1
|
Du J, Yi M, Zhou F, He W, Yang A, Qiu M, Huang H. S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain 2021; 14:154. [PMID: 34615523 PMCID: PMC8496084 DOI: 10.1186/s13041-021-00865-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Studies on the development of central nervous system (CNS) primarily rely on the use of specific molecular markers for different types of neural cells. S100B is widely being used as a specific marker for astrocytes in the CNS. However, the specificity of its expression in astrocyte lineage has not been systematically investigated and thus has remained a lingering issue. In this study, we provide several lines of molecular and genetic evidences that S100B is expressed in both protoplasmic astrocytes and myelinating oligodendrocytes. In the developing spinal cord, S100B is first expressed in the ventral neuroepithelial cells, and later in ALDH1L1+/GS+ astrocytes in the gray matter. Meanwhile, nearly all the S100B+ cells in the white matter are SOX10+/MYRF+ oligodendrocytes. Consistent with this observation, S100B expression is selectively lost in the white matter in Olig2-null mutants in which oligodendrocyte progenitor cells (OPCs) are not produced, and dramatically reduced in Myrf-conditional knockout mutants in which OPCs fail to differentiate. Similar expression patterns of S100B are observed in the developing forebrain. Based on these molecular and genetic studies, we conclude that S100B is not a specific marker for astrocyte lineage; instead, it marks protoplasmic astrocytes in the gray matter and differentiating oligodendrocytes.
Collapse
Affiliation(s)
- Junqing Du
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Min Yi
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fang Zhou
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wanjun He
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Aifen Yang
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, College of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Bohm AK, DePetro J, Binding CE, Gerber A, Chahley N, Berger ND, Ware M, Thomas K, Senapathi U, Bukhari S, Chen C, Chahley E, Grisdale C, Lawn S, Yu Y, Wong R, Shen Y, Omairi H, Mirzaei R, Alshatti N, Pedersen H, Yong W, Weiss S, Chan J, Cimino PJ, Kelly J, Jones S, Holland E, Blough M, Cairncross G. In vitro modeling of glioblastoma initiation using PDGF-AA and p53-null neural progenitors. Neuro Oncol 2021; 22:1150-1161. [PMID: 32296841 DOI: 10.1093/neuonc/noaa093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture. Here we report a model that overcomes this barrier to authenticity. METHODS Using a method developed to establish neural stem cell cultures, we investigated the effects of PDGF-AA on subventricular zone (SVZ) cells, one of the putative cells of origin of GBM. We microdissected SVZ tissue from p53-null and wild-type adult mice, cultured cells in media supplemented with PDGF-AA, and assessed cell viability, proliferation, genome stability, and tumorigenicity. RESULTS Counterintuitive to its canonical role as a growth factor, we observed abrupt and massive cell death in PDGF-AA: wild-type cells did not survive, whereas a small fraction of null cells evaded apoptosis. Surviving null cells displayed attenuated proliferation accompanied by whole chromosome gains and losses. After approximately 100 days in PDGF-AA, cells suddenly proliferated rapidly, acquired growth factor independence, and became tumorigenic in immune-competent mice. Transformed cells had an oligodendrocyte precursor-like lineage marker profile, were resistant to platelet derived growth factor receptor alpha inhibition, and harbored highly abnormal karyotypes similar to human GBM. CONCLUSION This model associates genome instability in neural progenitor cells with chronic exposure to PDGF-AA and is the first to approximate the genomic landscape of human GBM and the first in which the earliest phases of the disease can be studied directly.
Collapse
Affiliation(s)
- Alexandra K Bohm
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Jessica DePetro
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Carmen E Binding
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Amanda Gerber
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Nicholas Chahley
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - N Dan Berger
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Mathaeus Ware
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Kaitlin Thomas
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - U Senapathi
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Shazreh Bukhari
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Cindy Chen
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Erin Chahley
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Cameron Grisdale
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sam Lawn
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Yaping Yu
- Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Raymond Wong
- the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yaoqing Shen
- the Michael Smith Genome Sciences Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiba Omairi
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Reza Mirzaei
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nourah Alshatti
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Haley Pedersen
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Wee Yong
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Chan
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - P J Cimino
- the Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington, USA
| | - John Kelly
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Steve Jones
- the Michael Smith Genome Sciences Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Holland
- the Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington, USA
| | - Michael Blough
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Gregory Cairncross
- The Clark H Smith Brain Tumour Centre, Calgary, Alberta, Canada.,Charbonneau Cancer Institute, Calgary, Alberta, Canada.,the Michael Smith Genome Sciences Centre and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
NG2 and GFAP co-expression after differentiation in cells transfected with mutant GFAP and in undifferentiated glioma cells. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Ouasti S, Faroni A, Kingham PJ, Ghibaudi M, Reid AJ, Tirelli N. Hyaluronic Acid (HA) Receptors and the Motility of Schwann Cell(-Like) Phenotypes. Cells 2020; 9:E1477. [PMID: 32560323 PMCID: PMC7349078 DOI: 10.3390/cells9061477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
The cluster of differentiation 44 (CD44) and the hyaluronan-mediated motility receptor (RHAMM), also known as CD168, are perhaps the most studied receptors for hyaluronic acid (HA); among their various functions, both are known to play a role in the motility of a number of cell types. In peripheral nerve regeneration, the stimulation of glial cell motility has potential to lead to better therapeutic outcomes, thus this study aimed to ascertain the presence of these receptors in Schwann cells (rat adult aSCs and neonatal nSCs) and to confirm their influence on motility. We included also a Schwann-like phenotype (dAD-MSCs) derived from adipose-derived mesenchymal stem cells (uAD-MSCs), as a possible basis for an autologous cell therapy. CD44 was expressed similarly in all cell types. Interestingly, uAD-MSCs were RHAMM(low), whereas both Schwann cells and dASCs turned out to be similarly RHAMM(high), and indeed antibody blockage of RHAMM effectively immobilized (in vitro scratch wound assay) all the RHAMM(high) Schwann(-like) types, but not the RHAMM(low) uAD-MSCs. Blocking CD44, on the other hand, affected considerably more uAD-MSCs than the Schwann(-like) cells, while the combined blockage of the two receptors immobilized all cells. The results therefore indicate that Schwann-like cells have a specifically RHAMM-sensitive motility, where the motility of precursor cells such as uAD-MSCs is CD44- but not RHAMM-sensitive; our data also suggest that CD44 and RHAMM may be using complementary motility-controlling circuits.
Collapse
Affiliation(s)
- Sihem Ouasti
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (A.F.); (P.J.K.); (A.J.R.)
| | - Paul J. Kingham
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (A.F.); (P.J.K.); (A.J.R.)
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, 901 87 Umeå, Sweden
| | - Matilde Ghibaudi
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (A.F.); (P.J.K.); (A.J.R.)
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| |
Collapse
|
5
|
Abstract
Astrocytes are the most abundant cell type in the central nervous system and have diverse functions in blood–brain barrier maintenance, neural circuitry formation and function, and metabolic regulation. To better understand the diverse roles of astrocytes, we will summarize what is known about astrocyte development and the challenges limiting our understanding of this process. We will also discuss new approaches and technologies advancing the field.
