1
|
McGrath AM, Brohlin M, Wiberg R, Kingham PJ, Novikov LN, Wiberg M, Novikova LN. Long-Term Effects of Fibrin Conduit with Human Mesenchymal Stem Cells and Immunosuppression after Peripheral Nerve Repair in a Xenogenic Model. CELL MEDICINE 2018; 10:2155179018760327. [PMID: 32634185 PMCID: PMC6172997 DOI: 10.1177/2155179018760327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
Introduction: Previously we showed that a fibrin glue conduit with human mesenchymal stem cells
(hMSCs) and cyclosporine A (CsA) enhanced early nerve regeneration. In this study long
term effects of this conduit are investigated. Methods: In a rat model, the sciatic nerve was repaired with fibrin conduit containing fibrin
matrix, fibrin conduit containing fibrin matrix with CsA treatment and fibrin conduit
containing fibrin matrix with hMSCs and CsA treatment, and also with nerve graft as
control. Results: At 12 weeks 34% of motoneurons of the control group regenerated axons through the
fibrin conduit. CsA treatment alone or with hMSCs resulted in axon regeneration of 67%
and 64% motoneurons respectively. The gastrocnemius muscle weight was reduced in the
conduit with fibrin matrix. The treatment with CsA or CsA with hMSCs induced recovery of
the muscle weight and size of fast type fibers towards the levels of the nerve graft
group. Discussion: The transplantation of hMSCs for peripheral nerve injury should be optimized to
demonstrate their beneficial effects. The CsA may have its own effect on nerve
regeneration.
Collapse
Affiliation(s)
- Aleksandra M McGrath
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden
| | - Maria Brohlin
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Rebecca Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden
| | - Liudmila N Novikova
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Gallaher ZR, Johnston ST, Czaja K. Neural proliferation in the dorsal root ganglia of the adult rat following capsaicin-induced neuronal death. J Comp Neurol 2014; 522:3295-307. [PMID: 24700150 DOI: 10.1002/cne.23598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Glial proliferation is a major component of the nervous system's response to injury. In addition to glial proliferation, injury may induce neuronal proliferation in areas of the adult nervous system not considered neurogenic. We have previously reported increased neural proliferation within adult nodose ganglia following capsaicin-induced neuronal death. However, proliferation within the dorsal root ganglia (DRG) remains to be characterized. We hypothesized that capsaicin-induced neuronal death would increase proliferation of satellite glial cells (SGCs) within the DRG. To test this hypothesis, 6-week-old Sprague-Dawley rats received a neurotoxic dose of capsaicin, and proliferation was quantified and characterized at multiple time points thereafter. Proliferation of satellite glial cells expressing the progenitor cell marker nestin was increased at 1 and 3 days following capsaicin administration as shown by BrdU incorporation. In addition to SGCs was a large population of proliferating resident macrophages, as shown by retrovirally mediated expression of GFP. SGC proliferation at these early time points was followed by recovery of neuronal numbers after a loss of 40% of the neuronal population in the DRG. This recovery in neuronal number correlated with recovery of function as shown by paw withdrawal from a noxious heat source. Further understanding of the role that glial proliferation plays in the recovery of neuronal numbers and function may lead to the development of therapeutic treatments for neurodegenerative conditions.
Collapse
Affiliation(s)
- Zachary R Gallaher
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6520
| | | | | |
Collapse
|
3
|
Results. STIMULATION OF TRIGEMINAL AFFERENTS IMPROVES MOTOR RECOVERY AFTER FACIAL NERVE INJURY 2013. [DOI: 10.1007/978-3-642-33311-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Pettersson J, Lobov S, Novikova LN. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res Bull 2010; 81:125-32. [PMID: 19828127 DOI: 10.1016/j.brainresbull.2009.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
Abstract
Development of cell-based treatment strategies for repair of the injured nervous system requires cell tracing techniques to follow the fate of transplanted cells and their interaction with the host tissue. The present study investigates the efficacy of fluorescent cell tracers Fast Blue, PKH26, DiO and CMFDA for long-term labeling of olfactory ensheathing glial cells (OEC) in culture and following transplantation into the rat spinal cord. All tested dyes produced very efficient initial labeling of p75-positive OEC in culture. The number of Fast Blue-positive cells remained largely unchanged during the first 4 weeks but only about 21% of the cells retained tracer 6 weeks after labeling. In contrast, the number of cells labeled with PKH26 and DiO was reduced to 51-55% after 2 weeks in culture and reached 8-12% after 4-6 weeks. CMFDA had completely disappeared from the cells 2 weeks after labeling. AlamarBlue assay showed that among four tested tracers only CMFDA reduced proliferation rate of the OEC. After transplantation into spinal cord, Fast Blue-labeled OEC survived for at least 8 weeks but demonstrated very limited migration from the injection sites. Additional immunostaining with glial and neuronal markers revealed signs of dye leakage from the transplanted cells resulted in weak labeling of microglia and spinal neurons. The results show that Fast Blue is an efficient cell marker for cultured OEC. However, transfer of the dye from the transplanted cells to the host tissue should be considered and correctly interpreted.
Collapse
Affiliation(s)
- Jonas Pettersson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
5
|
Färber K, Cheung G, Mitchell D, Wallis R, Weihe E, Schwaeble W, Kettenmann H. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 2009; 87:644-52. [PMID: 18831010 DOI: 10.1002/jnr.21875] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue.
Collapse
Affiliation(s)
- Katrin Färber
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Tortorella LL, Schapiro FB, Maxfield FR. Role of an acidic cluster/dileucine motif in cation-independent mannose 6-phosphate receptor traffic. Traffic 2007; 8:402-13. [PMID: 17319895 DOI: 10.1111/j.1600-0854.2007.00541.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.
