1
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Abstract
Decreased metabolic rate may precede cognitive impairment in Alzheimer's disease (AD) and is thus an early occurring hallmark. Several observations in post-mortem brain indicate that activated neurons are better able to withstand aging and AD, a phenomenon paraphrased by us as 'use it or lose it'. Moreover, a number of pharmacological and nonpharmacological studies support the concept that activation of the brain has beneficial effects and may to a certain degree restore several aspects of cognition and other central functions. For instance, the circadian system may be restimulated in Alzheimer patients by exposing them to more light or transcutaneous nerve stimulation. A procedure has been developed to culture human post-mortem brain tissue that allows testing of the efficacy of putative stimulatory compounds such as neurotrophins.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138:155-75. [PMID: 23348013 DOI: 10.1016/j.pharmthera.2013.01.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. GDNF administration has recently been shown to be an effective treatment for Parkinson's disease, with clinical trials currently in progress. Trials with NGF for Alzheimer's disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.
Collapse
|
4
|
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in Alzheimer's disease. Curr Neuropharmacol 2011; 9:559-73. [PMID: 22654716 PMCID: PMC3263452 DOI: 10.2174/157015911798376190] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/15/2022] Open
Abstract
Besides being essential for correct development of the vertebrate nervous system the neurotrophins also play a vital role in adult neuron survival, maintenance and regeneration. In addition they are implicated in the pathogenesis of certain neurodegenerative diseases, and may even provide a therapeutic solution for some. In particular there have been a number of studies on the involvement of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the development of Alzheimer's disease. This disease is of growing concern as longevity increases worldwide, with little treatment available at the moment to alleviate the condition. Memory loss is one of the earliest symptoms associated with Alzheimer's disease. The brain regions first affected by pathology include the hippocampus, and also the entorhinal cortex and basal cholinergic nuclei which project to the hippocampus; importantly, all these areas are required for memory formation. Both NGF and BDNF are affected early in the disease and this is thought to initiate a cascade of events which exacerbates pathology and leads to the symptoms of dementia. This review briefly describes the pathology, symptoms and molecular processes associated with Alzheimer's disease; it discusses the involvement of the neurotrophins, particularly NGF and BDNF, and their receptors, with changes in BDNF considered particularly in the light of its importance in synaptic plasticity. In addition, the possibilities of neurotrophin-based therapeutics are evaluated.
Collapse
Affiliation(s)
- Shelley J Allen
- Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
5
|
Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N. Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat 2011; 217:381-99. [PMID: 20979586 DOI: 10.1111/j.1469-7580.2010.01284.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains.
Collapse
Affiliation(s)
- Miloš Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Salata 12, Zagreb, Croatia.
| | | | | | | |
Collapse
|
6
|
Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci (Lond) 2006; 110:175-91. [PMID: 16411894 DOI: 10.1042/cs20050161] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurotrophins are growth factors required by discrete neuronal cell types for survival and maintenance, with a broad range of activities in the central and peripheral nervous system in the developing and adult mammal. This review examines their role in diverse disease states, including Alzheimer's disease, depression, pain and asthma. In addition, the role of BDNF (brain-derived neurotrophic factor) in synaptic plasticity and memory formation is discussed. Unlike the other neurotrophins, BDNF is secreted in an activity-dependent manner that allows the highly controlled release required for synaptic regulation. Evidence is discussed which shows that sequestration of NGF (nerve growth factor) is able to reverse symptoms of inflammatory pain and asthma in animal models. Both pain and asthma show an underlying pathophysiology linked to increases in endogenous NGF and subsequent NGF-dependent increase in BDNF. Conversely, in Alzheimer's disease, there is a role for NGF in the treatment of the disease and a recent clinical trial has shown benefit from its exogenous application. In addition, reductions in BDNF, and changes in the processing and usage of NGF, are evident and it is possible that both NGF and BDNF play a part in the aetiology of the disease process. This highly selective choice of functions and disease states related to neurotrophin function, although in no way comprehensive, illustrates the importance of the neurotrophins in the brain, the peripheral nervous system and in non-neuronal tissues. Ways in which the neurotrophins, their receptors or agonists/antagonists may act therapeutically are discussed.
Collapse
Affiliation(s)
- Shelley J Allen
- University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK.
| | | |
Collapse
|
7
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|
8
|
Swaab DF, Dubelaar EJG, Scherder EJA, van Someren EJW, Verwer RWH. Therapeutic strategies for Alzheimer disease: focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Dis Assoc Disord 2003; 17 Suppl 4:S114-22. [PMID: 14512817 DOI: 10.1097/00002093-200307004-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on several lines of evidence, it has been hypothesized that decreased neuronal metabolic rate may precede cognitive impairment, contributing to neuronal atrophy as well as reduced neuronal function in Alzheimer disease (AD). Additionally, studies have shown that stimulation of neurons through different mechanisms may protect those cells from the deleterious effects of aging and AD, a phenomenon we paraphrased as "use it or lose it." Therefore, it is attractive to direct the development of therapeutic strategies toward stimulation of metabolic rate/neuronal activity to improve cognition and other symptoms in AD. A number of pharmacological and nonpharmacological approaches discussed here support the concept that stimulation of the brain has beneficial effects and may, to a certain degree, restore several aspects of cognition and other central functions. For instance, the circadian system, which controls the sleep/wake cycle, may be stimulated in AD patients by exposing them to more light or transcutaneous nerve stimulation. We will also discuss a procedure that has been developed to culture human postmortem brain tissue, which allows testing of the efficacy of putative stimulatory compounds.
Collapse
Affiliation(s)
- D F Swaab
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Abstract
There is growing evidence that reduced neurotrophic support is a significant factor in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review we discuss the structure and functions of neurotrophins such as nerve growth factor, and the role of these proteins and their tyrosine kinase (Trk) receptors in the aetiology and therapy of such diseases. Neurotrophins regulate development and the maintenance of the vertebrate nervous system. In the mature nervous system they affect neuronal survival and also influence synaptic function and plasticity. The neurotrophins are able to bind to two different receptors: all bind to a common receptor p75NTR, and each also binds to one of a family of Trk receptors. By dimerization of the Trk receptors, and subsequent transphosphorylation of the intracellular kinase domain, signalling pathways are activated. We discuss here the structure and function of the neurotrophins and how they have been, or may be, used therapeutically in AD, PD, Huntington's diseases, ALS and peripheral neuropathy. Neurotrophins are central to many aspects of nervous system function. However they have not truly fulfilled their therapeutic potential in clinical trials because of the difficulties of protein delivery and pharmacokinetics in the nervous system. With the recent elucidation of the structure of the neurotrophins bound to their receptors it will now be possible, using a combination of in silico technology and novel screening techniques, to develop small molecule mimetics with much improved pharmacotherapeutic profiles.
