1
|
Rajamanickam A, Babu S. Unraveling the Dynamics of Human Filarial Infections: Immunological Responses, Host Manifestations, and Pathogen Biology. Pathogens 2025; 14:223. [PMID: 40137708 PMCID: PMC11945129 DOI: 10.3390/pathogens14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Lymphatic filariasis (LF), or elephantiasis, is a neglected tropical disease caused by filarial worms, primarily Wuchereria bancrofti, transmitted through mosquito bites. It often begins in childhood but may not show symptoms until later, leaving many individuals asymptomatic for long periods. LF disrupts the lymphatic system, causing severe swelling in the limbs and genitals, leading to deformities and disabilities. The World Health Organization estimates that around 51 million people are affected globally, with 36 million suffering from chronic conditions like lymphedema and hydrocele. In 2021, approximately 882.5 million people in 44 countries required preventive chemotherapy, making LF the second leading parasitic cause of disability, significantly impacting socioeconomic status. The immune response to filarial parasites is complex, involving both innate and adaptive immune cells. A key feature of LF immunology is the antigen-specific Th2 response, expansion of IL-10-producing CD4+ T cells, and a muted Th1 response. This T cell hypo-responsiveness is crucial for sustaining long-term infections with high parasite densities. While the correlates of protective immunity are not fully understood-due in part to a lack of suitable animal models-T cells, particularly CD4+ Th2 cells, and B cells, play essential roles in immune protection. Moreover, host immune responses contribute to the disease's pathological manifestations. A failure to induce T cell hypo-responsiveness can lead to exaggerated inflammatory conditions such as lymphedema, hydrocele, and elephantiasis. Filarial infections also induce bystander effects on various immune responses, impacting responses to other infectious agents. This intricate immune interplay offers valuable insights into the regulation of immune responses to chronic infections. This review explores recent immunological research on lymphatic filarial worms, highlighting their effects on both innate and adaptive immune responses in humans and the mechanisms underlying this neglected tropical disease.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Allergy and Infectious Diseases, National Institutes of Health—International Center for Excellence in Research, Chennai 600031, India;
| | - Subash Babu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health—International Center for Excellence in Research, Chennai 600031, India;
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Arndts K, Wiszniewsky A, Neumann AL, Wiszniewsky K, Katawa G, Hoerauf A, Layland-Heni LE, Ritter M, Hübner MP. Differences of in vitro immune responses between patent and pre-patent Litomosoides sigmodontis-infected mice are independent of the filarial antigenic stimulus used. Parasitol Res 2024; 123:358. [PMID: 39436444 PMCID: PMC11496330 DOI: 10.1007/s00436-024-08365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Lymphatic filariasis and onchocerciasis are neglected tropical diseases and cause significant public health problems in endemic countries, especially in sub-Saharan Africa. Since the human parasites are not viable in immune-competent mice, animal models have been developed, among them Litomosoides sigmodontis which permits a complete life cycle in BALB/c mice, including the development of patent infections with circulating microfilariae (Mf, the worm's offspring). To investigate the immunomodulatory properties of helminths in vitro, antigenic extracts can be prepared from different life cycle stages of the L. sigmodontis model, including adult worms, but the methods to prepare these antigens differ between research groups. This study analyzed whether different centrifugation methods during the preparation of an antigenic extract, the gender of used worms, or the different fractions (soluble or pellet) altered filarial-specific CD4+ T cell responses. These cells were isolated from pre-patent or patent/chronic infected mice, hence those without and those with Mf, respectively. Ex vivo immune responses were compared at these two different time points of the infection as well as the parasitic parameters. Worm burden and cell infiltration were elevated in the thoracic cavity (TC) and draining mediastinal lymph nodes at the pre-patent stage. Within the TC, eosinophils were significantly up-regulated at the earlier time point of infection which was further reflected by the eosinophil-related eotaxin-1 levels. Regarding the production of cytokines by re-stimulated CD4+ T cells in the presence of different antigen preparations, cytokine levels were comparable for all used extracts. Our data show that immune responses differ between pre-patent and patent filarial infection, but not in response to the different antigenic extracts themselves.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany.
| | - Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katharina Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie Et Immunomodulation (UR2IM), Université de Lomé, Ecole Supérieure Des Techniques Biologiques Et Alimentaires (ESTBA), Lomé, Togo
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Laura E Layland-Heni
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
3
|
Bischofsberger M, Reinholdt C, Dannenhaus TA, Aleith J, Bergmann-Ewert W, Müller-Hilke B, Löbermann M, Reisinger EC, Sombetzki M. Individually or as a Team-The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens 2023; 12:1432. [PMID: 38133315 PMCID: PMC10746046 DOI: 10.3390/pathogens12121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the lung is considered an efficient site for stopping the larvae of the acute Schistosoma spp. infection phase from migrating through extensive inflammatory responses in the surrounding tissues, little is known about these processes. To date, the highest resistance to infection has been achieved in experimental studies with radiation-attenuated cercariae immunization, which elicits a strong Th1/Th2 response in the lung and results in up to 80% protection. Based on our own studies demonstrating a systemic, unpolarized Th1/Th2 response resulting from infection with male or female Schistosoma mansoni, we hypothesize that this atypical immune response is already detectable during the pulmonary passage of parasite larvae. Therefore, we examined the immune milieu in the lungs of mice caused by migrating schistosome larvae, either male or female (single-sex groups) or male + female (bisexual control), 4 and 16 days after infection in bronchoalveolar lavage and lung tissue by flow cytometry, qPCR, and multiplex analyzes. Our results show only minor differences in the inflammatory profile between the single-sex groups but significant differences compared with the bisexual control group. Both single-sex infected groups have increased expression of inflammatory markers in lung tissue, higher numbers of cytotoxic T cells (day 4 post-infection) and more T helper cells (day 16 post-infection), compared with the bisexual control group. A single-sex infection, regardless of whether it is an infection with male or female cercariae, causes an immune milieu in the lung that is clearly different from an infection with both sexes. In terms of identifying therapeutic targets to achieve resistance to re-infection, it is of great scientific interest to identify the differences in the inflammatory potential of male or female and male + female parasites.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Tim Alexander Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| |
Collapse
|
4
|
Etebar F, Hosseini SH, Borhani Zarandi M, Moghadasi AN, Jalousian F. The immunomodulatory effects of the C-type lectin protein of Toxocara canis on experimental autoimmune encephalomyelitis. Parasite Immunol 2023; 45:e13010. [PMID: 37718988 DOI: 10.1111/pim.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
Toxocara canis is a global zoonosis infection that can cause chronic and long-term toxocariasis in their paratenic host. The excretory-secretory (ES) products of T. canis larvae are considered to be responsible for the Th2 polarization and regulatory immune responses in toxocariasis. The C-type lectin family is one of the most prominent components of ES products of T. canis infective larvae. This study aimed to investigate the ameliorative effect of a T. canis C-type lectin recombinant protein (rCTL), on experimental autoimmune encephalomyelitis (EAE) which is a T-cell-mediated autoimmune disease of the central nervous system. C57BL/6 mice were subcutaneously treated with 30 μg rCTL, three times at an interval of 1 week. EAE was induced by myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55 peptide) immunization, and weight and clinical scores were evaluated. Real time polymerase chain reaction was performed to evaluate the expression levels of T-bet, Gata3, and Foxp3 in splenocytes. In addition, the levels of interleukin 4, interferon gamma, and tumour growth factor-β (TGF-β) were quantified by enzyme-linked immunosorbent assay in splenocyte culture supernatants. The results indicated that the rCTL decreased clinical disability scores and delayed the onset of EAE. Furthermore, the data showed that rCTL treatment modulated the immune response, which was associated with upregulation of the mRNA expression of the Foxp3 gene and higher production of TGF-β in rCTL-treated mice. This study demonstrated that rCTL might be a potential agent to ameliorate EAE symptoms by stimulating anti-inflammatory responses.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Faculty of Health, Centre for Immunology and Infection Control, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- Department of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Seyed Hossein Hosseini
- Department of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
- Iranian Museum of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mehdi Borhani Zarandi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Jalousian
- Department of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| |
Collapse
|
5
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Filarial infections compromise influenza vaccination efficacy: Lessons from the mouse. Immunol Lett 2023; 255:62-66. [PMID: 36889363 DOI: 10.1016/j.imlet.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Several human studies report impaired responses to vaccinations in helminth-infected individuals. Analysing the impact of helminth infections on the efficacy of influenza vaccinations in the mouse system helps to elucidate the underlying immunological processes. Concurrent infection with the parasitic nematode Litomosoides sigmodontis reduced the quantity and quality of antibody responses to vaccination against seasonal influenza in BALB/c and C57BL/6 mice. This led to impaired vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus in helminth-infected mice. Impaired responses were also observed if vaccinations were performed after immune-driven or drug-induced clearance of a previous helminth infection. Mechanistically, the suppression was associated with a systemic and sustained expansion of IL-10-producing CD4+CD49b+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor. In summary, these findings raise the concern that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection.
