1
|
Nelson AD, Wang L, Laffey KG, Becher LRE, Parks CA, Hoffmann MM, Galeano BK, Mangalam A, Teixeiro E, White TA, Schrum AG, Cannon JF, Gil D. Rigid crosslinking of the CD3 complex leads to superior T cell stimulation. Front Immunol 2024; 15:1434463. [PMID: 39281668 PMCID: PMC11392757 DOI: 10.3389/fimmu.2024.1434463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Functionally bivalent non-covalent Fab dimers (Bi-Fabs) specific for the TCR/CD3 complex promote CD3 signaling on T cells. While comparing functional responses to stimulation with Bi-Fab, F(ab')2 or mAb specific for the same CD3 epitope, we observed fratricide requiring anti-CD3 bridging of adjacent T cells. Surprisingly, anti-CD3 Bi-Fab ranked first in fratricide potency, followed by anti-CD3 F(ab')2 and anti-CD3 mAb. Low resolution structural studies revealed anti-CD3 Bi-Fabs and F(ab')2 adopt similar global shapes with CD3-binding sites oriented outward. However, under molecular dynamic simulations, anti-CD3 Bi-Fabs crosslinked CD3 more rigidly than F(ab')2. Furthermore, molecular modelling of Bi-Fab and F(ab')2 binding to CD3 predicted crosslinking of T cell antigen receptors located in opposing plasma membrane domains, a feature fitting with T cell fratricide observed. Thus, increasing rigidity of Fab-CD3 crosslinking between opposing effector-target pairs may result in stronger T cell effector function. These findings could guide improving clinical performance of bi-specific anti-CD3 drugs.
Collapse
Affiliation(s)
- Alfreda D. Nelson
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Liangyu Wang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Kimberly G. Laffey
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura R. E. Becher
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Christopher A. Parks
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Michele M. Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Belinda K. Galeano
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Emma Teixeiro
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Tommi A. White
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Adam G. Schrum
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Medical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - John F. Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Medical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Van Laethem F, Saba I, Lu J, Bhattacharya A, Tai X, Guinter TI, Engelhardt B, Alag A, Rojano M, Ashe JM, Hanada KI, Yang JC, Sun PD, Singer A. Novel MHC-Independent αβTCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Front Immunol 2020; 11:1216. [PMID: 32612609 PMCID: PMC7308553 DOI: 10.3389/fimmu.2020.01216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
MHC-independent αβTCRs (TCRs) recognize conformational epitopes on native self-proteins and arise in mice lacking both MHC and CD4/CD8 coreceptor proteins. Although naturally generated in the thymus, these TCRs resemble re-engineered therapeutic chimeric antigen receptor (CAR) T cells in their specificity for MHC-independent ligands. Here we identify naturally arising MHC-independent TCRs reactive to three native self-proteins (CD48, CD102, and CD155) involved in cell adhesion. We report that naturally arising MHC-independent TCRs require high affinity TCR-ligand engagements in the thymus to signal positive selection and that high affinity positive selection generates a peripheral TCR repertoire with limited diversity and increased self-reactivity. We conclude that the affinity of TCR-ligand engagements required to signal positive selection in the thymus inversely determines the diversity and self-tolerance of the mature TCR repertoire that is selected.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Terry I Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Britta Engelhardt
- Theodor Kocher Institute, Faculty of Bern, Universität Bern, Bern, Switzerland
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Mirelle Rojano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jennifer M Ashe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - James C Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
3
|
Susek KH, Korpos E, Huppert J, Wu C, Savelyeva I, Rosenbauer F, Müller-Tidow C, Koschmieder S, Sorokin L. Bone marrow laminins influence hematopoietic stem and progenitor cell cycling and homing to the bone marrow. Matrix Biol 2018; 67:47-62. [PMID: 29360499 DOI: 10.1016/j.matbio.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem and progenitor cell (HSPC) functions are regulated by a specialized microenvironment in the bone marrow - the hematopoietic stem cell niche - of which the extracellular matrix (ECM) is an integral component. We describe here the localization of ECM molecules, in particular the laminin α4, α3 and α5 containing isoforms in the bone marrow. Laminin 421 (composed of laminin α4, β2, γ1 chains) is identified as a major component of the bone marrow ECM, occurring abundantly surrounding venous sinuses and in a specialized reticular fiber network of the intersinusoidal spaces of murine bone marrow (BM) in close association with HSPC. Bone marrow from Lama4-/- mice is significantly less efficient in reconstituting the hematopoietic system of irradiated wildtype (WT) recipients in competitive bone marrow transplantation assays and shows reduced colony formation in vitro. This is partially due to retention of Lin-c-kit+Sca-1+CD48- long-term and short-term hematopoietic stem cells (LT-HSC/ST-HSC) in the G0 phase of the cell cycle in Lama4-/- bone marrow and hence a more quiescent phenotype. In addition, the extravasation of WT BM cells into Lama4-/- bone marrow is impaired, influencing the recirculation of HSPC. Our data suggest that these effects are mediated by a compensatory expression of laminin α5 containing isoforms (laminin 521/522) in Lama4-/- bone marrow. Collectively, these intrinsic and extrinsic effects lead to reduced HSPC numbers in Lama4-/- bone marrow and reduced hematopoietic potential.