Collapse
Affiliation(s)
- D Dawbarn
- University of Bristol, Bristol Royal Infirmary, Bristol, UK.
| | | |
Collapse
|
10
|
Swaab DF, Dubelaar EJG, Hofman MA, Scherder EJA, van Someren EJW, Verwer RWH. Brain aging and Alzheimer's disease; use it or lose it. PROGRESS IN BRAIN RESEARCH 2002; 138:343-73. [PMID: 12432778 DOI: 10.1016/s0079-6123(02)38086-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
(1) Alzheimer's disease is a multifactorial disease in which age and APOE-epsilon 4 are important risk factors. (2) The neuropathological hallmarks of AD, i.e. amorphous plaques, neuritic plaques (NPs), pretangles, neurofibrillary tangles (NFT) and cell death are not part of a single pathogenetic cascade but may occur independently. (3) In brain areas where classical AD changes, i.e. NPs and NFTs, are present, such as the CA1 area of the hippocampus, the nucleus basalis of Meynert and the tuberomamillary nucleus, a decreased metabolic rate is found. The decreased metabolic rate appears not to be induced by the presence of pretangles, NFT or NPs. (4) Decreased metabolic rate may precede cognitive impairment and is thus an early occurring hallmark of AD, which, in principle, may be reversible. The observation that the administration of glucose or insulin enhances memory in AD patients also supports the view that AD has a metabolic basis. (5) Moreover, several observations in postmortem brain indicate that activated neurons are better able to withstand aging and AD, a phenomenon paraphrased by us as 'use it or lose it'. (6) It is, therefore, attractive to direct the development of therapeutic strategies towards restimulation of neuronal metabolic rate in order to improve cognition and other symptoms in AD. A number of pharmacological and non-pharmacological studies support the concept that activation of the brain has beneficial effects and may, to a certain degree, restore several aspects of cognition and other central functions. For instance, the circadian system may be restimulated in AD patients by exposing them to more light or transcutaneous nerve stimulation. A procedure has been developed to culture human postmortem brain tissue that allows testing of the efficacy of putative stimulatory compounds such as neurotrophins.
Collapse
Affiliation(s)
- D F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Ikonomovic MD, Nocera R, Mizukami K, Armstrong DM. Age-related loss of the AMPA receptor subunits GluR2/3 in the human nucleus basalis of Meynert. Exp Neurol 2000; 166:363-75. [PMID: 11085901 DOI: 10.1006/exnr.2000.7544] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magnocellular cholinergic neurons in the basal forebrain have long been recognized as vulnerable to the pathology of Alzheimer's disease. Despite numerous anatomical, pharmacological, behavioral, and physiological investigations of these neurons the cellular mechanism that underlines their selective vulnerability remains unclear. As part of an ongoing investigation into the molecular mechanism(s) underlying neuronal vulnerability in Alzheimer's disease and normal aging, we employed immunocytochemical techniques and examined the cellular localization of the alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) glutamate receptor subunits GluR1 and GluR2/3 in the basal forebrain of eight nondemented elderly human subjects (66-102 years). For each case we observed GluR1-positive magnocellular cells darkly labeled within all main divisions of the basal forebrain (Ch1-Ch4). Double-labeling immunohistochemical techniques confirmed that the overwhelming majority (94%) of these neurons were also positive for the p75NGFr antibody, thus substantiating the cholinergic nature of these neurons. In contrast, GluR2/3 immunolabeling upon magnocellular neurons was relatively faint or nonexistent. The latter observations were most apparent in cases of advanced age and in the posterior part of the nucleus basalis of Meynert (NBM) (i.e., Ch4). In contrast, in adjacent structures (e.g., globus pallidus), a number of robustly labeled GluR2/3-positive cells were observed. In addition to the eight elderly subjects, we examined GluR1 and GluR2/3 immunostaining in the NBM of five younger cases, 5, 33, 36, 47, and 48 years of age. Although practical considerations limited our observations to the Ch4 region, we observed both GluR1 and GluR2/3 labeling upon NBM neurons in this latter region. On average, the distribution of labeled cells and intensity of immunoreaction were comparable between GluR1 and GluR2/3. The presence of GluR2/3- and GluR1-labeled neurons in the Ch4 region of younger cases but primarily GluR1 in cases of advanced age suggests an age-related decrease in GluR2/3. Functionally, the loss of GluR2 from the AMPA receptor complex results in ion channels highly permeable to Ca(2+). These alterations in cation permeability of the AMPA receptor together with the occurrence of a number of other intrinsic and extrinsic events (i.e., decrease Ca(2+)-binding protein) likely contribute to the vulnerability of these neurons in aging and in AD.
Collapse
Affiliation(s)
- M D Ikonomovic
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, 19096, USA
| | | | | | | |
Collapse
|
12
|
Simić G, Mrzljak L, Fucić A, Winblad B, Lovrić H, Kostović I. Nucleus subputaminalis (Ayala): the still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area. Neuroscience 1999; 89:73-89. [PMID: 10051218 DOI: 10.1016/s0306-4522(98)00304-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small magnocellular group located within the rostrolateral extension of the basal forebrain was named and described as the nucleus subputaminalis in the human and chimpanzee brain by Ayala. Analysis of cytoarchitectonic and cytochemical characteristics of this cell group has been largely disregarded in both classical and more current studies. We examined the nucleus subputaminalis in 33 neurologically normal subjects (ranging from 15 weeks of gestation to 71 years-of-age) by using Nissl staining, choline acetyltransferase immunohistochemistry, acetyl cholinesterase histochemistry and nerve growth factor receptor immunocytochemistry. In addition, we applied reduced nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry and calbindin-D28k immunocytochemistry in three neurologically normal subjects. At the most rostrolateral levels we describe the previously poorly characterized component of the lateral (periputaminal) subdivision of the subputaminal nucleus, which may be human specific since it is not described in non-human primates. Moreover, we find the human subputaminal nucleus best developed at the anterointermediate level, which is the part of the basal nucleus that is usually much smaller or missing in monkeys. The location of subputaminal cholinergic neurons within the frontal lobe, the ascension of their fibers through the external capsule towards the inferior frontal gyrus, the larger size of the subputaminal nucleus on the left side at the most rostral and anterointermediate levels and the most protracted development among all magnocellular aggregations within the basal forebrain strongly suggest that they may be connected with the cortical speech area. These findings give rise to many hypotheses about the possible role of the subputaminal nucleus in various neurodegenerative, neurological and psychiatric disorders, particularly Alzheimer's disease and primary progressive aphasia. Therefore, future studies on the basal forebrain should more carefully investigate this part of the basal nucleus.
Collapse
Affiliation(s)
- G Simić
- Croatian Institute for Brain Research and Department of Anatomy, Zagreb University School of Medicine, Croatia
| | | | | | | | | | | |
Collapse
|
13
|
Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 27:1-39. [PMID: 9639663 DOI: 10.1016/s0165-0173(98)00004-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that neurotrophic factors that promote the survival or differentiation of developing neurons may also protect mature neurons from neuronal atrophy in the degenerating human brain. Furthermore, it has been proposed that the pathogenesis of human neurodegenerative disorders may be due to an alteration in neurotrophic factor and/or trk receptor levels. The use of neurotrophic factors as therapeutic agents is a novel approach aimed at restoring and maintaining neuronal function in the central nervous system (CNS). Research is currently being undertaken to determine potential mechanisms to deliver neurotrophic factors to selectively vulnerable regions of the CNS. However, while there is widespread interest in the use of neurotrophic factors to prevent and/or reduce the neuronal cell loss and atrophy observed in neurodegenerative disorders, little research has been performed examining the expression and functional role of these factors in the normal and diseased human brain. This review will discuss recent studies and examine the role members of the nerve growth factor family (NGF, BDNF and NT-3) and trk receptors as well as additional growth factors (GDNF, TGF-alpha and IGF-I) may play in neurodegenerative disorders of the human brain.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | |
Collapse
|
14
|
Wilcock GK, Harrold PL. Treatment of Alzheimer's disease: future directions. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1996; 165:128-36. [PMID: 8741000 DOI: 10.1111/j.1600-0404.1996.tb05883.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Following the introduction of tacrine hydrochloride (Cognex) in the United States and several other countries, researchers are pursuing two broad therapeutic strategies for Alzheimer's disease (AD). The first involves identifying agents or combinations of agents whose actions can compensate for the considerable cerebral damage that has typically occurred by the time the diagnosis of AD is made. Such therapeutic approaches include the development of additional cholinesterase inhibitors, agents that work on the receptors of other systems damaged by the disease process, and anti-inflammatory and immunomodulatory agents. The second and ultimately more promising strategy involves the development of approaches to retard, halt, or even prevent disease progression. Such protective approaches, which depend on the development of more effective methods for predicting and diagnosing AD, include the administration of nerve growth factor and other neurotrophins and the use of pharmacologic or genetic interventions to limit amyloid deposition and the formation of neurofibrillary tangles.