Collapse
|
8
|
The Immune Response to Nematode Infection. Int J Mol Sci 2023; 24:ijms24032283. [PMID: 36768605 PMCID: PMC9916427 DOI: 10.3390/ijms24032283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Nematode infection is a major threat to the health of humans, domestic animals and wildlife. Nematodes vary in their effect on the host and in the mechanisms underlying immunity but the general features are becoming clear. There is considerable variation among individuals in resistance to infection and much of this variation is due to genetic variation in the immune response. The major histocompatibility complex has a strong influence on resistance to infection but other genes are collectively more important. Resistant individuals produce more IgA, eosinophils, IgE and mast cells than susceptible individuals and this is a consequence of stronger type 2 (Th2) immune responses. A variety of factors promote Th2 responses including genetic background, diet, molecules produced by the parasite and the location of the infection. A variety of cells and molecules including proteins, glycolipids and RNA act in concert to promote responses and to regulate the response. Nematodes themselves also modulate the host response and over 20 parasite-derived immunomodulatory molecules have been identified. Different species of nematodes modulate the immune response in different ways and probably use multiple molecules. The reasons for this are unclear and the interactions among immunomodulators have still to be investigated.
Collapse
|
9
|
Loghry HJ, Sondjaja NA, Minkler SJ, Kimber MJ. Secreted filarial nematode galectins modulate host immune cells. Front Immunol 2022; 13:952104. [PMID: 36032131 PMCID: PMC9402972 DOI: 10.3389/fimmu.2022.952104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphatic filariasis (LF) is a mosquito-borne disease caused by filarial nematodes including Brugia malayi. Over 860 million people worldwide are infected or at risk of infection in 72 endemic countries. The absence of a protective vaccine means that current control strategies rely on mass drug administration programs that utilize inadequate drugs that cannot effectively kill adult parasites, thus established infections are incurable. Progress to address deficiencies in the approach to LF control is hindered by a poor mechanistic understanding of host-parasite interactions, including mechanisms of host immunomodulation by the parasite, a critical adaptation for establishing and maintaining infections. The canonical type 2 host response to helminth infection characterized by anti-inflammatory and regulatory immune phenotypes is modified by filarial nematodes during chronic LF. Current efforts at identifying parasite-derived factors driving this modification focus on parasite excretory-secretory products (ESP), including extracellular vesicles (EVs). We have previously profiled the cargo of B. malayi EVs and identified B. malayi galectin-1 and galectin-2 as among the most abundant EV proteins. In this study we further investigated the function of these proteins. Sequence analysis of the parasite galectins revealed highest homology to mammalian galectin-9 and functional characterization identified similar substrate affinities consistent with this designation. Immunological assays showed that Bma-LEC-2 is a bioactive protein that can polarize macrophages to an alternatively activated phenotype and selectively induce apoptosis in Th1 cells. Our data shows that an abundantly secreted parasite galectin is immunomodulatory and induces phenotypes consistent with the modified type 2 response characteristic of chronic LF infection.
Collapse
|
10
|
Tamadaho RSE, Ritter M, Wiszniewsky A, Arndts K, Mack M, Hoerauf A, Layland LE. Infection-Derived Monocytic MDSCs Require TGF-β to Suppress Filarial-Specific IFN-γ But Not IL-13 Release by Filarial-Specific CD4+ T Cells In Vitro. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.707100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lymphatic filariasis (LF) remains a major health problem with severe economic repercussions in endemic communities of Sub-saharan Africa, South-East Asia and South America. The rodent-specific nematode Litomosoides sigmodontis (Ls) is used to study the immunomodulatory potential of filariae and research has elucidated pathways involving regulatory T cells (Tregs), IL-10 producing cells and alternatively activated macrophages (AAMs) and that CD4+ T cells play a paramount role during infection. Myeloid-derived suppressor cells (MDSCs) have been identified and characterised in man in cancer and other pathologies. The hallmark of MDSC populations is the suppression of T and B cell responses using various mechanisms, which are mostly specific to the pathology or setting. However, until now, it remains unclear whether they play a role in filarial-specific responses. We report here that monocytic MDSCs (Mo-MDSCs, CD11b+Ly6C+Ly6G-) and polymorphonuclear MDSCs (PMN-MDSCs, CD11b+Ly6Cint/loLy6G+) expanded in the thoracic cavity (TC, the site of infection) and correlated positively with filarial life-stages in Ls-infected BALB/c mice. In vitro, only infection-derived Mo-MDSCs showed a suppressive nature by preventing IL-13 and IFN-γ secretion from filarial-specific CD4+ T cells upon co-culture with soluble worm extract. This suppression was not mediated by IL-10, IL-6 or TNF-α, and did not require cell-contact, nitric oxide (NO), IL-4/IL-5 signalling pathways or CCR2. Interestingly, neutralizing TGF-β significantly rescued IFN-γ but not IL-13 production by filarial-specific CD4+ T cells. In comparison to naive cells, PCR array data showed an overall down-regulation of inflammatory pathways in both infection-derived Mo-MDSCs and PMN-MDSCs. In conclusion, these primary data sets show activity and expansion of MDSCs during Ls infection adding this regulatory cell type to the complex milieu of host responses during chronic helminth infections.
Collapse
|
11
|
Hardisty GR, Knipper JA, Fulton A, Hopkins J, Dutia BM, Taylor MD. Concurrent Infection With the Filarial Helminth Litomosoides sigmodontis Attenuates or Worsens Influenza A Virus Pathogenesis in a Stage-Dependent Manner. Front Immunol 2022; 12:819560. [PMID: 35140712 PMCID: PMC8818685 DOI: 10.3389/fimmu.2021.819560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Filarial helminths infect approximately 120 million people worldwide initiating a type 2 immune response in the host. Influenza A viruses stimulate a virulent type 1 pro-inflammatory immune response that in some individuals can cause uncontrolled immunopathology and fatality. Although coinfection with filariasis and influenza is a common occurrence, the impact of filarial infection on respiratory viral infection is unknown. The aim of this study was to determine the impact of pre-existing filarial infection on concurrent infection with influenza A virus. A murine model of co-infection was established using the filarial helminth Litomosoides sigmodontis and the H1N1 (A/WSN/33) influenza A virus (IAV). Co-infection was performed at 3 different stages of L. sigmodontis infection (larval, juvenile adult, and patency), and the impact of co-infection was determined by IAV induced weight loss and clinical signs, quantification of viral titres, and helminth counts. Significant alterations of IAV pathogenesis, dependent upon stage of infection, was observed on co-infection with L. sigmodontis. Larval stage L. sigmodontis infection alleviated clinical signs of IAV co-infection, whilst more established juvenile adult infection also significantly delayed weight loss. Viral titres remained unaltered at either infection stage. In contrast, patent L. sigmdodontis infection led to a reversal of age-related resistance to IAV infection, significantly increasing weight loss and clinical signs of infection as well as increasing IAV titre. These data demonstrate that the progression of influenza infection can be ameliorated or worsened by pre-existing filarial infection, with the outcome dependent upon the stage of filarial infection.