Collapse
Affiliation(s)
- Ekin Su Akdemir
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Hu NY, Chen YT, Wang Q, Jie W, Liu YS, You QL, Li ZL, Li XW, Reibel S, Pfrieger FW, Yang JM, Gao TM. Expression Patterns of Inducible Cre Recombinase Driven by Differential Astrocyte-Specific Promoters in Transgenic Mouse Lines. Neurosci Bull 2019; 36:530-544. [PMID: 31828740 DOI: 10.1007/s12264-019-00451-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are the most abundant cell type in the central nervous system (CNS). They provide trophic support for neurons, modulate synaptic transmission and plasticity, and contribute to neuronal dysfunction. Many transgenic mouse lines have been generated to obtain astrocyte-specific expression of inducible Cre recombinase for functional studies; however, the expression patterns of inducible Cre recombinase in these lines have not been systematically characterized. We generated a new astrocyte-specific Aldh1l1-CreERT2 knock-in mouse line and compared the expression pattern of Cre recombinase between this and five widely-used transgenic lines (hGfap-CreERT2 from The Jackson Laboratory and The Mutant Mouse Resource and Research Center, Glast-CreERT2, Cx30-CreERT2, and Fgfr3-iCreERT2) by crossing with Ai14 mice, which express tdTomato fluorescence following Cre-mediated recombination. In adult Aldh1l1-CreERT2:Ai14 transgenic mice, tdTomato was detected throughout the CNS, and five novel morphologically-defined types of astrocyte were described. Among the six evaluated lines, the specificity of Cre-mediated recombination was highest when driven by Aldh1l1 and lowest when driven by hGfap; in the latter mice, co-staining between tdTomato and NeuN was observed in the hippocampus and cortex. Notably, evident leakage was noted in Fgfr3-iCreERT2 mice, and the expression level of tdTomato was low in the thalamus when Cre recombinase expression was driven by Glast and in the capsular part of the central amygdaloid nucleus when driven by Cx30. Furthermore, tdTomato was clearly expressed in peripheral organs in four of the lines. Our results emphasize that the astrocyte-specific CreERT2 transgenic lines used in functional studies should be carefully selected.
Collapse
Affiliation(s)
- Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Ting Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Si Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiang-Long You
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ze-Lin Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sophie Reibel
- Chronobiotron - UMS 3415, University of Strasbourg, 67084, Strasbourg, France
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084, Strasbourg, France
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Chung SH, Shen W, Davidson KC, Pébay A, Wong RCB, Yau B, Gillies M. Differentiation of Retinal Glial Cells From Human Embryonic Stem Cells by Promoting the Notch Signaling Pathway. Front Cell Neurosci 2019; 13:527. [PMID: 31849614 PMCID: PMC6901827 DOI: 10.3389/fncel.2019.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway. We first generated retinal progenitor cells (RPCs) from hESCs then promoted the Notch signaling pathway using Notch ligands, including Delta-like ligand 4 and Jagged-1. We validated glial cell differentiation with qRT-PCR, immunocytochemistry, western blots and fluorescence-activated cell sorting as we promoted Notch signaling in RPCs. We found that promoting Notch signaling in RPCs for 2 weeks led to upregulation of glial cell markers, including glial fibrillary acidic protein (GFAP), glutamine synthetase, vimentin and cellular retinaldehyde-binding protein (CRALBP). Of these markers, we found the greatest increase in expression of the pan glial cell marker, GFAP. Conversely, we also found that inhibition of Notch signaling in RPCs led to upregulation of retinal neuronal markers including cone-rod homeobox (CRX) and orthodenticle homeobox 2 (OTX2) but with little expression of GFAP. This retinal glial differentiation method will help advance the generation of stem cell disease models to study the pathogenesis of retinal diseases associated with glial dysfunction such as macular telangiectasia type 2. This method may also be useful for the development of future therapeutics such as drug screening and gene editing using patient-derived retinal glial cells.
Collapse
Affiliation(s)
- Sook Hyun Chung
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Weiyong Shen
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn C Davidson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia.,Shenzhen Eye Hospital, Shenzhen, China
| | - Belinda Yau
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark Gillies
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Kirschen GW, Kéry R, Ge S. The Hippocampal Neuro-Glio-Vascular Network: Metabolic Vulnerability and Potential Neurogenic Regeneration in Disease. Brain Plast 2018; 3:129-144. [PMID: 30151338 PMCID: PMC6091038 DOI: 10.3233/bpl-170055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain metabolism is a fragile balance between nutrient/oxygen supply provided by the blood and neuronal/glial demand. Small perturbations in these parameters are necessary for proper homeostatic functioning and information processing, but can also cause significant damage and cell death if dysregulated. During embryonic and early post-natal development, massive neurogenesis occurs, a process that continues at a limited rate in adulthood in two neurogenic niches, one in the lateral ventricle and the other in the hippocampal dentate gyrus. When metabolic demand does not correspond with supply, which can occur dramatically in the case of hypoxia or ischemia, or more subtly in the case of neuropsychiatric or neurodegenerative disorders, both of these neurogenic niches can respond—either in a beneficial manner, to regenerate damaged or lost tissue, or in a detrimental fashion—creating aberrant synaptic connections. In this review, we focus on the complex relationship that exists between the cerebral vasculature and neurogenesis across development and in disease states including hypoxic-ischemic injury, hypertension, diabetes mellitus, and Alzheimer’s disease. Although there is still much to be elucidated, we are beginning to appreciate how neurogenesis may help or harm the metabolically-injured brain, in the hopes that these insights can be used to tailor novel therapeutics to regenerate damaged tissue after injury.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Rachel Kéry
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Rapid Serum-Free Isolation of Oligodendrocyte Progenitor Cells from Adult Rat Spinal Cord. Stem Cell Rev Rep 2018; 13:499-512. [PMID: 28509260 DOI: 10.1007/s12015-017-9742-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) play a pivotal role in both health and disease within the central nervous system, with oligodendrocytes, arising from resident OPCs, being the main myelinating cell type. Disruption in OPC numbers can lead to various deleterious health defects. Numerous studies have described techniques for isolating OPCs to obtain a better understanding of this cell type and to open doors for potential treatments of injury and disease. However, the techniques used in the majority of these studies involve several steps and are time consuming, with current culture protocols using serum and embryonic or postnatal cortical tissue as a source of isolation. We present a primary culture method for the direct isolation of functional adult rat OPCs, identified by neuron-glial antigen 2 (NG2) and platelet derived growth factor receptor alpha (PDGFrα) expression, which can be obtained from the adult spinal cord. Our method uses a simple serum-free cocktail of 3 growth factors - FGF2, PDGFAA, and IGF-I, to expand adult rat OPCs in vitro to 96% purity. Cultured cells can be expanded for at least 10 passages with very little manipulation and without losing their phenotypic progenitor cell properties, as shown by immunocytochemistry and RT-PCR. Cultured adult rat OPCs also maintain their ability to differentiate into GalC positive cells when incubated with factors known to stimulate their differentiation. This new isolation method provides a new source of easily accessible adult stem cells and a powerful tool for their expansion in vitro for studies aimed at central nervous system repair.
Collapse
|
10
|
Meares GP, Rajbhandari R, Gerigk M, Tien CL, Chang C, Fehling SC, Rowse A, Mulhern KC, Nair S, Gray GK, Berbari NF, Bredel M, Benveniste EN, Nozell SE. MicroRNA-31 is required for astrocyte specification. Glia 2018; 66:987-998. [PMID: 29380422 DOI: 10.1002/glia.23296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.