Collapse
Affiliation(s)
- Lori L Tortorella
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
7
|
Maegele M, Lippert-Gruener M, Ester-Bode T, Garbe J, Bouillon B, Neugebauer E, Klug N, Lefering R, Neiss WF, Angelov DN. Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats. Eur J Neurosci 2005; 21:2406-18. [PMID: 15932599 DOI: 10.1111/j.1460-9568.2005.04070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was designed to determine whether exposure to multimodal early onset stimulation (MEOS) combined with environmental enrichment (EE) after traumatic brain injury (TBI) would improve neurological recovery and to elucidate its morphological correlates. Male Sprague-Dawley rats were subjected to lateral fluid percussion (LFP) brain injury or to sham operation. After LFP, one-third of the animals (injured and sham) were placed under conditions of standard housing (SH), one-third were kept in EE only, and one-third received EE + MEOS. Assessment of neuromotor function 24 h post-injury using a standardized composite neuroscore test revealed an identical pattern of neurological impairment in all animals subjected to LFP. Neuromotor dysfunction in SH animals remained on a similar level throughout the experiment, while improvements were noted in both other groups 7 days post-injury (dpi). On 15 dpi, reversal of neuromotor dysfunction was significantly better in EE + MEOS animals vs. SH- and EE-only groups. In parallel, the comparison of lesion volume in EE + MEOS- vs. EE-only vs. SH rats revealed that animals exposed to EE + MEOS had consistently the lowest values (mm3, mean +/- SD; n = 6 rats in each group) as measured in serial brain sections immunostained for neuron-specific enolase (5.2 +/- 3.4 < or = 5.5 +/- 4.1 < 9.5 +/- 1.9), caspase 3-active/C3A (5.9 +/- 4.0 < or = 6.4 +/- 3.9 < 10.3 +/- 1.8) and glial fibrillary acidic protein (6.0 +/- 3.4 < or = 6.5 +/- 4.3 < 10.7 +/- 1.2). This first report on the effect of EE + MEOS treatment strongly indicates that the combined exposure reduces CNS scar formation and reverses neuromotor deficits after TBI in rats.
Collapse
Affiliation(s)
- Marc Maegele
- Biochemical and Experimental Division, Faculty of Medicine, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ikeda R, Kato F. Early and transient increase in spontaneous synaptic inputs to the rat facial motoneurons after axotomy in isolated brainstem slices of rats. Neuroscience 2005; 134:889-99. [PMID: 15994018 DOI: 10.1016/j.neuroscience.2005.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 02/05/2023]
Abstract
Section of motor nerve fibers (axotomy) elicits a variety of morphofunctional responses in the motoneurons in the motor nuclei. Later than the fifth post-operational day after section of the facial nerve, synapse elimination occurs in the facial motoneuron pool, leading to gradual abolishment of synaptic input-driven activities of the axotomized motoneurons. However, it remains unknown how the amount of synaptic input changes during this period between the axotomy and the synaptic elimination. Here we examined a hypothesis that axotomy of the motoneurons itself modifies the synaptic inputs to the motoneurons. One day after axotomy, the postsynaptic currents, mostly mediated by non-N-methyl-D-aspartic acid (non-NMDA) receptors, recorded from the axotomized facial motoneurons in the acute slice preparations of the rats were of higher frequency and larger amplitude than those in the intact motoneurons. This difference was not observed after the third post-operational day and appeared earlier than the changes in the electrophysiological properties and increase in the number of dead neurons in the axotomized motor nucleus. The larger postsynaptic current frequency of the axotomized motoneurons was observed both in the absence and in the presence of tetrodotoxin citrate, suggesting that increased excitability and facilitated release underlie the postsynaptic current frequency increase. These results suggest that synaptic re-organization occurs in the synapses of motoneurons at an early stage following axotomy.
Collapse
Affiliation(s)
- R Ikeda
- Laboratory of Neurophysiology, Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | |
Collapse
|
9
|
McPhail LT, Fernandes KJL, Chan CCM, Vanderluit JL, Tetzlaff W. Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Exp Neurol 2004; 188:331-40. [PMID: 15246833 DOI: 10.1016/j.expneurol.2004.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/08/2004] [Accepted: 04/12/2004] [Indexed: 12/16/2022]
Abstract
Recently, we reported that chronically axotomized rubrospinal neurons survive for up to 1 year in an atrophied state. This finding contrasted previous work suggesting the death of up to 50% of the neurons over time. In the adult mouse, the majority of facial motoneurons appear to be lost as a result of chronic nerve resection. Here, we sought to determine if chronically resected adult mouse facial motoneurons, like rubrospinal neurons, survive in an atrophied state. To test this hypothesis, we asked whether a second nerve injury, 10 weeks after an initial nerve resection, could stimulate a regenerative cell body response. After chronic resection (10 weeks), mouse facial motoneurons underwent atrophy resulting in a loss of countable neuronal cell bodies. In addition, the motoneurons failed to maintain their initial increase in expression of GAP-43 and alpha-tubulin mRNA. Reinjury of 10-week chronically resected facial motoneurons by the removal of the neuroma reversed the atrophy of the cell bodies and increased the percentage of identifiable cell bodies from 36% of contralateral to 79% in C57BL/6-C3H mice and from 28% of contralateral to 40% in Balb/c mice. Moreover, the reinjured motoneurons displayed an increase in GAP-43 and alpha-tubulin mRNA expression. The results of this study indicate that a second axon injury stimulates regenerative cell body responses in chronically resected mouse facial motoneurons and suggest previous studies using this model may have overestimated the number of dying motoneurons.
Collapse
Affiliation(s)
- Lowell T McPhail
- International Collaboration On Repair Discoveries, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
10
|
Schuetz E, Thanos S. Neuro-glial interactions in the adult rat retina after reaxotomy of ganglion cells: examination of neuron survival and phagocytic microglia using fluorescent tracers. Brain Res Bull 2004; 62:391-6. [PMID: 15168904 DOI: 10.1016/j.brainresbull.2003.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 09/19/2003] [Accepted: 10/28/2003] [Indexed: 01/05/2023]
Abstract
Retinal ganglion cells (RGCs) regenerating through peripheral nerve grafts show enhanced survival after further axonal injury for at least 4 weeks [Restor. Neurol. Neurosci. 21 (2003) 11]. Here, we examined the survival of the neurons and their microglial phagocytosis in dependence of the site of reaxotomy. Therefore, the optic nerve in adult rats was transected at different distances from the eye cup and replaced with an autologous piece of sciatic nerve. After 14 days of axonal growth, the regenerated neurites were reaxotomized either within the remaining optic stump or within the graft and their cell bodies were retrogradely labeled. Reaxotomy of regenerated ganglion cells within the remaining optic nerve resulted in reduced (but not significant) ganglion cell survival and significant microglial phagocytosis in contrast to reaxotomy within the peripheral nerve graft. Furthermore, phagocytosis-dependent labeling using two different fluorescent tracers revealed that the same microglial cell can phagocytose further dying ganglion cells within 14 days after the first activation. The results suggest that the intrasciatic segments of axons receive some trophic support that is retrogradely transported and required to limit the microglial activation. The microglial capability to phagocytose dying neurons several fold emphasizes their function in permanent scavenging within the retina.