Collapse
Affiliation(s)
- Gareth R. Hardisty
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna A. Knipper
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Fulton
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - John Hopkins
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Matthew D. Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Matthew D. Taylor,
| |
Collapse
|
12
|
Abstract
Viral infections are often studied in model mammalian organisms under specific pathogen-free conditions. However, in nature, coinfections are common, and infection with one organism can alter host susceptibility to infection with another. Helminth parasites share a long coevolutionary history with mammalian hosts and have shaped host physiology, metabolism, immunity, and the composition of the microbiome. Published studies suggest that helminth infection can either be beneficial or detrimental during viral infection. Here, we discuss coinfection studies in mouse models and use them to define key determinants that impact outcomes, including the type of antiviral immunity, the tissue tropism of both the helminth and the virus, and the timing of viral infection in relation to the helminth lifecycle. We also explore the current mechanistic understanding of how helminth-virus coinfection impacts host immunity and viral pathogenesis. While much attention has been placed on the impact of the gut bacterial microbiome on immunity to infection, we suggest that enteric helminths, as a part of the eukaryotic macrobiome, also represent an important modulator of disease pathogenesis and severity following virus infection.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, United States,Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States,The Andrew M. And Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,CONTACT Larissa B. Thackray Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110, United States
| |
Collapse
|
13
|
Douglas B, Wei Y, Li X, Ferguson A, Hung LY, Pastore C, Kurtz JR, McLachlan JB, Nolan TJ, Lok J, Herbert DR. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathog 2021; 17:e1009709. [PMID: 34237106 PMCID: PMC8291758 DOI: 10.1371/journal.ppat.1009709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Helminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells. C57BL/6 mice infected with this stable transgenic line (termed Hulk) underwent a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells, preferentially in the lung parenchyma. Transcriptional profiling of 2W1S-specific CD4+ T cells isolated from mice infected with either Hulk or the enteric bacterial pathogen Salmonella expressing 2W1S revealed that pathogen context exerted a dominant influence over CD4+ T cell phenotype. Interestingly, Hulk-elicited 2W1S-specific CD4+ T cells exhibited both Th2 and Treg phenotypes and expressed high levels of the EGFR ligand amphiregulin, which differed greatly from the phenotype of 2W1S-specific CD4+ T cells elicited by 2W1S-expressing Salmonella. While immunization with 2W1S peptide did not enhance clearance of Hulk infection, immunization did increase total amphiregulin production as well as the number of amphiregulin-expressing CD3+ cells in the lung following Hulk infection. Altogether, this new model system elucidates effector as well as immunosuppressive and wound reparative roles of helminth-specific CD4+ T cells. This report establishes a new resource for studying the nature and function of helminth-specific T cells.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yun Wei
- Department of Oncology and Inflammation, Amgen Research, South San Francisco, California, United States of America
| | - Xinshe Li
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Annabel Ferguson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan R Kurtz
- Flagship Labs 72, Inc., Cambridge, Massachusetts, United States of America
| | - James B. McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny. Sci Rep 2021; 11:1536. [PMID: 33452272 PMCID: PMC7810711 DOI: 10.1038/s41598-020-79477-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specific manner: depletion of Foxp3+ regulatory T cells (Treg) improves the anti-S. ratti immunity in BALB/c but not in C57BL/6 mice. In the current study we compare the hierarchy of immunoregulatory pathways in BALB/c, C57BL/6 mice and their F1 progeny (BALB/c × C57BL/6). Using multicolor flow cytometry, we show that S. ratti induces a distinct pattern of inhibitory checkpoint receptors by Foxp3+ Treg and Foxp3- T cells. Intensity of expression was highest in C57BL/6 and lowest in BALB/c mice, while the F1 cross had an intermediate phenotype or resembled BALB/c mice. Treg subsets expanded during infection in all three mouse strains. Similar to BALB/c mice, depletion of Treg reduced intestinal parasite burden and increased mucosal mast cell activation in S. ratti-infected F1 mice. Our data indicate that Treg dominate the regulation of immune responses in BALB/c and F1 mice, while multiple regulatory layers exist in C57BL/6 mice that may compensate for the absence of Treg.
Collapse
|
15
|
Moore TC, Hasenkrug KJ. B-Cell Control of Regulatory T Cells in Friend Virus Infection. J Mol Biol 2021; 433:166583. [PMID: 32598936 DOI: 10.1016/j.jmb.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4+ and CD8+ T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8+ T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.
Collapse
Affiliation(s)
- Tyler C Moore
- College of Science and Technology, Bellevue University, 1000 Galvin Road South, Bellevue, NE 68005, USA.
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
16
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 2020; 160:248-260. [PMID: 32153025 PMCID: PMC7341546 DOI: 10.1111/imm.13190] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Helminth parasites infect an alarmingly large proportion of the world's population, primarily within tropical regions, and their ability to down‐modulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T‐cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF‐β mimic Hp‐TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite‐associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite‐derived molecules and/or Tregs might be applied as anti‐inflammatory therapies in the future.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Methylation of Inflammatory Cells in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:63-72. [PMID: 32949390 DOI: 10.1007/978-981-15-4494-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Frohberger SJ, Ajendra J, Surendar J, Stamminger W, Ehrens A, Buerfent BC, Gentil K, Hoerauf A, Hübner MP. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors 2019; 12:248. [PMID: 31109364 PMCID: PMC6528299 DOI: 10.1186/s13071-019-3502-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. Methods Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5−/− mice, IL-4R−/− mice and IL-4R−/−/IL-5−/− mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R−/−/IL-5−/− mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. Results Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R−/−/IL-5−/− mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. Conclusions These data indicate that mice deficient for IL-4R−/−/IL-5−/− have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival. Electronic supplementary material The online version of this article (10.1186/s13071-019-3502-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Benedikt C Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Rendón-Franco E, López-Díaz O, Martínez-Hernández F, Villalobos G, Muñoz-García CI, Aréchiga-Ceballos N, Alfonso-Toledo JA, García Flores MM, Aguilar Setién A. Litomosoides sp. (Filarioidea: Onchocercidae) Infection in Frugivorous Bats ( Artibeus spp.): Pathological Features, Molecular Evidence, and Prevalence. Trop Med Infect Dis 2019; 4:E77. [PMID: 31083297 PMCID: PMC6631640 DOI: 10.3390/tropicalmed4020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022] Open
Abstract
Bats can host pathogenic organisms such as viruses and fungi, but little is known about the pathogenicity of their parasites. Hemoparasites are frequently recorded in Neotropical bats, particularly Litomosoides (Filarioidea: Onchocercidae), but their pathogenic effect on bats is scarcely known. In this work, Litomosoides microfilariae were identified in four (8%) out of 51 sampled frugivorous bats belonging to three different species: Artibeus aztecus, Artibeus jamaicensis, and Artibeus lituratus, which are located in Yautepec, Morelos, Mexico. Two infected animals showed weakness, tachypnoea, and ecchymosis on their wings. In these animals, histopathology revealed microfilariae in the blood vessels of the lung, liver, and spleen. Both animals presented exudative pneumonia with congestion and concomitant edema, in addition to moderate arterial hypertrophy. Parasitemia was quantified in blood samples of the infected animals (>3000 parasites/mL). Phylogenetic analysis placed the obtained sequence inside the Litomosoides genus, reaching over 98% identity to the related species. Due to the relevance of bats in ecosystems, any new record of their parasite repertoire offers noteworthy insights into our understanding of the ecology and impact of new parasite species in bats.