Collapse
Affiliation(s)
- Katharina Helene Susek
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jula Huppert
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Chuan Wu
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Irina Savelyeva
- Institute of Molecular Tumor Biology, University of Muenster, Germany
| | - Frank Rosenbauer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Institute of Molecular Tumor Biology, University of Muenster, Germany
| | - Carsten Müller-Tidow
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Medicine A-Hematology, Oncology and Pneumology, University Hospital Muenster, Germany; Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg Germany
| | - Steffen Koschmieder
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Medicine A-Hematology, Oncology and Pneumology, University Hospital Muenster, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
4
|
Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol 2016; 104:6-17. [PMID: 27262700 PMCID: PMC5512169 DOI: 10.1007/s12185-016-2039-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.
Collapse
|
5
|
Hoffmann MM, Molina-Mendiola C, Nelson AD, Parks CA, Reyes EE, Hansen MJ, Rajagopalan G, Pease LR, Schrum AG, Gil D. Co-potentiation of antigen recognition: A mechanism to boost weak T cell responses and provide immunotherapy in vivo. SCIENCE ADVANCES 2015; 1:e1500415. [PMID: 26601285 PMCID: PMC4646799 DOI: 10.1126/sciadv.1500415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as "co-potentiation." We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen-dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands.
Collapse
Affiliation(s)
- Michele M. Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos Molina-Mendiola
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Statistics, Polytechnic University of Catalonia, Barcelona 08034, Spain
| | - Alfreda D. Nelson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Christopher A. Parks
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Edwin E. Reyes
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael J. Hansen
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Larry R. Pease
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Adam G. Schrum
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Boding L, Nielsen MW, Bonefeld CM, von Essen MR, Nielsen BL, Lauritsen JPH, Hansen AK, Nielsen MM, Kongsbak M, Rubin M, Vennegaard MT, Ødum N, Geisler C. Polymorphisms of the T cell receptor CD3δ and CD3ɛ chains affect anti-CD3 antibody binding and T cell activation. Mol Immunol 2010; 47:2450-7. [DOI: 10.1016/j.molimm.2010.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/11/2010] [Accepted: 06/21/2010] [Indexed: 11/26/2022]
|
7
|
Laird RM, Hayes SM. Dynamics of CD3γɛ and CD3δɛ dimer expression during murine T cell development. Mol Immunol 2009; 47:582-9. [DOI: 10.1016/j.molimm.2009.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 11/15/2022]
|
8
|
Hayes SM, Love PE. Stoichiometry of the murine gammadelta T cell receptor. J Exp Med 2006; 203:47-52. [PMID: 16418397 PMCID: PMC2118071 DOI: 10.1084/jem.20051886] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 12/20/2005] [Indexed: 11/24/2022] Open
Abstract
The T cell receptor for antigen (TCR) complex is organized into two functional domains: the antigen-binding clonotypic heterodimer and the signal-transducing invariant CD3 and TCRzeta chains. In most vertebrates, there are two different clonotypic heterodimers (TCRalphabeta and TCRgammadelta) that define the alphabeta and gammadelta T cell lineages, respectively. alphabeta- and gammadeltaTCRs also differ in their invariant chain subunit composition, in that alphabetaTCRs contain CD3gammaepsilon and CD3deltaepsilon dimers, whereas gammadeltaTCRs contain only CD3gammaepsilon dimers. This difference in subunit composition of the alphabeta- and gammadeltaTCRs raises the question of whether the stoichiometries of these receptor complexes are different. As the stoichiometry of the murine gammadeltaTCR has not been previously investigated, we used two quantitative immunofluorescent approaches to determine the valency of TCRgammadelta heterodimers and CD3gammaepsilon dimers in surface murine gammadeltaTCR complexes. Our results support a model of murine gammadeltaTCR stoichiometry in which there are two CD3gammaepsilon dimers for every TCRgammadelta heterodimer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cells, Cultured
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sandra M Hayes
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
9
|
Pouillon V, Hascakova-Bartova R, Pajak B, Adam E, Bex F, Dewaste V, Van Lint C, Leo O, Erneux C, Schurmans S. Inositol 1,3,4,5-tetrakisphosphate is essential for T lymphocyte development. Nat Immunol 2003; 4:1136-43. [PMID: 14517551 DOI: 10.1038/ni980] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 08/26/2003] [Indexed: 11/09/2022]
Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) is phosphorylated by Ins(1,4,5)P(3) 3-kinase, generating inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). The physiological function of Ins(1,3,4,5)P(4) is still unclear, but it has been reported to be a potential modulator of calcium mobilization. Disruption of the gene encoding the ubiquitously expressed Ins(1,4,5)P(3) 3-kinase isoform B (Itpkb) in mice caused a severe T cell deficiency due to major alterations in thymocyte responsiveness and selection. However, we were unable to detect substantial defects in Ins(1,4,5)P(3) amounts or calcium mobilization in Itpkb(-/-) thymocytes. These data indicate that Itpkb and Ins(1,3,4,5)P(4) define an essential signaling pathway for T cell precursor responsiveness and development.