Collapse
Affiliation(s)
- Erik Schuetz
- Department of Experimental Ophthalmology, University Eye Hospital Münster, Domagkstrasse 15, 48149 Münster, Germany
| | | |
Collapse
|
11
|
Cuadros MA, Navascués J. Early origin and colonization of the developing central nervous system by microglial precursors. PROGRESS IN BRAIN RESEARCH 2001; 132:51-9. [PMID: 11545016 DOI: 10.1016/s0079-6123(01)32065-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M A Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | |
Collapse
|
12
|
Walther M, Popratiloff A, Lachnit N, Hofmann N, Streppel M, Guntinas-Lichius O, Neiss WF, Angelov DN. Exogenous antigen containing perivascular phagocytes induce a non-encephalitogenic extravasation of primed lymphocytes. J Neuroimmunol 2001; 117:30-42. [PMID: 11431002 DOI: 10.1016/s0165-5728(01)00302-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that T-lymphocyte extravasation and CNS-parenchymal infiltration during autoimmune disease might be regulated by antigen-presenting (ED2(+)) cerebral/spinal perivascular phagocytes (CPP/SPP). Since the massive erythrocytic and leukocytic infiltrates in the CNS of rats with experimental allergic encephalomyelitis do not allow a precise differentiation between CPP/SPP and the invading cells in the Virchow-Robin space, we developed a new immune-response model whereby the extravasation of T-lymphocytes was not followed by other blood cells. Adult Lewis rats were sensitized to horseradish peroxidase (HRP). Subsequent intracerebroventricular (i.c.v.) injections of HRP and/or Fluoro-Emerald (FE) served to: (1) challenge the primed T-lymphocytes and (2) label the CPP/SPP for additional immunocytochemical analysis. We found that 24 h and 3 days after single, double, or triple antigen boosting T-lymphocytes (R73(+), W3/25(+), OX50(+)) entered the Virchow-Robin space but did not break through the astrocytic glia limitans. Instead they adhered to HRP-containing activated CPP/SPP (mabs OX-6(+), SILK6(+), CD40(+), CD80(+), CD86(+)). This selective contact was mediated neither by cell adhesion molecules (P-selectin, ICAM-1, VCAM-1), nor promoted by chemokine receptors (CCR1, CCR5) or chemokines (monocyte chemoattractant protein (MCP)-1, MIP-1alpha, MIP-1beta, RANTES). This non-inflammatory, but antigen-dependent lymphocyte extravasation provides optimal conditions to further study the CNS immune response.
Collapse
Affiliation(s)
- M Walther
- Institut I für Anatomie der Universität zu Köln, Joseph-Stelzmann-Strasse 9, D-50931, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dihné M, Block F, Korr H, Töpper R. Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res 2001; 902:178-89. [PMID: 11384611 DOI: 10.1016/s0006-8993(01)02378-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of microglial cells and astrocytes after CNS injury results in changes in their morphology, immunophenotype and proliferative activity and has neurotrophic as well as neurotoxic consequences. However, little is known about the exact time course of glial activation as regards their proliferative activity and their fate. In this study, quantification of the densities of proliferating and non-proliferating microglial cells and astrocytes was carried out over 30 days by counting differentially labeled cells in the striatum and substantia nigra pars reticulata (SNr) after injection of quinolinic acid into the rat striatum. The TdT-mediated dUTP nick end labeling (TUNEL)-reaction was used to detect possible apoptotic mechanisms which limit the glial reaction. At 1 day post injection (p.i.) non-proliferating ameboid microglia/macrophages were seen in the striatum, but at 3 and 5 days p.i. many proliferating, ameboid microglia/macrophages and hypertrophic microglia were detected. At 10 days p.i., the time point with the highest density of hypertrophic microglia, TUNEL-positive microglial cells were observed indicating that apoptotic processes play a role in restricting this reaction. In contrast to this, at early time points, a reduction in the density and glial fibrillary acidic protein (GFAP)-immunoreactivity of astrocytes in the striatum was detected. At later time points, a dense astrogliosis with proliferating astrocytes developed in the dorsal and medial striatum. At 30 days p.i., in the entire striatum a dense astrogliosis was detected. The SNr showed a short period of microglial activation and proliferation and a long lasting astrogliosis without proliferation
Collapse
Affiliation(s)
- M Dihné
- Department of Neurology, RWTH Aachen, Pauwelsstr. 30, D-52057, Aachen, Germany.
| | | | | | | |
Collapse
|
14
|
Boill�e S, Viala L, Peschanski M, Dreyfus PA. Differential microglial response to progressive neurodegeneration in the murine mutantwobbler. Glia 2001. [DOI: 10.1002/1098-1136(20010315)33:4<277::aid-glia1026>3.0.co;2-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Popratiloff AS, Neiss WF, Skouras E, Streppel M, Guntinas-Lichius O, Angelov DN. Evaluation of muscle re-innervation employing pre- and post-axotomy injections of fluorescent retrograde tracers. Brain Res Bull 2001; 54:115-23. [PMID: 11226720 DOI: 10.1016/s0361-9230(00)00411-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In experimental studies on peripheral nerve repair, the possibility to objectively compare original and post-operative innervation is of decisive importance for the selection of the proper nerve-reconstruction strategy. Herewith we report serious drawbacks encountered with the standard method of pre- and post-operative intramuscular injections of widely used retrograde neuronal tracers. Labeling of rat facial motoneurons by injection of Fast-Blue (FB; Group 1), Dil (Group 2), or Fluoro-Gold (FG; Group 3) into the whisker pad muscles was followed by transection and suture of the facial nerve. Two months later, the same rats received Dil (Group 1), FG (Group 2), and FB (Group 3) injections with the same parameters as the pre-operative injections. By quantitative evaluation of single- and double-retrogradely labeled perikarya of facial motoneurons, we tried to estimate the accuracy of re-innervation. Observations through a "UV-filter" (for FB-labeled perikarya) and a "rhodamine-filter" (for Dil-labeled perikarya) in Group 1 revealed an unexpected axotomy-triggered leakage of FB which compromised the counts. After pre-operative Dil labeling, nerve suture, and post-operative FG labeling (Group 2), Dil created an extracellular deposit in the whisker pad. Thus, the uptake of pre-operative tracer by sprouts of re-growing axons compromised counts of retrogradely labeled motoneurons. Employing the "UV-filter" in Group 3 (FG-, FB-, FG+FB-labeled perikarya), the emission of FB obscured that of FG and also compromised cell counts. The use of filter sets constructed ad hoc for detection of FG and FB rendered possible an objective comparison.