Collapse
Affiliation(s)
- Gordon P Meares
- Departments of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, 26506
| | - Rajani Rajbhandari
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chih-Liang Tien
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chenbei Chang
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Amber Rowse
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Kayln C Mulhern
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Sindhu Nair
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Nicolas F Berbari
- Departments of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - Markus Bredel
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Susan E Nozell
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
11
|
Gómez-Pinedo U, Sirerol-Piquer S, Durán-Moreno M, Matias-Guiu JA, Barcia JA, García-Verdugo JM, Matias-Guiu J. NG2 and GFAP co-expression after differentiation in cells transfected with mutant GFAP and in undifferentiated glioma cells. Neurologia 2017; 35:479-485. [PMID: 29249301 DOI: 10.1016/j.nrl.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Alexander disease is a rare disorder caused by mutations in the gene coding for glial fibrillary acidic protein (GFAP). In a previous study, differentiation of neurospheres transfected with these mutations resulted in a cell type that expresses both GFAP and NG2. OBJECTIVE To determine the effect of molecular marker mutations in comparison to undifferentiated glioma cells simultaneously expressing GFAP and NG2. METHODS We used samples of human glioblastoma (GBM) and rat neurospheres transfected with GFAP mutations to analyse GFAP and NG2 expression after differentiation. We also performed an immunocytochemical analysis of neuronal differentiation for both cell types and detection of GFAP, NG2, vimentin, Olig2, and caspase-3 at 3 and 7 days from differentiation. RESULTS Both the cells transfected with GFAP mutations and GBM cells showed increased NG2 and GFAP expression. However, expression of caspase-3-positive cells was found to be considerably higher in transfected cells than in GBM cells. CONCLUSIONS Our results suggest that GFAP expression is not the only factor associated with cell death in Alexander disease. Caspase-3 expression and the potential role of NG2 in increasing resistance to apoptosis in cells co-expressing GFAP and NG2 should be considered in the search for new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - S Sirerol-Piquer
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - M Durán-Moreno
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J A Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Barcia
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J M García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
12
|
Naruse M, Shibasaki K, Ishizaki Y. Temporal Changes in Transcription Factor Expression Associated with the Differentiation State of Cerebellar Neural Stem/Progenitor Cells During Development. Neurochem Res 2017; 43:205-211. [PMID: 28988404 DOI: 10.1007/s11064-017-2405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
During central nervous development, multi-potent neural stem/progenitor cells located in the ventricular/subventricular zones are temporally regulated to mostly produce neurons during early developmental stages and to produce glia during later developmental stages. After birth, the rodent cerebellum undergoes further dramatic development. It is also known that neural stem/progenitor cells are present in the white matter (WM) of the postnatal cerebellum until around P10, although the fate of these cells has yet to be determined. In the present study, it was revealed that primary neurospheres generated from cerebellar neural stem/progenitor cells at postnatal day 3 (P3) mainly differentiated into astrocytes and oligodendrocytes. In contrast, primary neurospheres generated from cerebellar neural stem/progenitor cells at P8 almost exclusively differentiated into astrocytes, but not oligodendrocytes. These results suggest that the differentiation potential of primary neurospheres changes depending on the timing of neural stem/progenitor cell isolation from the cerebellum. To identify the candidate transcription factors involved in regulating this temporal change, we utilized DNA microarray analysis to compare global gene-expression profiles of primary neurospheres generated from neural stem/progenitor cells isolated from either P3 or P8 cerebellum. The expression of zfp711, zfp618, barx1 and hoxb3 was higher in neurospheres generated from P3 cerebellum than from P8 by real-time quantitative PCR. Several precursor cells were found to express zfp618, barx1 or hoxb3 in the WM of the cerebellum at P3, but these transcription factors were absent from the WM of the P8 cerebellum.
Collapse
Affiliation(s)
- Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| |
Collapse
|
13
|
Chen VS, Morrison JP, Southwell MF, Foley JF, Bolon B, Elmore SA. Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5. Toxicol Pathol 2017; 45:705-744. [PMID: 28891434 DOI: 10.1177/0192623317728134] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evaluation of the central nervous system (CNS) in the developing mouse presents unique challenges, given the complexity of ontogenesis, marked structural reorganization over very short distances in 3 dimensions each hour, and numerous developmental events susceptible to genetic and environmental influences. Developmental defects affecting the brain and spinal cord arise frequently both in utero and perinatally as spontaneous events, following teratogen exposure, and as sequelae to induced mutations and thus are a common factor in embryonic and perinatal lethality in many mouse models. Knowledge of normal organ and cellular architecture and differentiation throughout the mouse's life span is crucial to identify and characterize neurodevelopmental lesions. By providing a well-illustrated overview summarizing major events of normal in utero and perinatal mouse CNS development with examples of common developmental abnormalities, this annotated, color atlas can be used to identify normal structure and histology when phenotyping genetically engineered mice and will enhance efforts to describe and interpret brain and spinal cord malformations as causes of mouse embryonic and perinatal lethal phenotypes. The schematics and images in this atlas illustrate major developmental events during gestation from embryonic day (E)7.5 to E18.5 and after birth from postnatal day (P)1 to P21.
Collapse
Affiliation(s)
- Vivian S Chen
- 1 Charles River Laboratories Inc., Durham, North Carolina, USA.,Authors contributed equally
| | - James P Morrison
- 2 Charles River Laboratories Inc., Shrewsbury, Massachusetts, USA.,Authors contributed equally
| | - Myra F Southwell
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julie F Foley
- 4 Bio-Molecular Screening Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Susan A Elmore
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Naik AA, Patro N, Seth P, Patro IK. Intra-generational protein malnutrition impairs temporal astrogenesis in rat brain. Biol Open 2017; 6:931-942. [PMID: 28546341 PMCID: PMC5550907 DOI: 10.1242/bio.023432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of information on astrogenesis following stressor effect, notwithstanding the imperative roles of astroglia in normal physiology and pathophysiology, incited us to assess temporal astrogenesis and astrocyte density in an intra-generational protein malnutrition (PMN) rat model. Standard immunohistochemical procedures for glial lineage markers and their intensity measurements, and qRT-PCR studies, were performed to reveal the spatio-temporal origin and density of astrocytes. Reduced A2B5+ glia restricted precursor population in ventricles and caused poor dissemination to cortex at embryonic days (E)11-14, and low BLBP+ secondary radial glia in the subventricular zone (SVZ) of E16 low protein (LP) brains reflect compromised progenitor pooling. Contrary to large-sized BLBP+ gliospheres in high protein (HP) brains at E16, small gliospheres and discrete BLBP+ cells in LP brains evidence loss of colonization and low proliferative potential. Delayed emergence of GFAP expression, precocious astrocyte maturation and significantly reduced astrocyte number suggest impaired temporal and compromised astrogenesis within LP-F1 brains. Our findings of protein deprivation induced impairments in temporal astrogenesis, compromised density and astrocytic dysfunction, strengthen the hypothesis of astrocytes as possible drivers of neurodevelopmental disorders. This study may increase our understanding of stressor-associated brain development, opening up windows for effective therapeutic interventions against debilitating neurodevelopmental disorders. Summary: Maternal protein deprivation results in low progenitor pooling, and delayed and compromised astrogenesis, suggesting astrocyte impairment as a driver of neurological diseases owing to their imperative roles in normal and pathological situations.