Collapse
Affiliation(s)
- Valérie Pouillon
- IRIBHM, IBMM, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ruf P, Lindhofer H. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 2001; 98:2526-34. [PMID: 11588051 DOI: 10.1182/blood.v98.8.2526] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bispecific antibodies (bsAbs) can efficiently mediate tumor cell killing by redirecting preactivated or costimulated T cells to disseminated tumor cells, especially in a minimal residual disease situation. This study demonstrates that the trifunctional bsAb BiLu is able to kill tumor cells very efficiently without any additional costimulation of effector cells in vitro and in vivo. Remarkably, this bsAb also induces a long-lasting protective immunity against the targeted syngeneic mouse tumors (B16 melanoma and A20 B-cell lymphoma, respectively). A strong correlation was observed between the induction of a humoral immune response with tumor-reactive antibodies and the survival of mice. This humoral response was at least in part tumor specific as shown in the A20 model by the detection of induced anti-idiotype antibodies. Both the survival of mice and antitumor titers were significantly diminished when F(ab')(2) fragments of the same bsAb were applied, demonstrating the importance of the Fc region in this process. With the use of T-cell depletion, a contribution of a cellular antitumor response could be demonstrated. These results reveal the necessity of the Fc region of the bsAb with its potent immunoglobulin subclass combination mouse immunoglobulin G2a (IgG2a) and rat IgG2b. The antigen-presenting system seems to be crucial for achieving an efficient tumor cell killing and induction of long-lasting antitumor immunity. Hereby, the recruitment and activation of accessory cells by the intact bsAb is essential.
Collapse
Affiliation(s)
- P Ruf
- Clinical Cooperation Group Bispecific Antibodies of the Department of Otorhinolaryngology, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
11
|
Van Laethem F, Baus E, Smyth LA, Andris F, Bex F, Urbain J, Kioussis D, Leo O. Glucocorticoids attenuate T cell receptor signaling. J Exp Med 2001; 193:803-14. [PMID: 11283153 PMCID: PMC2193373 DOI: 10.1084/jem.193.7.803] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) affect peripheral immune responses by inhibiting T cell immunity at several stages of the activation cascade, causing impaired cytokine production and effector function. The recent demonstration that the thymic epithelium and possibly thymocytes themselves produce steroids suggests that endogenous GCs also play a role in the control of T cell development. As both peripheral responsiveness and thymic differentiation appear to be regulated by the quantity and quality of intracellular signals issued by antigen-major histocompatibility complex-engaged T cell receptor (TCR) complexes, we investigated the effects of GCs on the signaling properties of T cells stimulated by anti-CD3 monoclonal antibodies or agonist peptides. We demonstrate in this work that dexamethasone, a synthetic GC, inhibits the early signaling events initiated upon TCR ligation, such as tyrosine phosphorylation of several TCR-associated substrates including the zeta chain, the ZAP70 kinase, and the transmembrane adapter molecule linker for activation of T cells. Hypophosphorylation was not a consequence of reduced kinase activity of src protein tyrosine kinases, but was correlated with an altered- membrane compartmentalization of these molecules. These observations indicate that in addition to their well-described ability to interfere with the transcription of molecules involved in peripheral responses, GCs inhibit T cell activation by affecting the early phosphorylating events induced after TCR ligation.
