaying skin and thus form a complex morphological conglomerate. This is the anatomical and functional basis for versatile facial expressions, which are essential for human social interaction. The neural innervation of the facial skin and muscles occurs via branches of the trigeminal and facial nerves. These are also the most commonly pathologically affected cranial nerves, often requiring surgical treatment. Hence, experimental models for researching these nerves and their pathologies are highly relevant to study pathophysiology and nerve regeneration. Experimental models for the distinctive investigation of the complex afferent and efferent interplay within facial structures are scarce. In this study, we established a robust surgical model for distinctive exploration of facial structures after complete elimination of afferent or efferent innervation in the rat. Animals were allocated into two groups according to the surgical procedure. In the first group, the facial nerve and in the second all distal cutaneous branches of the trigeminal nerve were transected unilaterally. All animals survived and no higher burden was caused by the procedures. Whisker pad movements were documented with video recordings 4 weeks after surgery and showed successful denervation. Whole-mount immunofluorescent staining of facial muscles was performed to visualize the innervation pattern of the neuromuscular junctions. Comprehensive quantitative analysis revealed large differences in afferent axon counts in the cutaneous branches of the trigeminal nerve. Axon number was the highest in the infraorbital nerve (28,625 ± 2,519), followed by the supraorbital nerve (2,131 ± 413), the mental nerve (3,062 ± 341), and the cutaneous branch of the mylohyoid nerve (343 ± 78). Overall, this surgical model is robust and reliable for distinctive surgical deafferentation or deefferentation of the face. It may be used for investigating cortical plasticity, the neurobiological mechanisms behind various clinically relevant conditions like facial paralysis or trigeminal neuralgia as well as local anesthesia in the face and oral cavity.
Collapse
Affiliation(s)
- Vlad Tereshenko
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Dominik C Dotzauer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Luft
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Gregor Laengle
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Olga Politikou
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Holger J Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Roland Blumer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantin D Bergmeister
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Krems, Austria
| |
Collapse
|
11
|
Alkan I, Altunkaynak BZ, Kivrak EG, Kaplan AA, Arslan G. Is vagal stimulation or inhibition benefit on the regulation of the stomach brain axis in obesity? Nutr Neurosci 2020; 25:758-770. [PMID: 33034260 DOI: 10.1080/1028415x.2020.1809875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: Possible effects of the vagus inhibition and stimulation on the hypothalamic nuclei, myenteric plexes and the vagus nerve were investigated.Methods: The female rats divided to the inhibition (INH), stimulation (STI) and, sham (SHAM) groups were fed with high fat diet (including 40% of energy from animal fat). After nine weeks, the rats were allowed to recover for 4 weeks in INH group. In STI group, the left vagus nerve stimulated (30 Hz/500 msn/30 sec.) starting 2nd post operative day for 5 minutes during 4 weeks. Healthy female rats used as control (CONT). Then, tissue samples were analyzed by biochemical, histological and stereological methods.Results: The mean number of the neurons in the arcuate nucleus of the INH group was significantly less; but, that is significantly more in the STI group compared to the other groups. The neuronal density of ventromedial nucleus in the STI group was higher; while the density in the INH group was lower than the other groups. In the dorsomedial nucleus, neuron density of the INH group was lower than the other groups. In terms of the myenteric plexus volumes, that of the INH group was lowest. The myelinated axon number in the INH group was significantly highest. The myelin sheath thickness and axon area of the INH group was significantly lower than the other groups.Discussion: The results of the study show that the vagal inhibition is more effective than the vagal stimulation on the weight loss in the obesity.
Collapse
Affiliation(s)
- Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, İstanbul, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, İstanbul, Turkey
| | - Elfide Gizem Kivrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Gülay Arslan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
12
|
Mayse ML, Norman HS, Peterson AD, Rouw KT, Johnson PJ. Targeted lung denervation in sheep: durability of denervation and long-term histologic effects on bronchial wall and peribronchial structures. Respir Res 2020; 21:117. [PMID: 32423414 PMCID: PMC7236341 DOI: 10.1186/s12931-020-01383-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Targeted lung denervation (TLD), a novel bronchoscopic procedure which attenuates pulmonary nerve input to the lung to reduce the clinical consequences of neural hyperactivity, may be an important emerging treatment for COPD. While procedural safety and impact on clinical outcomes have recently been reported, the mechanism of action has not been reported. We explored the long-term pathologic and histopathologic effects in a sheep model of ablation of bronchial branches of the vagus nerve using a novel dual-cooled radiofrequency ablation catheter. METHODS Nineteen sheep underwent circumferential ablation of both main bronchi with simultaneous balloon surface cooling using a targeted lung denervation system (Nuvaira, Inc., USA). Animals were followed over an extended time course (30, 365, and 640 days post procedure). At each time point, lung denervation (axonal staining in bronchial nerves), and effect on peribronchial structures near the treatment site (histopathology of bronchial epithelium, bronchial cartilage, smooth muscle, alveolar parenchyma, and esophagus) were quantified. One way analysis of variance (ANOVA) was performed to reveal differences between group means on normal data. Non-parametric analysis using Kruskal-Wallis Test was employed on non-normal data sets. RESULTS No adverse clinical effects were observed in any sheep. Nerve axon staining distal to the ablation site was decreased by 60% at 30 days after TLD and efferent axon staining was decreased by >70% at 365 and 640 days. All treated airways exhibited 100% epithelial integrity. Effect on peribronchial structures was strictly limited to lung tissue immediately adjacent to the ablation site. Tissue structure 1 cm proximal and distal to the treatment area remained normal, and the pulmonary veins, pulmonary arteries, and esophagus were unaffected. CONCLUSIONS The denervation of efferent axons induced by TLD therapy is durable and likely a contributing mechanism through which targeted lung denervation impacts clinical outcomes. Further, long term lung denervation did not alter the anatomy of the bronchioles or lung, as evaluated from both a gross and histologic perspective.
Collapse
Affiliation(s)
- Martin L Mayse
- Nuvaira, Inc, Suite 105 3750 Annapolis Lane North, Minneapolis, MN, 55447, USA
| | - Holly S Norman
- Nuvaira, Inc, Suite 105 3750 Annapolis Lane North, Minneapolis, MN, 55447, USA
| | | | - Kristina T Rouw
- Nuvaira, Inc, Suite 105 3750 Annapolis Lane North, Minneapolis, MN, 55447, USA
| | - Philip J Johnson
- Nuvaira, Inc, Suite 105 3750 Annapolis Lane North, Minneapolis, MN, 55447, USA.
| |
Collapse
|
13
|
Kistemaker LEM, Prakash YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019; 34:283-298. [PMID: 31165683 PMCID: PMC6863372 DOI: 10.1152/physiol.00050.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Airway nerves represent a mechanistically and therapeutically important aspect that requires better highlighting in the context of diseases such as asthma. Altered structure and function (plasticity) of afferent and efferent airway innervation can contribute to airway diseases. We describe established anatomy, current understanding of how plasticity occurs, and contributions of plasticity to asthma, focusing on target-derived growth factors (neurotrophins). Perspectives toward novel treatment strategies and future research are provided.