Collapse
Affiliation(s)
- A S Popratiloff
- Institut I für Anatomie der Universität zu Köln, Köln, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Ghali RP, Herx LM, Maa A, Levine RL. Mononuclear cell proliferation and hyperplasia during Wallerian degeneration in the visual system of the goldfish in the presence or absence of regenerating optic axons. Brain Res 2000; 854:178-88. [PMID: 10784120 DOI: 10.1016/s0006-8993(99)02339-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Patterns of proliferation and changes in non-neuronal cell number in the visual system of the goldfish have been quantitatively examined during optic axon regeneration after an optic nerve crush (ONC). In addition, in order to examine the effect of the regenerating axons on cellular responses in the visual pathways, we did a similar analysis of animals with the right eye removed (ER). Finally, we used double labeling protocols to demonstrate that the proliferating cells that we were counting were mostly phagocytic cells of the mononuclear lineage. In animals with an ONC, we observed an early burst of proliferation that peaked between 7 and 14 days after surgery in all parts of the visual system. In the optic tract, there was also a secondary rise that peaked at 21 days. Levels of proliferation returned to normal by 32 days postoperative in the tract and tectum, while they remained somewhat elevated in the optic nerve for at least 93 days. The total number of non-neuronal cells in the visual paths also rose to peak values between 7 and 14 days after ONC surgery. In the optic tract and tectum, the values fell rapidly after this time, while in the optic nerve, there was a secondary peak at 32 days after which values remained elevated for the duration of the experiment. As compared to animals with an ONC, enucleation resulted in elevated proliferation and hyperplasia at early postoperative intervals. However, because these differences occurred when axons had not yet regenerated into the affected structures, these data do not provide strong evidence for a direct effect of regenerating optic axons on the early cellular responses during Wallerian degeneration in the goldfish. In addition, in the tectum, there was an early increment in cell number that was not associated with elevated levels of proliferation. We believe that this increment represents immigration of resident microglia from other regions of the brain.
Collapse
Affiliation(s)
- R P Ghali
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Raivich G, Jones LL, Werner A, Blüthmann H, Doetschmann T, Kreutzberg GW. Molecular signals for glial activation: pro- and anti-inflammatory cytokines in the injured brain. ACTA NEUROCHIRURGICA. SUPPLEMENT 1999; 73:21-30. [PMID: 10494337 DOI: 10.1007/978-3-7091-6391-7_4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injury to the central nervous system leads to cellular changes not only in the affected neurons but also in adjacent glial cells. This neuroglial activation is a consistent feature in almost all forms of brain pathology and appears to reflect an evolutionarily-conserved program which plays an important role for the repair of the injured nervous system. Recent work in mice that are genetically-deficient for different cytokines (M-CSF, IL-6, TNF-alpha, TGF-beta 1) has begun to shed light on the molecular signals that regulate this cellular response. Here, the availability of cytokine-deficient animals with reduced or abolished neuroglial activation provides a direct approach to determine the function of the different components of the cellular response leading to repair and regeneration following neural trauma.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Campos Torres A, Vidal PP, de Waele C. Evidence for a microglial reaction within the vestibular and cochlear nuclei following inner ear lesion in the rat. Neuroscience 1999; 92:1475-90. [PMID: 10426501 DOI: 10.1016/s0306-4522(99)00078-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Following unilateral inner ear lesion, astrocytes undergo hypertrophy in the deafferented vestibular and cochlear nuclei as shown by an increase in the level of glial fibrillary acid. The present study extends our understanding of vestibular and cochlear system plasticity by examining microglial changes in these deafferented nuclei. The microglial reaction was studied 1, 2, 4, 8, 14, 21, 28 and 42 days following the lesion with a monoclonal OX-42 antibody and lectins (Griffonia simplicifolia, B4 isolectin) labelled with horseradish peroxidase or fluorescein. The deafferented nuclei were also examined for apoptotic cells by terminal transferase-mediated nick end labelling of nuclear DNA fragments. In control and sham-operated rats, the distribution of the resting microglial cells was uniform in both the vestibular and cochlear nuclei. In the deafferented vestibular complex, the microglial cells increased in number, became hypertrophied and were distributed in the medial, lateral, superior and inferior vestibular nuclei. Reactive microglial cells were also detected in the ipsilateral cochlear nuclei. Some of the immunostained cells were hypertrophic whereas others presented an ameboid morphology with few short and stout processes. The microglial reaction was confined to the antero- and posteroventral cochlear nuclei. Finally, reactive microglia was also observed in the prepositus hypoglossi ipsilateral to the lesion. The microglial reactions within the prepositus hypoglossi, the vestibular and the cochlear nuclei were detectable as early as one day after the lesion and persisted several weeks in both the vestibular and cochlear nuclei. Apoptotic cells were not detected in the vestibular nuclei at any stage following the lesion. In contrast, terminal deoxynucleotidyl transferase-mediated digoxygenin-11-dUTP nick end labelling-positive cells were first detected in the deafferented cochlear nuclei on the 3rd day following the lesion. They reached an apparent maximum by day 8 and then declined until day 24. Double labelling experiments demonstrate that these cochlear terminal deoxynucleotidyl transferase-mediated digoxygenin-11-dUTP nick end labelling-positive cells were also lectin-positive suggesting that reactive cochlear lectin-positive microglia cells were eliminated by a programmed cell death. Our results establish the two experimental models as reliable tools to understand the role of microglia in adult brain plasticity. The cochlear microglial reaction was probably induced by the degeneration of the acoustic nerve which follows the acoustic ganglion destruction. Interestingly, the same reasoning cannot apply to the vestibular microglial reaction following unilateral labyrinthectomy: the vestibular ganglion was spared and the primary vestibular neurons did not degenerate, at least during the first week following the lesion.