Collapse
Affiliation(s)
- François Van Laethem
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Erika Baus
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Lesley A. Smyth
- Division of Molecular Immunology, The National Institute of Medical Research, London NW7 1AA, United Kingdom
| | - Fabienne Andris
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Françoise Bex
- Laboratoire de Microbiologie, Institut CERIA, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Jacques Urbain
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Dimitris Kioussis
- Division of Molecular Immunology, The National Institute of Medical Research, London NW7 1AA, United Kingdom
| | - Oberdan Leo
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
12
|
Kummer U, Zengerle U, Pischel J, Trautmann B, Mailhammer R, Sidell N. Increased in vivo mitogenicity of anti-TCR/CD3 monoclonal antibody through reduced interaction with Fcgamma receptors. Immunol Lett 2001; 75:153-8. [PMID: 11137141 DOI: 10.1016/s0165-2478(00)00300-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Since its initial clinical use in 1980, anti-TCR/CD3 monoclonal antibody (mAb) has been shown to be a potent immunosuppressive agent in the prevention of renal allograft rejections. However, toxic side effects caused by release of cytokines, predominantly from activated CD4+ T-cells, remain a major problem with the use of these reagents. Previous work has shown that this activation is mediated via antibody binding to Fcgamma receptors (FcgammaR) on host effector cells. In the present study, we have demonstrated in an in vivo mouse model that the anti-TCR/CD3 mouse mAb 7D6, as well as that from rat (17A2) and hamster (H57-597), induce a gradual depletion of host CD4+ T-cells without any apparent proliferative effects on the cells. In contrast, when treatment with these mAbs was combined with a mAb (2.4G2) that blocks the low-affinity Fcgamma receptors (FcgammaRII/III), we found that the in vivo actions of the anti-TCR/CD3 mAbs resulted in a significant expansion, rather than depletion, of CD4+ cells. The ability of 2.4G2 to reduce mAb 7D6-FcgammaR interaction was directly demonstrated in an in vitro assay system in which 2.4G2 partially suppressed 7D6-mediated T-cell responses. Taken together, our results have shown that some so-called "nonmitogenic" anti-TCR/CD3 mAbs in fact possess potent activating properties and that their mitogenic potential can be exposed by reducing their interaction with FcgammaR on host effector cells.
Collapse
Affiliation(s)
- U Kummer
- GSF Institute of Molecular Immunology, Marchioninistr 25, D-81377, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Berger MA, Carleton M, Rhodes M, Sauder JM, Trop S, Dunbrack RL, Hugo P, Wiest DL. Identification of a novel pre-TCR isoform in which the accessibility of the TCR beta subunit is determined by occupancy of the 'missing' V domain of pre-T alpha. Int Immunol 2000; 12:1579-91. [PMID: 11058578 DOI: 10.1093/intimm/12.11.1579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified a novel pre-TCR isoform that is structurally distinct from conventional pre-TCR complexes and whose TCR beta chains are inaccessible to anti-TCR beta antibodies. We term this pre-TCR isoform the MB (masked beta)-pre-TCR. Pre-T alpha (pT alpha) subunits of MB-pre-TCR complexes have a larger apparent mol. wt due to extensive modification with O:-linked carbohydrates; however, preventing addition of O-glycans does not restore antibody recognition of the TCR beta subunits of MB-pre-TCR complexes. Importantly, accessibility of TCR beta chains in MB-pre-TCR complexes is restored by filling in the 'missing' variable (V) domain of pT alpha with a V domain from TCR alpha. Moreover, the proportion of pre-TCR complexes in which the TCR beta subunits are accessible to anti-TCR beta antibody varies with the cellular context, suggesting that TCR beta accessibility is controlled by a trans-acting factor. The way in which this factor might control TCR beta accessibility as well as the physiologic relevance of TCR beta masking for pre-TCR function are discussed.
Collapse
MESH Headings
- Animals
- Carbohydrate Sequence
- Dimerization
- Gene Transfer Techniques
- Glycosylation
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Protein Isoforms/biosynthesis
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M A Berger
- Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim KS, Sun ZY, Wagner G, Reinherz EL. Heterodimeric CD3epsilongamma extracellular domain fragments: production, purification and structural analysis. J Mol Biol 2000; 302:899-916. [PMID: 10993731 DOI: 10.1006/jmbi.2000.4098] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CD3 polypeptides (epsilon, gamma, and delta) are non-covalently associated signaling subunits of the T cell receptor which form non-disulfide linked epsilongamma and epsilondelta heterodimers. With the goal of investigating their structure, Escherichia coli expression was utilized to produce CD3 ectodomain fragments including the murine CD3epsilon subunit N-terminal Ig-like extracellular domain alone or as a single chain construct with that of CD3gamma. The latter links the CD3gamma segment to the C terminus of the CD3epsilon segment via a 26 amino acid peptide (scCD3epsilongamma26). Although CD3epsilon could be produced at high yield when directed to inclusion bodies, the refolded monomeric CD3epsilon was not native as judged by monoclonal antibody binding using surface plasmon resonance and was largely unstructured by (15)N-(1)H two-dimensional NMR analysis. In contrast, scCD3epsilongamma26 could be refolded readily into a native state as shown by CD, NMR and mAb reactivity. The linker length between CD3epsilon and CD3gamma is critical since scCD3epsilongamma16 containing a 16 residue connector failed to generate a stable heterodimer. Collectively, the results demonstrate that: (i) soluble heterodimeric fragments of CD3 can be produced; (ii) cotranslation of CD3 chains insures proper folding even in the absence of the conserved ectodomain stalk region (CxxCxE); and (iii) CD3epsilon has a more stable tertiary protein fold than CD3gamma.