Collapse
Affiliation(s)
- L E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen , Groningen , The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
14
|
Bao L, Zhao J, Liao D, Wang G, Gregersen H. Refeeding reverses fasting-induced remodeling of afferent nerve activity in rat small intestine. Biomech Model Mechanobiol 2019; 18:1915-1926. [DOI: 10.1007/s10237-019-01185-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
15
|
Hummel JP, Mayse ML, Dimmer S, Johnson PJ. Physiologic and histopathologic effects of targeted lung denervation in an animal model. J Appl Physiol (1985) 2018; 126:67-76. [PMID: 30359539 PMCID: PMC6383645 DOI: 10.1152/japplphysiol.00565.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parasympathetic efferent innervation of the lung is the primary source of lung acetylcholine. Inhaled long-acting anticholinergics improve lung function and symptoms in patients with chronic obstructive pulmonary disease. Targeted lung denervation (TLD), a bronchoscopic procedure intended to disrupt pulmonary parasympathetic inputs, is an experimental treatment for chronic obstructive pulmonary disease. The physiologic and histologic effects of TLD have not previously been assessed. Eleven sheep and two dogs underwent circumferential ablation of the main bronchi with simultaneous balloon surface cooling using a lung denervation system (Nuvaira, Inc., Minneapolis, MN). Changes in pulmonary air flow resistance were monitored before and following TLD. Four animals were assessed for the presence or abolishment of the sensory axon-mediated Hering-Breuer reflex before and following TLD. Six sheep were histologically evaluated 30 days post-TLD for the extent of lung denervation (axonal staining) and effect on peribronchial structures near the treatment site. No adverse clinical effects were seen in any treated animals. TLD produced a ~30% reduction in pulmonary resistance and abolished the sensory-mediated Hering-Breuer reflex. Axonal staining was consistently decreased 60% at 30 days after TLD. All treated airways exhibited 100% epithelial integrity. Damage to other peribronchial structures was minimal. Tissue 1 cm proximal and distal to the treatment was normal, and the esophagus and periesophageal vagus nerve branches were unaffected. TLD treatment effectively denervates the lung while protecting the bronchial epithelium and minimizing effects on peribronchial structures. NEW & NOTEWORTHY The feasibility of targeted lung denervation, a new minimally invasive therapy for obstructive lung disease, has been demonstrated in humans with preliminary clinical studies demonstrating improvement in symptoms, pulmonary function, and exercise capacity in patients with chronic obstructive pulmonary disease. This preclinical animal study demonstrates the ability of targeted lung denervation to disrupt vagal inputs to the lung and details its physiologic and histopathologic effects.
Collapse
Affiliation(s)
- James P Hummel
- Division of Cardiology, University of Wisconsin , Madison, Wisconsin
| | | | | | | |
Collapse
|
16
|
Dezfuli G, Gillis RA, Tatge JE, Duncan KR, Dretchen KL, Jackson PG, Verbalis JG, Sahibzada N. Subdiaphragmatic Vagotomy With Pyloroplasty Ameliorates the Obesity Caused by Genetic Deletion of the Melanocortin 4 Receptor in the Mouse. Front Neurosci 2018; 12:104. [PMID: 29545738 PMCID: PMC5838008 DOI: 10.3389/fnins.2018.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Background/Objectives: We tested the hypothesis that abolishing vagal nerve activity will reverse the obesity phenotype of melanocortin 4 receptor knockout mice (Mc4r−/−). Subjects/Methods: In two separate studies, we examined the efficacy of bilateral subdiaphragmatic vagotomy (SDV) with pyloroplasty in the prevention and treatment of obesity in Mc4r−/− mice. Results: In the first study, SDV prevented >20% increase in body weight (BW) associated with this genotype. This was correlated with a transient reduction in overall food intake (FI) in the preventative arm of the study. Initially, SDV mice had reduced weekly FI; however, FI normalized to that of controls and baseline FI within the 8-week study period. In the second study, the severe obesity that is characteristic of the adult Mc4r−/− genotype was significantly improved by SDV with a magnitude of 30% loss in excess BW over a 4-week period. Consistent with the first preventative study, within the treatment arm, SDV mice also demonstrated a transient reduction in FI relative to control and baseline levels that normalized over subsequent weeks. In addition to the accompanying loss in weight, mice subjected to SDV showed a decrease in respiratory exchange ratio (RER), and an increase in locomotor activity (LA). Analysis of the white fat-pad deposits of these mice showed that they were significantly less than the control groups. Conclusions: Altogether, our data demonstrates that SDV both prevents gain in BW and causes weight loss in severely obese Mc4r−/− mice. Moreover, it suggests that an important aspect of weight reduction for this type of monogenic obesity involves loss of signaling in vagal motor neurons.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Jaclyn E Tatge
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Kimbell R Duncan
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Kenneth L Dretchen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Patrick G Jackson
- Department of Surgery, Georgetown University Medical Center, Washington, DC, United States
| | - Joseph G Verbalis
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
17
|
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 2018; 9:44. [PMID: 29593576 PMCID: PMC5859128 DOI: 10.3389/fpsyt.2018.00044] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.