Collapse
Affiliation(s)
- Aijaz Ahmad Naik
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India.,School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India .,School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
15
|
Yang J, Cheng X, Qi J, Xie B, Zhao X, Zheng K, Zhang Z, Qiu M. EGF Enhances Oligodendrogenesis from Glial Progenitor Cells. Front Mol Neurosci 2017; 10:106. [PMID: 28442994 PMCID: PMC5387051 DOI: 10.3389/fnmol.2017.00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/28/2017] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that epidermal growth factor (EGF) signaling plays a positive role in myelin development and repair, but little is known about its biological effects on the early generation and differentiation of oligodendrocyte (OL) lineage cells. In this study, we investigated the role of EGF in early OL development with isolated glial restricted precursor (GRP) cells. It was found that EGF collaborated with Platelet Derived Growth Factor-AA (PDGFaa) to promote the survival and self-renewal of GRP cells, but predisposed GRP cells to develop into O4- early-stage oligodendrocyte precursor cells (OPCs) in the absence of or PDGFaa. In OPCs, EGF synergized with PDGFaa to maintain their O4 negative antigenic phenotype. Upon PDGFaa withdrawal, EGF promoted the terminal differentiation of OPCs by reducing apoptosis and increasing the number of mature OLs. Together, these data revealed that EGF is an important mitogen to enhance oligodendroglial development.
Collapse
Affiliation(s)
- Junlin Yang
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xuejun Cheng
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Jiajun Qi
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Binghua Xie
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xiaofeng Zhao
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Kang Zheng
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Zunyi Zhang
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Mengsheng Qiu
- The Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China.,Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
16
|
Liu Y, Zheng Y, Li S, Xue H, Schmitt K, Hergenroeder GW, Wu J, Zhang Y, Kim DH, Cao Q. Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Res 2017; 19:55-64. [PMID: 28073086 PMCID: PMC5629634 DOI: 10.1016/j.scr.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs) provide great capability for tissue regeneration, particularly in spinal cord injury (SCI). However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs) to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yiyan Zheng
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenglan Li
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karl Schmitt
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest Health Sciences, 391 Technology Way, Winston-Salem, NC 27101, USA
| | - Dong H Kim
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qilin Cao
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Keratan Sulfate Regulates the Switch from Motor Neuron to Oligodendrocyte Generation During Development of the Mouse Spinal Cord. Neurochem Res 2016; 41:450-62. [DOI: 10.1007/s11064-016-1861-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
18
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
19
|
Li S, Xue H, Wu J, Rao MS, Kim DH, Deng W, Liu Y. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System. Stem Cells Dev 2015; 24:2925-42. [PMID: 26414932 DOI: 10.1089/scd.2015.0131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.
Collapse
Affiliation(s)
- Shenglan Li
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Haipeng Xue
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Jianbo Wu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mahendra S Rao
- 3 The New York Stem Cell Foundation , New York, New York
| | - Dong H Kim
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Wenbin Deng
- 4 Department of Biochemistry and Molecular Medicine, School of Medicine, University of California , Davis, California.,5 Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children , Sacramento, California
| | - Ying Liu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,6 The Senator Lloyd and B.A. Bentsen Center for Stroke Research, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
20
|
Liu R, Zhang S, Yang H, Ju P, Xia Y, Shi Y, Lim TH, Lim AS, Liang F, Feng Z. Characterization and therapeutic evaluation of a Nestin+ CNP+ NG2+ cell population on mouse spinal cord injury. Exp Neurol 2015; 269:28-42. [DOI: 10.1016/j.expneurol.2015.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 11/29/2022]
|
21
|
Naruse M, Shibasaki K, Ishizaki Y. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage. Biochem Biophys Res Commun 2015; 463:1091-6. [PMID: 26079890 DOI: 10.1016/j.bbrc.2015.06.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage.
Collapse
Affiliation(s)
- Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
22
|
Itahashi M, Abe H, Tanaka T, Mizukami S, Kimura M, Yoshida T, Shibutani M. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation. Toxicology 2015; 328:123-34. [DOI: 10.1016/j.tox.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
23
|
Human glial progenitor engraftment and gene expression is independent of the ALS environment. Exp Neurol 2014; 264:188-99. [PMID: 25523812 DOI: 10.1016/j.expneurol.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
Although Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease, basic research studies have highlighted that astrocytes contribute to the disease process. Therefore, strategies which replace the diseased astrocyte population with healthy astrocytes may protect against motor neuron degeneration. Our studies have sought to evaluate astrocyte replacement using glial-restricted progenitors (GRPs), which are lineage-restricted precursors capable of differentiating into astrocytes after transplantation. The goal of our current study was to evaluate how transplantation to the diseased ALS spinal cord versus a healthy, wild-type spinal cord may affect human GRP engraftment and selected gene expression. Human GRPs were transplanted into the spinal cord of either an ALS mouse model or wild-type littermate mice. Mice were sacrificed for analysis at either the onset of disease course or at the endstage of disease. The transplanted GRPs were analyzed by immunohistochemistry and NanoString gene profiling which showed no gross differences in the engraftment or gene expression of the cells. Our data indicate that human glial progenitor engraftment and gene expression is independent of the neurodegenerative ALS spinal cord environment. These findings are of interest given that human GRPs are currently in clinical development for spinal cord transplantation into ALS patients.
Collapse
|
24
|
Chen L, Li J, Wu L, Yang M, Gao F, Yuan L. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion. Neural Regen Res 2014; 9:1830-8. [PMID: 25422646 PMCID: PMC4239774 DOI: 10.4103/1673-5374.143431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 01/10/2023] Open
Abstract
To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improvements in locomotor function in injured rats, combined administration of both treatments had a significantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.
Collapse
Affiliation(s)
- Liang Chen
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China ; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Liang Wu
- Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing, China
| | - Mingliang Yang
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China ; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Gao
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Li Yuan
- Department of General Surgery, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
25
|
Wu L, Li J, Chen L, Zhang H, Yuan L, Davies SJ. Combined transplantation of GDAs(BMP) and hr-decorin in spinal cord contusion repair. Neural Regen Res 2014; 8:2236-48. [PMID: 25206533 PMCID: PMC4146032 DOI: 10.3969/j.issn.1673-5374.2013.24.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022] Open
Abstract
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astrocytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, double-immunofluorescent histochemistry revealed that combined transplantation inhibited the early inflammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was secreted by transplanted cells, protected injured axons. The combined transplantation promoted axonal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte proliferation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.
Collapse
Affiliation(s)
- Liang Wu
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China ; Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing 102211, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Hong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
| | - Li Yuan
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Stephen Ja Davies
- Department of Neurosurgery, University of Colorado Denver, 1250 14th Street Denver, Colorado 80217, USA
| |
Collapse
|
26
|
Wheldon LM, Abakir A, Ferjentsik Z, Dudnakova T, Strohbuecker S, Christie D, Dai N, Guan S, Foster JM, Corrêa IR, Loose M, Dixon JE, Sottile V, Johnson AD, Ruzov A. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep 2014; 7:1353-1361. [PMID: 24882006 DOI: 10.1016/j.celrep.2014.05.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/04/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain.