Collapse
Affiliation(s)
- Emilio Rendón-Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Del. Coyoacán, Ciudad de México CP. 04960, Mexico.
| | - Osvaldo López-Díaz
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Del. Coyoacán, Ciudad de México CP. 04960, Mexico.
| | - Fernando Martínez-Hernández
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Calzada de Tlalpan # 4800, Del. Tlalpan, Ciudad de México CP. 14080, Mexico.
| | - Guiehdani Villalobos
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Calzada de Tlalpan # 4800, Del. Tlalpan, Ciudad de México CP. 14080, Mexico.
| | - Claudia Irais Muñoz-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Del. Coyoacán, Ciudad de México CP. 04960, Mexico.
| | - Nidia Aréchiga-Ceballos
- Laboratorio de Rabia, Instituto de Diagnóstico y Referencia Epidemiológicos, Francisco de P. Miranda 177, Colonia Unidad Lomas de Plateros, Ciudad de México CP. 01480, Mexico.
| | - Jorge Alberto Alfonso-Toledo
- Unidad de Investigación Médica en Inmunología, Coordinación de Investigación Médica, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc No. 330, Col. Doctores, UMAE Hospital de Pediatría, C.M.N. Siglo XXI, Ciudad de México CP. 06720, Mexico.
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, Ciudad de México CP. 04510, Mexico.
| | - María Martha García Flores
- Unidad de Investigación Médica en Inmunología, Coordinación de Investigación Médica, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc No. 330, Col. Doctores, UMAE Hospital de Pediatría, C.M.N. Siglo XXI, Ciudad de México CP. 06720, Mexico.
| | - Alvaro Aguilar Setién
- Unidad de Investigación Médica en Inmunología, Coordinación de Investigación Médica, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc No. 330, Col. Doctores, UMAE Hospital de Pediatría, C.M.N. Siglo XXI, Ciudad de México CP. 06720, Mexico.
| |
Collapse
|
21
|
Tang CL, Zou JN, Zhang RH, Liu ZM, Mao CL. Helminths protect against type 1 diabetes: effects and mechanisms. Parasitol Res 2019; 118:1087-1094. [PMID: 30758662 DOI: 10.1007/s00436-019-06247-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which cells of the immune system destroy pancreatic β cells, which secrete insulin. The high prevalence of T1D in developed societies may be explained by environmental changes, including lower exposure to helminths. Indeed, infection by helminths such as Schistosoma, Filaria, and Heligmosomoides polygyrus and their by-products has been reported to ameliorate or prevent the development of T1D in human and animal models. Helminths can trigger distinct immune regulatory pathways, often involving adaptive immune cells that include T helper 2 (Th2) cells and regulatory T cells (Tregs) and innate immune cells that include dendritic cells, macrophages, and invariant natural killer T cells, which may act synergistically to induce Tregs in a Toll-like receptor-dependent manner. Cytokines such as interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-β also play an important role in protection from T1D. Herein, we provide a comprehensive review of the effects and mechanisms underlying protection against T1D by helminths.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jie-Ning Zou
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zhi-Ming Liu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Cun-Lan Mao
- Department of Obstetrics and Gynecology, People's Hospital of Songzi City, Songzi, 434200, Hubei, China.
| |
Collapse
|
22
|
Hameed A, Natarajan M, Jabbar S, Dhanasekaran JJ, Kumar K, Sivanesan S, Kron M, Dhanasekaran A. Immune Response to Brugia malayi Asparaginyl-tRNA Synthetase in Balb/c Mice and Human Clinical Samples of Lymphatic Filariasis. Lymphat Res Biol 2018; 17:447-456. [PMID: 30570354 DOI: 10.1089/lrb.2018.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Lymphatic filariasis (LF) is a global health problem, with a peculiar nature of parasite-specific immunosuppression that promotes long-term pathology and disability. Immune modulation in the host by parasitic antigens is an integral part of this disease. The current study attempts to dissect the immune responses of aminoacyl-tRNA synthetases (AARS) with emphasis on Brugia malayi asparaginyl-tRNA synthetase (BmAsnRS), since it is one among the highly expressed excretory/secretory proteins expressed in all stages of the parasite life cycle, whereas its role in filarial pathology has not been elaborately studied. Methods and Results: In this study, recombinant BmAsnRS (rBmAsnRS) immunological effects were studied in semipermissive filarial animal model Balb/c mice and on clinically defined human samples for LF. In mice study, humoral responses showed considerable titer levels with IgG2a isotype followed by IgG2b and IgG1. Immunoreactivity studies with clinical samples showed significant humoral responses especially in endemic normal with marked levels of IgG1 and IgG2 followed by IgG3. The cell-mediated immune response, evaluated by splenocytes and peripheral blood mononuclear cells proliferation, did not yield significant difference when compared with control groups. Cytokine profiling and qRT-PCR analysis of mice samples immunized with rBmAsnRS showed elevated levels of IFN-γ, IL-10, inhibitory factor-cytotoxic T lymphocyte-associated protein-A (CTLA-4) and Treg cell marker-Forkhead Box P3 (FoxP3). Conclusions: These observations suggest that rBmAsnRS has immunomodulatory effects with modified Th2 response along with suppressed cellular proliferation indicating the essence of this molecule for immune evasion by the parasite.
Collapse
Affiliation(s)
- Afaq Hameed
- 1Centre for Biotechnology, Anna University, Chennai, India.,2Department of Biomedical Engineering, Engineering Faculty, Thi-Qar University, Thi-Qar, Iraq
| | | | - Salih Jabbar
- 3Bint Al-Huda Teaching Hospital, Health Ministry, Thi-Qar, Iraq
| | | | - Krishna Kumar
- 1Centre for Biotechnology, Anna University, Chennai, India
| | | | - Michael Kron
- 5Department of Biomedical Engineering and Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin.,6Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
23
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
24
|
Helminth-induced regulatory T cells and suppression of allergic responses. Curr Opin Immunol 2018; 54:1-6. [PMID: 29852470 DOI: 10.1016/j.coi.2018.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Infection with helminths has been associated with lower rates of asthma and other allergic diseases. This has been attributed, in part, to the ability of helminths to induce regulatory T cells that suppress inappropriate immune responses to allergens. Recent compelling evidence suggests that helminths may promote regulatory T cell expansion or effector functions through either direct (secretion of excretory/secretory molecules) or indirect mechanisms (regulation of the microbiome). This review will discuss key findings from human immunoepidemiological observations, studies using animal models of disease, and clinical trials with live worm infections, discussing the therapeutic potential for worms and their secreted products for treating allergic inflammation.
Collapse
|
25
|
Sharma A, Sharma P, Ganga L, Satoeya N, Mishra S, Vishwakarma AL, Srivastava M. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion. Front Immunol 2018; 9:194. [PMID: 29483912 PMCID: PMC5816041 DOI: 10.3389/fimmu.2018.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3) and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs) and polarized M2 MΦs to regulatory MΦs (Mregs) by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.
Collapse
Affiliation(s)
- Aditi Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Pankaj Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Laxmi Ganga
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Neha Satoeya
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Mishra
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility (SAIF), CSIR-Central Drug Research Institute, Lucknow, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
26
|
Bonne-Année S, Nutman TB. Human innate lymphoid cells (ILCs) in filarial infections. Parasite Immunol 2018; 40:10.1111/pim.12442. [PMID: 28504838 PMCID: PMC5685925 DOI: 10.1111/pim.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections.
Collapse
Affiliation(s)
- S Bonne-Année
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T B Nutman
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Campbell SM, Knipper JA, Ruckerl D, Finlay CM, Logan N, Minutti CM, Mack M, Jenkins SJ, Taylor MD, Allen JE. Myeloid cell recruitment versus local proliferation differentiates susceptibility from resistance to filarial infection. eLife 2018; 7. [PMID: 29299998 PMCID: PMC5754202 DOI: 10.7554/elife.30947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
Both TH2-dependent helminth killing and suppression of the TH2 effector response have been attributed to macrophages (MΦ) activated by IL-4 (M(IL-4)). To investigate how M(IL-4) contribute to diverse infection outcomes, the MΦ compartment of susceptible BALB/c mice and more resistant C57BL/6 mice was profiled during infection of the pleural cavity with the filarial nematode, Litomosoides sigmodontis. C57BL/6 mice exhibited a profoundly expanded resident MΦ (resMΦ) population, which was gradually replenished from the bone marrow in an age-dependent manner. Infection status did not alter the bone-marrow derived contribution to the resMΦ population, confirming local proliferation as the driver of resMΦ expansion. Significantly less resMΦ expansion was observed in the susceptible BALB/c strain, which instead exhibited an influx of monocytes that assumed an immunosuppressive PD-L2+ phenotype. Inhibition of monocyte recruitment enhanced nematode killing. Thus, the balance of monocytic vs. resident M(IL-4) numbers varies between inbred mouse strains and impacts infection outcome.