Collapse
Affiliation(s)
- Sigrid Breit
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Aleksandra Kupferberg
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Somann JP, Albors GO, Neihouser KV, Lu KH, Liu Z, Ward MP, Durkes A, Robinson JP, Powley TL, Irazoqui PP. Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model. J Neural Eng 2017; 15:036018. [PMID: 29219123 DOI: 10.1088/1741-2552/aaa039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Numerous studies of vagal nerve stimulation (VNS) have been published showing it to be a potential treatment for chronic inflammation and other related diseases and disorders. Studies in recent years have shown that electrical stimulation of the vagal efferent fibers can artificially modulate cytokine levels and reduce systematic inflammation. Most VNS research in the treatment of inflammation have been acute studies on rodent subjects. Our study tested VNS on freely moving animals by stimulating and recording from the cervical vagus with nerve cuff electrodes over an extended period of time. APPROACH We used methods of electrical stimulation, retrograde tracing (using Fluorogold) and post necropsy histological analysis of nerve tissue, flow cytometry to measure plasma cytokine levels, and MRI scanning of gastric emptying. This novel combination of methods allowed examination of physiological aspects of VNS previously unexplored. MAIN RESULTS Through our study of 53 rat subjects, we found that chronically cuffing the left cervical vagus nerve suppressed efferent Fluorogold transport in 43 of 44 animals (36 showed complete suppression). Measured cytokine levels and gastric emptying rates concurrently showed nominal differences between chronically cuffed rats and those tested with similar acute methods. Meanwhile, results of electrophysiological and histological tests of the cuffed nerves revealed them to be otherwise healthy, consistent with previous literature. SIGNIFICANCE We hypothesize that due to these unforeseen and unexplored physiological consequences of the chronically cuffed vagus nerve in a rat, that inflammatory modulation and other vagal effects by VNS may become unreliable in chronic studies. Given our findings, we submit that it would benefit the VNS community to re-examine methods used in previous literature to verify the efficacy of the rat model for chronic VNS studies.
Collapse
Affiliation(s)
- Jesse P Somann
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States of America. Center for Implantable Devices (CID), Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Diepenbroek C, Quinn D, Stephens R, Zollinger B, Anderson S, Pan A, de Lartigue G. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Am J Physiol Gastrointest Liver Physiol 2017; 313:G342-G352. [PMID: 28705805 PMCID: PMC5668568 DOI: 10.1152/ajpgi.00095.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/31/2023]
Abstract
There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation.NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale Medical School, New Haven, Connecticut; and
| | | | - Ricky Stephens
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, California
| | | | - Seth Anderson
- The John B. Pierce Laboratory, New Haven, Connecticut
| | - Annabelle Pan
- The John B. Pierce Laboratory, New Haven, Connecticut
| | - Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, Connecticut;
- Department of Cellular and Molecular Physiology, Yale Medical School, New Haven, Connecticut; and
| |
Collapse
|
20
|
Thorsen Y, Stimec B, Andersen SN, Lindstrom JC, Pfeffer F, Oresland T, Ignjatovic D. Bowel function and quality of life after superior mesenteric nerve plexus transection in right colectomy with D3 extended mesenterectomy. Tech Coloproctol 2016; 20:445-53. [PMID: 27137207 DOI: 10.1007/s10151-016-1466-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The aim of this study was to ascertain the impact of injury to the superior mesenteric nerve plexus caused by right colectomy with D3 extended mesenterectomy as performed in the prospective multicenter trial: "Safe Radical D3 Right Hemicolectomy for Cancer through Preoperative Biphasic Multi-detector Computed Tomography" in which all soft tissue surrounding the superior mesenteric vessels from the level of the middle colic artery to that of the ileocolic artery was removed. METHODS Bowel function and gastrointestinal quality of life in two consecutive cohorts that underwent right colectomy with and without D3 extended mesenterectomy were compared. Main outcome measures were the Diarrhea Assessment Scale (DAS) and Gastrointestinal Quality of Life Index (GIQLI). The data were collected prospectively through telephone interviews. RESULTS Forty-nine patients per group, comparable for age, sex, length of bowel resected but with significantly shorter follow-up time in the experimental group, were included. There was no difference in total DAS scores, subscores or additional questions except for higher bowel frequency scores in the D3 group (p = 0.02). Comparison of total GIQLI scores and subscales showed no difference between groups. Regression analysis with correction for confounding factors showed 0.48 lower bowel frequency scores in the D2 group (p = 0.022). Within the D3 group presence of jejunal arteries cranial to the D3 dissection area showed 1.78 lower DAS scores and 0.7 lower bowel frequency scores. CONCLUSIONS Small bowel denervation after right colectomy with D3 extended mesenterectomy leads to increased bowel frequency but does not impact gastrointestinal quality of life. Individual anatomical variants can affect postoperative bowel function differently despite standardized surgery.
Collapse
Affiliation(s)
- Y Thorsen
- Department of Digestive Surgery, Akershus University Hospital, University of Oslo, Lorenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - B Stimec
- Anatomy Sector, Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - S N Andersen
- Department of Pathology, Akershus University Hospital, University of Oslo, Lorenskog, Norway
| | - J C Lindstrom
- Helse Sør-Øst Health Services Research Center, Akershus University Hospital, Lorenskog, Norway
| | - F Pfeffer
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - T Oresland
- Department of Digestive Surgery, Akershus University Hospital, University of Oslo, Lorenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - D Ignjatovic
- Department of Digestive Surgery, Akershus University Hospital, University of Oslo, Lorenskog, Norway.
| | | |
Collapse
|
21
|
Regeneration of sensory but not motor axons following visceral nerve injury. Exp Neurol 2015; 266:127-42. [DOI: 10.1016/j.expneurol.2015.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
|
22
|
Peters JH, Gallaher ZR, Ryu V, Czaja K. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol 2014; 521:3584-99. [PMID: 23749657 DOI: 10.1002/cne.23374] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/19/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Abstract
Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery.
Collapse
Affiliation(s)
- James H Peters
- Program in Neuroscience, Integrative Physiology and Neuroscience (IPN), College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164
| | | | | | | |
Collapse
|
23
|
Hesp ZC, Zhu Z, Morris TA, Walker RG, Isaacson LG. Sympathetic reinnervation of peripheral targets following bilateral axotomy of the adult superior cervical ganglion. Brain Res 2012; 1473:44-54. [PMID: 22842079 PMCID: PMC3440180 DOI: 10.1016/j.brainres.2012.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 11/16/2022]
Abstract
The ability of adult injured postganglionic axons to reinnervate cerebrovascular targets is unknown, yet these axons can influence cerebral blood flow, particularly during REM sleep. The objective of the present study was to assess quantitatively the sympathetic reinnervation of vascular as well as non-vascular targets following bilateral axotomy of the superior cervical ganglion (SCG) at short term (1 day, 7 day) and long term (8 weeks, 12 weeks) survival time points. The sympathetic innervation of representative extracerebral blood vessels [internal carotid artery (ICA), basilar artery (BA), middle cerebral artery (MCA)], the submandibular gland (SMG), and pineal gland was quantified following injury using an antibody to tyrosine hydroxylase (TH). Changes in TH innervation were related to TH protein content in the SCG. At 7 day following bilateral SCG axotomy, all targets were significantly depleted of TH innervation, and the exact site on the BA where SCG input was lost could be discerned. Complete sympathetic reinnervation of the ICA was observed at long term survival times, yet TH innervation of other vascular targets showed significant decreases even at 12 weeks following axotomy. The SMG was fully reinnervated by 12 weeks, yet TH innervation of the pineal gland remained significantly decreased. TH protein in the SCG was significantly decreased at both short term and long term time points and showed little evidence of recovery. Our data demonstrate a slow reinnervation of most vascular targets following axotomy of the SCG with only minimal recovery of TH protein in the SCG at 12 weeks following injury.