Collapse
Affiliation(s)
- G K Wilcock
- Department of Care of the Elderly, Frenchay Hospital, Bristol, England
| | | |
Collapse
|
15
|
Ridley RM, Baker JA, Baker HF, Maclean CJ. Restoration of cognitive abilities by cholinergic grafts in cortex of monkeys with lesions of the basal nucleus of Meynert. Neuroscience 1994; 63:653-66. [PMID: 7898668 DOI: 10.1016/0306-4522(94)90512-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three groups of marmosets were trained to perform a series of visual discrimination tasks in a Wisconsin General Test Apparatus. Two groups then received bilateral lesions of the basal nucleus of Meynert using the excitotoxin N-methyl-D-aspartate and were found to be severely impaired on relearning a visual discrimination first learnt prior to surgery. One lesioned group then received grafts of acetylcholine-rich tissue dissected from the basal forebrain of fetal marmosets. Three months later the marmosets with lesion alone remained impaired on a number of retention and reversal tasks whereas the transplanted animals were no longer significantly impaired. Histological examination of the brains indicated that all lesioned animals had sustained substantial loss of the cholinergic neurons of the basal nucleus of Meynert (assessed by nerve growth factor receptor immunoreactivity) and that the lesion-alone animals showed marked loss of the cholinergic marker acetylcholinesterase in the dorsolateral frontal and parietal cortex. All transplanted animals had surviving graft tissue (visualized by Cresyl Violet staining, dense acetylcholinesterase staining and the presence of a limited number of nerve growth factor receptor-immunoreactive neurons) in the neocortex and 5/6 transplanted animals showed near complete restitution of acetylcholinesterase staining in frontal and parietal cortex. Examination of individual animal data showed that the animal without this restitution performed very poorly. The performance of the remaining transplanted animals was significantly better than that of the animals with lesion alone. There was a significant positive correlation between the degree of acetylcholinesterase staining and good performance on tasks sensitive to frontal lobe damage. These results demonstrate that acetylcholine-rich tissue transplanted into the neocortex of primates with damage to the cholinergic projections to the neocortex can produce substantial restitution of function provided that an appropriate level of interaction between graft and host tissue is achieved.
Collapse
Affiliation(s)
- R M Ridley
- Department of Experimental Psychology, Cambridge, U.K
| | | | | | | |
Collapse
|
16
|
De Lacalle S, Lim C, Sobreviela T, Mufson EJ, Hersh LB, Saper CB. Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. J Comp Neurol 1994; 345:321-44. [PMID: 7929905 DOI: 10.1002/cne.903450302] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cholinergic innervation of the hippocampal formation is thought to play an important role in memory processes, but its organization in humans has not been described in detail. We studied the cholinergic innervation of the human hippocampal formation by means of immunohistochemistry with polyclonal antisera directed against acetylcholinesterase (AChE), choline acetyltransferase (ChAT), and the low-affinity (p75) nerve growth factor receptor (NGFR). The density of ChAT-like immunoreactive (ChAT-li) fibers differed substantially among the various regions, in general paralleling the pattern of AChE-li staining. One notable exception was the presence of AChE-li cell bodies. In contrast, ChAT immunoreactivity was associated only with fibers and terminals. NGFR-li staining corresponded closely to the ChAT-li fiber pattern. ChAT-li fibers in the CA fields diffusely filled the stratum pyramidale and extended into the stratum oriens and radiatum as well. The highest density was consistently observed in CA4 and CA3 subfields. Staining decreased from CA4 to CA1 and was substantially less dense in the subicular complex. In the entorhinal cortex, the ChAT- and NGFR-li fiber innervation displayed a laminar pattern, most intense over the nests of cells in layer II. There was a trend towards an age-related reduction in the density of ChAT- and AChE-li fibers and terminals. Nonetheless, we also found a surprisingly conserved NGFR-li innervation and the presence of occasional NGFR-li pyramidal cells, providing evidence of a plastic response in the brains of the elderly patients.
Collapse
Affiliation(s)
- S De Lacalle
- Department of Neurology, Beth Israel Hospital, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
17
|
Venero JL, Beck KD, Hefti F. Intrastriatal infusion of nerve growth factor after quinolinic acid prevents reduction of cellular expression of choline acetyltransferase messenger RNA and trkA messenger RNA, but not glutamate decarboxylase messenger RNA. Neuroscience 1994; 61:257-68. [PMID: 7969907 DOI: 10.1016/0306-4522(94)90229-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excitotoxic striatal lesions induced by quinolinic acid, a model for Huntington's disease, were used to test for neuroprotective actions of nerve growth factor on striatal cholinergic and GABAergic neurons. Expressions of the trkA receptor for nerve growth factor, choline acetyltransferase and glutamate decarboxylase were analysed by messenger RNA in situ hybridization in adult rats following quinolinic acid lesion (150 nmol) and daily striatal administration of nerve growth factor (1 microgram) or control protein (cytochrome C) for one week. One week after toxin administration, the numbers of cells expressing trkA or choline acetyltransferase messenger RNAs were decreased when compared with unlesioned animals. Moreover, the surviving cells showed a strong down-regulation of these messenger RNAs as deduced from grain count analysis of sections processed for emulsion autoradiography. Daily intrastriatal nerve growth factor administration for one week completely prevented the reduction in the number of cells expressing either of the two markers. Nerve growth factor treatment increased the cellular expression of choline acetyltransferase messenger RNA three times above control levels and restored the levels of trk A messenger RNA expression to control levels. In contrast to the protective effects on cholinergic cells, nerve growth factor treatment failed to attenuate the quinolinic acid-induced decrease in glutamate decarboxylase messenger RNA levels. Optical density measurements of the entire striatum on autoradiographs of brain sections from quinolinic acid-lesioned animals revealed a reduction of the glutamate decarboxylase messenger RNA-specific hybridization signal, which was unaltered by infusion of nerve growth factor or control protein. Our findings strongly suggest that in both the intact and the quinolinic acid-lesioned adult rat striatum, nerve growth factor action is confined to trk A-expressing cholinergic neurons. Striatal glutamate decarboxylase messenger RNA-expressing GABAergic neurons which degenerate in Huntington's disease are not responsive to nerve growth factor.