Collapse
Affiliation(s)
- Sharon M Campbell
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna A Knipper
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik Ruckerl
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Conor M Finlay
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nicola Logan
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos M Minutti
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew D Taylor
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Ritter M, Tamadaho RS, Feid J, Vogel W, Wiszniewsky K, Perner S, Hoerauf A, Layland LE. IL-4/5 signalling plays an important role during Litomosoides sigmodontis infection, influencing both immune system regulation and tissue pathology in the thoracic cavity. Int J Parasitol 2017; 47:951-960. [PMID: 28859850 DOI: 10.1016/j.ijpara.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Abstract
Approximately 100 million people suffer from filarial diseases including lymphatic filariasis (elephantiasis), onchocerciasis (river blindness) and loiasis. These diseases are amongst the most devastating of the neglected tropical diseases in terms of social and economic impact. Moreover, many infection-induced immune mechanisms in the host, their relationship to disease-related symptoms and the development of pathology within the site of infection remain unclear. To improve on current drug therapies or vaccines, further studies are necessary to decipher the mechanisms behind filaria-driven immune responses and pathology development, and thus the rodent model of Litomosoides sigmodontis can be used to unravel host-filaria interactions. Interestingly, BALB/c mice develop a patent state (release of microfilariae, the transmission life-stage, into the periphery) when exposed to L. sigmodontis. Thus, using this model, we determined levels of host inflammation and pathology development during a L. sigmodontis infection in vivo for the first known time. Our study reveals that after 30days p.i., inflammation and pathology began to develop in infected wild type BALB/c mice between the lung and diaphragm, close to the site of infection - the thoracic cavity. Interestingly, infected IL-4Rα/IL-5-/- BALB/c mice had accentuated inflammation of the pleural lung and pleural diaphragm, and higher parasite burdens. Corresponding to the pleural inflammation, levels of IP-10, MIP-1α, MIP-1β, MIP-2 and RANTES were significantly elevated in the thoracic cavity fluid of infected IL-4Rα/IL-5-/- mice compared with wild type controls. Moreover, upon L. sigmodontis antigen stimulation, IFN-γ and IL-17A secretions by cells isolated from draining lymph nodes of IL-4Rα/IL-5-/- mice were significantly elevated, whereas secretion of IL-5, IL-13 and IL-10 was reduced. Elevated filaria-specific IFN-γ secretion was also observed in spleen-derived CD4+ T cell co-cultures from IL-4Rα/IL-5-/- mice. In summary, this study unravels the essential role of IL-4/IL-5 signalling in controlling immunity against filarial infections and demonstrates the requirement of this pathway for the host to control ensuing pathology and inflammation.
Collapse
Affiliation(s)
- Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany
| | - Ruth S Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany
| | - Judith Feid
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Wenzel Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Luebeck and Borstel, Germany
| | - Katharina Wiszniewsky
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Luebeck and Borstel, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
29
|
Guivier E, Lippens C, Faivre B, Sorci G. Plastic and micro-evolutionary responses of a nematode to the host immune environment. Exp Parasitol 2017; 181:14-22. [PMID: 28733132 DOI: 10.1016/j.exppara.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Parasitic organisms have to cope with the defences deployed by their hosts and this can be achieved adopting immune evasion strategies or optimal life history traits according to the prevailing pattern of immune-mediated mortality. Parasites often encounter variable immune environments both within and between hosts, promoting the evolution of plastic strategies instead of fixed responses. Here, we explored the plasticity and micro-evolutionary responses of immunomodulatory mechanisms and life history traits to the immune environment provided by the host, using the parasitic nematode Heligmosomoides polygyrus. To test if the parasite responds plastically to the immune environment, we stimulated the systemic inflammatory response of mice and we assessed i) the expression of two genes with candidate immunomodulatory functions (Hp-Tgh2 and Hp-CPI); ii) changes in the number of eggs shed in the faeces. To test if the immune environment induces a micro-evolutionary response in the parasite, we maintained the nematode in mice whose inflammatory response was up- or down-regulated during four generations. We found that H. polygyrus plastically responded to a sudden rise of pro-inflammatory cytokines, up-regulating the expression of two candidate genes involved in the process of immune modulation, and enhancing egg output. At the micro-evolutionary level, parasites maintained in hosts experiencing different levels of inflammation did not have differential expression of Hp-Tgh2 and Hp-CPI genes when infecting unmanipulated, control, mice. However, parasites maintained in mice with an up-regulated inflammation shed more eggs compared to the control line. Overall, our study shows that H. polygyrus can plastically adjust the expression of immunomodulatory genes and life history traits, and responds to selection exerted by the host immune system.
Collapse
Affiliation(s)
- Emmanuel Guivier
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; Physiopathologie des dyslipidémies, INSERM UMR 866, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| |
Collapse
|
30
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
31
|
Kwarteng A, Ahuno ST. Immunity in Filarial Infections: Lessons from Animal Models and Human Studies. Scand J Immunol 2017; 85:251-257. [DOI: 10.1111/sji.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
Affiliation(s)
- A. Kwarteng
- Department of Biochemistry and Biotechnology; Kwame Nkrumah University of Science Technology, PMB; Kumasi Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR); KNUST, PMB; Kumasi Ghana
| | - S. T. Ahuno
- Department of Biochemistry and Biotechnology; Kwame Nkrumah University of Science Technology, PMB; Kumasi Ghana
| |
Collapse
|
32
|
Dietze KK, Dittmer U, Koudaimi DK, Schimmer S, Reitz M, Breloer M, Hartmann W. Filariae-Retrovirus Co-infection in Mice is Associated with Suppressed Virus-Specific IgG Immune Response and Higher Viral Loads. PLoS Negl Trop Dis 2016; 10:e0005170. [PMID: 27923052 PMCID: PMC5140070 DOI: 10.1371/journal.pntd.0005170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Worldwide more than 2 billion people are infected with helminths, predominantly in developing countries. Co-infections with viruses such as human immunodeficiency virus (HIV) are common due to the geographical overlap of these pathogens. Helminth and viral infections induce antagonistic cytokine responses in their hosts. Helminths shift the immune system to a type 2-dominated immune response, while viral infections skew the cytokine response towards a type 1 immune response. Moreover, chronic helminth infections are often associated with a generalized suppression of the immune system leading to prolonged parasite survival, and also to a reduced defence against unrelated pathogens. To test whether helminths affect the outcome of a viral infection we set up a filarial/retrovirus co-infection model in C57BL/6 mice. Although Friend virus (FV) infection altered the L. sigmodontis-specific immunoglobulin response towards a type I associated IgG2 isotype in co-infected mice, control of L. sigmodontis infection was not affected by a FV-superinfection. However, reciprocal control of FV infection was clearly impaired by concurrent L. sigmodontis infection. Spleen weight as an indicator of pathology and viral loads in spleen, lymph nodes (LN) and bone marrow (BM) were increased in L. sigmodontis/FV-co-infected mice compared to only FV-infected mice. Numbers of FV-specific CD8+ T cells as well as cytokine production by CD4+ and CD8+ cells were alike in co-infected and FV-infected mice. Increased viral loads in co-infected mice were associated with reduced titres of neutralising FV-specific IgG2b and IgG2c antibodies. In summary our findings suggest that helminth infection interfered with the control of retroviral infection by dampening the virus-specific neutralising antibody response. The coincidental infection of a host with two different pathogens is widespread in low-income countries. Regions where helminth infections are endemic strongly overlap with areas where the incidence of viral infections such as HIV is high. HIV is a major public health issue causing more than 1 million deaths per year. To analyse the impact of a pre-existing helminth infection on a viral infection we established a helminth/retrovirus co-infection mouse model. Mice that were first infected with Litomosoides sigmodontis and subsequently with a murine retrovirus showed a more severe course of virus infection, i.e. exaggerated splenomegaly and higher viral loads. Since different lymphocytes such as B and T cells contribute to viral control we analysed the cellular and humoral immune response. While T cell responses were similar in co-infected and virus-infected mice, we observed reduced titres of virus-specific antibodies in co-infected mice. Our results suggest that helminth infection interfered with viral control by dampening the virus-specific antibody response. The viral infection itself altered the humoral immune response against L. sigmodontis without changing the worm burden. In summary, our data highlight the importance of deworming programs or vaccines against helminths in developing countries where the incidence of helminth/HIV co-infections is high.