Collapse
Affiliation(s)
- A Campos Torres
- Laboratoire de Neurobiologie des Réseaux Sensori-moteurs, ESA 7060, CNRS, Paris VI-Paris VII, France
| | | | | |
Collapse
|
19
|
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:77-105. [PMID: 10407127 DOI: 10.1016/s0165-0173(99)00007-7] [Citation(s) in RCA: 623] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Damage to the central nervous system (CNS) leads to cellular changes not only in the affected neurons but also in adjacent glial cells and endothelia, and frequently, to a recruitment of cells of the immune system. These cellular changes form a graded response which is a consistent feature in almost all forms of brain pathology. It appears to reflect an evolutionarily conserved program which plays an important role in the protection against infectious pathogens and the repair of the injured nervous system. Moreover, recent work in mice that are genetically deficient for different cytokines (MCSF, IL1, IL6, TNFalpha, TGFbeta1) has begun to shed light on the molecular signals that regulate this cellular response. Here we will review this work and the insights it provides about the biological function of the neuroglial activation in the injured brain.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Damage to the central nervous system (CNS) elicits the activation of both astrocytes and microglia. This review is focused on the principal features that characterize the activation of microglia after CNS injury. It provides a critical discussion of concepts regarding microglial biology that include the relationship between microglia and macrophages, as well as the role of microglia as immunocompetent cells of the CNS. Mechanistic and functional aspects of microgliosis are discussed primarily in the context of microglial neuronal interactions. The controversial issue of whether reactive microgliosis is a beneficial or a harmful process is addressed, and a resolution of this dilemma is offered by suggesting different interpretations of the term 'activated microglia' depending on its usage during in vivo or in vitro experimentation.
Collapse
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida College of Medicine and Brain Institute, Gainesville 32610, USA.
| | | | | |
Collapse
|
21
|
Acarin L, González B, Castro AJ, Castellano B. Primary cortical glial reaction versus secondary thalamic glial response in the excitotoxically injured young brain: microglial/macrophage response and major histocompatibility complex class I and II expression. Neuroscience 1999; 89:549-65. [PMID: 10077335 DOI: 10.1016/s0306-4522(98)00331-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The excitatory amino acid analog, N-methyl-D-aspartate, was injected intracortically into nine-day-old rats. Resulting axon-sparing lesions in the developing sensorimotor cortex, which secondarily affect thalamic neurons that become deprived of cortical targets, provide an experimental model for the study of the glial response in distantly affected areas. The microglial/macrophage response was studied using tomato lectin histochemistry and major histocompatibility complex I and II immunocytochemistry. Blood-brain barrier integrity was evaluated. In the cortical lesion site, where blood-brain barrier breakdown occurs, the rapid microglial response was restricted to the degenerating area. Microglial changes were first seen at 4 h post-injection, peaking at days 3-5. Reactive microglia changed morphology, increased tomato lectin binding and expressed major histocompatibility complex I. Additionally, some cells expressed major histocompatibility complex II. In the secondarily affected thalamus, the microglial response was not as pronounced as in the cortex, was first seen at 10 h post-injection and peaked at days 3-5. Reactive microglia showed a bushy morphology, were intensely lectin positive and expressed major histocompatibility complex I. The exceptional response of the nine-day-old brain to cortical lesions makes this model an interesting tool for studying the implications of microglial major histocompatibility factor expression in still enigmatic processes such as wound healing and plasticity.
Collapse
Affiliation(s)
- L Acarin
- Department of Cell Biology and Physiology, Unit of Histology, Faculty of Medicine, Autonomous University of Barcelona, Spain
| | | | | | | |
Collapse
|
22
|
Schwaiger FW, Hager G, Raivich G, Kreutzberg GW. Cellular activation in neuroregeneration. PROGRESS IN BRAIN RESEARCH 1999; 117:197-210. [PMID: 9932410 DOI: 10.1016/s0079-6123(08)64017-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- F W Schwaiger
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| | | | | | | |
Collapse
|
23
|
Lombardi VR, García M, Cacabelos R. Microglial activation induced by factor(s) contained in sera from Alzheimer-related ApoE genotypes. J Neurosci Res 1998; 54:539-53. [PMID: 9822164 DOI: 10.1002/(sici)1097-4547(19981115)54:4<539::aid-jnr11>3.0.co;2-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several factors that increase the likelihood of developing Alzheimer's disease (AD) have already been identified. A correct evaluation of these may contribute to a better understanding of the etiology of the disease. The risk of developing AD definitely increases with (a) age, (b) head injuries, (c) family history of AD or Down syndrome, (d) sex (higher prevalence of AD in women), (e) vascular disease, (f) exposure to environmental toxins, (g) infectious processes, or (h) changes in immune function, and recent advances in molecular genetics have suggested that genetic predisposition (i) can be considered one of the most important risk factors in the development of AD. A significant increase in the number of amyloid plaques in AD patients with an apolipoprotein E4 (ApoE) allele has been observed and the results of several genetic studies indicate that the etiology of this neurodegenerative disease is associated with the presence of the allele E4 of ApoE. A potential source of damage in the AD brain is an altered response triggered by microglial activation, which is associated with amyloid plaques. It has become evident that a dysregulation of cytokine release appears within lesions of many types of brain disorders including infection, trauma, stroke, and neurodegenerative diseases. Many studies have shown that microglia secrete both cytokines and cytotoxins and since reactive microglia appears in nearly every type of brain damage, it is likely that their secreted products ultimately help to determine the rate of damaged brain tissue. In this study, in vitro cell cultures were established to investigate the effect of different concentrations of human sera (2.5% and 10%) with specific ApoE genotypes from Alzheimer's and non-Alzheimer's subjects on ameboid and flat microglial cells obtained from neonatal rat hippocampi. Results show that a modulation in the proliferation and activation of microglial cells was obtained and that AD sera, mainly in the ApoE 3/4 and 4/4 genotype contain factor(s) which are able to induce morphological changes, as measured by an increase in the ameboid cell type. In addition, major histocompatibility complex (MHC) class II antigen expression, as measured by flow cytometric analysis, and interleukin-1beta (IL-1beta) release as measured by enzyme linked immunoadsorbent assay (ELISA), in comparison with control groups and lipopolysaccharide (LPS)-treated cells, clearly demonstrate a direct effect of ApoE 3/4 and 4/4 and/or an indirect effect mediated by the release of IL-1beta on microglia activation. These results strongly suggest that primary in vitro microglial cell cultures can be used as a screening model to test human sera as well as the effect of new potential drugs aimed at down-regulating microglia activation.