Collapse
Affiliation(s)
- J L Venero
- Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089
| | | | | |
Collapse
|
18
|
Abstract
Nerve growth factor (NGF) is a well-characterized protein that exerts pharmacological effects on a group of cholinergic neurons known to atrophy in Alzheimer's disease (AD). Considerable evidence from animal studies suggests that NGF may be useful in reversing, halting, or at least slowing the progression of AD-related cholinergic basal forebrain atrophy, perhaps even attenuating the cognitive deficit associated with the disorder. However, many questions remain concerning the role of NGF in AD. Levels of the low-affinity receptor for NGF appear to be at least stable in AD basal forebrain, and the recent finding of AD-related increases in cortical NGF brings into question whether endogenous NGF levels are related to the observed cholinergic atrophy and whether additional NGF will be useful in treating this disorder. Evidence regarding the localization of NGF within the central nervous system and its presumed role in maintaining basal forebrain cholinergic neurons is summarized, followed by a synopsis of the relevant aspects of AD neuropathology. The available data regarding levels of NGF and its receptor in the AD brain, as well as potential roles for NGF in the pathogenesis and treatment of AD, are also reviewed. NGF and its low affinity receptor are abundantly present within the AD brain, although this does not rule out an NGF-related mechanism in the degeneration of basal forebrain neurons, nor does it eliminate the possibility that exogenous NGF may be successfully used to treat AD. Further studies of the degree and distribution of NGF within the human brain in normal aging and in AD, and of the possible relationship between target NGF levels and the status of basal forebrain neurons in vivo, are necessary before engaging in clinical trials.
Collapse
Affiliation(s)
- S A Scott
- Department of Neurosurgery, University of Cincinnati, Ohio 45267-0515
| | | |
Collapse
|
19
|
Allen SJ, Dawbarn D, Eckford SD, Wilcock GK, Ashcroft M, Colebrook SM, Feeney R, MacGowan SH. Cloning of a non-catalytic form of human trkB and distribution of messenger RNA for trkB in human brain. Neuroscience 1994; 60:825-34. [PMID: 7936202 DOI: 10.1016/0306-4522(94)90507-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A truncated form of the human trkB gene has been cloned and sequenced. This gene is related to the trk family of tyrosine kinases, the products of which act as receptors for the neurotrophins. Of these, brain-derived neurotrophic factor and mammalian neurotrophin-4 are the known ligands for the TrkB receptor. Catalytic and non-catalytic (or truncated) forms of the trkB gene have been cloned for rat and mouse. In this study, using in situ hybridization, we describe the distribution of trkB messenger RNA in fetal and adult human brain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Brain/embryology
- Brain Chemistry
- Catalysis
- Cloning, Molecular
- DNA Probes
- DNA, Complementary/genetics
- Hippocampus/chemistry
- Hippocampus/embryology
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Molecular Sequence Data
- Multigene Family
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Ciliary Neurotrophic Factor
- Receptor, trkA/analysis
- Receptor, trkA/genetics
- Receptor, trkB/analysis
- Receptor, trkB/genetics
- Receptor, trkC
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/genetics
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- S J Allen
- Department of Medicine (Care of the Elderly), University of Bristol, Bristol Royal Infirmary, U.K
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Venero JL, Knüsel B, Beck KD, Hefti F. Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience 1994; 59:797-815. [PMID: 8058122 DOI: 10.1016/0306-4522(94)90285-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression of the specific trk receptors for nerve growth factor and brain-derived neurotrophic factor (trkA and trkB) has been assayed by messenger RNA in situ hybridization in adult rats with partial fimbrial transections along with intraventricular treatment of nerve growth factor or brain-derived neurotrophic factor. In the forebrain, specific hybridization labeling for trkA messenger RNA showed an identical pattern to that of choline acetyltransferase messenger RNA, supporting the view that trkA expression is confined to the cholinergic population in the basal forebrain and the cholinergic interneurons in the striatum. After partial unilateral transections of the fimbria there was a progressive loss of choline acetyltransferase and trkA messenger RNA expression in the septal region ipsilateral to the lesion. Daily intraventricular administration of brain-derived neurotrophic factor or nerve growth factor partially prevented the lesion-induced decrease in the levels of both messengers, the latter being more effective than the former. Grain count analysis of individual cells was used to test whether the two factors upregulated choline acetyltransferase or trkA expression in individual cells surviving the lesion. Brain-derived neurotrophic factor treatment failed to induce any change in the levels of both messengers per neuron in the septal area. In contrast, daily intraventricular administration of nerve growth factor upregulated both choline acetyltransferase and trkA messenger RNA expression in individual neurons. This upregulation was evident on ipsilateral and contralateral sides, suggesting that nerve growth factor is able to upregulate these markers in intact and injured cholinergic cells in the basal forebrain. Similar to the situation in the septum, brain-derived neurotrophic factor did not upregulate choline acetyltransferase or trkA expression in the striatum. However, nerve growth factor administration strongly upregulated choline acetyltransferase messenger RNA expression by individual cholinergic neurons of the striatum. A medial to lateral gradient decrease in this upregulation was detected in the striatum ipsilateral to the side of administration, suggesting a limited diffusion of the nerve growth factor protein from the ventricle into brain parenchyma. In contrast to the strong effect on choline acetyltransferase expression, nerve growth factor treatment was ineffective in altering trkA messenger RNA in the striatum. The contrasting findings between septum and striatum suggest different regulatory mechanisms for trkA messenger RNA expression in the two cholinergic populations. Since nerve growth factor was found to upregulate the expression of its trkA receptor, we tested whether brain-derived neurotrophic factor administration had similar effects on the regulation of its trkB receptor.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Venero
- Division of Neurogerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, University Park, Los Angeles 90089-0191
| | | | | | | |
Collapse
|
21
|
Liberini P, Cuello AC. Effects of nerve growth factor in primate models of neurodegeneration: potential relevance in clinical neurology. Rev Neurosci 1994; 5:89-104. [PMID: 7827710 DOI: 10.1515/revneuro.1994.5.2.89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Liberini
- Department of Pharmacology and Therapeutics, McGill University, Montreal, P.Q., Canada
| | | |
Collapse
|
22
|
Nerve Growth Factor and Other Biological Treatments: An Overview. DEMENTIA 1994. [DOI: 10.1007/978-1-4615-6805-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Hayashi M, Yamashita A, Shimizu K, Sogawa K, Fujii Y. Expression of the gene for nerve growth factor (NGF) in the monkey central nervous system. Brain Res 1993; 618:142-8. [PMID: 8402167 DOI: 10.1016/0006-8993(93)90437-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of the gene for nerve growth factor (NGF) was examined in the central nervous system of adult and fetal monkeys. In adults, the highest level of NGF mRNA was found in the hippocampus and relatively high levels were observed in the cerebral cortices and thalamus. NGF mRNA was also detected in the cerebellum and the caudate nucleus. In the spinal cord, there was no evidence of the mRNA. The levels of NGF mRNA were closely correlated with those of NGF. At embryonic day 140 (E140), levels of NGF mRNA in the visual cortex and cerebellum were three times higher than those at the adult stage. Our previous study on the ontogeny of NGF (Hayashi, M. et al., Neuroscience, 36 (1990) 683-689) showed that the level of NGF in the visual cortex at E140 is the same as that at adult stage. Thus, at the fetal stage, NGF may be actively transported from the cerebral cortex to other regions of the brain, such as the basal forebrain area. By contrast, the levels of NGF and NGF mRNA in the cerebellum were almost the same at the adult and fetal stages, suggesting that NGF, which is synthesized in the cerebellum, may be taken up locally by cerebellar cells.