Collapse
Affiliation(s)
- K S Kim
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
15
|
Pajak B, De Smedt T, Moulin V, De Trez C, Maldonado-López R, Vansanten G, Briend E, Urbain J, Leo O, Moser M. Immunohistowax processing, a new fixation and embedding method for light microscopy, which preserves antigen immunoreactivity and morphological structures: visualisation of dendritic cells in peripheral organs. J Clin Pathol 2000; 53:518-24. [PMID: 10961175 PMCID: PMC1731227 DOI: 10.1136/jcp.53.7.518] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. METHODS This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. RESULTS Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessles. CONCLUSIONS These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur.
Collapse
Affiliation(s)
- B Pajak
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
De Mattia F, Chomez S, Van Laethem F, Moulin V, Urbain J, Moser M, Leo O, Andris F. Antigen-Experienced T Cells Undergo a Transient Phase of Unresponsiveness Following Optimal Stimulation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Interaction of the Ag-specific receptor of T lymphocytes with its Ag/MHC ligand can lead either to cell activation or to a state of unresponsiveness often referred to as anergy. It has been generally assumed that anergy develops as a consequence of inadequate stimulation, such as in response to altered peptide ligands or to agonists presented by costimulatory-deficient accessory cells. The present study uncovers an alternative way of inducing an unresponsive state in T cells. Indeed, we demonstrate herein that Ag-stimulation of murine CD4+ Th clones induces cellular activation, characterized by cytokine production and cell proliferation, followed by a state of transient (lasting up to 6 days) unresponsiveness to further antigenic stimulation. This state of activation-induced unresponsiveness 1) is not a consequence of inadequate costimulation, as it occurs when cells are stimulated in the presence of dendritic cells or anti-CD28 Abs; 2) develops after an optimal response to Ag; 3) is not due to cell death/apoptosis or CTLA-4 engagement; 4) down-regulates the proliferation and cytokine production of both Th1- and Th2-like clones; and 5) does not affect the early steps of signal transduction. Finally, naive T cells are not sensitive to this novel form of unresponsiveness, but become gradually susceptible to activation-induced unresponsiveness upon Ag stimulation. Collectively, these data suggest that activation-induced T cell unresponsiveness may represent a regulatory mechanism limiting the clonal expansion and effector cell function of Ag-experienced T cells, thus contributing to the homeostasis of an immune response.
Collapse
Affiliation(s)
- Fabrizio De Mattia
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Susanna Chomez
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - François Van Laethem
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Véronique Moulin
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacques Urbain
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Moser
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Oberdan Leo
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Fabienne Andris
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
17
|
Ghendler Y, Smolyar A, Chang HC, Reinherz EL. One of the CD3epsilon subunits within a T cell receptor complex lies in close proximity to the Cbeta FG loop. J Exp Med 1998; 187:1529-36. [PMID: 9565644 PMCID: PMC2212265 DOI: 10.1084/jem.187.9.1529] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Revised: 03/05/1998] [Indexed: 11/17/2022] Open
Abstract
A recent crystal structure of the N15 alpha/beta-T cell receptor (TCR) in complex with an Fab derived from the H57 Cbeta-specific monoclonal antibody (mAb) shows the mAb fragment interacting with the elongated FG loop of the Cbeta domain. This loop creates one side wall of a cavity within the TCR Ti-alpha/beta constant region module (CalphaCbeta) while the CD and EF loops of the Calpha domain form another wall. The cavity size is sufficient to accommodate a single nonglycosylated Ig domain such as the CD3epsilon ectodomain. By using specific mAbs to mouse TCR-beta (H57) and CD3epsilon (2C11) subunits, we herein provide evidence that only one of the two CD3epsilon chains within the TCR complex is located in close proximity to the TCR Cbeta FG loop, in support of the above notion. Moreover, analysis of T cells isolated from transgenic mice expressing both human and mouse CD3epsilon genes shows that the heterologous human CD3epsilon component can replace the mouse CD3epsilon at this site. The location of one CD3epsilon subunit within the rigid constant domain module has implications for the mechanism of signal transduction throughout T cell development.