Collapse
Affiliation(s)
- Zoe C Hesp
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
24
|
Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF. Clin Auton Res 2012; 23:15-31. [PMID: 22717678 DOI: 10.1007/s10286-012-0170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/24/2012] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Vagal gastrointestinal (GI) afferents do not appear to contribute to long-term controls of feeding, despite downstream connections that could support such a role. This view is largely attributable to a lack of evidence for long-term effects, especially the failure of vagal afferent lesions to produce hyperphagia or obesity. AIMS Here, the possibility is evaluated that "side effects" of vagal lesion methods resulting largely from complexities of vagal organization would probably suppress long-term effects. Criteria based on knowledge of vagal organization were utilized to critique and compare vagal lesion methods and to interpret their effects on GI function, feeding and body weight. RESULTS AND CONCLUSIONS This analysis suggested that it was premature to eliminate a long-term vagal GI afferent role based on the effects of these lesions and highlighted aspects of vagal organization that must be addressed to reduce the problematic side effects of vagal lesions. The potential of "genetic" lesions that alter vagal sensory development to address these aspects, examination of the feasibility of this approach, and the properties of brain-derived neurotrophic factor (BDNF) that made it an attractive candidate for application of this approach are described. BDNF knockout from GI smooth muscle unexpectedly demonstrated substantial overeating and weight gain associated with increased meal size and frequency. The decay of eating rate during a scheduled meal was also reduced. However, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus, suggesting that the effect on eating rate was due to augmentation of GI reflexes by vagal afferents or other neural systems.
Collapse
|
25
|
Stearns AT, Balakrishnan A, Radmanesh A, Ashley SW, Rhoads DB, Tavakkolizadeh A. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci 2012; 57:1281-90. [PMID: 22138962 PMCID: PMC4111149 DOI: 10.1007/s10620-011-1968-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/02/2011] [Indexed: 12/09/2022]
Abstract
BACKGROUND We previously demonstrated vagal neural pathways, specifically subdiaphragmatic afferent fibers, regulate expression of the intestinal sodium-glucose cotransporter SGLT1, the intestinal transporter responsible for absorption of dietary glucose. We hypothesized targeting this pathway could be a novel therapy for obesity. We therefore tested the impact of disrupting vagal signaling by total vagotomy or selective vagal de-afferentation on weight gain and fat content in diet-induced obese rats. METHODS Male Sprague-Dawley rats (n = 5-8) underwent truncal vagotomy, selective vagal de-afferentation with capsaicin, or sham procedure. Animals were maintained for 11 months on a high-caloric Western diet. Abdominal visceral fat content was assessed by magnetic resonance imaging together with weight of fat pads at harvest. Glucose homeostasis was assessed by fasting blood glucose and HbA1C. Jejunal SGLT1 gene expression was assessed by qPCR and immunoblotting and function by glucose uptake in everted jejunal sleeves. RESULTS At 11-months, vagotomized rats weighed 19% less (P = 0.003) and de-afferented rats 7% less (P = 0.19) than shams. Vagotomized and de-afferented animals had 52% (P < 0.0001) and 18% reduction (P = 0.039) in visceral abdominal fat, respectively. There were no changes in blood glucose or glycemic indexes. SGLT1 mRNA, protein and function were unchanged across all cohorts at 11-months postoperatively. CONCLUSIONS Truncal vagotomy led to significant reductions in both diet-induced weight gain and visceral abdominal fat deposition. Vagal de-afferentation led to a more modest, but clinically and statistically significant, reduction in visceral abdominal fat. As increased visceral abdominal fat is associated with excess morbidity and mortality, vagal de-afferentation may be a useful adjunct in bariatric surgery.
Collapse
Affiliation(s)
- A. T. Stearns
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA. Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - A. Balakrishnan
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA. Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Crown Street, Liverpool L69 3GE, UK
| | - A. Radmanesh
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - S. W. Ashley
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - D. B. Rhoads
- Pediatric Endocrine Unit, MassGeneral Hospital for Children, Harvard Medical School, Fruit Street, Boston, MA 02114, USA
| | - A. Tavakkolizadeh
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
26
|
Ritter RC. A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals. Physiol Behav 2011; 105:94-9. [PMID: 21382391 PMCID: PMC3181280 DOI: 10.1016/j.physbeh.2011.02.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Glutamate is the neurotransmitter responsible for fast excitatory transmission from vagal afferents to second order neurons in the NTS. Antagonism of NMDA-type glutamate receptors in the NTS increases food intake and attenuates reduction of food intake by vagally mediated satiation signals, such as cholecystokinin. Although, the cellular location(s) of NMDA receptors that participate in satiation is uncertain, recent findings suggest that attenuation of satiation by NMDA receptor antagonists is due, at least in part, to their action on primary vagal afferents themselves. While evidence is accumulating that NMDA receptors located on vagal afferent endings in the hindbrain are involved in control of food intake, there also is preliminary evidence that peripheral NMDA receptors also may influence vagal control of food intake. Hence, NMDA receptor expression on central and perhaps peripheral vagal afferent endings could provide a parsimonious mechanism for modulation of satiation signals by endogenously released glutamate.
Collapse
Affiliation(s)
- Robert C Ritter
- Dept of VCAPP and Programs in Neuroscience, Washington State University, Pullman, WA 99164-6520, United States.
| |
Collapse
|
27
|
Abstract
BACKGROUND The vagus nerve is the major neural connection between the gastrointestinal tract and the central nervous system. During fetal development, axons from the cell bodies of the nodose ganglia and the dorsal motor nucleus grow into the gut to find their enteric targets, providing the vagal sensory and motor innervations respectively. Vagal sensory and motor axons innervate selective targets, suggesting a role for guidance cues in the establishment of the normal pattern of enteric vagal innervation. PURPOSE This review explores known molecular mechanisms that guide vagal innervation in the gastrointestinal tract. Guidance and growth factors, such as netrin-1 and its receptor, deleted in colorectal cancer, extracellular matrix molecules, such as laminin-111, and members of the neurotrophin family of molecules, such as brain-derived neurotrophic factor have been identified as mediating the guidance of vagal axons to the fetal mouse gut. In addition to increasing our understanding of the development of enteric innervation, studies of vagal development may also reveal clinically relevant insights into the underlying mechanisms of vago-vagal communication with the gastrointestinal tract.