Collapse
Affiliation(s)
- M Hayashi
- Department of Physiology, Kyoto University, Aichi, Japan
| | | | | | | | | |
Collapse
|
24
|
Geula C, Schatz CR, Mesulam MM. Differential localization of NADPH-diaphorase and calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience 1993; 54:461-76. [PMID: 8336832 DOI: 10.1016/0306-4522(93)90266-i] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The localization of Calbindin-D28k and NADPH-diaphorase in the cholinergic neurons of the basal forebrain, striatum and brainstem was investigated in the rat, monkey, baboon and human using calbindin and choline acetyltransferase immunohistochemistry and NADPH-diaphorase histochemistry. Considerable regional and species-specific variations were observed. Double-stained sections demonstrated that NADPH-diaphorase activity occurred in as much as 20-30% of basal forebrain cholinergic neurons in the rat but in virtually none of those neurons in the monkey, baboon or human. In all of the species studied, virtually every cholinergic neuron within the pedunculopontine and laterodorsal tegmental nuclei contained NADPH-diaphorase activity, while none of the cholinergic neurons of the striatum did so. In the rat brain, calbindin immunoreactivity was not present in any of the cholinergic neurons of the basal forebrain, while in the primate brain virtually all of the basal forebrain cholinergic neurons were also calbindin-positive. None of the cholinergic neurons of the striatum, pedunculopontine nucleus or laterodorsal tegmental nucleus were found to be calbindin-positive in any of the species examined. These results demonstrate major species-specific differences in the cytochemical signatures of the basal forebrain cholinergic neurons, in contrast to the cholinergic neurons of the striatum and brainstem, which displayed little interspecies variation with respect to the markers that were used in this study. Our findings also suggest that caution must be exercised in using results from studies of rodent basal forebrain cholinergic systems to infer the role of this system in the primate brain.
Collapse
Affiliation(s)
- C Geula
- Division of Neuroscience and Behavioral Neurology, Bullard and Denny-Brown Laboratories, Harvard Medical School, Boston, MA 02215
| | | | | |
Collapse
|
25
|
Meinecke DL, Rakic P. Low-affinity p75 nerve growth factor receptor expression in the embryonic monkey telencephalon: timing and localization in diverse cellular elements. Neuroscience 1993; 54:105-16. [PMID: 8515837 DOI: 10.1016/0306-4522(93)90386-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monoclonal antibodies against the low-affinity (p75) subunit of the human nerve growth factor receptor have been used to determine the temporal appearance of this receptor and to identify the associated cellular elements in the developing occipital cortex of rhesus monkeys. Adult and fetal brains from embryos at embryonic days 45-121 were used. This embryonic time span includes periods of active neurogenesis, cell migration and initial formation of axonal connections in the cerebral cortex. The first immunolabeling in the developing cerebral wall was seen between embryonic days 56 and 64. The labeling was present in the transient subplate neurons, a small number of axonal processes and pericytes associated with blood vessels. By birth, labeled neurons of the subplate zone disappeared, but immunolabeled axonal processes could now be seen in large numbers in the cortex. These findings are consistent with the role of nerve growth factor in the coordination of cortical differentiation, but not with the initiation of neuronal proliferation, since the emergence of nerve growth factor receptor-labeled elements in the cortex occurs two to three weeks after the onset of neurogenesis in this species. Further, the diverse cellular elements labeled in the fetal cerebrum with the antibodies to the low-affinity nerve growth factor receptor suggests that a receptor or receptors associated with growth factor signaling for more than one growth factor family are recognized by these antibodies. Differential timing in the expression of families of growth factor receptors may be one mechanism by which developing neurons in the cerebral cortex could respond to the different signals which guide such processes as synaptogenesis and morphogenesis.
Collapse
Affiliation(s)
- D L Meinecke
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
26
|
Wisniowski L, Ridley RM, Baker HF, Fine A. Tyrosine hydroxylase-immunoreactive neurons in the nucleus basalis of the common marmoset (Callithrix jacchus). J Comp Neurol 1992; 325:379-87. [PMID: 1280282 DOI: 10.1002/cne.903250305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the course of characterizing the distribution of putative catecholaminergic neurons in the brain of the common marmoset, we encountered a population of such cells in the basal forebrain. Tyrosine hydroxylase-immunoreactive neurons are abundant within the nucleus basalis magnocellularis throughout its entire rostrocaudal extent, but not in other cholinergic basal forebrain nuclei. Most tyrosine hydroxylase-immunoreactive cells are large and multipolar. Double staining with antibodies to choline acetyltransferase or nerve growth factor receptor confirmed that these tyrosine hydroxylase-immunoreactive neurons are cholinergic, and compose at least 40% of the nucleus basalis cholinergic cells. The presence of a catecholamine-synthesizing enzyme in the neurons that provide the major cholinergic input to the neocortex may have important consequences for cortical function, and may be relevant to the vulnerability of the nucleus basalis in certain neurodegenerative disorders.
Collapse
Affiliation(s)
- L Wisniowski
- Neuroscience Institute, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
27
|
Mufson EJ, Brashers-Krug T, Kordower JH. p75 nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. Brain Res 1992; 589:115-23. [PMID: 1422811 DOI: 10.1016/0006-8993(92)91169-f] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of nerve growth factor receptor (NGFR) immunoreactive profiles was investigated in the adult human brainstem and spinal cord using a monoclonal antibody directed against the primate low affinity (p75) NGFR. In the human brainstem, p75NGFR immunoreactive profiles were seen within the mesencephalic and descending nucleus of the trigeminal nerve, the nucleus and tractus solitarius, glossopharyngeal nerve, hypoglossal nucleus, nucleus subtrigeminalis, subnucleus ventralis of the central nucleus of the medulla, nucleus cuneatus and gracilis. At the level of the upper cervical spinal cord, p75NGFR immunoreactive profiles were also seen within the incoming dorsal roots, zone of Lissauer and substantia gelatanosa (lamina II). Virtually no immunoreactivity was associated with cervical spinal cord motor neurons. The demonstration of the p75NGFR in brainstem and spinal cord regions associated with the central transmission of peripheral sensory information suggests that these systems may be influenced by the trophic substance nerve growth factor.
Collapse
Affiliation(s)
- E J Mufson
- Department of Neurological Sciences, Rush Alzheimer's Research Disease Center, Chicago, IL 60612
| | | | | |
Collapse
|
28
|
Musiol IM, Stumpf WE, Bidmon HJ, Heiss C, Mayerhofer A, Bartke A. Vitamin D nuclear binding to neurons of the septal, substriatal and amygdaloid area in the Siberian hamster (Phodopus sungorus) brain. Neuroscience 1992; 48:841-8. [PMID: 1321365 DOI: 10.1016/0306-4522(92)90272-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoradiographic experiments were performed on brains of Siberian hamsters (Phodopus sungorus) injected with tritiated 1,25-dihydroxycholecalciferol. Nuclear labeling was prevented in the presence of excess unlabeled hormone. Strong nuclear concentration of radioactivity was observed in neurons of the nucleus basalis of Meynert, the medial septal nucleus, the nucleus of the diagonal band of Broca and the central amygdaloid group. The latter has been defined as consisting of the central nucleus of the amygdala, its extension into the sublenticular part of the substantia innominata of Reichert, and the lateral division of the bed nucleus of the stria terminalis. All these structures have been reported to be involved in memory and other cognitive processes, and to be affected by age-dependent neurodegenerative disorders such as Alzheimer's disease. Corresponding localization of 1,25-dihydroxycholecalciferol receptor sites in these select basal forebrain nuclei of the Siberian hamster may implicate vitamin D (soltriol), the steroid hormone of sunlight, in memory processing.