Collapse
Affiliation(s)
- Y Ghendler
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
18
|
Armstrong JM, Vitetta ES. The roles of Fas and perforin in LAK T-cell/bispecific antibody-mediated killing of the murine B-lymphoma cells, BCL1. Int J Cancer 1996; 68:822-7. [PMID: 8980190 DOI: 10.1002/(sici)1097-0215(19961211)68:6<822::aid-ijc22>3.0.co;2-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to construct bispecific F(ab')2 [anti-CD3 x anti-BCL1 idiotype (Id)] Abs (BsAbs) which would enable lymphokine-activated killer (LAK) T cells to kill Id+ mouse BCL1 lymphoma cells, and to determine the mechanism(s) underlying cell death. Using 4-day activated LAK T cells from either perforin-knockout mice or FasL-deficient gld mice, we show that the Fas pathway, but not perforin, is required for BsAb-mediated LAK T-cell-induced killing of BCL1 cells.
Collapse
Affiliation(s)
- J M Armstrong
- Department of Microbiology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas 75235-8576, USA
| | | |
Collapse
|
19
|
Andris F, Van Mechelen M, De Mattia F, Baus E, Urbain J, Leo O. Induction of T cell unresponsiveness by anti-CD3 antibodies occurs independently of co-stimulatory functions. Eur J Immunol 1996; 26:1187-95. [PMID: 8647186 DOI: 10.1002/eji.1830260534] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies to the T cell receptor (TcR)-associated CD3 molecules represent potent immunosuppressive agents in vivo in both human and animals models, in spite of their well-characterized mitogenic properties. We demonstrate in this report that antibodies to the B7.2 molecule inhibit IL-2 production in vivo caused by anti-CD3 administration, suggesting that anti-CD3 monoclonal antibodies (mAb) stimulate naive T cells in vivo in a co-stimulation-dependent fashion. To characterize better the mechanisms by which antibodies to CD3 induce antigen unresponsiveness in naive T cells, we developed a model of activation-induced T cell unresponsiveness in vitro. Our data indicate that following interaction with mitogenic anti-CD3 mAb in vitro, naive purified CD4+ T cells become refractory to a further stimulus. This unresponsive state develops independently of co-stimulatory functions, as neither B7-expressing antigen-presenting cells nor anti-CD28 mAb are able to prevent anergy induction in this model. We therefore conclude that induction of unresponsiveness in naive T cells by anti-CD3 mAb is not a consequence of co-stimulus-deficient stimulation, but may develop following a productive response both in vivo and in vitro. Unresponsive T cells display a defective calcium mobilization upon TcR triggering, suggesting that anergy is maintained in these cells through receptor desensitization. The potential role of co-stimulation-independent TcR desensitization in the down-regulation of immune responses in vivo is briefly discussed.
Collapse
Affiliation(s)
- F Andris
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Wiest DL, Ashe JM, Abe R, Bolen JB, Singer A. TCR activation of ZAP70 is impaired in CD4+CD8+ thymocytes as a consequence of intrathymic interactions that diminish available p56lck. Immunity 1996; 4:495-504. [PMID: 8630734 DOI: 10.1016/s1074-7613(00)80415-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The fate of developing CD4+CD8+ thymocytes is determined by signals transduced through surface TCR complexes. Here, we report that cross-linking of TCR on CD4+ CD8+ thymocytes fails to activate ZAP70 protein tyrosine kinase and fails to initiate downstream signaling events, unless the TCR are coaggregated with surface coreceptor molecules. TCR signaling in CD4+CD8+ thymocytes is impaired because the number of available p56lck molecules is diminished by intrathymic CD4-Ia interactions that initially activate p56lck molecules, which are subsequently degraded. As a consequence of intrathymic CD4-Ia interactions, TCR zeta chains are initially phosphorylated to recruit ZAP70 molecules, but the recruited ZAP70 molecules are not subsequently phosphorylated, resulting in TCR complexes that are stably associated with inactive ZAP70 molecules. Thus, intrathymic interactions that diminish p56lck regulate TCR signaling thresholds and affect TCR structure in developing CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
- D L Wiest
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Tokoro Y, Tsuda S, Tanaka S, Nakauchi H, Takahama Y. CD3-induced apoptosis of CD4+CD8+ thymocytes in the absence of clonotypic T cell antigen receptor. Eur J Immunol 1996; 26:1012-7. [PMID: 8647161 DOI: 10.1002/eji.1830260509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clonal selection of T cells mediated through the T cell antigen receptor (TCR) mostly occurs at the CD4+CD8+ double positive thymocyte stage. Immature CD4+CD8+ thymocytes expressing self-reactive TCR are induced to die upon clonotypic engagement of TCR by self antigens. CD3 engagement by antibody of the surface TCR-CD3 complex is known to induce apoptosis of CD4+CD8+ thymocytes, a process that is generally thought to represent antigen-induced negative selection in the thymus. The present study shows that the CD3-induced apoptosis of CD4+CD8+ thymocytes can occur even in TCR alpha- mutant mice which do not express the TCR alpha beta/CD3 antigen receptor. Anti-CD3 antibody induces death of CD4+CD8+ thymocytes in TCR alpha- mice either in cell cultures or upon administration in vivo. Interestingly, most surface CD3 chains expressed on CD4+CD8+ thymocytes from TCR alpha- mice are not associated with clonotypic TCR chains, including TCR beta. Thus, apoptosis of CD4+CD8+ thymocytes appear to be induced through the CD3 complex even in the absence of clonotypic antigen receptor chains. These results shed light on previously unknown functions of the clonotype-independent CD3 complex expressed on CD4+CD8+ thymocytes, and suggest its function as an apoptotic receptor inducing elimination of developing thymocytes.