Collapse
Affiliation(s)
- Lee M Wheldon
- Medical Molecular Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abdulkadir Abakir
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tatiana Dudnakova
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Stephanie Strohbuecker
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Denise Christie
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Jeremy M Foster
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James E Dixon
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Virginie Sottile
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
27
|
Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 2014; 31:941-52. [PMID: 23341249 DOI: 10.1002/stem.1334] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/24/2012] [Indexed: 01/07/2023]
Abstract
Astrocytes can be generated from various tissue sources including human pluripotent stem cells (PSC). In this manuscript, we describe a chemically defined xeno-free medium culture system for rapidly generating astrocytes from neural stem cells derived from PSC. We show that astrocyte development in vitro, mimics normal development in vivo, and also passes through a CD44(+) astrocyte precursor stage. Astrocytes generated by our method display similar gene expression patterns, morphological characteristics and functional properties to primary astrocytes, and they survive and integrate after xenotransplantation. Whole genome expression profiling of astrocyte differentiation was performed at several time points of differentiation, and the results indicate the importance of known regulators and identify potential novel regulators and stage-specific lineage markers.
Collapse
|
28
|
Characteristic development of the GABA-removal system in the mouse spinal cord. Neuroscience 2014; 262:129-42. [DOI: 10.1016/j.neuroscience.2013.12.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/28/2013] [Accepted: 12/31/2013] [Indexed: 11/24/2022]
|
29
|
Girolamo F, Dallatomasina A, Rizzi M, Errede M, Wälchli T, Mucignat MT, Frei K, Roncali L, Perris R, Virgintino D. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One 2013; 8:e84883. [PMID: 24386429 PMCID: PMC3873429 DOI: 10.1371/journal.pone.0084883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/19/2013] [Indexed: 01/16/2023] Open
Abstract
NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating between phenotype-specific and neoplastic versus non-neoplastic variants of the PG, thus opening up vistas for more selective immunotherapeutic targeting of brain tumours.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Alice Dallatomasina
- COMT – Centre for Molecular and Translational Oncology and Department of Biosciences, University of Parma, Parma, Italy
| | - Marco Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Thomas Wälchli
- Brain Research Institute, University of Zurich, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Maria Teresa Mucignat
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Aviano, Italy
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Luisa Roncali
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Roberto Perris
- COMT – Centre for Molecular and Translational Oncology and Department of Biosciences, University of Parma, Parma, Italy
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Aviano, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail:
| |
Collapse
|
30
|
Oligodendrocyte/type-2 astrocyte progenitor cells and glial-restricted precursor cells generate different tumor phenotypes in response to the identical oncogenes. J Neurosci 2013; 33:16805-17. [PMID: 24133281 DOI: 10.1523/jneurosci.0546-13.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the great interest in identifying the cell-of-origin for different cancers, little knowledge exists regarding the extent to which the specific origin of a tumor contributes to its properties. To directly examine this question, we expressed identical oncogenes in two types of glial progenitor cells, glial-restricted precursor (GRP) cells and oligodendrocyte/type-2 astrocyte progenitor cells (O-2A/OPCs), and in astrocytes of the mouse CNS (either directly purified or generated from GRP cells). In vitro, expression of identical oncogenes in these cells generated populations differing in expression of antigens thought to identify tumor initiating cells, generation of 3D aggregates when grown as adherent cultures, and sensitivity to the chemotherapeutic agent BCNU. In vivo, cells differed in their ability to form tumors, in malignancy and even in the type of host-derived cells infiltrating the tumor mass. Moreover, identical genetic modification of these different cells yielded benign infiltrative astrocytomas, malignant astrocytomas, or tumors with characteristics seen in oligodendrogliomas and small-cell astrocytomas, indicating a contribution of cell-of-origin to the characteristic properties expressed by these different tumors. Our studies also revealed unexpected relationships between the cell-of-origin, differentiation, and the order of oncogene acquisition at different developmental stages in enabling neoplastic growth. These studies thus provide multiple novel demonstrations of the importance of the cell-of-origin in respect to the properties of transformed cells derived from them. In addition, the approaches used enable analysis of the role of cell-of-origin in tumor biology in ways that are not accessible by other more widely used approaches.
Collapse
|
31
|
Şovrea AS, Boşca AB. Astrocytes reassessment - an evolving concept part one: embryology, biology, morphology and reactivity. J Mol Psychiatry 2013; 1:18. [PMID: 26019866 PMCID: PMC4445578 DOI: 10.1186/2049-9256-1-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
The goal of this review is to integrate - in its two parts - the considerable amount of information that has accumulated during these recent years over the morphology, biology and functions of astrocytes - first part - and to illustrate the active role of these cells in pathophysiological processes implicated in various psychiatric and neurologic disorders – second part.
Collapse
Affiliation(s)
- Alina Simona Şovrea
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Bianca Boşca
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Rep 2013; 4:1035-1048. [PMID: 23994478 DOI: 10.1016/j.celrep.2013.06.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022] Open
Abstract
Differentiation of astrocytes from human stem cells has significant potential for analysis of their role in normal brain function and disease, but existing protocols generate only immature astrocytes. Using early neuralization, we generated spinal cord astrocytes from mouse or human embryonic or induced pluripotent stem cells with high efficiency. Remarkably, short exposure to fibroblast growth factor 1 (FGF1) or FGF2 was sufficient to direct these astrocytes selectively toward a mature quiescent phenotype, as judged by both marker expression and functional analysis. In contrast, tumor necrosis factor alpha and interleukin-1β, but not FGFs, induced multiple elements of a reactive inflammatory phenotype but did not affect maturation. These phenotypically defined, scalable populations of spinal cord astrocytes will be important both for studying normal astrocyte function and for modeling human pathological processes in vitro.
Collapse
|
33
|
Petrik D, Yun S, Latchney SE, Kamrudin S, LeBlanc JA, Bibb JA, Eisch AJ. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 2013; 8:e72819. [PMID: 23991155 PMCID: PMC3753242 DOI: 10.1371/journal.pone.0072819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
The early postnatal period is a unique time of brain development, as diminishing amounts of neurogenesis coexist with waves of gliogenesis. Understanding the molecular regulation of early postnatal gliogenesis may provide clues to normal and pathological embryonic brain ontogeny, particularly in regards to the development of astrocytes and oligodendrocytes. Cyclin dependent kinase 5 (Cdk5) contributes to neuronal migration and cell cycle control during embryogenesis, and to the differentiation of neurons and oligodendrocytes during adulthood. However, Cdk5's function in the postnatal period and within discrete progenitor lineages is unknown. Therefore, we selectively removed Cdk5 from nestin-expressing cells and their progeny by giving transgenic mice (nestin-CreERT2/R26R-YFP/CDK5(flox/flox) [iCdk5] and nestin-CreERT2/R26R-YFP/CDK5(wt/wt) [WT]) tamoxifen during postnatal (P) days P2-P 4 or P7-P 9, and quantified and phenotyped recombined (YFP+) cells at P14 and P21. When Cdk5 gene deletion was induced in nestin-expressing cells and their progeny during the wave of cortical and hippocampal gliogenesis (P2-P4), significantly fewer YFP+ cells were evident in the cortex, corpus callosum, and hippocampus. Phenotypic analysis revealed the cortical decrease was due to fewer YFP+ astrocytes and oligodendrocytes, with a slightly earlier influence seen in oligodendrocytes vs. astrocytes. This effect on cortical gliogenesis was accompanied by a decrease in YFP+ proliferative cells, but not increased cell death. The role of Cdk5 in gliogenesis appeared specific to the early postnatal period, as induction of recombination at a later postnatal period (P7-P9) resulted in no change YFP+ cell number in the cortex or hippocampus. Thus, glial cells that originate from nestin-expressing cells and their progeny require Cdk5 for proper development during the early postnatal period.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice. Brain Res 2013; 1532:14-20. [PMID: 23939222 DOI: 10.1016/j.brainres.2013.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/29/2013] [Accepted: 08/04/2013] [Indexed: 11/21/2022]
Abstract
Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice.