Collapse
Affiliation(s)
- E M Ratcliffe
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
28
|
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 2010; 518:2934-51. [PMID: 20533354 DOI: 10.1002/cne.22372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain-derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post-mortem anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild-type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3-6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3-6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
29
|
Ryu V, Gallaher Z, Czaja K. Plasticity of nodose ganglion neurons after capsaicin- and vagotomy-induced nerve damage in adult rats. Neuroscience 2010; 167:1227-38. [PMID: 20197082 DOI: 10.1016/j.neuroscience.2010.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
Previous reports show that vagal afferent innervation of the stomach eventually regenerates from surviving nodose ganglion (NG) neurons after subdiaphragmatic vagotomy. Systemic capsaicin treatment destroys gastric vagal afferent neurons expressing vanilloid receptor 1 (VR1). However, it is not known whether gastric innervation lost after neuronal destruction can be restored. Here, we report that capsaicin-induced damage of NG neurons innervating the stomach in adult rats is followed by restoration of vagal afferent projections. Specifically, we compared measures of neuronal plasticity in NG and vagi after subdiaphragmatic vagotomy or capsaicin treatment. The numbers of VR1-immunoreactive neurons projecting to the stomach were significantly reduced 10 days after either capsaicin treatment or vagotomy. However, the VR1-immunoreactive afferent innervation of the stomach was restored to levels exceeding those of vagotomized rats by 37 days after capsaicin, whereas neither total afferent innervation nor VR1-immunoreactive innervation reached control levels, even by 67 days after vagotomy. Capsaicin treatment significantly increased NG neuronal nitric oxide synthase (nNOS) immunoreactivity at 10 days after capsaicin, and this increase was sustained for the duration of the study, indicating higher nNOS demand in restoration of vagal projections. Vagotomy was associated with a much smaller increase in the number of nNOS-immunoreactive NG neurons, detectable only at 10 days after surgery. The number of nNOS-immunopositive gastric-projecting neurons was dramatically reduced 10 days after either capsaicin treatment or vagotomy but returned to the control level in both groups at 67 days. We found a significantly higher number of growth cones in capsaicin-treated animals compared with controls. Capsaicin significantly increased the number of nNOS-immunopositive and nNOS-immunonegative growth cones in NG at all time points. Vagotomy did not increase the number of nNOS(-) growth cones in NG. We conclude that capsaicin treatment may result in more significant restorative capacities than vagotomy, mainly because of sprouting of capsaicin-insensitive nerve fibers.
Collapse
Affiliation(s)
- V Ryu
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA
| | | | | |
Collapse
|
30
|
Phillips RJ, Walter GC, Powley TL. Age-related changes in vagal afferents innervating the gastrointestinal tract. Auton Neurosci 2010; 153:90-8. [PMID: 19665435 PMCID: PMC2818053 DOI: 10.1016/j.autneu.2009.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 12/16/2022]
Abstract
Recent progress in understanding visceral afferents, some of it reviewed in the present issue, serves to underscore how little is known about the aging of the visceral afferents in the gastrointestinal (GI) tract. In spite of the clinical importance of the issue-with age, GI function often becomes severely compromised-only a few initial observations on age-related structural changes of visceral afferents are available. Primary afferent cell bodies in both the nodose ganglia and dorsal root ganglia lose Nissl material and accumulate lipofucsin, inclusions, aggregates, and tangles. Additionally, in changes that we focus on in the present review, vagal visceral afferent terminals in both the muscle wall and the mucosa of the GI tract exhibit age-related structural changes. In aged animals, both of the vagal terminal types examined, namely intraganglionic laminar endings and villus afferents, exhibit dystrophic or regressive morphological changes. These neuropathies are associated with age-related changes in the structural integrity of the target organs of the affected afferents, suggesting that local changes in trophic environment may give rise to the aging of GI innervation. Given the clinical relevance of GI tract aging, a more complete understanding both of how aging alters the innervation of the gut and of how such changes might be mitigated should be made research priorities.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Ingestive Behavior Research Center, Department of Psychological Sciences, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
31
|
Abstract
The alimentary canal includes the mouth, stomach, and intestines, and is connected to the brain by thousands of chemosensory neurons. In contrast to the understanding of the lingual taste system, there is little insight into the chemosensory function of other regions of the alimentary canal. The presence of known taste receptors in the gastrointestinal tract suggests a similarity to taste mechanisms present in the oral cavity. Afferent fibers of the vagus play a prominent role in signaling the chemical contents of the gastrointestinal tract to the hindbrain and this information can be used to elicit defensive responses, such as vomiting or nutritional responses. A host of amino acids are likely detected by vagal afferent fibers, but the initial sensory transduction of these stimuli and functional significance remains a mystery. Several problems with recording the electrophysiological signals of vagal afferents are discussed, with particular reference to sampling the afferent signals from the duodenum and liver region.
Collapse
Affiliation(s)
- Charles C Horn
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
32
|
|
33
|
Miranda A, Mickle A, Medda B, Zhang Z, Phillips RJ, Tipnis N, Powley TL, Shaker R, Sengupta JN. Altered mechanosensitive properties of vagal afferent fibers innervating the stomach following gastric surgery in rats. Neuroscience 2009; 162:1299-306. [PMID: 19477237 DOI: 10.1016/j.neuroscience.2009.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/11/2009] [Accepted: 05/20/2009] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Several types of gastric surgeries have been associated with early satiety, dyspepsia and food intolerances. We aimed to examine alterations in gastric vagal afferents following gastric surgery-fundus ligation. METHODS Six week old, male Sprague-Dawley rats underwent chronic ligation (CL) of the fundus. Sham rats underwent abdominal surgery, but without ligation. Another group of rats underwent acute ligation (AL) of the fundus immediately prior to experiments. CL and sham rats were allowed to grow to age 3-4 months. Food intake and weights were recorded post-operatively. Gastric compliance and gastric wall thickness was measured at baseline and during gastric distension (GD). Extracellular recordings were made to examine response characteristics of vagal afferent fibers to GD and to map the stomach receptive field (RF). The morphological structures of afferent terminals in the stomach were examined with retrograde tracings from the nodose ganglion. RESULTS The CL group consumed significantly less food and weighed less than sham control. The mean compliance of the CL group was significantly less than control, but higher than the AL group. The spontaneous firing and responses to GD of afferent fibers from the CL rats were significantly higher than AL rats. There was a marked expansion of the gastric RF in the CL rats with significant reorganization and regeneration of intramuscular array (IMA) terminals. There was no difference in total wall or muscle thickness among the groups. CONCLUSION CL results in aberrant remodeling of IMAs with expansion of the gastric RF and alters the mechanotransduction properties of vagal afferent fibers. These changes could contribute to altered sensitivity following gastric surgery.