Collapse
Affiliation(s)
- Y Tokoro
- Department of Immunology, University of Tsukuba, Japan
| | | | | | | | | |
Collapse
|
22
|
Bolhuis RL, Hoogenboom HR, Gratama JW. Targeting of peripheral blood T lymphocytes. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1996; 18:211-26. [PMID: 8908701 DOI: 10.1007/bf00820667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R L Bolhuis
- Department of Clinical and Tumor Immunology, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Abstract
The formation of partial complexes in an African green monkey kidney cell line (COS cells) has been used to examine assembly of newly synthesized T cell antigen receptor (TCR) chains. The identification of assembly interactions between multiple subunits and the formation of higher order subcomplexes has led to the development of a model for the hierarchy of subunit assembly leading to a complete TCR. These assembly interactions suggest likely nearest neighbour relationships in the assembling structure and probably reflect the quarternary structure of the TCR complex. This may be important when examining the association of other molecules with TCR proteins or when trying to discern structural components involved with signal transduction.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- CD3 Complex/chemistry
- Cell Line
- Chlorocebus aethiops
- DNA, Complementary/genetics
- Histocompatibility Antigens Class II/chemistry
- Models, Immunological
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Transfection
Collapse
Affiliation(s)
- N Manolios
- Department of Rheumatology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Kearse KP, Roberts JL, Singer A. TCR alpha-CD3 delta epsilon association is the initial step in alpha beta dimer formation in murine T cells and is limiting in immature CD4+ CD8+ thymocytes. Immunity 1995; 2:391-9. [PMID: 7719941 DOI: 10.1016/1074-7613(95)90147-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study has examined the molecular events leading to formation of alpha beta dimers in normal murine thymocytes and mature T cells. We demonstrate that TCR assembly proceeds by initial association of TCR alpha with CD3 delta epsilon proteins and by association of TCR beta with CD3 gamma epsilon proteins to form alpha delta epsilon and beta gamma epsilon trimers; these trimers then associate to form alpha delta epsilon-beta gamma epsilon complexes, within which alpha-beta disulfide bond formation occurs. We also show that TCR-associated protein (TRAP) associates uniquely with CD3 gamma epsilon pairs and that formation of beta gamma epsilon trimers occurs subsequent to TRAP dissociation. Importantly, we document that the assembly step that is quantitatively limiting in CD4+ CD8+ thymocytes is the initial association of TCR alpha with CD3 delta epsilon chains, which appears necessary to protect nascent TCR alpha proteins from accelerated degradation within the ER of immature thymocytes.
Collapse
Affiliation(s)
- K P Kearse
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
25
|
Wiest DL, Kearse KP, Shores EW, Singer A. Developmentally regulated expression of CD3 components independent of clonotypic T cell antigen receptor complexes on immature thymocytes. J Exp Med 1994; 180:1375-82. [PMID: 7931071 PMCID: PMC2191687 DOI: 10.1084/jem.180.4.1375] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CD3 signal transducing proteins are thought to be expressed on the surface of T cells only as part of clonotypic T cell receptor (TCR) complexes. Contrary to this paradigm, the present study describes surface expression of CD3 proteins independently of clonotypic TCR complexes, but only on immature thymocytes. Such novel clonotype-independent CD3 (CIC) complexes are composed primarily of CD3 gamma epsilon and secondarily of CD3 delta epsilon heterodimers that are independent of one another and are expressed on the cell surface in association with an unknown 90-100 kD protein termed CD3-associated protein (CD3AP). CIC complexes are expressed in normal mice on early thymocytes through the CD4+CD8+ stage of development, but not on mature peripheral T cells. Furthermore, CIC complexes are expressed by both TCR- severe combined immunodeficiency (SCID) thymocytes and thymoma cell lines, in the absence of any clonotypic chains. The isolation and biochemical characterization of surface CIC complexes provides a structural basis for the signaling effects of anti-CD3 epsilon antibody treatment in early thymocyte development.