Collapse
|
35
|
Zuo H, Nishiyama A. Polydendrocytes in development and myelin repair. Neurosci Bull 2013; 29:165-76. [PMID: 23516142 DOI: 10.1007/s12264-013-1320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/30/2013] [Indexed: 11/30/2022] Open
Abstract
Polydendrocytes (NG2 cells) are a distinct type of glia that populate the developing and adult central nervous systems (CNS). In the adult CNS, they retain mitotic activity and represent the largest proliferating cell population. Genetic and epigenetic mechanisms regulate the fate of polydendrocytes, which give rise to both oligodendrocytes and astrocytes. In addition, polydendrocytes actively differentiate into myelin-forming oligodendrocytes in response to demyelination. This review summarizes the current knowledge regarding polydendrocyte development, which provides an important basis for understanding the mechanisms that lead to the remyelination of demyelinated lesions.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | |
Collapse
|
36
|
Rousset CI, Kassem J, Aubert A, Planchenault D, Gressens P, Chalon S, Belzung C, Saliba E. Maternal exposure to lipopolysaccharide leads to transient motor dysfunction in neonatal rats. Dev Neurosci 2013; 35:172-81. [PMID: 23445561 DOI: 10.1159/000346579] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental data implicate maternal infection and inflammation in the etiology of brain white matter injury, which may lead to cerebral palsy in preterm newborns. Our aim was to investigate motor development of the offspring after maternal administration of lipopolysaccharide (LPS). Wistar rats were intraperitoneally injected with Escherichia coli LPS or saline on gestational days 19 and 20. From birth to 3 weeks, pups were tested for neurobehavioral development, neurological signs and reflexes. From 3 to 6 weeks, motor coordination was investigated. At 4 months, animals were tested for locomotion. Brain myelination was assessed by myelin basic protein immunohistochemistry. Days of appearance of several neurological reflexes were significantly delayed, and neonate LPS pups displayed retarded performance in righting, gait and negative geotaxis. At the juvenile stage, LPS animals showed important impairment in coordination. However, although the LPS group performed worse in most tests, they reached vehicle levels by 5 weeks. At 4 months, LPS animals did not show variations in locomotion performances compared to vehicle. No myelination differences have been observed in the brains at adulthood. Maternal LPS administration results in delayed motor development even though these alterations fade to reach control level by 5 weeks. Motor impairments observed at the early stage in this study could be linked to previously reported hypomyelination of the white matter induced by maternal LPS challenge in the neonates. Finally, the normal myelination shown here at adulthood may explain the functional recovery of the animals and suggest either a potential remyelination of the brain or a delayed myelination in LPS pups.
Collapse
|
37
|
Naruse M, Shibasaki K, Yokoyama S, Kurachi M, Ishizaki Y. Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum. PLoS One 2013; 8:e53109. [PMID: 23308146 PMCID: PMC3537769 DOI: 10.1371/journal.pone.0053109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/26/2012] [Indexed: 12/19/2022] Open
Abstract
We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used immunohistochemistry, in situ hybridization, and FACS to analyze the spatial and temporal expression of CD44 and characterize the CD44-positive cells in the mouse cerebellum during development. CD44 expression was observed not only in astrocyte precursor cells but also in neural stem cells and oligodendrocyte precursor cells (OPCs) at early postnatal stages. CD44 expression in OPCs was shut off during oligodendrocyte differentiation. Interestingly, during development, CD44 expression was limited specifically to Bergmann glia and fibrous astrocytes among three types of astrocytes in cerebellum, and expression in astrocytes was shut off during postnatal development. CD44 expression was also detected in developing Purkinje and granule neurons but was limited to granule neurons in the adult cerebellum. Thus, at early developmental stages of the cerebellum, CD44 was widely expressed in several types of precursor cells, and over the course of development, the expression of CD44 became restricted to granule neurons in the adult.
Collapse
Affiliation(s)
- Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- * E-mail: (KS); (YS)
| | - Shuichi Yokoyama
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- * E-mail: (KS); (YS)
| |
Collapse
|
38
|
Interleukin-17A increases neurite outgrowth from adult postganglionic sympathetic neurons. J Neurosci 2012; 32:1146-55. [PMID: 22279201 DOI: 10.1523/jneurosci.5343-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation can profoundly alter the structure and function of the nervous system. Interleukin (IL)-17 has been implicated in the pathogenesis of several inflammatory diseases associated with nervous system plasticity. However, the effects of IL-17 on the nervous system remain unexplored. Cell and explant culture techniques, immunohistochemistry, electrophysiology, and Ca2+ imaging were used to examine the impact of IL-17 on adult mouse sympathetic neurons. Receptors for IL-17 were present on postganglionic neurons from superior mesenteric ganglia (SMG). Supernatant from activated splenic T lymphocytes, which was abundant in IL-17, dramatically enhanced axonal length of SMG neurons. Importantly, IL-17-neutralizing antiserum abrogated the neurotrophic effect of splenocyte supernatant, and incubation of SMG neurons in IL-17 (1 ng/ml) significantly potentiated neurite outgrowth. The neurotrophic effect of IL-17 was accompanied by inhibition of voltage-dependent Ca2+ influx and was recapitulated by incubation of neurons in a blocker of N-type Ca2+ channels (ω-conotoxin GVIA; 30 nM). IL-17-induced neurite outgrowth in vitro appeared to be independent of glia, as treatment with a glial toxin (AraC; 5 μM) did not affect the outgrowth response to IL-17. Moreover, application of the cytokine to distal axons devoid of glial processes enhanced neurite extension. An inhibitor of the NF-κB pathway (SC-514; 20 μM) blocked the effects of IL-17. These data represent the first evidence that IL-17 can act on sympathetic somata and distal neurites to enhance neurite outgrowth, and identify a novel potential role for IL-17 in the neuroanatomical plasticity that accompanies inflammation.