Collapse
Affiliation(s)
- Kirsten Katrin Dietze
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Karim Koudaimi
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martina Reitz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Kaewraemruaen C, Sermswan RW, Wongratanacheewin S. Induction of regulatory T cells by Opisthorchis viverrini. Parasite Immunol 2016; 38:688-697. [PMID: 27552546 DOI: 10.1111/pim.12358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Opisthorchis viverrini causes public health problems in South-East Asia. Recently, TGF-β and IL-10 have been reported to increase in O. viverrini-infected hamsters but the sources of these cytokines are still unknown. In this study, the CD4+ T cells in infected hamsters were investigated. It was demonstrated that IL-4+ CD4+ T cells were significantly increased in hamster spleens and mesenteric lymph nodes (MLNs) during chronic infection. Interestingly, IL-10+ CD4+ T cells were also discovered at a significant level while Treg (T regulatory)-like TGF- β+ CD4+ T cells were in MLNs of infected hamsters. Moreover, the CD4+ CD25+ Foxp3+ Treg cell response was significantly found both in spleens and MLNs in infected hamsters. The findings were then confirmed by development of T-cell clones against crude somatic antigens (CSAg) in immunized BALB/c mice. Five clones named TCC21, TCC23, TCC35, TCC41 and TCC108 were established. The TCC21 was found to be the TGF-β+ CD4+ while TCC35, TCC41 and TCC108 were IL-4+ CD4+ and TCC23 was IFN-γ+ CD4+ . This TGF-β+ CD4+ T clone showed an inhibitory function in vitro in mononuclear cell proliferation via TGF-β-mediated mechanisms. This study indicated that O. viverrini-infected hamsters could induce TGF-β+ CD4+ Treg-like cells. The CSAg-specific Tregs secreted high TGF-β, and limited immune cell proliferation.
Collapse
Affiliation(s)
- C Kaewraemruaen
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand.,Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - R W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Wongratanacheewin
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand. .,Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
34
|
Billroth-MacLurg AC, Ford J, Rosenberg A, Miller J, Fowell DJ. Regulatory T Cell Numbers in Inflamed Skin Are Controlled by Local Inflammatory Cues That Upregulate CD25 and Facilitate Antigen-Driven Local Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2208-18. [PMID: 27511734 PMCID: PMC5157695 DOI: 10.4049/jimmunol.1502575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
CD4(+)Foxp3(+) regulatory T cells (Tregs) are key immune suppressors that regulate immunity in diverse tissues. The tissue and/or inflammatory signals that influence the magnitude of the Treg response remain unclear. To define signals that promote Treg accumulation, we developed a simple system of skin inflammation using defined Ags and adjuvants that induce distinct cytokine milieus: OVA protein in CFA, aluminum salts (Alum), and Schistosoma mansoni eggs (Sm Egg). Polyclonal and Ag-specific Treg accumulation in the skin differed significantly between adjuvants. CFA and Alum led to robust Treg accumulation, with >50% of all skin CD4(+) T cells being Foxp3(+) In contrast, Tregs accumulated poorly in the Sm Egg-inflamed skin. Surprisingly, we found no evidence of inflammation-specific changes to the Treg gene program between adjuvant-inflamed skin types, suggesting a lack of selective recruitment or adaptation to the inflammatory milieu. Instead, Treg accumulation patterns were linked to differences in CD80/CD86 expression by APC and the regulation of CD25 expression, specifically in the inflamed skin. Inflammatory cues alone, without cognate Ag, differentially supported CD25 upregulation (CFA and Alum > Sm Egg). Only in inflammatory milieus that upregulated CD25 did the provision of Ag enhance local Treg proliferation. Reduced IL-33 in the Sm Egg-inflamed environment was shown to contribute to the failure to upregulate CD25. Thus, the magnitude of the Treg response in inflamed tissues is controlled at two interdependent levels: inflammatory signals that support the upregulation of the important Treg survival factor CD25 and Ag signals that drive local expansion.
Collapse
Affiliation(s)
- Alison C Billroth-MacLurg
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| |
Collapse
|
35
|
Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol 2016; 9:428-43. [PMID: 26286232 PMCID: PMC4677460 DOI: 10.1038/mi.2015.73] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 02/04/2023]
Abstract
Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency.
Collapse
|
36
|
Evans H, Killoran KE, Mitre BK, Morris CP, Kim SY, Mitre E. Ten Weeks of Infection with a Tissue-Invasive Helminth Protects against Local Immune Complex-Mediated Inflammation, but Not Cutaneous Type I Hypersensitivity, in Previously Sensitized Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:2973-84. [PMID: 26324775 DOI: 10.4049/jimmunol.1500081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
Abstract
In this study, we evaluated the effect chronic helminth infection has on allergic disease in mice previously sensitized to OVA. Ten weeks of infection with Litomosoides sigmodontis reduced immunological markers of type I hypersensitivity, including OVA-specific IgE, basophil activation, and mast cell degranulation. Despite these reductions, there was no protection against immediate clinical hypersensitivity following intradermal OVA challenge. However, late-phase ear swelling, due to type III hypersensitivity, was significantly reduced in chronically infected animals. Levels of total IgG2a, OVA-specific IgG2a, and OVA-specific IgG1 were reduced in the setting of infection. These reductions were most likely due to increased Ab catabolism as ELISPOT assays demonstrated that infected animals do not have suppressed Ab production. Ear histology 24 h after challenge showed infected animals have reduced cellular infiltration in the ear, with significant decreases in numbers of neutrophils and macrophages. Consistent with this, infected animals had less neutrophil-specific chemokines CXCL-1 and CXCL-2 in the ear following challenge. Additionally, in vitro stimulation with immune complexes resulted in significantly less CXCL-1 and CXCL-2 production by eosinophils from chronically infected mice. Expression of FcγRI was also significantly reduced on eosinophils from infected animals. These data indicate that chronic filarial infection suppresses eosinophilic responses to Ab-mediated activation and has the potential to be used as a therapeutic for pre-existing hypersensitivity diseases.
Collapse
Affiliation(s)
- Holly Evans
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | | | - Blima K Mitre
- Department of Pathology, University of Pittsburgh Medical Center Passavant Hospital, Pittsburgh, PA 15213; and
| | - C Paul Morris
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - So-Young Kim
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814;
| |
Collapse
|
37
|
Hartmann W, Schramm C, Breloer M. Litomosoides sigmodontis induces TGF-β receptor responsive, IL-10-producing T cells that suppress bystander T-cell proliferation in mice. Eur J Immunol 2015; 45:2568-81. [PMID: 26138667 DOI: 10.1002/eji.201545503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/21/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth-specific but also nonhelminth-specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T-cell suppression. When OT-II T cells specific for the third-party antigen ovalbumin are transferred into helminth-infected mice, these cells respond to antigen-specific stimulation with reduced proliferation compared to activation within non-infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two-staged process. Parasite products first engage the TGF-β receptor on host-derived T cells that are central to suppression. In a second step, host-derived T cells produce IL-10 and subsequently suppress the adoptively transferred OT-II T cells. Terminal suppression was IL-10-dependant but independent of intrinsic TGF-β receptor- or PD-1-mediated signaling in the suppressed OT-II T cells. Blockade of the same key suppression mediators, i.e. TGF-β- and IL-10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis-infected mice.