Collapse
Affiliation(s)
- D L Wiest
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
26
|
Takahama Y, Suzuki H, Katz KS, Grusby MJ, Singer A. Positive selection of CD4+ T cells by TCR ligation without aggregation even in the absence of MHC. Nature 1994; 371:67-70. [PMID: 7915400 DOI: 10.1038/371067a0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The developmental fate of immature thymocytes is determined by the specificity of their T-cell antigen receptors (TCRs). Immature CD4+8+ thymocytes are positively selected to differentiate into mature T cells by recognition of peptides associated with major histocompatibility complex (MHC) encoded molecules on thymic epithelial cells. But neither the identity of molecules transducing positive selection signals nor the nature of the signals themselves is fully known. Here we report that direct ligation of TCR molecules by monoclonal antibodies specific for either clonotypic or CD3 chains can signal immature thymocytes to differentiate into mature CD4+8- T cells, even in the absence of MHC expression and MHC-dependent CD4 co-receptor signalling. Moreover, we show that TCR engagement induces positive selection signals only in the absence of TCR aggregation and that TCR aggregation is inhibitory for positive selection. Thus, low valency of TCR crosslinking is a critical parameter, distinguishing positive selection from other TCR-mediated signalling events.
Collapse
Affiliation(s)
- Y Takahama
- Syntex Institute of Immunology, Niihari, Japan
| | | | | | | | | |
Collapse
|
27
|
Baus E, Urbain J, Leo O, Andris F. Flow cytometric measurement of calcium influx in murine T cell hybrids using Fluo-3 and an organic-anion transport inhibitor. J Immunol Methods 1994; 173:41-7. [PMID: 8034984 DOI: 10.1016/0022-1759(94)90281-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A method is described to facilitate flow cytometric analysis of calcium mobilization upon stimulation of murine T cell hybrids. In these transformed cell lines, the accuracy of cytometric measurement of free cytoplasmic calcium with Fluo-3 is compromised by the rapid loss of the intracellular dye. We have found that the addition of sulfinpyrazone, a known organic-anion transporter inhibitor in epithelial cells and in macrophages, severely impairs the leakage of the Fluo-3 probe from the cytoplasmic matrix. Under appropriate conditions, sulfinpyrazone has little effect on the cell physiology and permits the detection of calcium influx in a variety of murine T cell hybrids.
Collapse
Affiliation(s)
- E Baus
- Laboratoire de Physiologie Animale, Université Libre de Bruxelles, Rhode Saint-Genèse, Belgium
| | | | | | | |
Collapse
|
28
|
Dubois PM, Andris F, Shapiro RA, Gilliland LK, Kaufman M, Urbain J, Ledbetter JA, Leo O. T cell long-term hyporesponsiveness follows antigen receptor engagement and results from defective signal transduction. Eur J Immunol 1994; 24:348-54. [PMID: 7905417 DOI: 10.1002/eji.1830240212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
T cell receptor (TCR)-mediated stimulation of T hybridomas leads to cell activation and lymphokine production that is followed by a long-term hyporesponsiveness. To investigate the biochemical events involved in the induction and maintenance of this antigen receptor hyporesponsiveness or anergy, we have expressed a G protein/PLC beta 1-coupled muscarinic subtype 1 acetylcholine receptor in a murine T cell hybrid. Transfected cells were capable of responding to both muscarinic agonists and TCR ligands by inducing interleukin-2 secretion that was sensitive to cyclosporin A and dexamethasone. Both receptors induced tyrosine kinase (TK) activity, but muscarinic stimulation did not affect tyrosine phosphorylation of PLC gamma 1, nor did the TK inhibitor, herbimycin, block muscarinic receptor-mediated calcium mobilization. These data indicate that in T cells, the muscarinic receptor mediates T cell effector functions by regulating a TK-independent proximal pathway which later converges with the TCR pathway. Using these cells, we have explored the long-term consequences of T cell stimulation via antigen or muscarinic receptors. Our results show that hyporesponsiveness specifically follows TCR engagement and appears to result from a defect in the early signal transduction initiated by TCR cross-linking. A study of TCR-mediated signaling supports this model by showing that tyrosine phosphorylation and calcium mobilization are deficient in hyporesponsive T cells.
Collapse
Affiliation(s)
- P M Dubois
- Laboratoire de Physiologie Animale, Universite Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Brissinck J, Demanet C, Moser M, Leo O, Thielemans K. Bispecific antibodies in lymphoma. Int Rev Immunol 1993; 10:187-94. [PMID: 8360585 DOI: 10.3109/08830189309061695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J Brissinck
- Division of Hematology-Immunology, Medical School, Vrije Universiteit Brussel, Belgium
| | | | | | | | | |
Collapse
|