Collapse
|
39
|
Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, Rizzo F, Nardini M, Riboldi G, Magri F, Zanetta C, Faravelli I, Bresolin N, Comi GP. Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res 2012; 318:1528-41. [PMID: 22426197 PMCID: PMC3405531 DOI: 10.1016/j.yexcr.2012.02.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/26/2012] [Accepted: 02/29/2012] [Indexed: 12/31/2022]
Abstract
Generating neural stem cells and neurons from reprogrammed human astrocytes is a potential strategy for neurological repair. Here we show dedifferentiation of human cortical astrocytes into the neural stem/progenitor phenotype to obtain progenitor and mature cells with a neural fate. Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into astrocytes in specific cytokine/culture conditions activated the neural stem gene program and induced generation of cells expressing neural stem/precursor markers. Pure CD44 + mature astrocytes also exhibited this lineage commitment change and did not require passing through a pluripotent state. These astrocyte-derived neural stem cells gave rise to neurons, astrocytes, and oligodendrocytes and showed in vivo engraftment properties. ASCL1 expression further promoted neuronal phenotype acquisition in vitro and in vivo. Methylation analysis showed that epigenetic modifications underlie this process. The restoration of multipotency from human astrocytes has potential in cellular reprogramming of endogenous central nervous system cells in neurological disorders.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ca'Granda Maggiore Hospital Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Whittaker MT, Zai LJ, Lee HJ, Pajoohesh-Ganji A, Wu J, Sharp A, Wyse R, Wrathall JR. GGF2 (Nrg1-β3) treatment enhances NG2+ cell response and improves functional recovery after spinal cord injury. Glia 2011; 60:281-94. [PMID: 22042562 DOI: 10.1002/glia.21262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
The adult spinal cord contains a pool of endogenous glial precursor cells, which spontaneously respond to spinal cord injury (SCI) with increased proliferation. These include oligodendrocyte precursor cells that express the NG2 proteoglycan and can differentiate into mature oligodendrocytes. Thus, a potential approach for SCI treatment is to enhance the proliferation and differentiation of these cells to yield more functional mature glia and improve remyelination of surviving axons. We previously reported that soluble glial growth factor 2 (GGF2)- and basic fibroblast growth factor 2 (FGF2)-stimulated growth of NG2(+) cells purified from injured spinal cord in primary culture. This study examines the effects of systemic administration of GGF2 and/or FGF2 after standardized contusive SCI in vivo in both rat and mouse models. In Sprague-Dawley rats, 1 week of GGF2 administration, beginning 24 h after injury, enhanced NG2(+) cell proliferation, oligodendrogenesis, chronic white matter at the injury epicenter, and recovery of hind limb function. In 2',3'-cyclic-nucleotide 3'-phosphodiesterase-enhanced green fluorescent protein mice, GGF2 treatment resulted in increased oligodendrogenesis and improved functional recovery, as well as elevated expression of the stem cell transcription factor Sox2 by oligodendrocyte lineage cells. Although oligodendrocyte number was increased chronically after SCI in GGF2-treated mice, no evidence of increased white matter was detected. However, GGF2 treatment significantly increased levels of P0 protein-containing peripheral myelin, produced by Schwann cells that infiltrate the injured spinal cord. Our results suggest that GGF2 may have therapeutic potential for SCI by enhancing endogenous recovery processes in a clinically relevant time frame.
Collapse
Affiliation(s)
- Matthew T Whittaker
- Department of Neuroscience, Georgetown University, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ueki T, Tsuruo Y, Yamamoto Y, Yoshimura K, Takanaga H, Seiwa C, Motojima K, Asou H, Yamamoto M. A new monoclonal antibody, 4F2, specific for the oligodendroglial cell lineage, recognizes ATP-dependent RNA helicase Ddx54: possible association with myelin basic protein. J Neurosci Res 2011; 90:48-59. [PMID: 21932369 DOI: 10.1002/jnr.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/07/2022]
Abstract
Recent research in neural development has highlighted the importance of markers to discriminate phenotypic alterations of neural cells at various developmental stages. We isolated a new monoclonal antibody, 4F2, which was shown to be specific for an oligodendrocyte lineage. In primary cultures of oligodendroglial and mixed neural cells, the 4F2 antibody labeled a large proportion of Sox2(+) , Sox10(+) , A2B5(+) , NG2(+) , Olig2(+) , O4(+) , and myelin basic protein (MBP)(+) cells but did not label any GFAP(+) or NeuN(+) cells. In immunohistochemisty of rat embryos, the 4F2 antibody labeled a portion of neuroepithelial cells of the neural tube at embryonic day 9. The 4F2-positive cells were located initially in the ventricular zone as Musashi1(+) Tuj1(-) populations and distributed throughout the striatum; thereafter, they populated the whole brain and spinal cord. These cells showed ramified processes during embryonal development. The 4F2 antigen was associated with all four isoforms of MBP in coimmunoprecipitation experiments using brain homogenates or cell lysates of cultured oligodendrocytes. Immunoscreening of a brain cDNA library identified the antigen as DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases involved in RNA metabolism, transcription, and translation. Cotransfection of the Ddx54 gene with MBP isoform genes increased the nuclear localization of the 21.5-kDa MBP isoform, which has been reported to function as a nuclear signal transduction molecule. These data indicate that Ddx54 might be not only a useful marker for investigating the ontogeny of oligodendrocytes but also an important factor in oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Neuro-Glia Cell Biology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang H, Ling W, Vitale A, Olivera C, Min Y, You S. ErbB2 activation contributes to de-differentiation of astrocytes into radial glial cells following induction of scratch-insulted astrocyte conditioned medium. Neurochem Int 2011; 59:1010-8. [PMID: 21924310 DOI: 10.1016/j.neuint.2011.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/19/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
Abstract
Radial glial cells play a significant role in the repair of spinal cord injuries as they exert critical role in the neurogenesis and act as a scaffold for neuronal migration. Our previous study showed that mature astrocytes of spinal cord can undergo a de-differentiation process and further transform into pluripotential neural precursors; the occurrence of these complex events arise directly from the induction of diffusible factors released from scratch-insulted astrocytes. However, it is unclear whether astrocytes can also undergo rejuvenation to revert to a radial glial progenitor phenotype after the induction of scratch-insulted astrocytes conditioned medium (ACM). Furthermore, the mechanism of astrocyte de-differentiation to the progenitor cells is still unclear. Here we demonstrate that upon treating mature astrocytes with ACM for 10 days, the astrocytes exhibit progressive morphological and functional conversion to radial glial cells. These changes include the appearance of radial glial progenitor cells, changes in the immunophenotypical profiles, characterized by the co-expression of nestin, paired homeobox protein (Pax6) and RC2 as well as enhanced capability of multipotential differentiation. Concomitantly, ErbB2 protein level was progressively up-regulated. Thereby these results provide a potential mechanism by which ACM could induce mature astrocytes to regain the profile of radial glial progenitors due to activating the ErbB2 signaling pathways.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | |
Collapse
|
43
|
Simon-Areces J, Dopazo A, Dettenhofer M, Rodriguez-Tebar A, Garcia-Segura LM, Arevalo MA. Formin1 mediates the induction of dendritogenesis and synaptogenesis by neurogenin3 in mouse hippocampal neurons. PLoS One 2011; 6:e21825. [PMID: 21818269 PMCID: PMC3139584 DOI: 10.1371/journal.pone.0021825] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/13/2011] [Indexed: 11/21/2022] Open
Abstract
Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation.
Collapse
Affiliation(s)
- Julia Simon-Areces
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Markus Dettenhofer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alfredo Rodriguez-Tebar
- Centro Andaluz de Biología Molecular y Medicina Regenerativa/Consejo Superior de Investigaciones Cientificas (CABIMER/CSIC), Seville, Spain
| | - Luis Miguel Garcia-Segura
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Maria-Angeles Arevalo
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
44
|
Cai N, Kurachi M, Shibasaki K, Okano-Uchida T, Ishizaki Y. CD44-Positive Cells Are Candidates for Astrocyte Precursor Cells in Developing Mouse Cerebellum. THE CEREBELLUM 2011; 11:181-93. [DOI: 10.1007/s12311-011-0294-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiol Dis 2011; 43:678-89. [PMID: 21679768 DOI: 10.1016/j.nbd.2011.05.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/20/2022] Open
Abstract
Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during "early" disease, 20 days post MOG immunization, whereas in the "late" disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions.