Collapse
Affiliation(s)
- Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
38
|
Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun 2015. [PMID: 26195548 PMCID: PMC4567639 DOI: 10.1128/iai.00408-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells play a key role in suppression of immune responses during parasitic helminth infection, both by controlling damaging immunopathology and by inhibiting protective immunity. During the patent phase of Schistosoma mansoni infection, Foxp3+ Treg cells are activated and suppress egg-elicited Th2 responses, but little is known of their induction and role during the early prepatent larval stage of infection. We quantified Foxp3+ Treg cell responses during the first 3 weeks of murine S. mansoni infection in C57BL/6 mice, a time when larval parasites migrate from the skin and transit the lungs en route to the hepatic and mesenteric vasculature. In contrast to other helminth infections, S. mansoni did not elicit a Foxp3+ Treg cell response during this early phase of infection. We found that the numbers and proportions of Foxp3+ Treg cells remained unchanged in the lungs, draining lymph nodes, and spleens of infected mice. There was no increase in the activation status of Foxp3+ Treg cells upon infection as assessed by their expression of CD25, Foxp3, and Helios. Furthermore, infection failed to induce Foxp3+ Treg cells to produce the suppressive cytokine interleukin 10 (IL-10). Instead, only CD4+ Foxp3− IL-4+ Th2 cells showed increased IL-10 production upon infection. These data indicate that Foxp3+ Treg cells do not play a prominent role in regulating immunity to S. mansoni larvae and that the character of the initial immune response invoked by S. mansoni parasites contrasts with the responses to other parasitic helminth infections that promote rapid Foxp3+ Treg cell responses.
Collapse
|
39
|
Rückerl D, Allen JE. Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunol Rev 2015; 262:113-33. [PMID: 25319331 PMCID: PMC4324133 DOI: 10.1111/imr.12221] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages have long been center stage in the host response to microbial infection, but only in the past 10–15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential.
Collapse
Affiliation(s)
- Dominik Rückerl
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
40
|
Pathak M, Verma M, Srivastava M, Misra-Bhattacharya S. Wolbachia endosymbiont of Brugia malayi elicits a T helper type 17-mediated pro-inflammatory immune response through Wolbachia surface protein. Immunology 2015; 144:231-44. [PMID: 25059495 DOI: 10.1111/imm.12364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium of the filarial nematode Brugia malayi. The symbiotic relationship between Wolbachia and its filarial host is dependent on interactions between the proteins of both organisms. However, little is known about Wolbachia proteins that are involved in the inflammatory pathology of the host during lymphatic filariasis. In the present study, we cloned, expressed and purified Wolbachia surface protein (r-wsp) from Wolbachia and administered it to mice, either alone or in combination with infective larvae of B. malayi (Bm-L3) and monitored the developing immune response in infected animals. Our results show that spleens and mesenteric lymph nodes of mice immunized with either r-wsp or infected with Bm-L3 show increased percentages of CD4(+) T helper type 17 (Th17) cells and Th1 cytokines like interferon-γ and interleukin-2 (IL-2) along with decreased percentages of regulatory T cells, Th2 cytokines like IL-4 and IL-10 and transforming growth factor β (TGF-β) levels in culture supernatants of splenocytes. These observations were stronger in mice immunized with r-wsp alone. Interestingly, when mice were first immunized with r-wsp and subsequently infected with Bm-L3, percentages of CD4(+) Th17 cells and Th1 cytokines increased even further while that of regulatory T cells, Th2 cytokines and TGF-β levels decreased. These results for the first time show that r-wsp acts synergistically with Bm-L3 in promoting a pro-inflammatory response by increasing Th17 cells and at the same time diminishes host immunological tolerance by decreasing regulatory T cells and TGF-β secretion.
Collapse
Affiliation(s)
- Manisha Pathak
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow
| | | | | | | |
Collapse
|
41
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
Affiliation(s)
- Thomas A Wynn
- Immunopathogenesis Section, Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| |
Collapse
|
42
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
|
43
|
Nausch N, Appleby LJ, Sparks AM, Midzi N, Mduluza T, Mutapi F. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl Trop Dis 2015; 9:e0003627. [PMID: 25799270 PMCID: PMC4370749 DOI: 10.1371/journal.pntd.0003627] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Group 2 Innate lymphoid cells (ILC2s) are innate cells that produce the TH2 cytokines IL-5 and IL-13. The importance of these cells has recently been demonstrated in experimental models of parasitic diseases but there is a paucity of data on ILC2s in the context of human parasitic infections and in particular of the blood dwelling parasite Schistosoma haematobium. METHODOLOGY/PRINCIPAL FINDINGS In this case-control study human peripheral blood ILC2s were analysed in relation to infection with the helminth parasite Schistosoma haematobium. Peripheral blood mononuclear cells of 36 S. haematobium infected and 36 age and sex matched uninfected children were analysed for frequencies of ILC2s identified as Lin-CD45+CD127+CD294+CD161+. ILC2s were significantly lower particularly in infected children aged 6-9 years compared to healthy participants. Curative anti-helminthic treatment resulted in an increase in levels of the activating factor TSLP and restoration of ILC2 levels. CONCLUSION This study demonstrates that ILC2s are diminished in young helminth infected children and restored by removal of the parasites by treatment, indicating a previously undescribed association between a human parasitic infection and ILC2s and suggesting a role of ILC2s before the establishment of protective acquired immunity in human schistosomiasis.
Collapse
Affiliation(s)
- Norman Nausch
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Laura J. Appleby
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Alexandra M. Sparks
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Nicholas Midzi
- National Institute of Health Research, Causeway, Harare, Zimbabwe
| | - Takafira Mduluza
- University of Zimbabwe, Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
44
|
CD4+ T cell hyporesponsiveness after repeated exposure to Schistosoma mansoni larvae is dependent upon interleukin-10. Infect Immun 2015; 83:1418-30. [PMID: 25624353 PMCID: PMC4363412 DOI: 10.1128/iai.02831-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effect that multiple percutaneous exposures to Schistosoma larvae has on the development of early CD4+ lymphocyte reactivity is unclear, yet it is important in the context of humans living in areas where schistosomiasis is endemic. In a murine model of multiple infections, we show that exposure of mice to repeated doses (4×) of Schistosoma mansoni cercariae, compared to a single dose (1×), results in CD4+ T cell hyporesponsiveness within the skin-draining lymph nodes (sdLN), manifested as reduced CD4+ cell proliferation and cytokine production. FoxP3+ CD4+ regulatory T cells were present in similar numbers in the sdLN of 4× and 1× mice and thus are unlikely to have a role in effecting hyporesponsiveness. Moreover, anergy of the CD4+ cell population from 4× mice was slight, as proliferation was only partly circumvented through the in vitro addition of exogenous interleukin-2 (IL-2), and the in vivo blockade of the regulatory molecule PD1 had a minimal effect on restoring responsiveness. In contrast, IL-10 was observed to be critical in mediating hyporesponsiveness, as CD4+ cells from the sdLN of 4× mice deficient for IL-10 were readily able to proliferate, unlike those from 4× wild-type cohorts. CD4+ cells from the sdLN of 4× mice exhibited higher levels of apoptosis and cell death, but in the absence of IL-10, there was significantly less cell death. Combined, our data show that IL-10 is a key factor in the development of CD4+ T cell hyporesponsiveness after repeated parasite exposure involving CD4+ cell apoptosis.