Collapse
Affiliation(s)
- A Miranda
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Morphology and topography of nucleus ambiguus projections to cardiac ganglia in rats and mice. Neuroscience 2007; 149:845-60. [PMID: 17942236 DOI: 10.1016/j.neuroscience.2007.07.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/30/2007] [Accepted: 08/18/2007] [Indexed: 12/13/2022]
Abstract
Vagal efferent axons from the nucleus ambiguus (NA) innervate ganglionated plexuses in the dorsal surface of cardiac atria, which in turn, may have different functional roles in cardiac regulation. However, the morphology and topography of vagal efferent projections to these ganglionated plexuses in rats and mice have not been well delineated. In the present study, we injected the tracer 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine methanesulfonate (DiI) into the left NA to label vagal efferent axons and terminals in cardiac ganglia and administered Fluoro-Gold (FG) i.p. to stain cardiac ganglia. Then, we used confocal microscopy and a Neurolucida 3-D Digitization System to qualitatively and quantitatively examine the distribution and structure of cardiac ganglia, and NA efferent projections to cardiac ganglia in the whole-mounts of Sprague-Dawley (SD) rats and FVB mice. Our observations were: 1) Cardiac ganglia of different shapes and sizes were distributed in the sinoatrial (SA) node, atrioventricular (AV) node, and lower pulmonary vein (LPV) regions on the dorsal surface of the atria. In each region, several ganglia formed a ganglionated plexus. The plexuses at different locations were interconnected by nerves. 2) Vagal efferent fibers ramified within cardiac ganglia, formed a complex network of axons, and innervated cardiac ganglia with very dense basket endings around individual cardiac principal neurons (PNs). 3) The percent of the PNs in cardiac ganglia which were innervated by DiI-labeled axons was 54.3+/-3.2% in mice vs. 53.2+/-3.2% in rats (P>0.10). 4) The density of axonal putative-synaptic varicosities on the surface of PNs was 0.15+/-0.02/microm(2) in mice vs. 0.16+/-0.02/microm(2) in rats (P>0.10). Thus, the distributions of cardiac ganglia and vagal efferent projections to cardiac ganglia in mice and rats were quite similar both qualitatively and quantitatively. Our study provides the structural foundation for future investigation of functional differentiation of ganglionated plexuses and the brain-heart circuitry in rodent models of human disease.
Collapse
|
35
|
Abstract
Post-surgical gastroparesis (PSG) is recognized as a consequence of vagal nerve injury following upper abdominal surgery. It has been well documented following vagotomy for peptic ulcer surgery. With the increasing role of surgical treatment in the management of GERD and morbid obesity, PSG is now being diagnosed after fundoplication and bariatric surgery. PSG has also been reported after heart and lung transplantation, possibly due to opportunistic viral infection or motor-inhibitory effects of the immunosuppressive drugs, in addition to vagal nerve injury. Initial postoperative management of PSG should be conservative as many symptoms following abdominal surgery resolve with time. This occurs possibly because the enteric nervous system is able to adapt to the loss of vagal input or vagal reinnervation occurs. Persistent symptoms are difficult to manage and require a multidisciplinary team approach. Gastric electrical stimulation has shown promise in small series.
Collapse
Affiliation(s)
- Mehnaz A Shafi
- University of Texas Medical Branch, 4.106 McCullough Building, 301 University Boulevard, Galveston TX 77555-0764, USA
| | | |
Collapse
|
36
|
Bregeon F, Alliez JR, Héry G, Marqueste T, Ravailhe S, Jammes Y. Motor and sensory re-innervation of the lung and heart after re-anastomosis of the cervical vagus nerve in rats. J Physiol 2007; 581:1333-40. [PMID: 17430986 PMCID: PMC2170844 DOI: 10.1113/jphysiol.2007.131326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is no study in the literature dealing with re-innervation of the cardiopulmonary vagus nerve after its transection followed by re-anastomosis. In the present study, we explored the bronchomotor, heart rate and respiratory responses in rats at 2, 3 and 6 months after re-anastomosis of one cervical vagus trunk. The conduction velocity of A, B and C waves was calculated in the compound vagal action potential. We searched for afferent vagal activities in phase with pulmonary inflation to assess the persistence of pulmonary stretch receptor (PSR) discharge in re-innervated lungs. In each animal, data from the stimulation or recording of one re-anastomosed vagus nerve were compared with those obtained in the contra-lateral intact one. Two and three months after surgery, the conduction velocities of A and B waves decreased, but recovery of conduction velocity was complete at 6 months. By contrast, the conduction velocity of the C wave did not change until 6 months, when it was doubled. The PSR activity was present in 50% of re-anastomosed vagus nerves at 2 and 3 months and in 75% at 6 months. Respiratory inhibition evoked by vagal stimulation was significantly weaker from the re-anastomosed than intact nerve at 2 but not 3 months. Vagal stimulation did not elicit cardiac slowing or bronchoconstriction 6 months after re-anastomosis. Our study demonstrates the capacity of pulmonary vagal sensory neurones to regenerate after axotomy followed by re-anastomosis, and the failure of the vagal efferents to re-innervate both the lungs and heart.
Collapse
Affiliation(s)
- Fabienne Bregeon
- Laboratoire de Physiopathologie Respiratoire (EA 2201), Institut Fédératif de Recherche Jean Roche, Faculté de Médicine, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
37
|
Raab M, Neuhuber WL. Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:223-75. [PMID: 17241909 DOI: 10.1016/s0074-7696(07)56007-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate has been identified as the main transmitter of primary afferent neurons. This was established based on biochemical, electrophysiological, and immunohistochemical data from studies on glutamatergic receptors and their agonists/antagonists. The availability of specific antibodies directed against glutamate and, more recently, vesicular glutamate transporters corroborated this and led to significant new discoveries. In particular, peripheral endings of various classes of afferents contain vesicular glutamate transporters, suggesting vesicular storage in and exocytotic release of glutamate from peripheral afferent endings. This suggests that autocrine mechanisms regulate sensory transduction processes. However, glutamate release from peripheral sensory terminals could also enable afferent neurons to influence various cells associated with them. This may be particularly relevant for vagal intraganglionic laminar endings, which could represent glutamatergic sensor-effector components of intramural reflex arcs in the gastrointestinal tract. Thus, morphological analysis of the relationships of putative glutamatergic primary afferents with associated tissues may direct forthcoming studies on their functions.