Collapse
Affiliation(s)
- I M Musiol
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090
| | | | | | | | | | | |
Collapse
|
29
|
Ridley RM, Gribble S, Clark B, Baker HF, Fine A. Restoration of learning ability in fornix-transected monkeys after fetal basal forebrain but not fetal hippocampal tissue transplantation. Neuroscience 1992; 48:779-92. [PMID: 1630624 DOI: 10.1016/0306-4522(92)90266-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monkeys with bilateral transection of the fornix were severely but selectively impaired on learning and retention of visuospatial conditional discriminations, visual conditional discriminations and non-conditional spatial-response tasks. Bilateral transplantation of cholinergic-rich fetal basal forebrain tissue into the hippocampus abolished significant learning impairments on all those tasks impaired by fornix lesions when tested three to nine months after transplantation whereas bilateral transplants of non-cholinergic fetal hippocampal tissue into hippocampus showed no such beneficial effect. Acetylcholinesterase staining was severely depleted throughout the dentate gyrus and hippocampus in fornix-transected monkeys compared with animals with control corpus callosum ablations. Staining was largely restored to normal in the host hippocampus and dentate gyrus in monkeys with cholinergic transplants, whereas acetylcholinesterase staining was abnormal in those with non-cholinergic grafts. These experiments suggest that where a "higher order" cognitive function, in this case the acquisition of specific types of information into long-term memory, is disturbed by a neuropharmacologically simple lesion, cognitive function can be restored by transplantation of neurons containing appropriate neurotransmitters.
Collapse
Affiliation(s)
- R M Ridley
- Division of Psychiatry, Clinical Research Centre, Harrow, U.K
| | | | | | | | | |
Collapse
|
30
|
Risling M, Fried K, Lindå H, Cullheim S, Meier M. Changes in nerve growth factor receptor-like immunoreactivity in the spinal cord after ventral funiculus lesion in adult cats. JOURNAL OF NEUROCYTOLOGY 1992; 21:79-93. [PMID: 1313859 DOI: 10.1007/bf01189007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinal motoneurons have a capability to regenerate CNS-type axons after intramedullary lesions in the adult cat. Regrowing axons have been traced through CNS-type scar tissue in the ventral funiculus of the spinal cord and into adjacent ventral root fascicles. This scar tissue, which appears to support and sustain regenerating axons, has been shown to have a persistent defect in the blood-brain barrier. It has been suggested that the blood-brain barrier may play a vital role in CNS regeneration by regulating the access of blood-borne trophic factors to the lesion area. In the present study, the binding of antibodies to the human nerve growth factor receptor in the cat spinal cord was examined with immunohistochemical methods 2 days to 8 weeks after a ventral funiculus lesion. The results show that, while no neurons in the ventral horn of the control material contained nerve growth factor receptor-like immunoreactivity as revealed by fluorescence microscopy, affected motoneurons expressed nerve growth factor receptor after ventral funiculus lesion. Nerve growth factor receptor-like immunoreactivity associated to both capillaries and interstitium was present in the scar tissue. Electron microscopic examination of sections labelled with the immunogold-silver method showed that perivascular nerve growth factor receptor-like immunoreactivity was located exclusively to non-pericytic perivascular cells. These cells were abundant in the expanded capillary perivascular spaces adjacent to the traumatic lesion. Similar cells, with or without relation to blood vessels, were observed in the scar tissue and in the pia mater. In a separate set of specimens it was observed that a ventral funiculus lesion combined with ventral root avulsion, which removes denervated PNS tissue, resulted in an expression of nerve growth factor receptor-like immunoreactivity which was similar to the one observed after ventral funiculus lesion only. The results of the present study show that affected motoneurons and cells in the scar tissue express nerve growth factor receptor after ventral funiculus lesion which implies that neurotrophic factors related to nerve growth factor may be of importance for the regenerative response.
Collapse
Affiliation(s)
- M Risling
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- M Hayashi
- Department of Physiology, Primate Research Institute of Kyoto University, Aichi, Japan
| |
Collapse
|
32
|
Allen SJ, MacGowan SH, Treanor JJ, Feeney R, Wilcock GK, Dawbarn D. Normal beta-NGF content in Alzheimer's disease cerebral cortex and hippocampus. Neurosci Lett 1991; 131:135-9. [PMID: 1791973 DOI: 10.1016/0304-3940(91)90354-v] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nerve growth factor (beta-NGF) is known to have beneficial effects on cholinergic cell survival and to function both in vivo and in vitro. It has been speculated that this protein, or the lack of it, may be involved in the aetiology of Alzheimer's disease (AD). We describe the measurement of beta-NGF content in 4 regions of the cerebral cortex and the hippocampus in AD brain compared with brain tissue from age-matched normal subjects using a sensitive sandwich immunoassay (ELISA). There was no difference in beta-NGF content in any region examined in AD compared with normal values despite the marked loss of cortical cholinergic function.
Collapse
Affiliation(s)
- S J Allen
- Department of Medicine [Care of the Elderly], University of Bristol, Bristol Royal Infirmary, U.K
| | | | | | | | | | | |
Collapse
|
33
|
Mufson EJ, Higgins GA, Kordower JH. Nerve growth factor receptor immunoreactivity in the new world monkey (Cebus apella) and human cerebellum. J Comp Neurol 1991; 308:555-75. [PMID: 1650799 DOI: 10.1002/cne.903080405] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study used the NGFR-5 monoclonal antibody raised against human nerve growth factor receptor (NGFR) to determine the extent of NGFR immunoreactivity within the embryonic and young adult Cebus apella cerebellum as well as the human cerebellum. Immunohistochemically processed tissue revealed NGFR expressing Purkinje cell somata, axons, and dendrites, the latter being observed within the molecular layer of both adult species. Within all regions of the cerebellum we observed both darkly and lightly immunostained Purkinje cells. The proximal axons of these cells, which were visualized for short distances within the granular cell layer, appeared to contain bulbous aggregates of reaction product. In sagittal sections, the full extent of the Purkinje cell dendritic tree was observed in the more lightly stained portions of the cerebellum. In situ hybridization experiments revealed NGFR mRNA within Purkinje cells in a pattern similar to that seen with immunohistochemistry. The distribution of NGFR immunoreactivity within the cerebellum exhibits a general topographic organization with the heaviest and most consistent staining occurring within the archi- and neocerebellum and weaker staining within the paleocerebellum. In fetal Cebus monkey cerebellum obtained at gestational day 50 and 70, NGFR immunoreactivity was observed as a band composed of developing Purkinje cell neurites. These profiles were seen in the paleo- and neocerebellum, but not the archicerebellum. The present investigation is the first demonstration of NGFR immunoreactive profiles in the adult monkey and human cerebellum. These findings suggest that nerve growth factor may influence locomotor and vestibular behaviors that are mediated by cerebellar circuity. The precise mode of action for the NGF/NGFR system within the cerebellum remains to be determined.