Collapse
Affiliation(s)
- V R Lombardi
- EuroEspes Biomedical Research Center, Division of Biotechnology, Santa Marta de Babío, La Coruña, Spain.
| | | | | |
Collapse
|
24
|
Angelov D, Krebs C, Walther M, Martinez-Portillo F, Gunkel A, Lay C, Streppel M, Guntinas-Lichius O, Stennert E, Neiss W. Altered expression of immune-related antigens by neuronophages does not improve neuronal survival after severe lesion of the facial nerve in rats. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199810)24:2<155::aid-glia1>3.0.co;2-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. J Neurosci 1998. [PMID: 9698315 DOI: 10.1523/jneurosci.18-16-06218.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglial activation in response to pathological stimuli is characterized by increased migratory activity and potential cytotoxic action on injured neurons during later stages of neurodegeneration. The initial molecular changes in the CNS favoring neuronofugal migration of microglia remain, however, largely unknown. We report that the extracellular matrix protein tenascin-R (TN-R) present in the intact CNS is antiadhesive for activated microglia, and its downregulation after facial nerve axotomy may account for the loss of motoneuron protection and subsequent neurodegeneration. Studies on the protein expression in the facial and hypoglossal nucleus in rats demonstrate that TN-R is a constituent of the perineuronal net of motoneurons and 7 d after peripheral nerve injury becomes downregulated in the corresponding motor nucleus. This downregulation is reversible under regenerative (nerve suture) conditions and irreversible under degenerative (nerve resection) conditions. In short-term adhesion assays, the unlesioned side of brainstem cryosections from unilaterally operated animals is nonpermissive for activated microglia, and this nonpermissiveness is almost abolished by a monoclonal antibody to TN-R. Microglia-conditioned media and tumor necrosis factor-alpha downregulate TN-R protein and mRNA synthesis by cultured oligodendrocytes, which are one of the sources for TN-R in the brainstem. Our findings suggest a new role for TN-R in neuronal protection against activated microglia and the participation of the latter in perineuronal net destruction, e.g., downregulation of TN-R.
Collapse
|
26
|
Mayor S, Sabharanjak S, Maxfield FR. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J 1998; 17:4626-38. [PMID: 9707422 PMCID: PMC1170792 DOI: 10.1093/emboj/17.16.4626] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.
Collapse
Affiliation(s)
- S Mayor
- National Centre for Biological Sciences, TIFR Centre, Bangalore 560012, India.
| | | | | |
Collapse
|
27
|
Abstract
Axon injury rapidly activates microglial and astroglial cells close to the axotomized neurons. Following motor axon injury, astrocytes upregulate within hour(s) the gap junction protein connexin-43, and within one day glial fibrillary acidic protein (GFAP). Concomitantly, microglial cells proliferate and migrate towards the axotomized neuron perikarya. Analogous responses occur in central termination territories of peripherally injured sensory ganglion cells. The activated microglia express a number of inflammatory and immune mediators. When neuron degeneration occurs, microglia act as phagocytes. This is uncommon after peripheral nerve injury in the adult mammal, however, and the functional implications of the glial cell responses in this situation are unclear. When central axons are injured, the glial cell responses around the affected neuron perikarya appears to be minimal or absent, unless neuron degeneration occurs. Microglia proliferate, and astrocytes upregulate GFAP along central axons undergoing anterograde, Wallerian, degeneration. Although microglia develop into phagocytes, they eliminate the disintegrating myelin very slowly, presumably because they fail to release molecules which facilitate phagocytosis. During later stages of Wallerian degeneration, oligodendrocytes express clusterin, a glycoprotein implicated in several conditions of cell degeneration. A hypothetical scheme for glial cell activation following axon injury is discussed, implying the injured neurons initially interact with adjacent astrocytes. Subsequently, neighbouring resting microglia are activated. These glial reactions are amplified by paracrine and autocrine mechanisms, in which cytokines appear to be important mediators. The specific functional properties of the activated glial cells will determine their influence on neuronal survival, axon regeneration, and synaptic plasticity. The control of the induction and progression of these responses are therefore likely to be critical for the outcome of, for example, neurotrauma, brain ischemia and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- H Aldskogius
- Department of Neuroscience, Biomedical Center, Uppsala, Sweden.
| | | |
Collapse
|
28
|
Minn A, Schubert M, Neiss WF, Müller-Hill B. Enhanced GFAP expression in astrocytes of transgenic mice expressing the human brain-specific trypsinogen IV. Glia 1998; 22:338-47. [PMID: 9517566 DOI: 10.1002/(sici)1098-1136(199804)22:4<338::aid-glia3>3.0.co;2-#] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We recently identified a cDNA encoding a human brain specific trypsinogen (trypsinogen IV). In order to test whether trypsinogen IV is involved in CNS diseases of, or injury response in, mammalian brain, a mouse model was developed in which the human trypsinogen IV was expressed specifically in neurons. Immunocytochemical analysis of the brains of transgenic mice revealed a striking enhancement of glial fibrillar acidic protein (GFAP) expression in astrocytes. This remarkable astrocytic reaction was detected in the brains of mice as young as 2 months and did not diminish in the older animals we tested. However, we did not find gross evidence for neurodegeneration, nor for reactive microglial cells. The long-term survival of these animals should provide a model with which to study the mechanism of nerve-astroglia interactions. In addition, the possible participation of trypsin IV in the metabolism of the Alzheimer precursor protein (APP) was investigated by immunostaining brains from transgenic mice with beta-amyloid (betaA4) antibodies. Immunocytochemical staining of brains from one year old transgenic mice revealed an intense intracellular betaA4-like signal in neurons.