Collapse
Affiliation(s)
- Marion Raab
- Institut für Anatomie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
38
|
Sachot C, Rummel C, Bristow AF, Luheshi GN. The role of the vagus nerve in mediating the long-term anorectic effects of leptin. J Neuroendocrinol 2007; 19:250-61. [PMID: 17355316 DOI: 10.1111/j.1365-2826.2006.01528.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptin, the product of the obese (ob) gene, is mainly known for its regulatory role of energy balance by direct activation of hypothalamic receptors. Recently, its function in the acute control of food intake was additionally attributed to activation of the vagus nerve to regulate meal termination. Whether vagal afferent neurones are involved in longer term effects of leptin on food intake, however, remains undetermined. Using vagotomised (VGX) rats, we sought to clarify the contributions of vagal afferents in mediating the long-lasting effect of leptin on appetite suppression. Intraperitoneal (i.p.) injection of leptin (3.5 mg/kg) attenuated food intake at 4, 6, 8 and 24 h and body weight at 24 h postinjection in SHAM-operated rats; however, this response was not abrogated by vagotomy. In a separate study using immunohistochemistry, we observed leptin-induced Fos expression in the nucleus tractus solitarii, a brain structure where vagal afferent fibres terminate. This signal was not attenuated in VGX animals compared to the SHAM group. Moreover, leptin treatment led to a similar level of nuclear STAT3 translocation, a marker of leptin signalling, in the hypothalami of SHAM and VGX animals. In addition to the effects of leptin, vagotomy surgery itself resulted in a decrease of 24 h food intake. Analyses of brains from saline-treated VGX animals revealed a significant induction of Fos in the nucleus tractus solitarii and changes in agouti-related peptide and pro-opiomelanocortin mRNA expression in the hypothalamus compared to their SHAM counterparts, indicating that the vagotomy surgery itself induced a modification of brain activity in areas involved in regulating appetite. Collectively, our data suggest that vagal afferents do not constitute a major route of mediating the regulatory effect of leptin on food intake over a period of several hours.
Collapse
Affiliation(s)
- C Sachot
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Murphy MC, Fox EA. Anterograde tracing method using DiI to label vagal innervation of the embryonic and early postnatal mouse gastrointestinal tract. J Neurosci Methods 2007; 163:213-25. [PMID: 17418900 PMCID: PMC1974840 DOI: 10.1016/j.jneumeth.2007.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/01/2007] [Accepted: 03/04/2007] [Indexed: 11/18/2022]
Abstract
The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations or pharmacological manipulations. Therefore, a method using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
40
|
Neuhuber WL, Raab M, Berthoud HR, Wörl J. Innervation of the mammalian esophagus. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2006. [PMID: 16573241 DOI: 10.1007/978-3-540-32948-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.
Collapse
|
41
|
Phillips RJ, Powley TL. Plasticity of vagal afferents at the site of an incision in the wall of the stomach. Auton Neurosci 2005; 123:44-53. [PMID: 16209938 DOI: 10.1016/j.autneu.2005.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 08/17/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Our objectives were to determine whether the vagal afferent innervation of the stomach reorganizes after surgery and to observe how different wound closure techniques might influence such a process. The smooth muscle wall of the stomach served as a model because it is densely innervated by vagal axons and is frequently compromised by gastric surgery. Male Sprague-Dawley rats were assigned to one of six groups: three groups served as controls in which the stomach was exposed surgically and a) subjected to no further manipulation, b) traumatized with suture needle punctures of the muscle wall, or c) insulted by the placement of knotted suture thread in the stomach muscle; three surgical groups received a 1.0 cm incision through the ventral muscle wall of the stomach that was closed using either a) absorbable sutures, b) fibrin glue, or c) n-butyl cyanoacrylate. Rats were killed 4 to 7 months post-surgery. Prior to euthanasia, Micro-Ruby was injected into the left nodose ganglion of each rat to label vagal afferent axons and terminals. Twelve days post-injection, the stomachs were processed for microscopy. All groups recovered quickly from surgery, without differences in body weight. The presence of suture material in the muscle wall of the stomach was sufficient to produce reorganization of nearby vagal afferents. In addition, we observed that an incision of the smooth muscle wall of the stomach and the associated damage to vagal afferents provoked reorganization and regeneration of vagal afferents. Vagal remodeling at the incision was characteristic of axonal patterns found in neuromas (unlike the organized regeneration and differentiation that can occur after axotomy central to the target organ). Vagal afferent terminals located at the site of the incision were free nerve endings and growth cone profiles, and not the characteristically complex end organs normally found in the smooth muscle. Finally, the pattern of vagal plasticity was influenced by the wound closure technique used. Overall, the remodeling of afferents was aberrant in nature, and such neural pathology could contribute to the neuropathic symptoms and hyperalgesias associated with gastrointestinal trauma and bariatric surgery.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, USA.
| | | |
Collapse
|
42
|
Eisen S, Phillips RJ, Geary N, Baronowsky EA, Powley TL, Smith GP. Inhibitory effects on intake of cholecystokinin-8 and cholecystokinin-33 in rats with hepatic proper or common hepatic branch vagal innervation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R456-R462. [PMID: 15831770 DOI: 10.1152/ajpregu.00062.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative potencies of cholecystokinin (CCK)-8 and CCK-33 for decreasing meal size depend on the route of administration. Inhibitory potencies are equal after intraperitoneal administration, but CCK-33 is significantly more potent after intraportal administration. This suggests that CCK-33 is a more effective stimulant of hepatic afferent vagal nerves than is CCK-8. To investigate this possibility, we administered both peptides intraperitoneally in rats with abdominal vagotomies that spared only the hepatic proper vagal nerves (H) and in rats with abdominal vagotomies that spared the common hepatic branch that contains the fibers of the hepatic proper and gastroduodenal nerves (HGD). The vagal afferent innervation in H and HGD rats was verified with a wheat germ agglutinin-horseradish tracer strategy. Intraperitoneal administration of CCK-33 decreased 30-min intake of 10% sucrose in H rats as much as in sham rats, but CCK-8 decreased intake significantly less in H rats than in sham rats. The larger inhibitory effect of CCK-33 than of CCK-8 in H rats is consistent with the hypothesis that CCK-33 is a more effective stimulant of the hepatic proper vagal afferent nerves than CCK-8. In contrast to the results in H rats, the inhibitory potencies of both peptides were significantly and equivalently reduced in HGD rats compared with sham rats. This suggests that there is an inhibitory interaction between the stimulation of the gastroduodenal and hepatic proper afferent fibers by CCK-33.