Collapse
Affiliation(s)
- E J Mufson
- Christopher Center for Parkinson's Research, Sun City, Arizona 85372
| | | | | |
Collapse
|
34
|
Kawaja MD, Gage FH. Nerve growth factor receptor immunoreactivity in the rat septohippocampal pathway: a light and electron microscope investigation. J Comp Neurol 1991; 307:517-29. [PMID: 1649845 DOI: 10.1002/cne.903070313] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nerve growth factor receptor immunoreactivity in the septohippocampal pathway of adult Fischer 344 rats was assessed at the light and electron microscope level. The medial septum possesses immunoreactive somata, dendrites, axons, and terminals. Immunostained somata are either bipolar or multipolar in appearance. Dendritic processes of immunoreactive septal neurons are categorized into two groups: proximal dendrites with smooth plasma membranes and distal dendrites with numerous swellings. Immunoreactive axons within the septum are long and slender and do not possess varicosities. At the electron microscope level, immunoreactivity is confined predominantly to the plasma membrane of cell bodies and dendrites of septal neurons, as well as to the plasma membrane of axons and terminals. Both immunoreactive and nonimmunoreactive terminals that contain clear, spherical vesicles are observed contacting immunoreactive dendrites and somata. Although accumulations of vesicles are evident within these terminals at sites of contact, distinct synaptic specializations are difficult to distinguish due to the localization of reaction product on the apposing plasma membranes. Axons possessing immunoreactivity are also observed in the fimbria-fornix pathway, a major source of afferent inputs to the hippocampus. Immunoreactive axons and terminals are topographically organized in the hippocampal dentate gyrus. The density of immunostained axons and terminals is highest immediately adjacent to the granular layer. In comparison, a moderate density of immunoreactive axons is found in the outer molecular layer and a weak density in the inner molecular, granular, and polymorphic layers. Immunoreactivity is found on the plasma membrane of small unmyelinated axons and terminals aggregated into clusters throughout the dentate gyrus. Definitive examples of axosomatic and axodendritic synapses possessing immunoreactivity presynaptically are not observed. Immunoreactive profiles within the medial septum and hippocampus also circumfuse a small number of intracerebral vessels. Ultrastructural examination reveals that immunoreactivity is present within a narrowed extension of the subarachnoid space and appears to be closely associated with the plasma membrane of leptomeningeal cell processes. The present study provides direct evidence for the cellular distribution of nerve growth factor receptor immunoreactivity in the medial septum and dentate gyrus in the adult rat and offers new insight into the ultrastructural localization of nerve growth factor receptor among septal cholinergic neurons and their efferent projections to the hippocampus.
Collapse
Affiliation(s)
- M D Kawaja
- Department of Neurosciences, University of California, San Diego, La Jolla 92093-0624
| | | |
Collapse
|
35
|
Mufson EJ, Presley LN, Kordower JH. Nerve growth factor receptor immunoreactivity within the nucleus basalis (Ch4) in Parkinson's disease: reduced cell numbers and co-localization with cholinergic neurons. Brain Res 1991; 539:19-30. [PMID: 1849779 DOI: 10.1016/0006-8993(91)90682-l] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In a effort to better define the role cholinergic basal forebrain neurons play in human cognitive processes, a quantitative assessment of cholinergic nucleus basalis (Ch4) neurons was carried out in 5 patients with Parkinson's disease (PD; 4 non-demented and 1 demented) and 4 age-matched controls using nerve growth factor (NGF) receptor immunohistochemistry as a direct marker for cholinergic basal forebrain neurons. Virtually all (greater than 90%) NGF receptor-containing neurons co-localize with the specific cholinergic marker choline acetyltransferase (ChAT) within the nucleus basalis in PD. NGF receptor-containing neurons were reduced on average by 68% (range 38.6-87.4%) in the non-demented PD cases and by 88.6% in the demented PD patient. Loss of these neurons was heterogeneous across the nucleus basalis subfields with only the anterolateral and posterior Ch4 subregions demonstrating significant reductions of NGF receptor-containing neurons. The reduction in NGF receptor-containing neurons was accompanied by a decrease of acetylcholinesterase (AChE) containing fibers within temporal cortex and in some cases ChAT immunoreactivity in the basolateral amygdaloid nucleus. The numerous non-cholinergic AChE-rich pyramidal cells which were observed throughout the cortex of aged controls were also virtually absent in PD. Although PD patients exhibited severe reductions in Ch4 neurons, few neuritic plaques or neurofibrillary tangles were observed within the PD cortex or Ch4 and similar numbers of these AD-type pathologies were seen within age-matched controls. This suggests that Ch4 degeneration alone is not sufficient to induce such cytoskeletal abnormalities and that the neuron loss seen within Ch4 in AD and PD may be mediated through different processes. These results, coupled with the extensive basic and clinical literature linking acetylcholine and memory function, further indicate that Ch4 degeneration without additional cortical and/or subcortical pathology is not sufficient to impair cognition in PD. Perhaps additional pathology must be superimposed upon nucleus basalis degeneration to induce dementia in humans.
Collapse
Affiliation(s)
- E J Mufson
- Christopher Center for Parkinson's Research, Institute for Biogerontology Research, Sun City, AZ 85372
| | | | | |
Collapse
|
36
|
Treanor JJ, Dawbarn D, Allen SJ, MacGowan SH, Wilcock GK. Low affinity nerve growth factor receptor binding in normal and Alzheimer's disease basal forebrain. Neurosci Lett 1991; 121:73-6. [PMID: 1708488 DOI: 10.1016/0304-3940(91)90652-a] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The binding characteristics of radiolabelled beta-nerve growth factor ([125I]NGF) have been determined on membrane preparations of basal forebrain from Alzheimer's disease (AD) brain and age-matched normal brains. [125I]NGF binds in a specific fashion indicative of a single receptor and is not displaced with microM concentrations of cytochrome c, insulin or epidermal growth factor (EGF). The mean dissociation constant (Kd) and the mean capacity (Bmax) of the NGF receptor were not significantly different between the 5 AD and 5 normal basal forebrain samples examined. Choline acetyltransferase (ChAT) activity was significantly reduced (P less than or equal to 0.001) in AD cerebral cortical samples compared with normal tissue.
Collapse
Affiliation(s)
- J J Treanor
- Department of Medicine (Care of the Elderly), University of Bristol, U.K
| | | | | | | | | |
Collapse
|
37
|
Lapchak PA, Hefti F. Effect of recombinant human nerve growth factor on presynaptic cholinergic function in rat hippocampal slices following partial septohippocampal lesions: measures of [3H]acetylcholine synthesis, [3H]acetylcholine release and choline acetyltransferase activity. Neuroscience 1991; 42:639-49. [PMID: 1956513 DOI: 10.1016/0306-4522(91)90033-k] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To determine whether intraventricular administration of nerve growth factor alters presynaptic cholinergic function in the intact hippocampus or following partial lesions of the fimbria, we investigated the effects of recombinant human nerve growth factor treatment on [3H]acetylcholine synthesis and release by hippocampal slices following various treatment regimens. For chronic nerve growth factor treatment, 1 microgram of recombinant human nerve growth factor was injected intraventricularly every second day. Lesions reduced [3H]acetylcholine synthesis (by 48%) and spontaneous and evoked [3H]acetylcholine release by 35 and 61%, respectively. Chronic nerve growth factor treatment over three weeks elevated [3H]acetylcholine synthesis (by 39%) and spontaneous and evoked [3H]acetylcholine release by 27 and 64%, respectively, over values in lesioned hippocampi of animals treated with a control protein (cytochrome c). The nerve growth factor-induced enhancement of presynaptic cholinergic function persisted for three weeks following the termination of nerve growth factor administration. Furthermore, chronic (nine-week) treatment with nerve growth factor increased [3H]acetylcholine by 118% over values in lesioned hippocampi of animals treated with cytochrome c. These findings indicate that chronic treatment with recombinant human nerve growth factor increases the capacity of hippocampal cholinergic neurons surviving a partial fimbrial transection to synthesize, store and release acetylcholine. Application of recombinant human nerve growth factor during the initial weeks after lesioning was necessary to product significant elevations in acetylcholine synthesis, since chronic recombinant human nerve growth factor treatment after delays of three or more weeks were ineffective. Furthermore, chronic nerve growth factor treatment failed to stimulate acetylcholine synthesis and release in intact hippocampal cholinergic systems. Single intraventricular injections of recombinant human nerve growth factor at the time of lesioning resulted in a small decrease in acetylcholine synthesis which, however, was not accompanied by a change in the rate of evoked acetylcholine release from cholinergic neurons surviving the lesion. The study indicates that chronic or repeated administration of nerve growth factor during the onset of degenerative events is necessary for the stimulation of presynaptic cholinergic function in the hippocampus of adult rats with partial fimbrial transections.