Collapse
|
46
|
Liu Y, Jiang P, Deng W. OLIG gene targeting in human pluripotent stem cells for motor neuron and oligodendrocyte differentiation. Nat Protoc 2011; 6:640-55. [PMID: 21527921 DOI: 10.1038/nprot.2011.310] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells can be genetically labeled to facilitate differentiation studies. In this paper, we describe a gene-targeting protocol to knock in a GFP cassette into key gene loci in human pluripotent stem cells (hPSCs), and then use the genetically tagged hPSCs to guide in vitro differentiation, immunocytochemical and electrophysiological profiling and in vivo characterization after cell transplantation. The Olig transcription factors have key roles in the transcription regulatory pathways for the genesis of motor neurons (MNs) and oligodendrocytes (OLs). We have generated OLIG2-GFP hPSC reporter lines that reliably mark MNs and OLs for monitoring their sequential differentiation from hPSCs. The expression of the GFP reporter recapitulates the endogenous expression of OLIG genes. The in vitro characterization of fluorescence-activated cell sorting-purified cells is consistent with cells of the MN or OL lineages, depending on the stages at which they are collected. This protocol is efficient and reliable and usually takes 5-7 months to complete. The genetic tagging-differentiation methodology used herein provides a general framework for similar work for differentiation of hPSCs into other lineages.
Collapse
Affiliation(s)
- Ying Liu
- Department of Reproductive Medicine, University of California San Diego, San Diego, California, USA.
| | | | | |
Collapse
|
47
|
Developmentally regulated expression of Sox9 and microRNAs 124, 128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci 2010; 29:31-6. [PMID: 20937378 DOI: 10.1016/j.ijdevneu.2010.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/22/2022] Open
Abstract
Central nervous system development is a complex process involving many interacting factors. MicroRNAs have recently been identified as playing key intrinsic roles in development however few of their specific targets have been identified in vivo. The transcription factor Sox9 has recently been identified as a target of miR-124 in the adult mouse sub-ventricular zone. Here we investigate the expression of the microRNAs miR-124, miR-128 and miR-23 and that of transcription factor Sox9, in neuroepithelial stem cells in the developing spinal cord. Furthermore we investigate if neurogenesis in embryonic neuroepithelial cells in the spinal cord might also be regulated by the interaction of Sox9 and miR-124. We provide evidence of the spatial and temporal regulation of miR-124, miR-128, miR-23 and Sox9, and taken together with recent findings we provide evidence that Sox9 may also be target of miR-124 in developing spinal cord neuroepithelial cells.
Collapse
|
48
|
Yang H, Qian XH, Cong R, Li JW, Yao Q, Jiao XY, Ju G, You SW. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes. Cell Mol Neurobiol 2010; 30:483-91. [PMID: 19885729 PMCID: PMC11498791 DOI: 10.1007/s10571-009-9474-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 10/20/2009] [Indexed: 11/29/2022]
Abstract
Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurosciences, The Fourth Military Medical University, 17 West Chang Le Road, 710032 Xi’an, China
| | - Xin-Hong Qian
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, 710032 Xi’an, China
| | - Rui Cong
- Department of Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, 710032 Xi’an, China
| | - Jing-wen Li
- Institute of Neurosciences, The Fourth Military Medical University, 17 West Chang Le Road, 710032 Xi’an, China
| | - Qin Yao
- Institute of Neurosciences, The Fourth Military Medical University, 17 West Chang Le Road, 710032 Xi’an, China
| | - Xi-Ying Jiao
- Institute of Neurosciences, The Fourth Military Medical University, 17 West Chang Le Road, 710032 Xi’an, China
| | - Gong Ju
- Institute of Neurosciences, The Fourth Military Medical University, 17 West Chang Le Road, 710032 Xi’an, China
| | - Si-Wei You
- Institute of Neurosciences, The Fourth Military Medical University, 17 West Chang Le Road, 710032 Xi’an, China
| |
Collapse
|
49
|
Basal enrichment within neuroepithelia suggests novel function(s) for Celsr1 protein. Mol Cell Neurosci 2010; 44:210-22. [PMID: 20353824 DOI: 10.1016/j.mcn.2010.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 11/29/2022] Open
Abstract
A characteristic of the 7TM-cadherins, Flamingo and Celsr1, is their asymmetric protein distribution and polarized activity at neighboring epithelial cell interfaces along defined axes of planar cell polarity. Here, we describe a novel distribution of Celsr1 protein to the basal surface of neuroepithelial cells within both the early neural tube and a less well-defined group of ventricular zone cells at the midline of the developing spinal cord. Importantly, this basal enrichment is lost in embryos homozygous for a mutant Celsr1 allele. We also demonstrate an intimate association between basal enrichment of Celsr1 protein and dorsal sensory tract morphogenesis, an intriguing spatio-temporal organization of Celsr1 protein along the apico-basal neuroepithelial axis suggestive of multiple Celsr1 protein isoforms and the existence of distinct cell surface Celsr1 protein species with direct signaling potential. Together, these data raise compelling new questions concerning the role of Celsr1 during neural development.
Collapse
|
50
|
Wen CM, Wang CS, Chin TC, Cheng ST, Nan FH. Immunochemical and molecular characterization of a novel cell line derived from the brain of Trachinotus blochii (Teleostei, Perciformes): A fish cell line with oligodendrocyte progenitor cell and tanycyte characteristics. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:224-31. [PMID: 20167281 DOI: 10.1016/j.cbpa.2010.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 01/24/2023]
Abstract
Ependymal radial glial cells, also called tanycytes, are the predominant glial fibrillary acidic protein (GFAP)- and vimentin (VIM)-expressing cells in fish ependyma. Radial glial cells have been proposed to be neural stem cells but their molecular expression is not well understood. Previous studies revealed that fish neural progenitor and neural stem cells have A2B5, a marker for oligodendrocyte progenitor cells (OPCs). In this study, an A2B5(+) cell line, SPB, was isolated from the brain of the teleost Trachinotus blochii and characterized. SPB cells usually grew as polygonal epithelial cells, but at high density, long processes were commonly observed. Using immunocytochemistry, SPB cells were shown to exhibit oligodendrocyte markers such as galactocerebroside and Olig2, and radial glial cell markers such as brain lipid-binding protein, GFAP, Sox2, and VIM. SPB cells were also observed to have DARPP-32, a marker for tanycytes in mammals, and primary cilia. RT-PCR additionally revealed expression of bone morphogenetic protein 4, connexin35, Noggin2, and proteolipid protein in SPB cells. Results of this study suggest that SPB cells are OPCs that can display tanycyte characteristics. Fish tanycytes can be neural stem cells suggesting that SPB cells are neural stem cells. SPB is the first fish cell line showing primary cilia and markers for both OPCs and tanycytes.
Collapse
Affiliation(s)
- Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan.
| | | | | | | | | |
Collapse
|