Collapse
Affiliation(s)
- A Minn
- Institut für Genetik, Lindenthal, Köln, Germany
| | | | | | | |
Collapse
|
29
|
Hollerbach EH, Haas CA, Hildebrandt H, Frotscher M, Naumann T. Region-specific activation of microglial cells in the rat septal complex following fimbria-fornix transection. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980126)390:4<481::aid-cne3>3.0.co;2-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Gould DJ, Goshgarian HG. Glial changes in the phrenic nucleus following superimposed cervical spinal cord hemisection and peripheral chronic phrenicotomy injuries in adult rats. Exp Neurol 1997; 148:1-9. [PMID: 9398444 DOI: 10.1006/exnr.1997.6556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to characterize the microglial and astroglial reaction in the phrenic nucleus following either an ipsilateral C2 spinal cord hemisection, a peripheral phrenicotomy, or a combination of the two injuries in the same adult rat. The present study used three different fluorescent markers and a confocal laser image analysis system to study glial cells and phrenic motoneurons at the light microscopic level. Young adult female rats were divided into one combined injury group (left phrenicotomy and left C2 spinal hemisection with periods of 1 to 4 weeks between injuries, N = 12) and three other groups consisting of noninjured animals (N = 3), animals that received C2 hemisection only (N = 3), and animals with phrenicotomy only (survival periods of 2 (N = 3) and 4 (N = 3) weeks after phrenicotomy). Fluorogold was injected into the diaphragm to label phrenic motoneurons in all animals. Microglia and astrocytes were labeled with Texas red and fluorescein, respectively, and were visualized simultaneously along with phrenic motoneurons. The results suggest that the microglial and astrocytic response in the superimposed injury model are similar to the glial reactions characteristically seen in a peripheral axotomy alone model. These reactions include proliferation and migration of microglial cells along the perineuronal surface (peaking at 2 weeks) and the hypertrophy of astrocytes (peaking at 4 weeks). In addition, the increase in astrocytic tissue, which is characteristically seen in response to axotomy alone, is significantly enhanced in the superimposed injury model. Also, there is a large and rapid increase in GFAP-positive astrocytes within 24 hours after hemisection alone. The information gained from the present study will aid in determining, predicting, and eventually manipulating central nervous system responses to multiple injuries with the objective of reestablishing function in the damaged CNS.
Collapse
Affiliation(s)
- D J Gould
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
31
|
Krebs C, Neiss WF, Streppel M, Guntinas-Lichius O, Dassesse D, Stennert E, Pochet R. Axotomy induces transient calbindin D28K immunoreactivity in hypoglossal motoneurons in vivo. Cell Calcium 1997; 22:367-72. [PMID: 9448943 DOI: 10.1016/s0143-4160(97)90021-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calbindin D28K, an intracellular calcium-binding protein, acts as Ca2+ buffering system in the cytoplasm. By means of this property, calbindin may protect neurons against large fluctuations in free intracellular Ca2+ and, hence, may prevent cell death. Although axotomy causes a massive influx of calcium into the lesioned neurons, resection of the hypoglossal nerve does not induce extensive neuronal cell death in rats. Even several weeks after axotomy, about 70% of the motoneurons survive despite permanent target deprivation. The mechanisms responsible for this remarkable survival rate are unknown. In this study, we have looked at the modification of calbindin immunoreactivity in axotomized hypoglossal motoneurons. In non-axotomized motoneurons, no calbindin is detectable by immunocytochemistry. Axotomy induced an increase of calbindin immunoreactivity in lesioned motoneurons. This increase, visualised by the number of calbindin-immunoreactive neurons extended from 1 day to 28 days. At this time most, but not all, motoneurons located on the side of the lesion were calbindin-positive as shown by retrograde labeling and immunoquenching. From 14 days post operation, calbindin immunoreactivity decreased and reached its basal value after 35 days post operation. At that time, only fibres were still calbindin immunoreactive. Interestingly, calbindin-immunoreactivity was also increased in almost all cell nuclei, compatible with a nuclear regulation. These data are consistent with the hypothesis that, as a reaction to axotomy, motoneurons trigger an increase in calbindin expression which acts as a compensatory Ca(2+)-buffering system, enabling neurons to maintain Ca2+ homeostasis and the survival of many motoneurons after axotomy.
Collapse
Affiliation(s)
- C Krebs
- Institut I für Anatomie, Universität zu Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Gehlert DR, Stephenson DT, Schober DA, Rash K, Clemens JA. Increased expression of peripheral benzodiazepine receptors in the facial nucleus following motor neuron axotomy. Neurochem Int 1997; 31:705-13. [PMID: 9364456 DOI: 10.1016/s0197-0186(97)00007-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peripheral benzodiazepine receptors (PBRs) are expressed in a variety of tissues but are normally found at low levels in the brain. Following various types of nerve injury, a reactive gliosis results that exhibits a high expression of this receptor. To further characterize the expression of PBRs following neuronal injury, we evaluated PBR expression in the facial nucleus following facial nerve axotomy (FNA). Injury to a peripheral nerve results in a complex series of metabolic and morphological changes around the injured neuron. Transections of the facial nerve results in a rapid activation of both astrocytes and microglia around axotomized motor neurons. FNA resulted in an increase in the staining for both astrocytes (glial fibrillary acidic protein) and activated microglia (OX42). There was also a reduction in synaptic contacts with the motor nucleus as evidenced by reduced staining for the synaptic marker, synaptophysin. In sections labeled with [3H]-PK11195, the subsequent autoradiograms displayed marked increases in the labeling for PBRs. This increase was observed at 5, 7 and 10 days after nerve transection. The increase was primarily in the level of expression (Bmax), with no change in the affinity of the ligand (Kd). The increase in PBR expression after FNA supports the hypothesis that PBRs can be used as a sensitive marker for CNS injury.