Collapse
|
45
|
Finlay CM, Walsh KP, Mills KHG. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol Rev 2014; 259:206-30. [PMID: 24712468 DOI: 10.1111/imr.12164] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helminth parasites are highly successful pathogens, chronically infecting a quarter of the world's population, causing significant morbidity but rarely causing death. Protective immunity and expulsion of helminths is mediated by T-helper 2 (Th2) cells, type 2 (M2) macrophages, type 2 innate lymphoid cells, and eosinophils. Failure to mount these type 2 immune responses can result in immunopathology mediated by Th1 or Th17 cells. Helminths have evolved a wide variety of approaches for immune suppression, especially the generation of regulatory T cells and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β. This is a very effective strategy for subverting protective immune responses to prolong their survival in the host but has the bystander effect of modulating immune responses to unrelated antigens. Epidemiological studies in humans have shown that infection with helminth parasites is associated with a low incidence of allergy/asthma and autoimmunity in developing countries. Experimental studies in mice have demonstrated that regulatory immune responses induced by helminth can suppress Th2 and Th1/Th17 responses that mediate allergy and autoimmunity, respectively. This has provided a rational explanation of the 'hygiene hypothesis' and has also led to the exploitation of helminths or their immunomodulatory products in the development of new immunosuppressive therapies for inflammatory diseases in humans.
Collapse
Affiliation(s)
- Conor M Finlay
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
46
|
Babu S, Nutman TB. Immunology of lymphatic filariasis. Parasite Immunol 2014; 36:338-46. [PMID: 24134686 DOI: 10.1111/pim.12081] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022]
Abstract
The immune responses to filarial parasites encompass a complex network of innate and adaptive cells whose interaction with the parasite underlies a spectrum of clinical manifestations. The predominant immunological feature of lymphatic filariasis is an antigen-specific Th2 response and an expansion of IL-10 producing CD4(+) T cells that is accompanied by a muted Th1 response. This antigen-specific T-cell hyporesponsiveness appears to be crucial for the maintenance of the sustained, long-standing infection often with high parasite densities. While the correlates of protective immunity to lymphatic filariasis are still incompletely understood, primarily due to the lack of suitable animal models to study susceptibility, it is clear that T cells and to a certain extent B cells are required for protective immunity. Host immune responses, especially CD4(+) T-cell responses clearly play a role in mediating pathological manifestations of LF, including lymphedema, hydrocele and elephantiasis. The main underlying defect in the development of clinical pathology appears to be a failure to induce T-cell hyporesponsiveness in the face of antigenic stimulation. Finally, another intriguing feature of filarial infections is their propensity to induce bystander effects on a variety of immune responses, including responses to vaccinations, allergens and to other infectious agents. The complexity of the immune response to filarial infection therefore provides an important gateway to understanding the regulation of immune responses to chronic infections, in general.
Collapse
Affiliation(s)
- S Babu
- NIAID-NIRT-ICER, Chennai, India
| | | |
Collapse
|
47
|
Haben I, Hartmann W, Breloer M. Nematode-induced interference with vaccination efficacy targets follicular T helper cell induction and is preserved after termination of infection. PLoS Negl Trop Dis 2014; 8:e3170. [PMID: 25255463 PMCID: PMC4177885 DOI: 10.1371/journal.pntd.0003170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022] Open
Abstract
One-third of the human population is infected with parasitic worms. To avoid being eliminated, these parasites actively dampen the immune response of their hosts. This immune modulation also suppresses immune responses to third-party antigens such as vaccines. Here, we used Litomosoides sigmodontis-infected BALB/c mice to analyse nematode-induced interference with vaccination. Chronic nematode infection led to complete suppression of the humoral response to thymus-dependent vaccination. Thereby the numbers of antigen-specific B cells as well as the serum immunoglobulin (Ig) G titres were reduced. TH2-associated IgG1 and TH1-associated IgG2 responses were both suppressed. Thus, nematode infection did not bias responses towards a TH2 response, but interfered with Ig responses in general. We provide evidence that this suppression indirectly targeted B cells via accessory T cells as number and frequency of vaccine-induced follicular B helper T cells were reduced. Moreover, vaccination using model antigens that stimulate Ig response independently of T helper cells was functional in nematode-infected mice. Using depletion experiments, we show that CD4+Foxp3+ regulatory T cells did not mediate the suppression of Ig response during chronic nematode infection. Suppression was induced by fourth stage larvae, immature adults and mature adults, and increased with the duration of the infection. By contrast, isolated microfilariae increased IgG2a responses to vaccination. This pro-inflammatory effect of microfilariae was overruled by the simultaneous presence of adults. Strikingly, a reduced humoral response was still observed if vaccination was performed more than 16 weeks after termination of L. sigmodontis infection. In summary, our results suggest that vaccination may not only fail in helminth-infected individuals, but also in individuals with a history of previous helminth infections. Parasitic worms, called helminths, infect one-third of the world population. Despite exposure to their host's immune system many helminths establish chronic infections and survive several years within their host. They avoid elimination by dampening the immune response of their hosts. This immune suppression also affects immune responses to third-party antigens such as vaccines. Indeed, accumulating evidence suggests that helminth-infected humans display impaired responses to vaccination. Thus, anthelminthic treatment before vaccination is discussed. Here, we use helminth-infected mice to analyse kinetics and mechanism of helminth-induced interference with vaccination efficacy more precisely. We show that chronic helminth infection completely suppressed antibody responses to a model vaccine. Thereby helminths suppressed the antibody-producing B cells indirectly via suppression of accessory T helper cells. The suppression was more pronounced at later time points of infection and still observed in mice that had terminated the helminth infection for more than 16 weeks. In summary, our results suggest that vaccination may not only fail in helminth-infected individuals, but also in individuals with a history of previous helminth infections. Thus, our report highlights the importance to develop vaccination strategies that are functional despite concurrent helminth infection rather than deworming humans before vaccination.
Collapse
Affiliation(s)
- Irma Haben
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
48
|
Helminth parasites alter protection against Plasmodium infection. BIOMED RESEARCH INTERNATIONAL 2014; 2014:913696. [PMID: 25276830 PMCID: PMC4170705 DOI: 10.1155/2014/913696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022]
Abstract
More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.
Collapse
|
49
|
Espinoza Mora MDR, Steeg C, Tartz S, Heussler V, Sparwasser T, Link A, Fleischer B, Jacobs T. Depletion of regulatory T cells augments a vaccine-induced T effector cell response against the liver-stage of malaria but fails to increase memory. PLoS One 2014; 9:e104627. [PMID: 25115805 PMCID: PMC4130546 DOI: 10.1371/journal.pone.0104627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/15/2014] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.
Collapse
Affiliation(s)
- Maria del Rosario Espinoza Mora
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg, Germany
- * E-mail:
| | - Christiane Steeg
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Susanne Tartz
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Volker Heussler
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Tim Sparwasser
- TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Infektionsimmunologie, Hannover, Germany
| | - Andreas Link
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg, Germany
| | - Bernhard Fleischer
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Thomas Jacobs
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| |
Collapse
|
50
|
Cofactor independent phosphoglycerate mutase of Brugia malayi induces a mixed Th1/Th2 type immune response and inhibits larval development in the host. BIOMED RESEARCH INTERNATIONAL 2014; 2014:590281. [PMID: 25061608 PMCID: PMC4100390 DOI: 10.1155/2014/590281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 01/24/2023]
Abstract
Lymphatic filariasis is a major debilitating disease, endemic in 72 countries putting more than 1.39 billion people at risk and 120 million are already infected. Despite the significant progress in chemotherapeutic advancements, there is still need for other measures like development of an effective vaccine or discovery of novel drug targets. In this study, structural and immunological characterization of independent phosphoglycerate mutase of filarial parasite Brugia malayi was carried out. Protein was found to be expressed in all major parasite life stages and as an excretory secretory product of adult parasites. Bm-iPGM also reacted to all the categories of human bancroftian patient's sera including endemic normals. In vivo immunological behaviour of protein was determined in immunized BALB/c mice followed by prophylactic analysis in BALB/c mice and Mastomys coucha. Immunization with Bm-iPGM led to generation of a mixed Th1/Th2 type immune response offering 58.2% protection against larval challenge in BALB/c and 65–68% protection in M. coucha. In vitro studies confirmed participation of anti-Bm-iPGM antibodies in killing of B. malayi infective larvae and microfilariae through ADCC mechanism. The present findings reveal potential immunoprotective nature of Bm-iPGM advocating its worth as an antifilarial vaccine candidate.
Collapse
|