Collapse
Affiliation(s)
- S Eisen
- Department of Psychiatry, Weill Medical College of Columbia University, New York-Presbyterian Hospital, Westchester Division, 21 Bloomingdale Rd., White Plains, NY 10605, USA
| | | | | | | | | | | |
Collapse
|
43
|
Powley TL, Chi MM, Baronowsky EA, Phillips RJ. Gastrointestinal tract innervation of the mouse: afferent regeneration and meal patterning after vagotomy. Am J Physiol Regul Integr Comp Physiol 2005; 289:R563-R574. [PMID: 15831767 DOI: 10.1152/ajpregu.00167.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice, with the variety of genotypes they provide, should be particularly useful for studies of growth factors and gene products in regeneration of autonomic pathways such as the vagus nerve. To provide a foundation for examinations of mouse vagal reorganization, two experiments assessed the rate, extent, and accuracy of afferent reinnervation of the stomach after vagotomy and related these patterns to feeding behavior. In experiment 1, the pattern of afferent regrowth into the gut after unilateral truncal vagotomy was characterized by labeling of these afferents with wheat germ agglutinin-horseradish peroxidase and Micro-Ruby. Regenerating neurites had reached and, in some cases, already reinnervated the stomach by 4 wk after axotomy. By 8 wk, regrowth was more extensive, and many fibers had redifferentiated terminals in the smooth muscle. By 16 wk, vagal projections had reached or exceeded normal density in the corpus, density in the forestomach was still reduced, and regrowth in the antrum was minimal. At all time points, not only appropriate terminals, but also growth cones and aberrant endings, were observed. In experiment 2, meal patterns of vagotomized mice were evaluated using a solid diet over the period of regeneration; cholecystokinin suppression of a liquid meal after unilateral and bilateral truncal vagotomies was also evaluated. Unilaterally, as well as bilaterally, vagotomized animals ate smaller and more frequent meals. These disturbed patterns became more pronounced in the first 8 wk after vagotomy, during regeneration. Cholecystokinin inhibition of intake was attenuated by bilateral, but not unilateral, vagotomy. Overall, the spatial and temporal patterns of structural and functional changes observed during regeneration verify that the mouse provides a useful preparation for examining the control of vagal plasticity.
Collapse
Affiliation(s)
- Terry L Powley
- Dept. of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
44
|
Powley TL, Phillips RJ. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 2004; 82:69-74. [PMID: 15234593 DOI: 10.1016/j.physbeh.2004.04.037] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/02/2004] [Indexed: 12/23/2022]
Abstract
Gerry Smith's thoughtful survey in his book Satiation (1998) outlined the established principles of gastric and intestinal satiation and delineated several questions still requiring clarification. Experiments since the time of the review have addressed some of these questions. A synthesis of the principles outlined in the Gerry Smith survey and the subsequent experimental results indicates that the direct controls, or neural feedback signals from the GI tract, that limit meal size consist of gastric volumetric signals and intestinal nutritive signals. The two types of negative feedback synergize in the control of feeding, and both are carried by vagal afferents.
Collapse
Affiliation(s)
- Terry L Powley
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | |
Collapse
|
45
|
Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care 2004; 7:471-8. [PMID: 15192452 DOI: 10.1097/01.mco.0000134368.91900.84] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.
Collapse
|
46
|
Ritter RC. Increased food intake and CCK receptor antagonists: beyond abdominal vagal afferents. Am J Physiol Regul Integr Comp Physiol 2004; 286:R991-3. [PMID: 15142854 DOI: 10.1152/ajpregu.00116.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Cai GJ, Li L, Xie HH, Xu JJ, Miao CY, Su DF. Morphological evidence of reinnervation of the baroreceptive regions in sinoaortic-denervated rats. Clin Exp Pharmacol Physiol 2003; 30:925-9. [PMID: 14678231 DOI: 10.1111/j.1440-1681.2003.03938.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The arterial baroreflex (ABR) plays an important role in the maintenance of the stability of blood pressure. Sinoaortic denervation (SAD) destroys the integrity of the reflex arc and produces severe organ damage in rats. However, partial recovery of ABR function has been observed following chronic denervation. The aim of the present study was to determine whether there was morphological evidence of reinnervation of the aortic arch and carotid sinus following SAD. 2. A substantial body of physiological and morphological evidence suggests that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; therefore, the patterns of vascular SP and neurofilament (NF) immunoreactive (IR) innervation of the aortic arch and carotid sinus were investigated in the present study. 3. Ten-week-old male Sprague-Dawley rats underwent SAD or sham operation. Whole mounts of carotid bifurcation and aortic arch were prepared for immunohistochemical study at various time points (1, 9 and 16 weeks after operation). 4. The results of computerized image analysis show that the mean density of NF- and SP-IR nerves of SAD rats 9 and 16 weeks after operation increased gradually and significantly compared with that of rats 1 week after operation. 5. In conclusion, the results indicate that there is reinnervation of the aortic arch and carotid sinus by NF- and SP-IR fibres in SAD rats, which may be the morphological basis for the partial restoration of ABR function over time after SAD.
Collapse
Affiliation(s)
- Guo-Jun Cai
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
48
|
Li Y, Owyang C. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? V. Remodeling of vagus and enteric neural circuitry after vagal injury. Am J Physiol Gastrointest Liver Physiol 2003; 285:G461-9. [PMID: 12909562 DOI: 10.1152/ajpgi.00119.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vago-vagal reflexes mediate a wide range of digestive functions such as motility, secretion, and feeding behavior. Previous articles in this series have discussed the organization and functions of this important neural pathway. The focus of this review will be on some of the events responsible for the adaptive changes of the vagus and the enteric neutral circuitry that occur after vagal injury. The extraordinary plasticity of the neural systems to regain functions when challenged with neural injury will be discussed. In general, neuropeptides and transmitter-related enzymes in the vagal sensory neurons are downregulated after vagal injury to protect against further injury. Conversely, molecules previously absent or present at low levels begin to appear or are upregulated and are available to participate in the survival-regeneration process. Neurotrophins and other related proteins made at the site of the lesion and then retrogradely transported to the soma may play an important role in the regulation of neuropeptide phenotype expression and axonal growth. Vagal injury also triggers adaptive changes within the enteric nervous system to minimize the loss of gastrointestinal functions resulting from the interruption of the vago-vagal pathways. These may include rearrangement of the enteric neural circuitry, changes in the electrophysiological properties of sensory receptors in the intramural neural networks, an increase in receptor numbers, and changes in the affinity states of receptors on enteric neurons.
Collapse
Affiliation(s)
- Ying Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|