Collapse
Affiliation(s)
- D R Gehlert
- Eli Lilly and Co., CNS Division, Indianapolis, IN 46285, USA.
| | | | | | | | | |
Collapse
|
33
|
Rostaing-Rigattieri S, Flores-Guevara R, Peschanski M, Cadusseau J. Glial and endothelial cell response to a fetal transplant of purified neurons. Neuroscience 1997; 79:723-34. [PMID: 9219936 DOI: 10.1016/s0306-4522(96)00671-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Astrocytes, microglia and endothelial cells display very specific phenotypic characteristics in the intact adult CNS, which appear quite versatile when grown in culture without neurons. Indirect evidence from in vitro co-culture studies and analysis of the effects of specific neuronal removal in vivo, does accordingly favour a role of neurons for the phenotypic repression of these cells in the intact brain. In order to provide more direct evidence for such neuronal influence, we attempted to induce, in the rat brain, a reversal of the post-lesional activation of astrocytes, microglia and endothelial cells by transplantation of fetal neurons purified by immunopanning. Host microglial cells which have been activated by the lesion process, penetrated the neuronal graft during the few days after the transplantation. Reactive astrocytes began to appear in the lesioned parenchyma and gathered around the transplant. Thereafter they first sent their processes in the direction of the neuronal graft, before they migrated into the graft a few days later. At this time, which was at the end of the first week post-transplantation, the host endothelial cells sprouted "streamers" of basal lamina within the graft forming small capillaries. During the second week post-transplantation, numerous astrocytes and microglial cells, both displaying a reactive hypertrophied morphology, were observed throughout the grafts. Finally, by the end of the first month, the activated cells differentiated towards a quiescent, resting morphology. At this time the grafts contained a vascular network with morphological characteristics comparable to those observed in the intact brain parenchyma. The results indicate that the interaction of activated astroglia and microglia and endothelial cells with neurons causes the cells to re-differentiate and regain phenotypic features characteristic of intact brain parenchyma, strongly suggesting that neurons play an essential role in the phenotypic restriction of glial and endothelial cells in the adult central nervous system.
Collapse
|
34
|
Schauwecker PE, Steward O. Genetic influences on cellular reactions to brain injury: activation of microglia in denervated neuropil in mice carrying a mutation (Wld(S)) that causes delayed Wallerian degeneration. J Comp Neurol 1997; 380:82-94. [PMID: 9073084 DOI: 10.1002/(sici)1096-9861(19970331)380:1<82::aid-cne6>3.0.co;2-p] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examines the relationship between the appearance of degenerative changes in synaptic terminals and axons and the activation of microglia in denervated neuropil regions of normal mice of the C57BL/6 strain and mutant mice (Wld(S)), in which Wallerian degeneration is substantially delayed. The time course of degenerative changes in synaptic terminals and axons was assessed using selective silver staining. Microglial cells were identified by immunostaining for Mac-1, a monoclonal antibody to the CR3 complement receptor, and by histochemical staining for nucleoside diphosphatase (NDPase). Increased argyrophilia, indicative of degenerative changes, was evident as early as 1 day postlesion in normal mice, but was not seen until 6-8 days in mice with the Wld(S) mutation. Microglial activation in normal C57BL/6 mice was evident by 24 hours postlesion, as evidenced by increased immunostaining for Mac-1, increased histochemical staining for NDPase, and morphological changes indicative of an activated phenotype (short, thick processes). Quantitative evaluation of immunostaining for Mac-1 revealed that peak activation occurred between 2 and 6 days postlesion with a return to a quiescent phenotype by 12 days. In contrast, the microglial response was significantly delayed and prolonged in mice bearing the Wld(S) mutation. Activated microglia were not seen within the deafferented area until 6 to 8 days postlesion and peak activation occurred between 12 and 20 days postlesion. These data suggest that the response of microglia in denervated neuropil zones is triggered by the same types of degenerative changes that cause increased argyrophilia as detected by selective silver staining methods.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
35
|
Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, Davidson BL, Bohn MC. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 1997; 275:838-41. [PMID: 9012352 DOI: 10.1126/science.275.5301.838] [Citation(s) in RCA: 467] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) supports growth and survival of dopaminergic (DA) neurons. A replication-defective adenoviral (Ad) vector encoding human GDNF injected near the rat substantia nigra was found to protect DA neurons from the progressive degeneration induced by the neurotoxin 6-hydroxydopamine (6-OHDA) injected into the striatum. Ad GDNF gene therapy reduced loss of DA neurons approximately threefold 6 weeks after 6-OHDA lesion, as compared with no treatment or injection of Ad lacZ or Ad mGDNF (encoding a biologically inactive deletion mutant GDNF). These results suggest that Ad vector-mediated GDNF gene therapy may slow the DA neuronal cell loss in humans with Parkinson's disease.
Collapse
Affiliation(s)
- D L Choi-Lundberg
- Department of Neurobiology and Anatomy, University of Rochester, Box 603, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Angelov DN, Neiss WF, Streppel M, Walther M, Guntinas-Lichius O, Stennert E. ED2-positive perivascular cells act as neuronophages during delayed neuronal loss in the facial nucleus of the rat. Glia 1996; 16:129-39. [PMID: 8929900 DOI: 10.1002/(sici)1098-1136(199602)16:2<129::aid-glia5>3.0.co;2-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Injection of Fluoro-Gold (FG) into the whisker pad of rats yields a stable retrograde labeling of facial motoneurons. After removal of 10 mm from the facial nerve the microglia phagocytose the FG-prelabeled dead neurons and assume the label. A subsequent brightfield immunostaining of the sections with HRP-DAB as end-product fully quenches the fluorescence of FG from all specifically stained structures (immunoquenching). Combining FG-labeling of neuronophages with immunoquenching, we recently described a population of enigmatic fluorescent cells, found in immediate vicinity to the motoneurons after the general neuronofugal migration of microglia. As the fluorescence of these cells was not quenched after a triple immunostaining with anti neuron-specific enolase, anti-GFAP, and OX-42 (quenching all fluorescence from neurons and glia), they seemed to represent a new, immunologically not identified neuronophage. Now we have further characterized this cell type. Following triple immunostaining, we tested a broad panel of mabs (OX-33, OX-19, OX-18, OX-6, R73, ED1, and ED2) to stain, quench fluorescence, and thus immunotype the unknown phagocytes. Only the mab ED2, the classical marker for perivascular cells, specifically stained the small round neuronophages. This surprising migration of perivascular cells toward decaying neurons was additionally tested and confirmed by intracerebroventricular application of FG prior to resection of the facial nerve Providing evidence for neuronophagia by ED2-positive cells, our results strongly support the hypothesis that the latter are the APC (antigen presenting cells) of the CNS.
Collapse
Affiliation(s)
- D N Angelov
- Institut I fur Anatomie, Ohrenheilkunde der Universitat zu Koln, Germany
| | | | | | | | | | | |
Collapse
|