Collapse
Affiliation(s)
- P A Lapchak
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | |
Collapse
|
38
|
Martinez-Murillo R, Fernandez T, Alguacil MM, Aguado F, Achaval M, Bovolenta P, Rodrigo J, Nieto-Sampedro M. Subcellular localization of nerve growth factor receptors in identified cells of the rat nucleus basalis magnocellularis: an immunocytochemical study. Neuroscience 1991; 42:463-72. [PMID: 1654534 DOI: 10.1016/0306-4522(91)90389-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The subcellular location of nerve growth factor receptor in the ventromedial portion of rat globus pallidus was investigated with affinity-purified monoclonal 192-IgG following the unlabelled antibody peroxidase-antiperoxidase immunocytochemical procedure. At the light microscopic level, punctate immunoreaction product was observed in the perinuclear region and in the plasma membrane of large, probably cholinergic neurons. Examination in the electron microscope of these neurons confirmed that nerve growth factor receptor-stained cells were basal forebrain cholinergic neurons. Within these cells, immunostaining occurred in the Golgi apparatus, in multivesicular bodies and, occasionally, in rough endoplasmic reticulum cisternae and the nuclear envelope. Moreover, patches of immunoreactivity were observed associated with the outer surface of the plasma membrane of the soma and their proximal dendrites and also with the plasma membrane of distal dendrites showing scarcity of synaptic input. Positive immunostaining was never observed in synaptic clefts, but filled the space between the plasma membranes of immunoreactive neurons and those of thin glial processes in their vicinity. The location of membrane nerve growth factor receptor in close apposition to membranes of neighbouring astrocytes rather than near synaptic complexes, suggests that glial cells may be a physiological source of nerve growth factor.
Collapse
|
39
|
Fried K, Risling M, Arvidsson U, Paulie S. Nerve growth factor receptor-like immunoreactivity in nerve fibers in the spinal and medullary dorsal horn of the adult monkey and cat: correlation with calcitonin gene-related peptide-like immunoreactivity. Brain Res 1990; 536:321-6. [PMID: 1964832 DOI: 10.1016/0006-8993(90)90043-b] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution of nerve growth factor receptor (NGFr)-like immunoreactivity and of calcitonin gene-related peptide (CGRP)-like immunoreactivity was studied in nerve fibers of the spinal and medullary dorsal horn of the monkey and the cat, using double-labelling immunohistochemistry with polyclonal CGRP antiserum and a monoclonal antibody against human NGFr. In both species there was an extensive distribution overlap between NGFr-LI and CGRP-LI. However, lack of NGFr-LI in many CGRP-immunoreactive axons suggests that not all CGRP-positive primary afferent fibers possess NGFr.
Collapse
Affiliation(s)
- K Fried
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Loy R, Heyer D, Clagett-Dame M, DiStefano PS. Localization of NGF receptors in normal and Alzheimer's basal forebrain with monoclonal antibodies against the truncated form of the receptor. J Neurosci Res 1990; 27:651-64. [PMID: 1964180 DOI: 10.1002/jnr.490270426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four new monoclonal antibodies to the extracellular domain of the nerve growth factor receptor (NGFR) have been evaluated for their specificity to NGFR and their utility in localizing NGFR in human brain. All four antibodies, as well as Me20.4, show similar cellular localization and patterns of immunoreactivity in basal forebrain neurons. NGFR monoclonal antibody XIF1 stains optimally over the widest range of concentrations, with staining being reduced only slightly at less than 10 pg/ml or more than 100 ng/ml, and produces the lowest background of those tested. Staining with all NGFR monoclonal antibodies is blocked by the addition of as little as 5-fold excess human recombinant truncated NGFR protein. The distribution of NGFR-containing neurons is similar to that previously described in normal human forebrain, as is the reduction in cell size in nucleus basalis (Ch4am) in brains from patients with Alzheimer's disease. In addition, we find evidence in the two Alzheimer's cases examined for a previously unreported loss of cells in the horizontal limb nucleus of the diagonal band (Ch3) in Alzheimer's disease. The loss of these neurons, which in normal brain have characteristic varicose dendritic processes extending to the pial surface adjacent to the cisternal space, may indicate a change in the relationship of NGF-sensitive neurons to the vasculature. Since these neurons project to olfactory bulb and cortex in rodent and primate brains, their loss may also reflect damage to the olfactory system in Alzheimer's disease.
Collapse
Affiliation(s)
- R Loy
- Canandaigua VA Medical Center, Rochester, New York
| | | | | | | |
Collapse
|
41
|
Junard EO, Montero CN, Hefti F. Long-term administration of mouse nerve growth factor to adult rats with partial lesions of the cholinergic septohippocampal pathway. Exp Neurol 1990; 110:25-38. [PMID: 2170164 DOI: 10.1016/0014-4886(90)90048-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nerve growth factor (NGF), a neurotrophic factor acting on cholinergic neurons of the basal forebrain, has been proposed as a treatment for Alzheimer's disease. Experimental support for its pharmacological use is derived from short-term studies showing that intraventricular administration of NGF during 2-4 weeks protects cholinergic cell bodies from lesion-induced degeneration, stimulates synthesis of choline acetyltransferase, and improves various behavioral impairments. To investigate the consequences of long-term NGF administration, we tested whether cholinergic cell bodies are protected from lesion-induced degeneration and whether cholinergic axons are stimulated to regrow into the denervated hippocampus following fimbrial transections. We found that intraventricular injections of NGF twice a week for 5 months to adult rats resulted in extended protection of cholinergic cell bodies from lesion-induced degeneration and did not produce obvious detrimental effects on the animals. NGF treatment mildly stimulated growth of cholinergic neurites within the 2-mm area directly adjacent to the fimbrial lesion but it failed to induce significant homotypic growth of cholinergic neurites into the deafferented hippocampus.
Collapse
Affiliation(s)
- E O Junard
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089
| | | | | |
Collapse
|
42
|
Everall IP, Kerwin R. The role of nerve growth factor in Alzheimer's disease. Psychol Med 1990; 20:249-251. [PMID: 2356254 DOI: 10.1017/s0033291700017578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|